xref: /linux/drivers/scsi/aacraid/aachba.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/sched.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE                        0x00
61 #define SENCODE_END_OF_DATA                     0x00
62 #define SENCODE_BECOMING_READY                  0x04
63 #define SENCODE_INIT_CMD_REQUIRED               0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
65 #define SENCODE_INVALID_COMMAND                 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE                0x21
67 #define SENCODE_INVALID_CDB_FIELD               0x24
68 #define SENCODE_LUN_NOT_SUPPORTED               0x25
69 #define SENCODE_INVALID_PARAM_FIELD             0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED             0x26
71 #define SENCODE_PARAM_VALUE_INVALID             0x26
72 #define SENCODE_RESET_OCCURRED                  0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED            0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE              0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE         0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR           0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
80 #define SENCODE_OVERLAPPED_COMMAND              0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE                       0x00
87 #define ASENCODE_END_OF_DATA                    0x05
88 #define ASENCODE_BECOMING_READY                 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED              0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
91 #define ASENCODE_INVALID_COMMAND                0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE               0x00
93 #define ASENCODE_INVALID_CDB_FIELD              0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED              0x00
95 #define ASENCODE_INVALID_PARAM_FIELD            0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED            0x01
97 #define ASENCODE_PARAM_VALUE_INVALID            0x02
98 #define ASENCODE_RESET_OCCURRED                 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED           0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE             0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR          0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
106 #define ASENCODE_OVERLAPPED_COMMAND             0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type  */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier  */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141 
142 /*
143  *	Non dasd selection is handled entirely in aachba now
144  */
145 
146 static int nondasd = -1;
147 static int dacmode = -1;
148 
149 static int commit = -1;
150 
151 module_param(nondasd, int, 0);
152 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
153 module_param(dacmode, int, 0);
154 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
155 module_param(commit, int, 0);
156 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
157 
158 int numacb = -1;
159 module_param(numacb, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid\nvalues are 512 and down. Default is to use suggestion from Firmware.");
161 
162 int acbsize = -1;
163 module_param(acbsize, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512,\n2048, 4096 and 8192. Default is to use suggestion from Firmware.");
165 /**
166  *	aac_get_config_status	-	check the adapter configuration
167  *	@common: adapter to query
168  *
169  *	Query config status, and commit the configuration if needed.
170  */
171 int aac_get_config_status(struct aac_dev *dev)
172 {
173 	int status = 0;
174 	struct fib * fibptr;
175 
176 	if (!(fibptr = fib_alloc(dev)))
177 		return -ENOMEM;
178 
179 	fib_init(fibptr);
180 	{
181 		struct aac_get_config_status *dinfo;
182 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
183 
184 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
185 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
186 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
187 	}
188 
189 	status = fib_send(ContainerCommand,
190 			    fibptr,
191 			    sizeof (struct aac_get_config_status),
192 			    FsaNormal,
193 			    1, 1,
194 			    NULL, NULL);
195 	if (status < 0 ) {
196 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
197 	} else {
198 		struct aac_get_config_status_resp *reply
199 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
200 		dprintk((KERN_WARNING
201 		  "aac_get_config_status: response=%d status=%d action=%d\n",
202 		  le32_to_cpu(reply->response),
203 		  le32_to_cpu(reply->status),
204 		  le32_to_cpu(reply->data.action)));
205 		if ((le32_to_cpu(reply->response) != ST_OK) ||
206 		     (le32_to_cpu(reply->status) != CT_OK) ||
207 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
208 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
209 			status = -EINVAL;
210 		}
211 	}
212 	fib_complete(fibptr);
213 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
214 	if (status >= 0) {
215 		if (commit == 1) {
216 			struct aac_commit_config * dinfo;
217 			fib_init(fibptr);
218 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
219 
220 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
221 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
222 
223 			status = fib_send(ContainerCommand,
224 				    fibptr,
225 				    sizeof (struct aac_commit_config),
226 				    FsaNormal,
227 				    1, 1,
228 				    NULL, NULL);
229 			fib_complete(fibptr);
230 		} else if (commit == 0) {
231 			printk(KERN_WARNING
232 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
233 		}
234 	}
235 	fib_free(fibptr);
236 	return status;
237 }
238 
239 /**
240  *	aac_get_containers	-	list containers
241  *	@common: adapter to probe
242  *
243  *	Make a list of all containers on this controller
244  */
245 int aac_get_containers(struct aac_dev *dev)
246 {
247 	struct fsa_dev_info *fsa_dev_ptr;
248 	u32 index;
249 	int status = 0;
250 	struct fib * fibptr;
251 	unsigned instance;
252 	struct aac_get_container_count *dinfo;
253 	struct aac_get_container_count_resp *dresp;
254 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
255 
256 	instance = dev->scsi_host_ptr->unique_id;
257 
258 	if (!(fibptr = fib_alloc(dev)))
259 		return -ENOMEM;
260 
261 	fib_init(fibptr);
262 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
263 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
264 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
265 
266 	status = fib_send(ContainerCommand,
267 		    fibptr,
268 		    sizeof (struct aac_get_container_count),
269 		    FsaNormal,
270 		    1, 1,
271 		    NULL, NULL);
272 	if (status >= 0) {
273 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
274 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
275 		fib_complete(fibptr);
276 	}
277 
278 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
279 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
280 	fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
281 	  sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
282 	if (!fsa_dev_ptr) {
283 		fib_free(fibptr);
284 		return -ENOMEM;
285 	}
286 	memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
287 
288 	dev->fsa_dev = fsa_dev_ptr;
289 	dev->maximum_num_containers = maximum_num_containers;
290 
291 	for (index = 0; index < dev->maximum_num_containers; index++) {
292 		struct aac_query_mount *dinfo;
293 		struct aac_mount *dresp;
294 
295 		fsa_dev_ptr[index].devname[0] = '\0';
296 
297 		fib_init(fibptr);
298 		dinfo = (struct aac_query_mount *) fib_data(fibptr);
299 
300 		dinfo->command = cpu_to_le32(VM_NameServe);
301 		dinfo->count = cpu_to_le32(index);
302 		dinfo->type = cpu_to_le32(FT_FILESYS);
303 
304 		status = fib_send(ContainerCommand,
305 				    fibptr,
306 				    sizeof (struct aac_query_mount),
307 				    FsaNormal,
308 				    1, 1,
309 				    NULL, NULL);
310 		if (status < 0 ) {
311 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
312 			break;
313 		}
314 		dresp = (struct aac_mount *)fib_data(fibptr);
315 
316 		dprintk ((KERN_DEBUG
317 		  "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n",
318 		  (int)index, (int)le32_to_cpu(dresp->status),
319 		  (int)le32_to_cpu(dresp->mnt[0].vol),
320 		  (int)le32_to_cpu(dresp->mnt[0].state),
321 		  (unsigned)le32_to_cpu(dresp->mnt[0].capacity)));
322 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
323 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
324 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
325 			fsa_dev_ptr[index].valid = 1;
326 			fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
327 			fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity);
328 			if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
329 				    fsa_dev_ptr[index].ro = 1;
330 		}
331 		fib_complete(fibptr);
332 		/*
333 		 *	If there are no more containers, then stop asking.
334 		 */
335 		if ((index + 1) >= le32_to_cpu(dresp->count)){
336 			break;
337 		}
338 	}
339 	fib_free(fibptr);
340 	return status;
341 }
342 
343 static void aac_io_done(struct scsi_cmnd * scsicmd)
344 {
345 	unsigned long cpu_flags;
346 	struct Scsi_Host *host = scsicmd->device->host;
347 	spin_lock_irqsave(host->host_lock, cpu_flags);
348 	scsicmd->scsi_done(scsicmd);
349 	spin_unlock_irqrestore(host->host_lock, cpu_flags);
350 }
351 
352 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
353 {
354 	void *buf;
355 	unsigned int transfer_len;
356 	struct scatterlist *sg = scsicmd->request_buffer;
357 
358 	if (scsicmd->use_sg) {
359 		buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
360 		transfer_len = min(sg->length, len + offset);
361 	} else {
362 		buf = scsicmd->request_buffer;
363 		transfer_len = min(scsicmd->request_bufflen, len + offset);
364 	}
365 
366 	memcpy(buf + offset, data, transfer_len - offset);
367 
368 	if (scsicmd->use_sg)
369 		kunmap_atomic(buf - sg->offset, KM_IRQ0);
370 
371 }
372 
373 static void get_container_name_callback(void *context, struct fib * fibptr)
374 {
375 	struct aac_get_name_resp * get_name_reply;
376 	struct scsi_cmnd * scsicmd;
377 
378 	scsicmd = (struct scsi_cmnd *) context;
379 
380 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
381 	if (fibptr == NULL)
382 		BUG();
383 
384 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
385 	/* Failure is irrelevant, using default value instead */
386 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
387 	 && (get_name_reply->data[0] != '\0')) {
388 		char *sp = get_name_reply->data;
389 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
390 		while (*sp == ' ')
391 			++sp;
392 		if (*sp) {
393 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
394 			int count = sizeof(d);
395 			char *dp = d;
396 			do {
397 				*dp++ = (*sp) ? *sp++ : ' ';
398 			} while (--count > 0);
399 			aac_internal_transfer(scsicmd, d,
400 			  offsetof(struct inquiry_data, inqd_pid), sizeof(d));
401 		}
402 	}
403 
404 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
405 
406 	fib_complete(fibptr);
407 	fib_free(fibptr);
408 	aac_io_done(scsicmd);
409 }
410 
411 /**
412  *	aac_get_container_name	-	get container name, none blocking.
413  */
414 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
415 {
416 	int status;
417 	struct aac_get_name *dinfo;
418 	struct fib * cmd_fibcontext;
419 	struct aac_dev * dev;
420 
421 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
422 
423 	if (!(cmd_fibcontext = fib_alloc(dev)))
424 		return -ENOMEM;
425 
426 	fib_init(cmd_fibcontext);
427 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
428 
429 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
430 	dinfo->type = cpu_to_le32(CT_READ_NAME);
431 	dinfo->cid = cpu_to_le32(cid);
432 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
433 
434 	status = fib_send(ContainerCommand,
435 		  cmd_fibcontext,
436 		  sizeof (struct aac_get_name),
437 		  FsaNormal,
438 		  0, 1,
439 		  (fib_callback) get_container_name_callback,
440 		  (void *) scsicmd);
441 
442 	/*
443 	 *	Check that the command queued to the controller
444 	 */
445 	if (status == -EINPROGRESS)
446 		return 0;
447 
448 	printk(KERN_WARNING "aac_get_container_name: fib_send failed with status: %d.\n", status);
449 	fib_complete(cmd_fibcontext);
450 	fib_free(cmd_fibcontext);
451 	return -1;
452 }
453 
454 /**
455  *	probe_container		-	query a logical volume
456  *	@dev: device to query
457  *	@cid: container identifier
458  *
459  *	Queries the controller about the given volume. The volume information
460  *	is updated in the struct fsa_dev_info structure rather than returned.
461  */
462 
463 static int probe_container(struct aac_dev *dev, int cid)
464 {
465 	struct fsa_dev_info *fsa_dev_ptr;
466 	int status;
467 	struct aac_query_mount *dinfo;
468 	struct aac_mount *dresp;
469 	struct fib * fibptr;
470 	unsigned instance;
471 
472 	fsa_dev_ptr = dev->fsa_dev;
473 	instance = dev->scsi_host_ptr->unique_id;
474 
475 	if (!(fibptr = fib_alloc(dev)))
476 		return -ENOMEM;
477 
478 	fib_init(fibptr);
479 
480 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
481 
482 	dinfo->command = cpu_to_le32(VM_NameServe);
483 	dinfo->count = cpu_to_le32(cid);
484 	dinfo->type = cpu_to_le32(FT_FILESYS);
485 
486 	status = fib_send(ContainerCommand,
487 			    fibptr,
488 			    sizeof(struct aac_query_mount),
489 			    FsaNormal,
490 			    1, 1,
491 			    NULL, NULL);
492 	if (status < 0) {
493 		printk(KERN_WARNING "aacraid: probe_container query failed.\n");
494 		goto error;
495 	}
496 
497 	dresp = (struct aac_mount *) fib_data(fibptr);
498 
499 	if ((le32_to_cpu(dresp->status) == ST_OK) &&
500 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
501 	    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
502 		fsa_dev_ptr[cid].valid = 1;
503 		fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
504 		fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity);
505 		if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
506 			fsa_dev_ptr[cid].ro = 1;
507 	}
508 
509 error:
510 	fib_complete(fibptr);
511 	fib_free(fibptr);
512 
513 	return status;
514 }
515 
516 /* Local Structure to set SCSI inquiry data strings */
517 struct scsi_inq {
518 	char vid[8];         /* Vendor ID */
519 	char pid[16];        /* Product ID */
520 	char prl[4];         /* Product Revision Level */
521 };
522 
523 /**
524  *	InqStrCopy	-	string merge
525  *	@a:	string to copy from
526  *	@b:	string to copy to
527  *
528  * 	Copy a String from one location to another
529  *	without copying \0
530  */
531 
532 static void inqstrcpy(char *a, char *b)
533 {
534 
535 	while(*a != (char)0)
536 		*b++ = *a++;
537 }
538 
539 static char *container_types[] = {
540         "None",
541         "Volume",
542         "Mirror",
543         "Stripe",
544         "RAID5",
545         "SSRW",
546         "SSRO",
547         "Morph",
548         "Legacy",
549         "RAID4",
550         "RAID10",
551         "RAID00",
552         "V-MIRRORS",
553         "PSEUDO R4",
554 	"RAID50",
555 	"RAID5D",
556 	"RAID5D0",
557 	"RAID1E",
558 	"RAID6",
559 	"RAID60",
560         "Unknown"
561 };
562 
563 
564 
565 /* Function: setinqstr
566  *
567  * Arguments: [1] pointer to void [1] int
568  *
569  * Purpose: Sets SCSI inquiry data strings for vendor, product
570  * and revision level. Allows strings to be set in platform dependant
571  * files instead of in OS dependant driver source.
572  */
573 
574 static void setinqstr(int devtype, void *data, int tindex)
575 {
576 	struct scsi_inq *str;
577 	struct aac_driver_ident *mp;
578 
579 	mp = aac_get_driver_ident(devtype);
580 
581 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
582 
583 	inqstrcpy (mp->vname, str->vid);
584 	inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */
585 
586 	if (tindex < (sizeof(container_types)/sizeof(char *))){
587 		char *findit = str->pid;
588 
589 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
590 		/* RAID is superfluous in the context of a RAID device */
591 		if (memcmp(findit-4, "RAID", 4) == 0)
592 			*(findit -= 4) = ' ';
593 		inqstrcpy (container_types[tindex], findit + 1);
594 	}
595 	inqstrcpy ("V1.0", str->prl);
596 }
597 
598 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
599 		      u8 a_sense_code, u8 incorrect_length,
600 		      u8 bit_pointer, u16 field_pointer,
601 		      u32 residue)
602 {
603 	sense_buf[0] = 0xF0;	/* Sense data valid, err code 70h (current error) */
604 	sense_buf[1] = 0;	/* Segment number, always zero */
605 
606 	if (incorrect_length) {
607 		sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
608 		sense_buf[3] = BYTE3(residue);
609 		sense_buf[4] = BYTE2(residue);
610 		sense_buf[5] = BYTE1(residue);
611 		sense_buf[6] = BYTE0(residue);
612 	} else
613 		sense_buf[2] = sense_key;	/* Sense key */
614 
615 	if (sense_key == ILLEGAL_REQUEST)
616 		sense_buf[7] = 10;	/* Additional sense length */
617 	else
618 		sense_buf[7] = 6;	/* Additional sense length */
619 
620 	sense_buf[12] = sense_code;	/* Additional sense code */
621 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
622 	if (sense_key == ILLEGAL_REQUEST) {
623 		sense_buf[15] = 0;
624 
625 		if (sense_code == SENCODE_INVALID_PARAM_FIELD)
626 			sense_buf[15] = 0x80;/* Std sense key specific field */
627 		/* Illegal parameter is in the parameter block */
628 
629 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
630 			sense_buf[15] = 0xc0;/* Std sense key specific field */
631 		/* Illegal parameter is in the CDB block */
632 		sense_buf[15] |= bit_pointer;
633 		sense_buf[16] = field_pointer >> 8;	/* MSB */
634 		sense_buf[17] = field_pointer;		/* LSB */
635 	}
636 }
637 
638 int aac_get_adapter_info(struct aac_dev* dev)
639 {
640 	struct fib* fibptr;
641 	int rcode;
642 	u32 tmp;
643 	struct aac_adapter_info *info;
644 	struct aac_bus_info *command;
645 	struct aac_bus_info_response *bus_info;
646 
647 	if (!(fibptr = fib_alloc(dev)))
648 		return -ENOMEM;
649 
650 	fib_init(fibptr);
651 	info = (struct aac_adapter_info *) fib_data(fibptr);
652 	memset(info,0,sizeof(*info));
653 
654 	rcode = fib_send(RequestAdapterInfo,
655 			 fibptr,
656 			 sizeof(*info),
657 			 FsaNormal,
658 			 1, 1,
659 			 NULL,
660 			 NULL);
661 
662 	if (rcode < 0) {
663 		fib_complete(fibptr);
664 		fib_free(fibptr);
665 		return rcode;
666 	}
667 	memcpy(&dev->adapter_info, info, sizeof(*info));
668 
669 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
670 		struct aac_supplement_adapter_info * info;
671 
672 		fib_init(fibptr);
673 
674 		info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
675 
676 		memset(info,0,sizeof(*info));
677 
678 		rcode = fib_send(RequestSupplementAdapterInfo,
679 				 fibptr,
680 				 sizeof(*info),
681 				 FsaNormal,
682 				 1, 1,
683 				 NULL,
684 				 NULL);
685 
686 		if (rcode >= 0)
687 			memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
688 	}
689 
690 
691 	/*
692 	 * GetBusInfo
693 	 */
694 
695 	fib_init(fibptr);
696 
697 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
698 
699 	memset(bus_info, 0, sizeof(*bus_info));
700 
701 	command = (struct aac_bus_info *)bus_info;
702 
703 	command->Command = cpu_to_le32(VM_Ioctl);
704 	command->ObjType = cpu_to_le32(FT_DRIVE);
705 	command->MethodId = cpu_to_le32(1);
706 	command->CtlCmd = cpu_to_le32(GetBusInfo);
707 
708 	rcode = fib_send(ContainerCommand,
709 			 fibptr,
710 			 sizeof (*bus_info),
711 			 FsaNormal,
712 			 1, 1,
713 			 NULL, NULL);
714 
715 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
716 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
717 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
718 	}
719 
720 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
721 	printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
722 			dev->name,
723 			dev->id,
724 			tmp>>24,
725 			(tmp>>16)&0xff,
726 			tmp&0xff,
727 			le32_to_cpu(dev->adapter_info.kernelbuild),
728 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
729 			dev->supplement_adapter_info.BuildDate);
730 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
731 	printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
732 			dev->name, dev->id,
733 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
734 			le32_to_cpu(dev->adapter_info.monitorbuild));
735 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
736 	printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
737 			dev->name, dev->id,
738 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
739 			le32_to_cpu(dev->adapter_info.biosbuild));
740 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
741 		printk(KERN_INFO "%s%d: serial %x\n",
742 			dev->name, dev->id,
743 			le32_to_cpu(dev->adapter_info.serial[0]));
744 
745 	dev->nondasd_support = 0;
746 	dev->raid_scsi_mode = 0;
747 	if(dev->adapter_info.options & AAC_OPT_NONDASD){
748 		dev->nondasd_support = 1;
749 	}
750 
751 	/*
752 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
753 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
754 	 * force nondasd support on. If we decide to allow the non-dasd flag
755 	 * additional changes changes will have to be made to support
756 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
757 	 * changed to support the new dev->raid_scsi_mode flag instead of
758 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
759 	 * function aac_detect will have to be modified where it sets up the
760 	 * max number of channels based on the aac->nondasd_support flag only.
761 	 */
762 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
763 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
764 		dev->nondasd_support = 1;
765 		dev->raid_scsi_mode = 1;
766 	}
767 	if (dev->raid_scsi_mode != 0)
768 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
769 				dev->name, dev->id);
770 
771 	if(nondasd != -1) {
772 		dev->nondasd_support = (nondasd!=0);
773 	}
774 	if(dev->nondasd_support != 0){
775 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
776 	}
777 
778 	dev->dac_support = 0;
779 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
780 		printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
781 		dev->dac_support = 1;
782 	}
783 
784 	if(dacmode != -1) {
785 		dev->dac_support = (dacmode!=0);
786 	}
787 	if(dev->dac_support != 0) {
788 		if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL) &&
789 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL)) {
790 			printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
791 				dev->name, dev->id);
792 		} else if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFULL) &&
793 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFULL)) {
794 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
795 				dev->name, dev->id);
796 			dev->dac_support = 0;
797 		} else {
798 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
799 				dev->name, dev->id);
800 			rcode = -ENOMEM;
801 		}
802 	}
803 	/*
804 	 * 57 scatter gather elements
805 	 */
806 	if (!(dev->raw_io_interface)) {
807 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
808 			sizeof(struct aac_fibhdr) -
809 			sizeof(struct aac_write) + sizeof(struct sgmap)) /
810 				sizeof(struct sgmap);
811 		if (dev->dac_support) {
812 			/*
813 			 * 38 scatter gather elements
814 			 */
815 			dev->scsi_host_ptr->sg_tablesize =
816 				(dev->max_fib_size -
817 				sizeof(struct aac_fibhdr) -
818 				sizeof(struct aac_write64) +
819 				sizeof(struct sgmap64)) /
820 					sizeof(struct sgmap64);
821 		}
822 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
823 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
824 			/*
825 			 * Worst case size that could cause sg overflow when
826 			 * we break up SG elements that are larger than 64KB.
827 			 * Would be nice if we could tell the SCSI layer what
828 			 * the maximum SG element size can be. Worst case is
829 			 * (sg_tablesize-1) 4KB elements with one 64KB
830 			 * element.
831 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
832 			 */
833 			dev->scsi_host_ptr->max_sectors =
834 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
835 		}
836 	}
837 
838 	fib_complete(fibptr);
839 	fib_free(fibptr);
840 
841 	return rcode;
842 }
843 
844 
845 static void io_callback(void *context, struct fib * fibptr)
846 {
847 	struct aac_dev *dev;
848 	struct aac_read_reply *readreply;
849 	struct scsi_cmnd *scsicmd;
850 	u32 cid;
851 
852 	scsicmd = (struct scsi_cmnd *) context;
853 
854 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
855 	cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
856 
857 	dprintk((KERN_DEBUG "io_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3], jiffies));
858 
859 	if (fibptr == NULL)
860 		BUG();
861 
862 	if(scsicmd->use_sg)
863 		pci_unmap_sg(dev->pdev,
864 			(struct scatterlist *)scsicmd->buffer,
865 			scsicmd->use_sg,
866 			scsicmd->sc_data_direction);
867 	else if(scsicmd->request_bufflen)
868 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
869 				 scsicmd->request_bufflen,
870 				 scsicmd->sc_data_direction);
871 	readreply = (struct aac_read_reply *)fib_data(fibptr);
872 	if (le32_to_cpu(readreply->status) == ST_OK)
873 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
874 	else {
875 #ifdef AAC_DETAILED_STATUS_INFO
876 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
877 		  le32_to_cpu(readreply->status));
878 #endif
879 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
880 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
881 				    HARDWARE_ERROR,
882 				    SENCODE_INTERNAL_TARGET_FAILURE,
883 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
884 				    0, 0);
885 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
886 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
887 		    ? sizeof(scsicmd->sense_buffer)
888 		    : sizeof(dev->fsa_dev[cid].sense_data));
889 	}
890 	fib_complete(fibptr);
891 	fib_free(fibptr);
892 
893 	aac_io_done(scsicmd);
894 }
895 
896 static int aac_read(struct scsi_cmnd * scsicmd, int cid)
897 {
898 	u32 lba;
899 	u32 count;
900 	int status;
901 
902 	u16 fibsize;
903 	struct aac_dev *dev;
904 	struct fib * cmd_fibcontext;
905 
906 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
907 	/*
908 	 *	Get block address and transfer length
909 	 */
910 	if (scsicmd->cmnd[0] == READ_6)	/* 6 byte command */
911 	{
912 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
913 
914 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
915 		count = scsicmd->cmnd[4];
916 
917 		if (count == 0)
918 			count = 256;
919 	} else {
920 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
921 
922 		lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
923 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
924 	}
925 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n",
926 	  smp_processor_id(), (unsigned long long)lba, jiffies));
927 	/*
928 	 *	Alocate and initialize a Fib
929 	 */
930 	if (!(cmd_fibcontext = fib_alloc(dev))) {
931 		return -1;
932 	}
933 
934 	fib_init(cmd_fibcontext);
935 
936 	if (dev->raw_io_interface) {
937 		struct aac_raw_io *readcmd;
938 		readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
939 		readcmd->block[0] = cpu_to_le32(lba);
940 		readcmd->block[1] = 0;
941 		readcmd->count = cpu_to_le32(count<<9);
942 		readcmd->cid = cpu_to_le16(cid);
943 		readcmd->flags = cpu_to_le16(1);
944 		readcmd->bpTotal = 0;
945 		readcmd->bpComplete = 0;
946 
947 		aac_build_sgraw(scsicmd, &readcmd->sg);
948 		fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
949 		if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
950 			BUG();
951 		/*
952 		 *	Now send the Fib to the adapter
953 		 */
954 		status = fib_send(ContainerRawIo,
955 			  cmd_fibcontext,
956 			  fibsize,
957 			  FsaNormal,
958 			  0, 1,
959 			  (fib_callback) io_callback,
960 			  (void *) scsicmd);
961 	} else if (dev->dac_support == 1) {
962 		struct aac_read64 *readcmd;
963 		readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
964 		readcmd->command = cpu_to_le32(VM_CtHostRead64);
965 		readcmd->cid = cpu_to_le16(cid);
966 		readcmd->sector_count = cpu_to_le16(count);
967 		readcmd->block = cpu_to_le32(lba);
968 		readcmd->pad   = 0;
969 		readcmd->flags = 0;
970 
971 		aac_build_sg64(scsicmd, &readcmd->sg);
972 		fibsize = sizeof(struct aac_read64) +
973 			((le32_to_cpu(readcmd->sg.count) - 1) *
974 			 sizeof (struct sgentry64));
975 		BUG_ON (fibsize > (dev->max_fib_size -
976 					sizeof(struct aac_fibhdr)));
977 		/*
978 		 *	Now send the Fib to the adapter
979 		 */
980 		status = fib_send(ContainerCommand64,
981 			  cmd_fibcontext,
982 			  fibsize,
983 			  FsaNormal,
984 			  0, 1,
985 			  (fib_callback) io_callback,
986 			  (void *) scsicmd);
987 	} else {
988 		struct aac_read *readcmd;
989 		readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
990 		readcmd->command = cpu_to_le32(VM_CtBlockRead);
991 		readcmd->cid = cpu_to_le32(cid);
992 		readcmd->block = cpu_to_le32(lba);
993 		readcmd->count = cpu_to_le32(count * 512);
994 
995 		aac_build_sg(scsicmd, &readcmd->sg);
996 		fibsize = sizeof(struct aac_read) +
997 			((le32_to_cpu(readcmd->sg.count) - 1) *
998 			 sizeof (struct sgentry));
999 		BUG_ON (fibsize > (dev->max_fib_size -
1000 					sizeof(struct aac_fibhdr)));
1001 		/*
1002 		 *	Now send the Fib to the adapter
1003 		 */
1004 		status = fib_send(ContainerCommand,
1005 			  cmd_fibcontext,
1006 			  fibsize,
1007 			  FsaNormal,
1008 			  0, 1,
1009 			  (fib_callback) io_callback,
1010 			  (void *) scsicmd);
1011 	}
1012 
1013 
1014 
1015 	/*
1016 	 *	Check that the command queued to the controller
1017 	 */
1018 	if (status == -EINPROGRESS)
1019 		return 0;
1020 
1021 	printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status);
1022 	/*
1023 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1024 	 */
1025 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1026 	aac_io_done(scsicmd);
1027 	fib_complete(cmd_fibcontext);
1028 	fib_free(cmd_fibcontext);
1029 	return 0;
1030 }
1031 
1032 static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1033 {
1034 	u32 lba;
1035 	u32 count;
1036 	int status;
1037 	u16 fibsize;
1038 	struct aac_dev *dev;
1039 	struct fib * cmd_fibcontext;
1040 
1041 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1042 	/*
1043 	 *	Get block address and transfer length
1044 	 */
1045 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1046 	{
1047 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1048 		count = scsicmd->cmnd[4];
1049 		if (count == 0)
1050 			count = 256;
1051 	} else {
1052 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1053 		lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1054 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1055 	}
1056 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n",
1057 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1058 	/*
1059 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1060 	 */
1061 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1062 		scsicmd->result = DID_ERROR << 16;
1063 		aac_io_done(scsicmd);
1064 		return 0;
1065 	}
1066 	fib_init(cmd_fibcontext);
1067 
1068 	if (dev->raw_io_interface) {
1069 		struct aac_raw_io *writecmd;
1070 		writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
1071 		writecmd->block[0] = cpu_to_le32(lba);
1072 		writecmd->block[1] = 0;
1073 		writecmd->count = cpu_to_le32(count<<9);
1074 		writecmd->cid = cpu_to_le16(cid);
1075 		writecmd->flags = 0;
1076 		writecmd->bpTotal = 0;
1077 		writecmd->bpComplete = 0;
1078 
1079 		aac_build_sgraw(scsicmd, &writecmd->sg);
1080 		fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1081 		if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
1082 			BUG();
1083 		/*
1084 		 *	Now send the Fib to the adapter
1085 		 */
1086 		status = fib_send(ContainerRawIo,
1087 			  cmd_fibcontext,
1088 			  fibsize,
1089 			  FsaNormal,
1090 			  0, 1,
1091 			  (fib_callback) io_callback,
1092 			  (void *) scsicmd);
1093 	} else if (dev->dac_support == 1) {
1094 		struct aac_write64 *writecmd;
1095 		writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
1096 		writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1097 		writecmd->cid = cpu_to_le16(cid);
1098 		writecmd->sector_count = cpu_to_le16(count);
1099 		writecmd->block = cpu_to_le32(lba);
1100 		writecmd->pad	= 0;
1101 		writecmd->flags	= 0;
1102 
1103 		aac_build_sg64(scsicmd, &writecmd->sg);
1104 		fibsize = sizeof(struct aac_write64) +
1105 			((le32_to_cpu(writecmd->sg.count) - 1) *
1106 			 sizeof (struct sgentry64));
1107 		BUG_ON (fibsize > (dev->max_fib_size -
1108 					sizeof(struct aac_fibhdr)));
1109 		/*
1110 		 *	Now send the Fib to the adapter
1111 		 */
1112 		status = fib_send(ContainerCommand64,
1113 			  cmd_fibcontext,
1114 			  fibsize,
1115 			  FsaNormal,
1116 			  0, 1,
1117 			  (fib_callback) io_callback,
1118 			  (void *) scsicmd);
1119 	} else {
1120 		struct aac_write *writecmd;
1121 		writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
1122 		writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1123 		writecmd->cid = cpu_to_le32(cid);
1124 		writecmd->block = cpu_to_le32(lba);
1125 		writecmd->count = cpu_to_le32(count * 512);
1126 		writecmd->sg.count = cpu_to_le32(1);
1127 		/* ->stable is not used - it did mean which type of write */
1128 
1129 		aac_build_sg(scsicmd, &writecmd->sg);
1130 		fibsize = sizeof(struct aac_write) +
1131 			((le32_to_cpu(writecmd->sg.count) - 1) *
1132 			 sizeof (struct sgentry));
1133 		BUG_ON (fibsize > (dev->max_fib_size -
1134 					sizeof(struct aac_fibhdr)));
1135 		/*
1136 		 *	Now send the Fib to the adapter
1137 		 */
1138 		status = fib_send(ContainerCommand,
1139 			  cmd_fibcontext,
1140 			  fibsize,
1141 			  FsaNormal,
1142 			  0, 1,
1143 			  (fib_callback) io_callback,
1144 			  (void *) scsicmd);
1145 	}
1146 
1147 	/*
1148 	 *	Check that the command queued to the controller
1149 	 */
1150 	if (status == -EINPROGRESS)
1151 	{
1152 		return 0;
1153 	}
1154 
1155 	printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status);
1156 	/*
1157 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1158 	 */
1159 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1160 	aac_io_done(scsicmd);
1161 
1162 	fib_complete(cmd_fibcontext);
1163 	fib_free(cmd_fibcontext);
1164 	return 0;
1165 }
1166 
1167 static void synchronize_callback(void *context, struct fib *fibptr)
1168 {
1169 	struct aac_synchronize_reply *synchronizereply;
1170 	struct scsi_cmnd *cmd;
1171 
1172 	cmd = context;
1173 
1174 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1175 				smp_processor_id(), jiffies));
1176 	BUG_ON(fibptr == NULL);
1177 
1178 
1179 	synchronizereply = fib_data(fibptr);
1180 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1181 		cmd->result = DID_OK << 16 |
1182 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1183 	else {
1184 		struct scsi_device *sdev = cmd->device;
1185 		struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1186 		u32 cid = ID_LUN_TO_CONTAINER(sdev->id, sdev->lun);
1187 		printk(KERN_WARNING
1188 		     "synchronize_callback: synchronize failed, status = %d\n",
1189 		     le32_to_cpu(synchronizereply->status));
1190 		cmd->result = DID_OK << 16 |
1191 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1192 		set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1193 				    HARDWARE_ERROR,
1194 				    SENCODE_INTERNAL_TARGET_FAILURE,
1195 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1196 				    0, 0);
1197 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1198 		  min(sizeof(dev->fsa_dev[cid].sense_data),
1199 			  sizeof(cmd->sense_buffer)));
1200 	}
1201 
1202 	fib_complete(fibptr);
1203 	fib_free(fibptr);
1204 	aac_io_done(cmd);
1205 }
1206 
1207 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
1208 {
1209 	int status;
1210 	struct fib *cmd_fibcontext;
1211 	struct aac_synchronize *synchronizecmd;
1212 	struct scsi_cmnd *cmd;
1213 	struct scsi_device *sdev = scsicmd->device;
1214 	int active = 0;
1215 	unsigned long flags;
1216 
1217 	/*
1218 	 * Wait for all commands to complete to this specific
1219 	 * target (block).
1220 	 */
1221 	spin_lock_irqsave(&sdev->list_lock, flags);
1222 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1223 		if (cmd != scsicmd && cmd->serial_number != 0) {
1224 			++active;
1225 			break;
1226 		}
1227 
1228 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1229 
1230 	/*
1231 	 *	Yield the processor (requeue for later)
1232 	 */
1233 	if (active)
1234 		return SCSI_MLQUEUE_DEVICE_BUSY;
1235 
1236 	/*
1237 	 *	Allocate and initialize a Fib
1238 	 */
1239 	if (!(cmd_fibcontext =
1240 	    fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
1241 		return SCSI_MLQUEUE_HOST_BUSY;
1242 
1243 	fib_init(cmd_fibcontext);
1244 
1245 	synchronizecmd = fib_data(cmd_fibcontext);
1246 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1247 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1248 	synchronizecmd->cid = cpu_to_le32(cid);
1249 	synchronizecmd->count =
1250 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1251 
1252 	/*
1253 	 *	Now send the Fib to the adapter
1254 	 */
1255 	status = fib_send(ContainerCommand,
1256 		  cmd_fibcontext,
1257 		  sizeof(struct aac_synchronize),
1258 		  FsaNormal,
1259 		  0, 1,
1260 		  (fib_callback)synchronize_callback,
1261 		  (void *)scsicmd);
1262 
1263 	/*
1264 	 *	Check that the command queued to the controller
1265 	 */
1266 	if (status == -EINPROGRESS)
1267 		return 0;
1268 
1269 	printk(KERN_WARNING
1270 		"aac_synchronize: fib_send failed with status: %d.\n", status);
1271 	fib_complete(cmd_fibcontext);
1272 	fib_free(cmd_fibcontext);
1273 	return SCSI_MLQUEUE_HOST_BUSY;
1274 }
1275 
1276 /**
1277  *	aac_scsi_cmd()		-	Process SCSI command
1278  *	@scsicmd:		SCSI command block
1279  *
1280  *	Emulate a SCSI command and queue the required request for the
1281  *	aacraid firmware.
1282  */
1283 
1284 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1285 {
1286 	u32 cid = 0;
1287 	struct Scsi_Host *host = scsicmd->device->host;
1288 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1289 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1290 	int cardtype = dev->cardtype;
1291 	int ret;
1292 
1293 	/*
1294 	 *	If the bus, id or lun is out of range, return fail
1295 	 *	Test does not apply to ID 16, the pseudo id for the controller
1296 	 *	itself.
1297 	 */
1298 	if (scsicmd->device->id != host->this_id) {
1299 		if ((scsicmd->device->channel == 0) ){
1300 			if( (scsicmd->device->id >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)){
1301 				scsicmd->result = DID_NO_CONNECT << 16;
1302 				scsicmd->scsi_done(scsicmd);
1303 				return 0;
1304 			}
1305 			cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
1306 
1307 			/*
1308 			 *	If the target container doesn't exist, it may have
1309 			 *	been newly created
1310 			 */
1311 			if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1312 				switch (scsicmd->cmnd[0]) {
1313 				case INQUIRY:
1314 				case READ_CAPACITY:
1315 				case TEST_UNIT_READY:
1316 					spin_unlock_irq(host->host_lock);
1317 					probe_container(dev, cid);
1318 					spin_lock_irq(host->host_lock);
1319 					if (fsa_dev_ptr[cid].valid == 0) {
1320 						scsicmd->result = DID_NO_CONNECT << 16;
1321 						scsicmd->scsi_done(scsicmd);
1322 						return 0;
1323 					}
1324 				default:
1325 					break;
1326 				}
1327 			}
1328 			/*
1329 			 *	If the target container still doesn't exist,
1330 			 *	return failure
1331 			 */
1332 			if (fsa_dev_ptr[cid].valid == 0) {
1333 				scsicmd->result = DID_BAD_TARGET << 16;
1334 				scsicmd->scsi_done(scsicmd);
1335 				return 0;
1336 			}
1337 		} else {  /* check for physical non-dasd devices */
1338 			if(dev->nondasd_support == 1){
1339 				return aac_send_srb_fib(scsicmd);
1340 			} else {
1341 				scsicmd->result = DID_NO_CONNECT << 16;
1342 				scsicmd->scsi_done(scsicmd);
1343 				return 0;
1344 			}
1345 		}
1346 	}
1347 	/*
1348 	 * else Command for the controller itself
1349 	 */
1350 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
1351 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
1352 	{
1353 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1354 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1355 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1356 			    ILLEGAL_REQUEST,
1357 			    SENCODE_INVALID_COMMAND,
1358 			    ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1359 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1360 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1361 		    ? sizeof(scsicmd->sense_buffer)
1362 		    : sizeof(dev->fsa_dev[cid].sense_data));
1363 		scsicmd->scsi_done(scsicmd);
1364 		return 0;
1365 	}
1366 
1367 
1368 	/* Handle commands here that don't really require going out to the adapter */
1369 	switch (scsicmd->cmnd[0]) {
1370 	case INQUIRY:
1371 	{
1372 		struct inquiry_data inq_data;
1373 
1374 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->device->id));
1375 		memset(&inq_data, 0, sizeof (struct inquiry_data));
1376 
1377 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
1378 		inq_data.inqd_dtq = 0x80;	/* set RMB bit to one indicating that the medium is removable */
1379 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1380 		inq_data.inqd_len = 31;
1381 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
1382 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
1383 		/*
1384 		 *	Set the Vendor, Product, and Revision Level
1385 		 *	see: <vendor>.c i.e. aac.c
1386 		 */
1387 		if (scsicmd->device->id == host->this_id) {
1388 			setinqstr(cardtype, (void *) (inq_data.inqd_vid), (sizeof(container_types)/sizeof(char *)));
1389 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
1390 			aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1391 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1392 			scsicmd->scsi_done(scsicmd);
1393 			return 0;
1394 		}
1395 		setinqstr(cardtype, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1396 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
1397 		aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1398 		return aac_get_container_name(scsicmd, cid);
1399 	}
1400 	case READ_CAPACITY:
1401 	{
1402 		u32 capacity;
1403 		char cp[8];
1404 
1405 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1406 		if (fsa_dev_ptr[cid].size <= 0x100000000LL)
1407 			capacity = fsa_dev_ptr[cid].size - 1;
1408 		else
1409 			capacity = (u32)-1;
1410 
1411 		cp[0] = (capacity >> 24) & 0xff;
1412 		cp[1] = (capacity >> 16) & 0xff;
1413 		cp[2] = (capacity >> 8) & 0xff;
1414 		cp[3] = (capacity >> 0) & 0xff;
1415 		cp[4] = 0;
1416 		cp[5] = 0;
1417 		cp[6] = 2;
1418 		cp[7] = 0;
1419 		aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1420 
1421 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1422 		scsicmd->scsi_done(scsicmd);
1423 
1424 		return 0;
1425 	}
1426 
1427 	case MODE_SENSE:
1428 	{
1429 		char mode_buf[4];
1430 
1431 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1432 		mode_buf[0] = 3;	/* Mode data length */
1433 		mode_buf[1] = 0;	/* Medium type - default */
1434 		mode_buf[2] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1435 		mode_buf[3] = 0;	/* Block descriptor length */
1436 
1437 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1438 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1439 		scsicmd->scsi_done(scsicmd);
1440 
1441 		return 0;
1442 	}
1443 	case MODE_SENSE_10:
1444 	{
1445 		char mode_buf[8];
1446 
1447 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1448 		mode_buf[0] = 0;	/* Mode data length (MSB) */
1449 		mode_buf[1] = 6;	/* Mode data length (LSB) */
1450 		mode_buf[2] = 0;	/* Medium type - default */
1451 		mode_buf[3] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1452 		mode_buf[4] = 0;	/* reserved */
1453 		mode_buf[5] = 0;	/* reserved */
1454 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
1455 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
1456 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1457 
1458 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1459 		scsicmd->scsi_done(scsicmd);
1460 
1461 		return 0;
1462 	}
1463 	case REQUEST_SENSE:
1464 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1465 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1466 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1467 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1468 		scsicmd->scsi_done(scsicmd);
1469 		return 0;
1470 
1471 	case ALLOW_MEDIUM_REMOVAL:
1472 		dprintk((KERN_DEBUG "LOCK command.\n"));
1473 		if (scsicmd->cmnd[4])
1474 			fsa_dev_ptr[cid].locked = 1;
1475 		else
1476 			fsa_dev_ptr[cid].locked = 0;
1477 
1478 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1479 		scsicmd->scsi_done(scsicmd);
1480 		return 0;
1481 	/*
1482 	 *	These commands are all No-Ops
1483 	 */
1484 	case TEST_UNIT_READY:
1485 	case RESERVE:
1486 	case RELEASE:
1487 	case REZERO_UNIT:
1488 	case REASSIGN_BLOCKS:
1489 	case SEEK_10:
1490 	case START_STOP:
1491 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1492 		scsicmd->scsi_done(scsicmd);
1493 		return 0;
1494 	}
1495 
1496 	switch (scsicmd->cmnd[0])
1497 	{
1498 		case READ_6:
1499 		case READ_10:
1500 			/*
1501 			 *	Hack to keep track of ordinal number of the device that
1502 			 *	corresponds to a container. Needed to convert
1503 			 *	containers to /dev/sd device names
1504 			 */
1505 
1506 			spin_unlock_irq(host->host_lock);
1507 			if  (scsicmd->request->rq_disk)
1508 				memcpy(fsa_dev_ptr[cid].devname,
1509 					scsicmd->request->rq_disk->disk_name,
1510 					8);
1511 
1512 			ret = aac_read(scsicmd, cid);
1513 			spin_lock_irq(host->host_lock);
1514 			return ret;
1515 
1516 		case WRITE_6:
1517 		case WRITE_10:
1518 			spin_unlock_irq(host->host_lock);
1519 			ret = aac_write(scsicmd, cid);
1520 			spin_lock_irq(host->host_lock);
1521 			return ret;
1522 
1523 		case SYNCHRONIZE_CACHE:
1524 			/* Issue FIB to tell Firmware to flush it's cache */
1525 			return aac_synchronize(scsicmd, cid);
1526 
1527 		default:
1528 			/*
1529 			 *	Unhandled commands
1530 			 */
1531 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1532 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1533 			set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1534 				ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1535 				ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1536 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1537 			  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1538 			    ? sizeof(scsicmd->sense_buffer)
1539 			    : sizeof(dev->fsa_dev[cid].sense_data));
1540 			scsicmd->scsi_done(scsicmd);
1541 			return 0;
1542 	}
1543 }
1544 
1545 static int query_disk(struct aac_dev *dev, void __user *arg)
1546 {
1547 	struct aac_query_disk qd;
1548 	struct fsa_dev_info *fsa_dev_ptr;
1549 
1550 	fsa_dev_ptr = dev->fsa_dev;
1551 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
1552 		return -EFAULT;
1553 	if (qd.cnum == -1)
1554 		qd.cnum = ID_LUN_TO_CONTAINER(qd.id, qd.lun);
1555 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
1556 	{
1557 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
1558 			return -EINVAL;
1559 		qd.instance = dev->scsi_host_ptr->host_no;
1560 		qd.bus = 0;
1561 		qd.id = CONTAINER_TO_ID(qd.cnum);
1562 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
1563 	}
1564 	else return -EINVAL;
1565 
1566 	qd.valid = fsa_dev_ptr[qd.cnum].valid;
1567 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
1568 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
1569 
1570 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
1571 		qd.unmapped = 1;
1572 	else
1573 		qd.unmapped = 0;
1574 
1575 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
1576 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
1577 
1578 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
1579 		return -EFAULT;
1580 	return 0;
1581 }
1582 
1583 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
1584 {
1585 	struct aac_delete_disk dd;
1586 	struct fsa_dev_info *fsa_dev_ptr;
1587 
1588 	fsa_dev_ptr = dev->fsa_dev;
1589 
1590 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1591 		return -EFAULT;
1592 
1593 	if (dd.cnum >= dev->maximum_num_containers)
1594 		return -EINVAL;
1595 	/*
1596 	 *	Mark this container as being deleted.
1597 	 */
1598 	fsa_dev_ptr[dd.cnum].deleted = 1;
1599 	/*
1600 	 *	Mark the container as no longer valid
1601 	 */
1602 	fsa_dev_ptr[dd.cnum].valid = 0;
1603 	return 0;
1604 }
1605 
1606 static int delete_disk(struct aac_dev *dev, void __user *arg)
1607 {
1608 	struct aac_delete_disk dd;
1609 	struct fsa_dev_info *fsa_dev_ptr;
1610 
1611 	fsa_dev_ptr = dev->fsa_dev;
1612 
1613 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1614 		return -EFAULT;
1615 
1616 	if (dd.cnum >= dev->maximum_num_containers)
1617 		return -EINVAL;
1618 	/*
1619 	 *	If the container is locked, it can not be deleted by the API.
1620 	 */
1621 	if (fsa_dev_ptr[dd.cnum].locked)
1622 		return -EBUSY;
1623 	else {
1624 		/*
1625 		 *	Mark the container as no longer being valid.
1626 		 */
1627 		fsa_dev_ptr[dd.cnum].valid = 0;
1628 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
1629 		return 0;
1630 	}
1631 }
1632 
1633 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
1634 {
1635 	switch (cmd) {
1636 	case FSACTL_QUERY_DISK:
1637 		return query_disk(dev, arg);
1638 	case FSACTL_DELETE_DISK:
1639 		return delete_disk(dev, arg);
1640 	case FSACTL_FORCE_DELETE_DISK:
1641 		return force_delete_disk(dev, arg);
1642 	case FSACTL_GET_CONTAINERS:
1643 		return aac_get_containers(dev);
1644 	default:
1645 		return -ENOTTY;
1646 	}
1647 }
1648 
1649 /**
1650  *
1651  * aac_srb_callback
1652  * @context: the context set in the fib - here it is scsi cmd
1653  * @fibptr: pointer to the fib
1654  *
1655  * Handles the completion of a scsi command to a non dasd device
1656  *
1657  */
1658 
1659 static void aac_srb_callback(void *context, struct fib * fibptr)
1660 {
1661 	struct aac_dev *dev;
1662 	struct aac_srb_reply *srbreply;
1663 	struct scsi_cmnd *scsicmd;
1664 
1665 	scsicmd = (struct scsi_cmnd *) context;
1666 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1667 
1668 	if (fibptr == NULL)
1669 		BUG();
1670 
1671 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
1672 
1673 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
1674 	/*
1675 	 *	Calculate resid for sg
1676 	 */
1677 
1678 	scsicmd->resid = scsicmd->request_bufflen -
1679 		le32_to_cpu(srbreply->data_xfer_length);
1680 
1681 	if(scsicmd->use_sg)
1682 		pci_unmap_sg(dev->pdev,
1683 			(struct scatterlist *)scsicmd->buffer,
1684 			scsicmd->use_sg,
1685 			scsicmd->sc_data_direction);
1686 	else if(scsicmd->request_bufflen)
1687 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
1688 			scsicmd->sc_data_direction);
1689 
1690 	/*
1691 	 * First check the fib status
1692 	 */
1693 
1694 	if (le32_to_cpu(srbreply->status) != ST_OK){
1695 		int len;
1696 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
1697 		len = (le32_to_cpu(srbreply->sense_data_size) >
1698 				sizeof(scsicmd->sense_buffer)) ?
1699 				sizeof(scsicmd->sense_buffer) :
1700 				le32_to_cpu(srbreply->sense_data_size);
1701 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1702 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1703 	}
1704 
1705 	/*
1706 	 * Next check the srb status
1707 	 */
1708 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
1709 	case SRB_STATUS_ERROR_RECOVERY:
1710 	case SRB_STATUS_PENDING:
1711 	case SRB_STATUS_SUCCESS:
1712 		if(scsicmd->cmnd[0] == INQUIRY ){
1713 			u8 b;
1714 			u8 b1;
1715 			/* We can't expose disk devices because we can't tell whether they
1716 			 * are the raw container drives or stand alone drives.  If they have
1717 			 * the removable bit set then we should expose them though.
1718 			 */
1719 			b = (*(u8*)scsicmd->buffer)&0x1f;
1720 			b1 = ((u8*)scsicmd->buffer)[1];
1721 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1722 					|| (b==TYPE_DISK && (b1&0x80)) ){
1723 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1724 			/*
1725 			 * We will allow disk devices if in RAID/SCSI mode and
1726 			 * the channel is 2
1727 			 */
1728 			} else if ((dev->raid_scsi_mode) &&
1729 					(scsicmd->device->channel == 2)) {
1730 				scsicmd->result = DID_OK << 16 |
1731 						COMMAND_COMPLETE << 8;
1732 			} else {
1733 				scsicmd->result = DID_NO_CONNECT << 16 |
1734 						COMMAND_COMPLETE << 8;
1735 			}
1736 		} else {
1737 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1738 		}
1739 		break;
1740 	case SRB_STATUS_DATA_OVERRUN:
1741 		switch(scsicmd->cmnd[0]){
1742 		case  READ_6:
1743 		case  WRITE_6:
1744 		case  READ_10:
1745 		case  WRITE_10:
1746 		case  READ_12:
1747 		case  WRITE_12:
1748 			if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
1749 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
1750 			} else {
1751 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
1752 			}
1753 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1754 			break;
1755 		case INQUIRY: {
1756 			u8 b;
1757 			u8 b1;
1758 			/* We can't expose disk devices because we can't tell whether they
1759 			* are the raw container drives or stand alone drives
1760 			*/
1761 			b = (*(u8*)scsicmd->buffer)&0x0f;
1762 			b1 = ((u8*)scsicmd->buffer)[1];
1763 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1764 					|| (b==TYPE_DISK && (b1&0x80)) ){
1765 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1766 			/*
1767 			 * We will allow disk devices if in RAID/SCSI mode and
1768 			 * the channel is 2
1769 			 */
1770 			} else if ((dev->raid_scsi_mode) &&
1771 					(scsicmd->device->channel == 2)) {
1772 				scsicmd->result = DID_OK << 16 |
1773 						COMMAND_COMPLETE << 8;
1774 			} else {
1775 				scsicmd->result = DID_NO_CONNECT << 16 |
1776 						COMMAND_COMPLETE << 8;
1777 			}
1778 			break;
1779 		}
1780 		default:
1781 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1782 			break;
1783 		}
1784 		break;
1785 	case SRB_STATUS_ABORTED:
1786 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
1787 		break;
1788 	case SRB_STATUS_ABORT_FAILED:
1789 		// Not sure about this one - but assuming the hba was trying to abort for some reason
1790 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
1791 		break;
1792 	case SRB_STATUS_PARITY_ERROR:
1793 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
1794 		break;
1795 	case SRB_STATUS_NO_DEVICE:
1796 	case SRB_STATUS_INVALID_PATH_ID:
1797 	case SRB_STATUS_INVALID_TARGET_ID:
1798 	case SRB_STATUS_INVALID_LUN:
1799 	case SRB_STATUS_SELECTION_TIMEOUT:
1800 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1801 		break;
1802 
1803 	case SRB_STATUS_COMMAND_TIMEOUT:
1804 	case SRB_STATUS_TIMEOUT:
1805 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
1806 		break;
1807 
1808 	case SRB_STATUS_BUSY:
1809 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1810 		break;
1811 
1812 	case SRB_STATUS_BUS_RESET:
1813 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
1814 		break;
1815 
1816 	case SRB_STATUS_MESSAGE_REJECTED:
1817 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
1818 		break;
1819 	case SRB_STATUS_REQUEST_FLUSHED:
1820 	case SRB_STATUS_ERROR:
1821 	case SRB_STATUS_INVALID_REQUEST:
1822 	case SRB_STATUS_REQUEST_SENSE_FAILED:
1823 	case SRB_STATUS_NO_HBA:
1824 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
1825 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
1826 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
1827 	case SRB_STATUS_DELAYED_RETRY:
1828 	case SRB_STATUS_BAD_FUNCTION:
1829 	case SRB_STATUS_NOT_STARTED:
1830 	case SRB_STATUS_NOT_IN_USE:
1831 	case SRB_STATUS_FORCE_ABORT:
1832 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
1833 	default:
1834 #ifdef AAC_DETAILED_STATUS_INFO
1835 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
1836 			le32_to_cpu(srbreply->srb_status) & 0x3F,
1837 			aac_get_status_string(
1838 				le32_to_cpu(srbreply->srb_status) & 0x3F),
1839 			scsicmd->cmnd[0],
1840 			le32_to_cpu(srbreply->scsi_status));
1841 #endif
1842 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1843 		break;
1844 	}
1845 	if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
1846 		int len;
1847 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
1848 		len = (le32_to_cpu(srbreply->sense_data_size) >
1849 				sizeof(scsicmd->sense_buffer)) ?
1850 				sizeof(scsicmd->sense_buffer) :
1851 				le32_to_cpu(srbreply->sense_data_size);
1852 #ifdef AAC_DETAILED_STATUS_INFO
1853 		dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
1854 					le32_to_cpu(srbreply->status), len));
1855 #endif
1856 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1857 
1858 	}
1859 	/*
1860 	 * OR in the scsi status (already shifted up a bit)
1861 	 */
1862 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
1863 
1864 	fib_complete(fibptr);
1865 	fib_free(fibptr);
1866 	aac_io_done(scsicmd);
1867 }
1868 
1869 /**
1870  *
1871  * aac_send_scb_fib
1872  * @scsicmd: the scsi command block
1873  *
1874  * This routine will form a FIB and fill in the aac_srb from the
1875  * scsicmd passed in.
1876  */
1877 
1878 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
1879 {
1880 	struct fib* cmd_fibcontext;
1881 	struct aac_dev* dev;
1882 	int status;
1883 	struct aac_srb *srbcmd;
1884 	u16 fibsize;
1885 	u32 flag;
1886 	u32 timeout;
1887 
1888 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1889 	if (scsicmd->device->id >= dev->maximum_num_physicals ||
1890 			scsicmd->device->lun > 7) {
1891 		scsicmd->result = DID_NO_CONNECT << 16;
1892 		scsicmd->scsi_done(scsicmd);
1893 		return 0;
1894 	}
1895 
1896 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1897 	switch(scsicmd->sc_data_direction){
1898 	case DMA_TO_DEVICE:
1899 		flag = SRB_DataOut;
1900 		break;
1901 	case DMA_BIDIRECTIONAL:
1902 		flag = SRB_DataIn | SRB_DataOut;
1903 		break;
1904 	case DMA_FROM_DEVICE:
1905 		flag = SRB_DataIn;
1906 		break;
1907 	case DMA_NONE:
1908 	default:	/* shuts up some versions of gcc */
1909 		flag = SRB_NoDataXfer;
1910 		break;
1911 	}
1912 
1913 
1914 	/*
1915 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1916 	 */
1917 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1918 		return -1;
1919 	}
1920 	fib_init(cmd_fibcontext);
1921 
1922 	srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
1923 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1924 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scsicmd->device->channel));
1925 	srbcmd->id   = cpu_to_le32(scsicmd->device->id);
1926 	srbcmd->lun      = cpu_to_le32(scsicmd->device->lun);
1927 	srbcmd->flags    = cpu_to_le32(flag);
1928 	timeout = scsicmd->timeout_per_command/HZ;
1929 	if(timeout == 0){
1930 		timeout = 1;
1931 	}
1932 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1933 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1934 	srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
1935 
1936 	if( dev->dac_support == 1 ) {
1937 		aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
1938 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1939 
1940 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1941 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1942 		/*
1943 		 *	Build Scatter/Gather list
1944 		 */
1945 		fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1946 			((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1947 			 sizeof (struct sgentry64));
1948 		BUG_ON (fibsize > (dev->max_fib_size -
1949 					sizeof(struct aac_fibhdr)));
1950 
1951 		/*
1952 		 *	Now send the Fib to the adapter
1953 		 */
1954 		status = fib_send(ScsiPortCommand64, cmd_fibcontext,
1955 				fibsize, FsaNormal, 0, 1,
1956 				  (fib_callback) aac_srb_callback,
1957 				  (void *) scsicmd);
1958 	} else {
1959 		aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
1960 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1961 
1962 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1963 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1964 		/*
1965 		 *	Build Scatter/Gather list
1966 		 */
1967 		fibsize = sizeof (struct aac_srb) +
1968 			(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1969 			 sizeof (struct sgentry));
1970 		BUG_ON (fibsize > (dev->max_fib_size -
1971 					sizeof(struct aac_fibhdr)));
1972 
1973 		/*
1974 		 *	Now send the Fib to the adapter
1975 		 */
1976 		status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
1977 				  (fib_callback) aac_srb_callback, (void *) scsicmd);
1978 	}
1979 	/*
1980 	 *	Check that the command queued to the controller
1981 	 */
1982 	if (status == -EINPROGRESS){
1983 		return 0;
1984 	}
1985 
1986 	printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status);
1987 	fib_complete(cmd_fibcontext);
1988 	fib_free(cmd_fibcontext);
1989 
1990 	return -1;
1991 }
1992 
1993 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
1994 {
1995 	struct aac_dev *dev;
1996 	unsigned long byte_count = 0;
1997 
1998 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1999 	// Get rid of old data
2000 	psg->count = 0;
2001 	psg->sg[0].addr = 0;
2002 	psg->sg[0].count = 0;
2003 	if (scsicmd->use_sg) {
2004 		struct scatterlist *sg;
2005 		int i;
2006 		int sg_count;
2007 		sg = (struct scatterlist *) scsicmd->request_buffer;
2008 
2009 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2010 			scsicmd->sc_data_direction);
2011 		psg->count = cpu_to_le32(sg_count);
2012 
2013 		byte_count = 0;
2014 
2015 		for (i = 0; i < sg_count; i++) {
2016 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2017 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2018 			byte_count += sg_dma_len(sg);
2019 			sg++;
2020 		}
2021 		/* hba wants the size to be exact */
2022 		if(byte_count > scsicmd->request_bufflen){
2023 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2024 				(byte_count - scsicmd->request_bufflen);
2025 			psg->sg[i-1].count = cpu_to_le32(temp);
2026 			byte_count = scsicmd->request_bufflen;
2027 		}
2028 		/* Check for command underflow */
2029 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2030 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2031 					byte_count, scsicmd->underflow);
2032 		}
2033 	}
2034 	else if(scsicmd->request_bufflen) {
2035 		dma_addr_t addr;
2036 		addr = pci_map_single(dev->pdev,
2037 				scsicmd->request_buffer,
2038 				scsicmd->request_bufflen,
2039 				scsicmd->sc_data_direction);
2040 		psg->count = cpu_to_le32(1);
2041 		psg->sg[0].addr = cpu_to_le32(addr);
2042 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2043 		scsicmd->SCp.dma_handle = addr;
2044 		byte_count = scsicmd->request_bufflen;
2045 	}
2046 	return byte_count;
2047 }
2048 
2049 
2050 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2051 {
2052 	struct aac_dev *dev;
2053 	unsigned long byte_count = 0;
2054 	u64 addr;
2055 
2056 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2057 	// Get rid of old data
2058 	psg->count = 0;
2059 	psg->sg[0].addr[0] = 0;
2060 	psg->sg[0].addr[1] = 0;
2061 	psg->sg[0].count = 0;
2062 	if (scsicmd->use_sg) {
2063 		struct scatterlist *sg;
2064 		int i;
2065 		int sg_count;
2066 		sg = (struct scatterlist *) scsicmd->request_buffer;
2067 
2068 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2069 			scsicmd->sc_data_direction);
2070 		psg->count = cpu_to_le32(sg_count);
2071 
2072 		byte_count = 0;
2073 
2074 		for (i = 0; i < sg_count; i++) {
2075 			addr = sg_dma_address(sg);
2076 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2077 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2078 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2079 			byte_count += sg_dma_len(sg);
2080 			sg++;
2081 		}
2082 		/* hba wants the size to be exact */
2083 		if(byte_count > scsicmd->request_bufflen){
2084 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2085 				(byte_count - scsicmd->request_bufflen);
2086 			psg->sg[i-1].count = cpu_to_le32(temp);
2087 			byte_count = scsicmd->request_bufflen;
2088 		}
2089 		/* Check for command underflow */
2090 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2091 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2092 					byte_count, scsicmd->underflow);
2093 		}
2094 	}
2095 	else if(scsicmd->request_bufflen) {
2096 		u64 addr;
2097 		addr = pci_map_single(dev->pdev,
2098 				scsicmd->request_buffer,
2099 				scsicmd->request_bufflen,
2100 				scsicmd->sc_data_direction);
2101 		psg->count = cpu_to_le32(1);
2102 		psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2103 		psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2104 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2105 		scsicmd->SCp.dma_handle = addr;
2106 		byte_count = scsicmd->request_bufflen;
2107 	}
2108 	return byte_count;
2109 }
2110 
2111 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2112 {
2113 	struct Scsi_Host *host = scsicmd->device->host;
2114 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2115 	unsigned long byte_count = 0;
2116 
2117 	// Get rid of old data
2118 	psg->count = 0;
2119 	psg->sg[0].next = 0;
2120 	psg->sg[0].prev = 0;
2121 	psg->sg[0].addr[0] = 0;
2122 	psg->sg[0].addr[1] = 0;
2123 	psg->sg[0].count = 0;
2124 	psg->sg[0].flags = 0;
2125 	if (scsicmd->use_sg) {
2126 		struct scatterlist *sg;
2127 		int i;
2128 		int sg_count;
2129 		sg = (struct scatterlist *) scsicmd->request_buffer;
2130 
2131 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2132 			scsicmd->sc_data_direction);
2133 
2134 		for (i = 0; i < sg_count; i++) {
2135 			int count = sg_dma_len(sg);
2136 			u64 addr = sg_dma_address(sg);
2137 			psg->sg[i].next = 0;
2138 			psg->sg[i].prev = 0;
2139 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2140 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2141 			psg->sg[i].count = cpu_to_le32(count);
2142 			psg->sg[i].flags = 0;
2143 			byte_count += count;
2144 			sg++;
2145 		}
2146 		psg->count = cpu_to_le32(sg_count);
2147 		/* hba wants the size to be exact */
2148 		if(byte_count > scsicmd->request_bufflen){
2149 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2150 				(byte_count - scsicmd->request_bufflen);
2151 			psg->sg[i-1].count = cpu_to_le32(temp);
2152 			byte_count = scsicmd->request_bufflen;
2153 		}
2154 		/* Check for command underflow */
2155 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2156 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2157 					byte_count, scsicmd->underflow);
2158 		}
2159 	}
2160 	else if(scsicmd->request_bufflen) {
2161 		int count;
2162 		u64 addr;
2163 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2164 				scsicmd->request_buffer,
2165 				scsicmd->request_bufflen,
2166 				scsicmd->sc_data_direction);
2167 		addr = scsicmd->SCp.dma_handle;
2168 		count = scsicmd->request_bufflen;
2169 		psg->count = cpu_to_le32(1);
2170 		psg->sg[0].next = 0;
2171 		psg->sg[0].prev = 0;
2172 		psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
2173 		psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2174 		psg->sg[0].count = cpu_to_le32(count);
2175 		psg->sg[0].flags = 0;
2176 		byte_count = scsicmd->request_bufflen;
2177 	}
2178 	return byte_count;
2179 }
2180 
2181 #ifdef AAC_DETAILED_STATUS_INFO
2182 
2183 struct aac_srb_status_info {
2184 	u32	status;
2185 	char	*str;
2186 };
2187 
2188 
2189 static struct aac_srb_status_info srb_status_info[] = {
2190 	{ SRB_STATUS_PENDING,		"Pending Status"},
2191 	{ SRB_STATUS_SUCCESS,		"Success"},
2192 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2193 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2194 	{ SRB_STATUS_ERROR,		"Error Event"},
2195 	{ SRB_STATUS_BUSY,		"Device Busy"},
2196 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2197 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2198 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2199 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2200 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2201 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2202 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2203 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2204 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2205 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2206 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2207 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2208 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2209 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2210 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2211 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2212 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2213 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2214 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2215 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2216 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2217 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2218 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2219     	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2220 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2221 	{ 0xff,				"Unknown Error"}
2222 };
2223 
2224 char *aac_get_status_string(u32 status)
2225 {
2226 	int i;
2227 
2228 	for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){
2229 		if(srb_status_info[i].status == status){
2230 			return srb_status_info[i].str;
2231 		}
2232 	}
2233 
2234 	return "Bad Status Code";
2235 }
2236 
2237 #endif
2238