xref: /linux/drivers/scsi/aacraid/aachba.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  aachba.c
15  *
16  * Abstract: Contains Interfaces to manage IOs.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/uaccess.h>
28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
29 #include <linux/module.h>
30 
31 #include <asm/unaligned.h>
32 
33 #include <scsi/scsi.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <scsi/scsi_device.h>
36 #include <scsi/scsi_host.h>
37 
38 #include "aacraid.h"
39 
40 /* values for inqd_pdt: Peripheral device type in plain English */
41 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
42 #define	INQD_PDT_PROC	0x03	/* Processor device */
43 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
44 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
45 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
46 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
47 
48 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
49 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
50 
51 /*
52  *	Sense codes
53  */
54 
55 #define SENCODE_NO_SENSE			0x00
56 #define SENCODE_END_OF_DATA			0x00
57 #define SENCODE_BECOMING_READY			0x04
58 #define SENCODE_INIT_CMD_REQUIRED		0x04
59 #define SENCODE_UNRECOVERED_READ_ERROR		0x11
60 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
61 #define SENCODE_INVALID_COMMAND			0x20
62 #define SENCODE_LBA_OUT_OF_RANGE		0x21
63 #define SENCODE_INVALID_CDB_FIELD		0x24
64 #define SENCODE_LUN_NOT_SUPPORTED		0x25
65 #define SENCODE_INVALID_PARAM_FIELD		0x26
66 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
67 #define SENCODE_PARAM_VALUE_INVALID		0x26
68 #define SENCODE_RESET_OCCURRED			0x29
69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
70 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
72 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
73 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
74 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
75 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
76 #define SENCODE_OVERLAPPED_COMMAND		0x4E
77 
78 /*
79  *	Additional sense codes
80  */
81 
82 #define ASENCODE_NO_SENSE			0x00
83 #define ASENCODE_END_OF_DATA			0x05
84 #define ASENCODE_BECOMING_READY			0x01
85 #define ASENCODE_INIT_CMD_REQUIRED		0x02
86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
87 #define ASENCODE_INVALID_COMMAND		0x00
88 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
89 #define ASENCODE_INVALID_CDB_FIELD		0x00
90 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
91 #define ASENCODE_INVALID_PARAM_FIELD		0x00
92 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
93 #define ASENCODE_PARAM_VALUE_INVALID		0x02
94 #define ASENCODE_RESET_OCCURRED			0x00
95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
96 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
98 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
99 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
100 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
101 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
102 #define ASENCODE_OVERLAPPED_COMMAND		0x00
103 
104 #define BYTE0(x) (unsigned char)(x)
105 #define BYTE1(x) (unsigned char)((x) >> 8)
106 #define BYTE2(x) (unsigned char)((x) >> 16)
107 #define BYTE3(x) (unsigned char)((x) >> 24)
108 
109 /* MODE_SENSE data format */
110 typedef struct {
111 	struct {
112 		u8	data_length;
113 		u8	med_type;
114 		u8	dev_par;
115 		u8	bd_length;
116 	} __attribute__((packed)) hd;
117 	struct {
118 		u8	dens_code;
119 		u8	block_count[3];
120 		u8	reserved;
121 		u8	block_length[3];
122 	} __attribute__((packed)) bd;
123 		u8	mpc_buf[3];
124 } __attribute__((packed)) aac_modep_data;
125 
126 /* MODE_SENSE_10 data format */
127 typedef struct {
128 	struct {
129 		u8	data_length[2];
130 		u8	med_type;
131 		u8	dev_par;
132 		u8	rsrvd[2];
133 		u8	bd_length[2];
134 	} __attribute__((packed)) hd;
135 	struct {
136 		u8	dens_code;
137 		u8	block_count[3];
138 		u8	reserved;
139 		u8	block_length[3];
140 	} __attribute__((packed)) bd;
141 		u8	mpc_buf[3];
142 } __attribute__((packed)) aac_modep10_data;
143 
144 /*------------------------------------------------------------------------------
145  *              S T R U C T S / T Y P E D E F S
146  *----------------------------------------------------------------------------*/
147 /* SCSI inquiry data */
148 struct inquiry_data {
149 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
150 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
151 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
152 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
153 	u8 inqd_len;	/* Additional length (n-4) */
154 	u8 inqd_pad1[2];/* Reserved - must be zero */
155 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
156 	u8 inqd_vid[8];	/* Vendor ID */
157 	u8 inqd_pid[16];/* Product ID */
158 	u8 inqd_prl[4];	/* Product Revision Level */
159 };
160 
161 /* Added for VPD 0x83 */
162 struct  tvpd_id_descriptor_type_1 {
163 	u8 codeset:4;		/* VPD_CODE_SET */
164 	u8 reserved:4;
165 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
166 	u8 reserved2:4;
167 	u8 reserved3;
168 	u8 identifierlength;
169 	u8 venid[8];
170 	u8 productid[16];
171 	u8 serialnumber[8];	/* SN in ASCII */
172 
173 };
174 
175 struct tvpd_id_descriptor_type_2 {
176 	u8 codeset:4;		/* VPD_CODE_SET */
177 	u8 reserved:4;
178 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
179 	u8 reserved2:4;
180 	u8 reserved3;
181 	u8 identifierlength;
182 	struct teu64id {
183 		u32 Serial;
184 		 /* The serial number supposed to be 40 bits,
185 		  * bit we only support 32, so make the last byte zero. */
186 		u8 reserved;
187 		u8 venid[3];
188 	} eu64id;
189 
190 };
191 
192 struct tvpd_id_descriptor_type_3 {
193 	u8 codeset : 4;          /* VPD_CODE_SET */
194 	u8 reserved : 4;
195 	u8 identifiertype : 4;   /* VPD_IDENTIFIER_TYPE */
196 	u8 reserved2 : 4;
197 	u8 reserved3;
198 	u8 identifierlength;
199 	u8 Identifier[16];
200 };
201 
202 struct tvpd_page83 {
203 	u8 DeviceType:5;
204 	u8 DeviceTypeQualifier:3;
205 	u8 PageCode;
206 	u8 reserved;
207 	u8 PageLength;
208 	struct tvpd_id_descriptor_type_1 type1;
209 	struct tvpd_id_descriptor_type_2 type2;
210 	struct tvpd_id_descriptor_type_3 type3;
211 };
212 
213 /*
214  *              M O D U L E   G L O B A L S
215  */
216 
217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
221 				struct aac_raw_io2 *rio2, int sg_max);
222 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
223 				struct aac_hba_cmd_req *hbacmd,
224 				int sg_max, u64 sg_address);
225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
226 				int pages, int nseg, int nseg_new);
227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
229 #ifdef AAC_DETAILED_STATUS_INFO
230 static char *aac_get_status_string(u32 status);
231 #endif
232 
233 /*
234  *	Non dasd selection is handled entirely in aachba now
235  */
236 
237 static int nondasd = -1;
238 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
239 static int dacmode = -1;
240 int aac_msi;
241 int aac_commit = -1;
242 int startup_timeout = 180;
243 int aif_timeout = 120;
244 int aac_sync_mode;  /* Only Sync. transfer - disabled */
245 int aac_convert_sgl = 1;	/* convert non-conformable s/g list - enabled */
246 
247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
249 	" 0=off, 1=on");
250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
252 	" 0=off, 1=on");
253 module_param(nondasd, int, S_IRUGO|S_IWUSR);
254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
255 	" 0=off, 1=on");
256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
258 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
259 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
260 	"\tbit 2 - Disable only if Battery is protecting Cache");
261 module_param(dacmode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
263 	" 0=off, 1=on");
264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
266 	" adapter for foreign arrays.\n"
267 	"This is typically needed in systems that do not have a BIOS."
268 	" 0=off, 1=on");
269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(msi, "IRQ handling."
271 	" 0=PIC(default), 1=MSI, 2=MSI-X)");
272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
274 	" adapter to have it's kernel up and\n"
275 	"running. This is typically adjusted for large systems that do not"
276 	" have a BIOS.");
277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
279 	" applications to pick up AIFs before\n"
280 	"deregistering them. This is typically adjusted for heavily burdened"
281 	" systems.");
282 
283 int aac_fib_dump;
284 module_param(aac_fib_dump, int, 0644);
285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
286 
287 int numacb = -1;
288 module_param(numacb, int, S_IRUGO|S_IWUSR);
289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
290 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
291 	" to use suggestion from Firmware.");
292 
293 int acbsize = -1;
294 module_param(acbsize, int, S_IRUGO|S_IWUSR);
295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
296 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
297 	" suggestion from Firmware.");
298 
299 int update_interval = 30 * 60;
300 module_param(update_interval, int, S_IRUGO|S_IWUSR);
301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
302 	" updates issued to adapter.");
303 
304 int check_interval = 60;
305 module_param(check_interval, int, S_IRUGO|S_IWUSR);
306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
307 	" checks.");
308 
309 int aac_check_reset = 1;
310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
312 	" adapter. a value of -1 forces the reset to adapters programmed to"
313 	" ignore it.");
314 
315 int expose_physicals = -1;
316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
318 	" -1=protect 0=off, 1=on");
319 
320 int aac_reset_devices;
321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
323 
324 int aac_wwn = 1;
325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
327 	"\t0 - Disable\n"
328 	"\t1 - Array Meta Data Signature (default)\n"
329 	"\t2 - Adapter Serial Number");
330 
331 
332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
333 		struct fib *fibptr) {
334 	struct scsi_device *device;
335 
336 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
337 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
338 		aac_fib_complete(fibptr);
339 		return 0;
340 	}
341 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
342 	device = scsicmd->device;
343 	if (unlikely(!device)) {
344 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
345 		aac_fib_complete(fibptr);
346 		return 0;
347 	}
348 	return 1;
349 }
350 
351 /**
352  *	aac_get_config_status	-	check the adapter configuration
353  *	@common: adapter to query
354  *
355  *	Query config status, and commit the configuration if needed.
356  */
357 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
358 {
359 	int status = 0;
360 	struct fib * fibptr;
361 
362 	if (!(fibptr = aac_fib_alloc(dev)))
363 		return -ENOMEM;
364 
365 	aac_fib_init(fibptr);
366 	{
367 		struct aac_get_config_status *dinfo;
368 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
369 
370 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
371 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
372 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
373 	}
374 
375 	status = aac_fib_send(ContainerCommand,
376 			    fibptr,
377 			    sizeof (struct aac_get_config_status),
378 			    FsaNormal,
379 			    1, 1,
380 			    NULL, NULL);
381 	if (status < 0) {
382 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
383 	} else {
384 		struct aac_get_config_status_resp *reply
385 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
386 		dprintk((KERN_WARNING
387 		  "aac_get_config_status: response=%d status=%d action=%d\n",
388 		  le32_to_cpu(reply->response),
389 		  le32_to_cpu(reply->status),
390 		  le32_to_cpu(reply->data.action)));
391 		if ((le32_to_cpu(reply->response) != ST_OK) ||
392 		     (le32_to_cpu(reply->status) != CT_OK) ||
393 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
394 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
395 			status = -EINVAL;
396 		}
397 	}
398 	/* Do not set XferState to zero unless receives a response from F/W */
399 	if (status >= 0)
400 		aac_fib_complete(fibptr);
401 
402 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
403 	if (status >= 0) {
404 		if ((aac_commit == 1) || commit_flag) {
405 			struct aac_commit_config * dinfo;
406 			aac_fib_init(fibptr);
407 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
408 
409 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
410 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
411 
412 			status = aac_fib_send(ContainerCommand,
413 				    fibptr,
414 				    sizeof (struct aac_commit_config),
415 				    FsaNormal,
416 				    1, 1,
417 				    NULL, NULL);
418 			/* Do not set XferState to zero unless
419 			 * receives a response from F/W */
420 			if (status >= 0)
421 				aac_fib_complete(fibptr);
422 		} else if (aac_commit == 0) {
423 			printk(KERN_WARNING
424 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
425 		}
426 	}
427 	/* FIB should be freed only after getting the response from the F/W */
428 	if (status != -ERESTARTSYS)
429 		aac_fib_free(fibptr);
430 	return status;
431 }
432 
433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
434 {
435 	char inq_data;
436 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
437 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
438 		inq_data &= 0xdf;
439 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
440 	}
441 }
442 
443 /**
444  *	aac_get_containers	-	list containers
445  *	@common: adapter to probe
446  *
447  *	Make a list of all containers on this controller
448  */
449 int aac_get_containers(struct aac_dev *dev)
450 {
451 	struct fsa_dev_info *fsa_dev_ptr;
452 	u32 index;
453 	int status = 0;
454 	struct fib * fibptr;
455 	struct aac_get_container_count *dinfo;
456 	struct aac_get_container_count_resp *dresp;
457 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
458 
459 	if (!(fibptr = aac_fib_alloc(dev)))
460 		return -ENOMEM;
461 
462 	aac_fib_init(fibptr);
463 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
464 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
465 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
466 
467 	status = aac_fib_send(ContainerCommand,
468 		    fibptr,
469 		    sizeof (struct aac_get_container_count),
470 		    FsaNormal,
471 		    1, 1,
472 		    NULL, NULL);
473 	if (status >= 0) {
474 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
475 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
476 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
477 		    AAC_OPTION_SUPPORTED_240_VOLUMES) {
478 			maximum_num_containers =
479 				le32_to_cpu(dresp->MaxSimpleVolumes);
480 		}
481 		aac_fib_complete(fibptr);
482 	}
483 	/* FIB should be freed only after getting the response from the F/W */
484 	if (status != -ERESTARTSYS)
485 		aac_fib_free(fibptr);
486 
487 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
488 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
489 	if (dev->fsa_dev == NULL ||
490 		dev->maximum_num_containers != maximum_num_containers) {
491 
492 		fsa_dev_ptr = dev->fsa_dev;
493 
494 		dev->fsa_dev = kcalloc(maximum_num_containers,
495 					sizeof(*fsa_dev_ptr), GFP_KERNEL);
496 
497 		kfree(fsa_dev_ptr);
498 		fsa_dev_ptr = NULL;
499 
500 
501 		if (!dev->fsa_dev)
502 			return -ENOMEM;
503 
504 		dev->maximum_num_containers = maximum_num_containers;
505 	}
506 	for (index = 0; index < dev->maximum_num_containers; index++) {
507 		dev->fsa_dev[index].devname[0] = '\0';
508 		dev->fsa_dev[index].valid = 0;
509 
510 		status = aac_probe_container(dev, index);
511 
512 		if (status < 0) {
513 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
514 			break;
515 		}
516 	}
517 	return status;
518 }
519 
520 static void get_container_name_callback(void *context, struct fib * fibptr)
521 {
522 	struct aac_get_name_resp * get_name_reply;
523 	struct scsi_cmnd * scsicmd;
524 
525 	scsicmd = (struct scsi_cmnd *) context;
526 
527 	if (!aac_valid_context(scsicmd, fibptr))
528 		return;
529 
530 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
531 	BUG_ON(fibptr == NULL);
532 
533 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
534 	/* Failure is irrelevant, using default value instead */
535 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
536 	 && (get_name_reply->data[0] != '\0')) {
537 		char *sp = get_name_reply->data;
538 		int data_size = sizeof_field(struct aac_get_name_resp, data);
539 
540 		sp[data_size - 1] = '\0';
541 		while (*sp == ' ')
542 			++sp;
543 		if (*sp) {
544 			struct inquiry_data inq;
545 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
546 			int count = sizeof(d);
547 			char *dp = d;
548 			do {
549 				*dp++ = (*sp) ? *sp++ : ' ';
550 			} while (--count > 0);
551 
552 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
553 			memcpy(inq.inqd_pid, d, sizeof(d));
554 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
555 		}
556 	}
557 
558 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
559 
560 	aac_fib_complete(fibptr);
561 	scsicmd->scsi_done(scsicmd);
562 }
563 
564 /**
565  *	aac_get_container_name	-	get container name, none blocking.
566  */
567 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
568 {
569 	int status;
570 	int data_size;
571 	struct aac_get_name *dinfo;
572 	struct fib * cmd_fibcontext;
573 	struct aac_dev * dev;
574 
575 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
576 
577 	data_size = sizeof_field(struct aac_get_name_resp, data);
578 
579 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
580 
581 	aac_fib_init(cmd_fibcontext);
582 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
583 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
584 
585 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
586 	dinfo->type = cpu_to_le32(CT_READ_NAME);
587 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
588 	dinfo->count = cpu_to_le32(data_size - 1);
589 
590 	status = aac_fib_send(ContainerCommand,
591 		  cmd_fibcontext,
592 		  sizeof(struct aac_get_name_resp),
593 		  FsaNormal,
594 		  0, 1,
595 		  (fib_callback)get_container_name_callback,
596 		  (void *) scsicmd);
597 
598 	/*
599 	 *	Check that the command queued to the controller
600 	 */
601 	if (status == -EINPROGRESS)
602 		return 0;
603 
604 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
605 	aac_fib_complete(cmd_fibcontext);
606 	return -1;
607 }
608 
609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
610 {
611 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
612 
613 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
614 		return aac_scsi_cmd(scsicmd);
615 
616 	scsicmd->result = DID_NO_CONNECT << 16;
617 	scsicmd->scsi_done(scsicmd);
618 	return 0;
619 }
620 
621 static void _aac_probe_container2(void * context, struct fib * fibptr)
622 {
623 	struct fsa_dev_info *fsa_dev_ptr;
624 	int (*callback)(struct scsi_cmnd *);
625 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
626 	int i;
627 
628 
629 	if (!aac_valid_context(scsicmd, fibptr))
630 		return;
631 
632 	scsicmd->SCp.Status = 0;
633 	fsa_dev_ptr = fibptr->dev->fsa_dev;
634 	if (fsa_dev_ptr) {
635 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
636 		__le32 sup_options2;
637 
638 		fsa_dev_ptr += scmd_id(scsicmd);
639 		sup_options2 =
640 			fibptr->dev->supplement_adapter_info.supported_options2;
641 
642 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
643 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
644 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
645 			if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
646 				dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
647 				fsa_dev_ptr->block_size = 0x200;
648 			} else {
649 				fsa_dev_ptr->block_size =
650 					le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
651 			}
652 			for (i = 0; i < 16; i++)
653 				fsa_dev_ptr->identifier[i] =
654 					dresp->mnt[0].fileinfo.bdevinfo
655 								.identifier[i];
656 			fsa_dev_ptr->valid = 1;
657 			/* sense_key holds the current state of the spin-up */
658 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
659 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
660 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
661 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
662 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
663 			fsa_dev_ptr->size
664 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
665 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
666 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
667 		}
668 		if ((fsa_dev_ptr->valid & 1) == 0)
669 			fsa_dev_ptr->valid = 0;
670 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
671 	}
672 	aac_fib_complete(fibptr);
673 	aac_fib_free(fibptr);
674 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
675 	scsicmd->SCp.ptr = NULL;
676 	(*callback)(scsicmd);
677 	return;
678 }
679 
680 static void _aac_probe_container1(void * context, struct fib * fibptr)
681 {
682 	struct scsi_cmnd * scsicmd;
683 	struct aac_mount * dresp;
684 	struct aac_query_mount *dinfo;
685 	int status;
686 
687 	dresp = (struct aac_mount *) fib_data(fibptr);
688 	if (!aac_supports_2T(fibptr->dev)) {
689 		dresp->mnt[0].capacityhigh = 0;
690 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
691 			(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
692 			_aac_probe_container2(context, fibptr);
693 			return;
694 		}
695 	}
696 	scsicmd = (struct scsi_cmnd *) context;
697 
698 	if (!aac_valid_context(scsicmd, fibptr))
699 		return;
700 
701 	aac_fib_init(fibptr);
702 
703 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
704 
705 	if (fibptr->dev->supplement_adapter_info.supported_options2 &
706 	    AAC_OPTION_VARIABLE_BLOCK_SIZE)
707 		dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
708 	else
709 		dinfo->command = cpu_to_le32(VM_NameServe64);
710 
711 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
712 	dinfo->type = cpu_to_le32(FT_FILESYS);
713 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
714 
715 	status = aac_fib_send(ContainerCommand,
716 			  fibptr,
717 			  sizeof(struct aac_query_mount),
718 			  FsaNormal,
719 			  0, 1,
720 			  _aac_probe_container2,
721 			  (void *) scsicmd);
722 	/*
723 	 *	Check that the command queued to the controller
724 	 */
725 	if (status < 0 && status != -EINPROGRESS) {
726 		/* Inherit results from VM_NameServe, if any */
727 		dresp->status = cpu_to_le32(ST_OK);
728 		_aac_probe_container2(context, fibptr);
729 	}
730 }
731 
732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
733 {
734 	struct fib * fibptr;
735 	int status = -ENOMEM;
736 
737 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
738 		struct aac_query_mount *dinfo;
739 
740 		aac_fib_init(fibptr);
741 
742 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
743 
744 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
745 		    AAC_OPTION_VARIABLE_BLOCK_SIZE)
746 			dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
747 		else
748 			dinfo->command = cpu_to_le32(VM_NameServe);
749 
750 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
751 		dinfo->type = cpu_to_le32(FT_FILESYS);
752 		scsicmd->SCp.ptr = (char *)callback;
753 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
754 
755 		status = aac_fib_send(ContainerCommand,
756 			  fibptr,
757 			  sizeof(struct aac_query_mount),
758 			  FsaNormal,
759 			  0, 1,
760 			  _aac_probe_container1,
761 			  (void *) scsicmd);
762 		/*
763 		 *	Check that the command queued to the controller
764 		 */
765 		if (status == -EINPROGRESS)
766 			return 0;
767 
768 		if (status < 0) {
769 			scsicmd->SCp.ptr = NULL;
770 			aac_fib_complete(fibptr);
771 			aac_fib_free(fibptr);
772 		}
773 	}
774 	if (status < 0) {
775 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
776 		if (fsa_dev_ptr) {
777 			fsa_dev_ptr += scmd_id(scsicmd);
778 			if ((fsa_dev_ptr->valid & 1) == 0) {
779 				fsa_dev_ptr->valid = 0;
780 				return (*callback)(scsicmd);
781 			}
782 		}
783 	}
784 	return status;
785 }
786 
787 /**
788  *	aac_probe_container		-	query a logical volume
789  *	@dev: device to query
790  *	@cid: container identifier
791  *
792  *	Queries the controller about the given volume. The volume information
793  *	is updated in the struct fsa_dev_info structure rather than returned.
794  */
795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
796 {
797 	scsicmd->device = NULL;
798 	return 0;
799 }
800 
801 int aac_probe_container(struct aac_dev *dev, int cid)
802 {
803 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
804 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
805 	int status;
806 
807 	if (!scsicmd || !scsidev) {
808 		kfree(scsicmd);
809 		kfree(scsidev);
810 		return -ENOMEM;
811 	}
812 	scsicmd->list.next = NULL;
813 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
814 
815 	scsicmd->device = scsidev;
816 	scsidev->sdev_state = 0;
817 	scsidev->id = cid;
818 	scsidev->host = dev->scsi_host_ptr;
819 
820 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
821 		while (scsicmd->device == scsidev)
822 			schedule();
823 	kfree(scsidev);
824 	status = scsicmd->SCp.Status;
825 	kfree(scsicmd);
826 	return status;
827 }
828 
829 /* Local Structure to set SCSI inquiry data strings */
830 struct scsi_inq {
831 	char vid[8];         /* Vendor ID */
832 	char pid[16];        /* Product ID */
833 	char prl[4];         /* Product Revision Level */
834 };
835 
836 /**
837  *	InqStrCopy	-	string merge
838  *	@a:	string to copy from
839  *	@b:	string to copy to
840  *
841  *	Copy a String from one location to another
842  *	without copying \0
843  */
844 
845 static void inqstrcpy(char *a, char *b)
846 {
847 
848 	while (*a != (char)0)
849 		*b++ = *a++;
850 }
851 
852 static char *container_types[] = {
853 	"None",
854 	"Volume",
855 	"Mirror",
856 	"Stripe",
857 	"RAID5",
858 	"SSRW",
859 	"SSRO",
860 	"Morph",
861 	"Legacy",
862 	"RAID4",
863 	"RAID10",
864 	"RAID00",
865 	"V-MIRRORS",
866 	"PSEUDO R4",
867 	"RAID50",
868 	"RAID5D",
869 	"RAID5D0",
870 	"RAID1E",
871 	"RAID6",
872 	"RAID60",
873 	"Unknown"
874 };
875 
876 char * get_container_type(unsigned tindex)
877 {
878 	if (tindex >= ARRAY_SIZE(container_types))
879 		tindex = ARRAY_SIZE(container_types) - 1;
880 	return container_types[tindex];
881 }
882 
883 /* Function: setinqstr
884  *
885  * Arguments: [1] pointer to void [1] int
886  *
887  * Purpose: Sets SCSI inquiry data strings for vendor, product
888  * and revision level. Allows strings to be set in platform dependent
889  * files instead of in OS dependent driver source.
890  */
891 
892 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
893 {
894 	struct scsi_inq *str;
895 	struct aac_supplement_adapter_info *sup_adap_info;
896 
897 	sup_adap_info = &dev->supplement_adapter_info;
898 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
899 	memset(str, ' ', sizeof(*str));
900 
901 	if (sup_adap_info->adapter_type_text[0]) {
902 		int c;
903 		char *cp;
904 		char *cname = kmemdup(sup_adap_info->adapter_type_text,
905 				sizeof(sup_adap_info->adapter_type_text),
906 								GFP_ATOMIC);
907 		if (!cname)
908 			return;
909 
910 		cp = cname;
911 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
912 			inqstrcpy("SMC", str->vid);
913 		else {
914 			c = sizeof(str->vid);
915 			while (*cp && *cp != ' ' && --c)
916 				++cp;
917 			c = *cp;
918 			*cp = '\0';
919 			inqstrcpy(cname, str->vid);
920 			*cp = c;
921 			while (*cp && *cp != ' ')
922 				++cp;
923 		}
924 		while (*cp == ' ')
925 			++cp;
926 		/* last six chars reserved for vol type */
927 		if (strlen(cp) > sizeof(str->pid))
928 			cp[sizeof(str->pid)] = '\0';
929 		inqstrcpy (cp, str->pid);
930 
931 		kfree(cname);
932 	} else {
933 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
934 
935 		inqstrcpy (mp->vname, str->vid);
936 		/* last six chars reserved for vol type */
937 		inqstrcpy (mp->model, str->pid);
938 	}
939 
940 	if (tindex < ARRAY_SIZE(container_types)){
941 		char *findit = str->pid;
942 
943 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
944 		/* RAID is superfluous in the context of a RAID device */
945 		if (memcmp(findit-4, "RAID", 4) == 0)
946 			*(findit -= 4) = ' ';
947 		if (((findit - str->pid) + strlen(container_types[tindex]))
948 		 < (sizeof(str->pid) + sizeof(str->prl)))
949 			inqstrcpy (container_types[tindex], findit + 1);
950 	}
951 	inqstrcpy ("V1.0", str->prl);
952 }
953 
954 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
955 		struct aac_dev *dev, struct scsi_cmnd *scsicmd)
956 {
957 	int container;
958 
959 	vpdpage83data->type3.codeset = 1;
960 	vpdpage83data->type3.identifiertype = 3;
961 	vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
962 			- 4;
963 
964 	for (container = 0; container < dev->maximum_num_containers;
965 			container++) {
966 
967 		if (scmd_id(scsicmd) == container) {
968 			memcpy(vpdpage83data->type3.Identifier,
969 					dev->fsa_dev[container].identifier,
970 					16);
971 			break;
972 		}
973 	}
974 }
975 
976 static void get_container_serial_callback(void *context, struct fib * fibptr)
977 {
978 	struct aac_get_serial_resp * get_serial_reply;
979 	struct scsi_cmnd * scsicmd;
980 
981 	BUG_ON(fibptr == NULL);
982 
983 	scsicmd = (struct scsi_cmnd *) context;
984 	if (!aac_valid_context(scsicmd, fibptr))
985 		return;
986 
987 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
988 	/* Failure is irrelevant, using default value instead */
989 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
990 		/*Check to see if it's for VPD 0x83 or 0x80 */
991 		if (scsicmd->cmnd[2] == 0x83) {
992 			/* vpd page 0x83 - Device Identification Page */
993 			struct aac_dev *dev;
994 			int i;
995 			struct tvpd_page83 vpdpage83data;
996 
997 			dev = (struct aac_dev *)scsicmd->device->host->hostdata;
998 
999 			memset(((u8 *)&vpdpage83data), 0,
1000 			       sizeof(vpdpage83data));
1001 
1002 			/* DIRECT_ACCESS_DEVIC */
1003 			vpdpage83data.DeviceType = 0;
1004 			/* DEVICE_CONNECTED */
1005 			vpdpage83data.DeviceTypeQualifier = 0;
1006 			/* VPD_DEVICE_IDENTIFIERS */
1007 			vpdpage83data.PageCode = 0x83;
1008 			vpdpage83data.reserved = 0;
1009 			vpdpage83data.PageLength =
1010 				sizeof(vpdpage83data.type1) +
1011 				sizeof(vpdpage83data.type2);
1012 
1013 			/* VPD 83 Type 3 is not supported for ARC */
1014 			if (dev->sa_firmware)
1015 				vpdpage83data.PageLength +=
1016 				sizeof(vpdpage83data.type3);
1017 
1018 			/* T10 Vendor Identifier Field Format */
1019 			/* VpdcodesetAscii */
1020 			vpdpage83data.type1.codeset = 2;
1021 			/* VpdIdentifierTypeVendorId */
1022 			vpdpage83data.type1.identifiertype = 1;
1023 			vpdpage83data.type1.identifierlength =
1024 				sizeof(vpdpage83data.type1) - 4;
1025 
1026 			/* "ADAPTEC " for adaptec */
1027 			memcpy(vpdpage83data.type1.venid,
1028 				"ADAPTEC ",
1029 				sizeof(vpdpage83data.type1.venid));
1030 			memcpy(vpdpage83data.type1.productid,
1031 				"ARRAY           ",
1032 				sizeof(
1033 				vpdpage83data.type1.productid));
1034 
1035 			/* Convert to ascii based serial number.
1036 			 * The LSB is the the end.
1037 			 */
1038 			for (i = 0; i < 8; i++) {
1039 				u8 temp =
1040 					(u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1041 				if (temp  > 0x9) {
1042 					vpdpage83data.type1.serialnumber[i] =
1043 							'A' + (temp - 0xA);
1044 				} else {
1045 					vpdpage83data.type1.serialnumber[i] =
1046 							'0' + temp;
1047 				}
1048 			}
1049 
1050 			/* VpdCodeSetBinary */
1051 			vpdpage83data.type2.codeset = 1;
1052 			/* VpdidentifiertypeEUI64 */
1053 			vpdpage83data.type2.identifiertype = 2;
1054 			vpdpage83data.type2.identifierlength =
1055 				sizeof(vpdpage83data.type2) - 4;
1056 
1057 			vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1058 			vpdpage83data.type2.eu64id.venid[1] = 0;
1059 			vpdpage83data.type2.eu64id.venid[2] = 0;
1060 
1061 			vpdpage83data.type2.eu64id.Serial =
1062 							get_serial_reply->uid;
1063 			vpdpage83data.type2.eu64id.reserved = 0;
1064 
1065 			/*
1066 			 * VpdIdentifierTypeFCPHName
1067 			 * VPD 0x83 Type 3 not supported for ARC
1068 			 */
1069 			if (dev->sa_firmware) {
1070 				build_vpd83_type3(&vpdpage83data,
1071 						dev, scsicmd);
1072 			}
1073 
1074 			/* Move the inquiry data to the response buffer. */
1075 			scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1076 						 sizeof(vpdpage83data));
1077 		} else {
1078 			/* It must be for VPD 0x80 */
1079 			char sp[13];
1080 			/* EVPD bit set */
1081 			sp[0] = INQD_PDT_DA;
1082 			sp[1] = scsicmd->cmnd[2];
1083 			sp[2] = 0;
1084 			sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1085 				le32_to_cpu(get_serial_reply->uid));
1086 			scsi_sg_copy_from_buffer(scsicmd, sp,
1087 						 sizeof(sp));
1088 		}
1089 	}
1090 
1091 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1092 
1093 	aac_fib_complete(fibptr);
1094 	scsicmd->scsi_done(scsicmd);
1095 }
1096 
1097 /**
1098  *	aac_get_container_serial - get container serial, none blocking.
1099  */
1100 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1101 {
1102 	int status;
1103 	struct aac_get_serial *dinfo;
1104 	struct fib * cmd_fibcontext;
1105 	struct aac_dev * dev;
1106 
1107 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1108 
1109 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1110 
1111 	aac_fib_init(cmd_fibcontext);
1112 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1113 
1114 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
1115 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1116 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1117 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1118 
1119 	status = aac_fib_send(ContainerCommand,
1120 		  cmd_fibcontext,
1121 		  sizeof(struct aac_get_serial_resp),
1122 		  FsaNormal,
1123 		  0, 1,
1124 		  (fib_callback) get_container_serial_callback,
1125 		  (void *) scsicmd);
1126 
1127 	/*
1128 	 *	Check that the command queued to the controller
1129 	 */
1130 	if (status == -EINPROGRESS)
1131 		return 0;
1132 
1133 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1134 	aac_fib_complete(cmd_fibcontext);
1135 	return -1;
1136 }
1137 
1138 /* Function: setinqserial
1139  *
1140  * Arguments: [1] pointer to void [1] int
1141  *
1142  * Purpose: Sets SCSI Unit Serial number.
1143  *          This is a fake. We should read a proper
1144  *          serial number from the container. <SuSE>But
1145  *          without docs it's quite hard to do it :-)
1146  *          So this will have to do in the meantime.</SuSE>
1147  */
1148 
1149 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1150 {
1151 	/*
1152 	 *	This breaks array migration.
1153 	 */
1154 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1155 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
1156 }
1157 
1158 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1159 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1160 {
1161 	u8 *sense_buf = (u8 *)sense_data;
1162 	/* Sense data valid, err code 70h */
1163 	sense_buf[0] = 0x70; /* No info field */
1164 	sense_buf[1] = 0;	/* Segment number, always zero */
1165 
1166 	sense_buf[2] = sense_key;	/* Sense key */
1167 
1168 	sense_buf[12] = sense_code;	/* Additional sense code */
1169 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
1170 
1171 	if (sense_key == ILLEGAL_REQUEST) {
1172 		sense_buf[7] = 10;	/* Additional sense length */
1173 
1174 		sense_buf[15] = bit_pointer;
1175 		/* Illegal parameter is in the parameter block */
1176 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
1177 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
1178 		/* Illegal parameter is in the CDB block */
1179 		sense_buf[16] = field_pointer >> 8;	/* MSB */
1180 		sense_buf[17] = field_pointer;		/* LSB */
1181 	} else
1182 		sense_buf[7] = 6;	/* Additional sense length */
1183 }
1184 
1185 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1186 {
1187 	if (lba & 0xffffffff00000000LL) {
1188 		int cid = scmd_id(cmd);
1189 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1190 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1191 			SAM_STAT_CHECK_CONDITION;
1192 		set_sense(&dev->fsa_dev[cid].sense_data,
1193 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1194 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1195 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1196 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1197 			     SCSI_SENSE_BUFFERSIZE));
1198 		cmd->scsi_done(cmd);
1199 		return 1;
1200 	}
1201 	return 0;
1202 }
1203 
1204 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1205 {
1206 	return 0;
1207 }
1208 
1209 static void io_callback(void *context, struct fib * fibptr);
1210 
1211 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1212 {
1213 	struct aac_dev *dev = fib->dev;
1214 	u16 fibsize, command;
1215 	long ret;
1216 
1217 	aac_fib_init(fib);
1218 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1219 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1220 		!dev->sync_mode) {
1221 		struct aac_raw_io2 *readcmd2;
1222 		readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1223 		memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1224 		readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1225 		readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1226 		readcmd2->byteCount = cpu_to_le32(count *
1227 			dev->fsa_dev[scmd_id(cmd)].block_size);
1228 		readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1229 		readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1230 		ret = aac_build_sgraw2(cmd, readcmd2,
1231 				dev->scsi_host_ptr->sg_tablesize);
1232 		if (ret < 0)
1233 			return ret;
1234 		command = ContainerRawIo2;
1235 		fibsize = sizeof(struct aac_raw_io2) +
1236 			((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1237 	} else {
1238 		struct aac_raw_io *readcmd;
1239 		readcmd = (struct aac_raw_io *) fib_data(fib);
1240 		readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1241 		readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1242 		readcmd->count = cpu_to_le32(count *
1243 			dev->fsa_dev[scmd_id(cmd)].block_size);
1244 		readcmd->cid = cpu_to_le16(scmd_id(cmd));
1245 		readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1246 		readcmd->bpTotal = 0;
1247 		readcmd->bpComplete = 0;
1248 		ret = aac_build_sgraw(cmd, &readcmd->sg);
1249 		if (ret < 0)
1250 			return ret;
1251 		command = ContainerRawIo;
1252 		fibsize = sizeof(struct aac_raw_io) +
1253 			((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1254 	}
1255 
1256 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1257 	/*
1258 	 *	Now send the Fib to the adapter
1259 	 */
1260 	return aac_fib_send(command,
1261 			  fib,
1262 			  fibsize,
1263 			  FsaNormal,
1264 			  0, 1,
1265 			  (fib_callback) io_callback,
1266 			  (void *) cmd);
1267 }
1268 
1269 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1270 {
1271 	u16 fibsize;
1272 	struct aac_read64 *readcmd;
1273 	long ret;
1274 
1275 	aac_fib_init(fib);
1276 	readcmd = (struct aac_read64 *) fib_data(fib);
1277 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
1278 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
1279 	readcmd->sector_count = cpu_to_le16(count);
1280 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1281 	readcmd->pad   = 0;
1282 	readcmd->flags = 0;
1283 
1284 	ret = aac_build_sg64(cmd, &readcmd->sg);
1285 	if (ret < 0)
1286 		return ret;
1287 	fibsize = sizeof(struct aac_read64) +
1288 		((le32_to_cpu(readcmd->sg.count) - 1) *
1289 		 sizeof (struct sgentry64));
1290 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1291 				sizeof(struct aac_fibhdr)));
1292 	/*
1293 	 *	Now send the Fib to the adapter
1294 	 */
1295 	return aac_fib_send(ContainerCommand64,
1296 			  fib,
1297 			  fibsize,
1298 			  FsaNormal,
1299 			  0, 1,
1300 			  (fib_callback) io_callback,
1301 			  (void *) cmd);
1302 }
1303 
1304 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1305 {
1306 	u16 fibsize;
1307 	struct aac_read *readcmd;
1308 	struct aac_dev *dev = fib->dev;
1309 	long ret;
1310 
1311 	aac_fib_init(fib);
1312 	readcmd = (struct aac_read *) fib_data(fib);
1313 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1314 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1315 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1316 	readcmd->count = cpu_to_le32(count *
1317 		dev->fsa_dev[scmd_id(cmd)].block_size);
1318 
1319 	ret = aac_build_sg(cmd, &readcmd->sg);
1320 	if (ret < 0)
1321 		return ret;
1322 	fibsize = sizeof(struct aac_read) +
1323 			((le32_to_cpu(readcmd->sg.count) - 1) *
1324 			 sizeof (struct sgentry));
1325 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1326 				sizeof(struct aac_fibhdr)));
1327 	/*
1328 	 *	Now send the Fib to the adapter
1329 	 */
1330 	return aac_fib_send(ContainerCommand,
1331 			  fib,
1332 			  fibsize,
1333 			  FsaNormal,
1334 			  0, 1,
1335 			  (fib_callback) io_callback,
1336 			  (void *) cmd);
1337 }
1338 
1339 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1340 {
1341 	struct aac_dev *dev = fib->dev;
1342 	u16 fibsize, command;
1343 	long ret;
1344 
1345 	aac_fib_init(fib);
1346 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1347 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1348 		!dev->sync_mode) {
1349 		struct aac_raw_io2 *writecmd2;
1350 		writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1351 		memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1352 		writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1353 		writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1354 		writecmd2->byteCount = cpu_to_le32(count *
1355 			dev->fsa_dev[scmd_id(cmd)].block_size);
1356 		writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1357 		writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1358 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1359 			cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1360 			cpu_to_le16(RIO2_IO_TYPE_WRITE);
1361 		ret = aac_build_sgraw2(cmd, writecmd2,
1362 				dev->scsi_host_ptr->sg_tablesize);
1363 		if (ret < 0)
1364 			return ret;
1365 		command = ContainerRawIo2;
1366 		fibsize = sizeof(struct aac_raw_io2) +
1367 			((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1368 	} else {
1369 		struct aac_raw_io *writecmd;
1370 		writecmd = (struct aac_raw_io *) fib_data(fib);
1371 		writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1372 		writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1373 		writecmd->count = cpu_to_le32(count *
1374 			dev->fsa_dev[scmd_id(cmd)].block_size);
1375 		writecmd->cid = cpu_to_le16(scmd_id(cmd));
1376 		writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1377 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1378 			cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1379 			cpu_to_le16(RIO_TYPE_WRITE);
1380 		writecmd->bpTotal = 0;
1381 		writecmd->bpComplete = 0;
1382 		ret = aac_build_sgraw(cmd, &writecmd->sg);
1383 		if (ret < 0)
1384 			return ret;
1385 		command = ContainerRawIo;
1386 		fibsize = sizeof(struct aac_raw_io) +
1387 			((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1388 	}
1389 
1390 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1391 	/*
1392 	 *	Now send the Fib to the adapter
1393 	 */
1394 	return aac_fib_send(command,
1395 			  fib,
1396 			  fibsize,
1397 			  FsaNormal,
1398 			  0, 1,
1399 			  (fib_callback) io_callback,
1400 			  (void *) cmd);
1401 }
1402 
1403 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1404 {
1405 	u16 fibsize;
1406 	struct aac_write64 *writecmd;
1407 	long ret;
1408 
1409 	aac_fib_init(fib);
1410 	writecmd = (struct aac_write64 *) fib_data(fib);
1411 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1412 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1413 	writecmd->sector_count = cpu_to_le16(count);
1414 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1415 	writecmd->pad	= 0;
1416 	writecmd->flags	= 0;
1417 
1418 	ret = aac_build_sg64(cmd, &writecmd->sg);
1419 	if (ret < 0)
1420 		return ret;
1421 	fibsize = sizeof(struct aac_write64) +
1422 		((le32_to_cpu(writecmd->sg.count) - 1) *
1423 		 sizeof (struct sgentry64));
1424 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1425 				sizeof(struct aac_fibhdr)));
1426 	/*
1427 	 *	Now send the Fib to the adapter
1428 	 */
1429 	return aac_fib_send(ContainerCommand64,
1430 			  fib,
1431 			  fibsize,
1432 			  FsaNormal,
1433 			  0, 1,
1434 			  (fib_callback) io_callback,
1435 			  (void *) cmd);
1436 }
1437 
1438 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1439 {
1440 	u16 fibsize;
1441 	struct aac_write *writecmd;
1442 	struct aac_dev *dev = fib->dev;
1443 	long ret;
1444 
1445 	aac_fib_init(fib);
1446 	writecmd = (struct aac_write *) fib_data(fib);
1447 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1448 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1449 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1450 	writecmd->count = cpu_to_le32(count *
1451 		dev->fsa_dev[scmd_id(cmd)].block_size);
1452 	writecmd->sg.count = cpu_to_le32(1);
1453 	/* ->stable is not used - it did mean which type of write */
1454 
1455 	ret = aac_build_sg(cmd, &writecmd->sg);
1456 	if (ret < 0)
1457 		return ret;
1458 	fibsize = sizeof(struct aac_write) +
1459 		((le32_to_cpu(writecmd->sg.count) - 1) *
1460 		 sizeof (struct sgentry));
1461 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1462 				sizeof(struct aac_fibhdr)));
1463 	/*
1464 	 *	Now send the Fib to the adapter
1465 	 */
1466 	return aac_fib_send(ContainerCommand,
1467 			  fib,
1468 			  fibsize,
1469 			  FsaNormal,
1470 			  0, 1,
1471 			  (fib_callback) io_callback,
1472 			  (void *) cmd);
1473 }
1474 
1475 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1476 {
1477 	struct aac_srb * srbcmd;
1478 	u32 flag;
1479 	u32 timeout;
1480 	struct aac_dev *dev = fib->dev;
1481 
1482 	aac_fib_init(fib);
1483 	switch(cmd->sc_data_direction){
1484 	case DMA_TO_DEVICE:
1485 		flag = SRB_DataOut;
1486 		break;
1487 	case DMA_BIDIRECTIONAL:
1488 		flag = SRB_DataIn | SRB_DataOut;
1489 		break;
1490 	case DMA_FROM_DEVICE:
1491 		flag = SRB_DataIn;
1492 		break;
1493 	case DMA_NONE:
1494 	default:	/* shuts up some versions of gcc */
1495 		flag = SRB_NoDataXfer;
1496 		break;
1497 	}
1498 
1499 	srbcmd = (struct aac_srb*) fib_data(fib);
1500 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1501 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1502 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1503 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1504 	srbcmd->flags    = cpu_to_le32(flag);
1505 	timeout = cmd->request->timeout/HZ;
1506 	if (timeout == 0)
1507 		timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT);
1508 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1509 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1510 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1511 	return srbcmd;
1512 }
1513 
1514 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1515 							struct scsi_cmnd *cmd)
1516 {
1517 	struct aac_hba_cmd_req *hbacmd;
1518 	struct aac_dev *dev;
1519 	int bus, target;
1520 	u64 address;
1521 
1522 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1523 
1524 	hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1525 	memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
1526 	/* iu_type is a parameter of aac_hba_send */
1527 	switch (cmd->sc_data_direction) {
1528 	case DMA_TO_DEVICE:
1529 		hbacmd->byte1 = 2;
1530 		break;
1531 	case DMA_FROM_DEVICE:
1532 	case DMA_BIDIRECTIONAL:
1533 		hbacmd->byte1 = 1;
1534 		break;
1535 	case DMA_NONE:
1536 	default:
1537 		break;
1538 	}
1539 	hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1540 
1541 	bus = aac_logical_to_phys(scmd_channel(cmd));
1542 	target = scmd_id(cmd);
1543 	hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1544 
1545 	/* we fill in reply_qid later in aac_src_deliver_message */
1546 	/* we fill in iu_type, request_id later in aac_hba_send */
1547 	/* we fill in emb_data_desc_count later in aac_build_sghba */
1548 
1549 	memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1550 	hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1551 
1552 	address = (u64)fib->hw_error_pa;
1553 	hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1554 	hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1555 	hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1556 
1557 	return hbacmd;
1558 }
1559 
1560 static void aac_srb_callback(void *context, struct fib * fibptr);
1561 
1562 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1563 {
1564 	u16 fibsize;
1565 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1566 	long ret;
1567 
1568 	ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1569 	if (ret < 0)
1570 		return ret;
1571 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1572 
1573 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1574 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1575 	/*
1576 	 *	Build Scatter/Gather list
1577 	 */
1578 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1579 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1580 		 sizeof (struct sgentry64));
1581 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1582 				sizeof(struct aac_fibhdr)));
1583 
1584 	/*
1585 	 *	Now send the Fib to the adapter
1586 	 */
1587 	return aac_fib_send(ScsiPortCommand64, fib,
1588 				fibsize, FsaNormal, 0, 1,
1589 				  (fib_callback) aac_srb_callback,
1590 				  (void *) cmd);
1591 }
1592 
1593 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1594 {
1595 	u16 fibsize;
1596 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1597 	long ret;
1598 
1599 	ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1600 	if (ret < 0)
1601 		return ret;
1602 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1603 
1604 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1605 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1606 	/*
1607 	 *	Build Scatter/Gather list
1608 	 */
1609 	fibsize = sizeof (struct aac_srb) +
1610 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1611 		 sizeof (struct sgentry));
1612 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1613 				sizeof(struct aac_fibhdr)));
1614 
1615 	/*
1616 	 *	Now send the Fib to the adapter
1617 	 */
1618 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1619 				  (fib_callback) aac_srb_callback, (void *) cmd);
1620 }
1621 
1622 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1623 {
1624 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1625 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1626 		return FAILED;
1627 	return aac_scsi_32(fib, cmd);
1628 }
1629 
1630 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1631 {
1632 	struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1633 	struct aac_dev *dev;
1634 	long ret;
1635 
1636 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1637 
1638 	ret = aac_build_sghba(cmd, hbacmd,
1639 		dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1640 	if (ret < 0)
1641 		return ret;
1642 
1643 	/*
1644 	 *	Now send the HBA command to the adapter
1645 	 */
1646 	fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1647 		sizeof(struct aac_hba_sgl);
1648 
1649 	return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1650 				  (fib_callback) aac_hba_callback,
1651 				  (void *) cmd);
1652 }
1653 
1654 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1655 	struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1656 {
1657 	struct fib	*fibptr;
1658 	dma_addr_t	addr;
1659 	int		rcode;
1660 	int		fibsize;
1661 	struct aac_srb	*srb;
1662 	struct aac_srb_reply *srb_reply;
1663 	struct sgmap64	*sg64;
1664 	u32 vbus;
1665 	u32 vid;
1666 
1667 	if (!dev->sa_firmware)
1668 		return 0;
1669 
1670 	/* allocate FIB */
1671 	fibptr = aac_fib_alloc(dev);
1672 	if (!fibptr)
1673 		return -ENOMEM;
1674 
1675 	aac_fib_init(fibptr);
1676 	fibptr->hw_fib_va->header.XferState &=
1677 		~cpu_to_le32(FastResponseCapable);
1678 
1679 	fibsize  = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1680 						sizeof(struct sgentry64);
1681 
1682 	/* allocate DMA buffer for response */
1683 	addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1684 							DMA_BIDIRECTIONAL);
1685 	if (dma_mapping_error(&dev->pdev->dev, addr)) {
1686 		rcode = -ENOMEM;
1687 		goto fib_error;
1688 	}
1689 
1690 	srb = fib_data(fibptr);
1691 	memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1692 
1693 	vbus = (u32)le16_to_cpu(
1694 			dev->supplement_adapter_info.virt_device_bus);
1695 	vid  = (u32)le16_to_cpu(
1696 			dev->supplement_adapter_info.virt_device_target);
1697 
1698 	/* set the common request fields */
1699 	srb->channel		= cpu_to_le32(vbus);
1700 	srb->id			= cpu_to_le32(vid);
1701 	srb->lun		= 0;
1702 	srb->function		= cpu_to_le32(SRBF_ExecuteScsi);
1703 	srb->timeout		= 0;
1704 	srb->retry_limit	= 0;
1705 	srb->cdb_size		= cpu_to_le32(16);
1706 	srb->count		= cpu_to_le32(xfer_len);
1707 
1708 	sg64 = (struct sgmap64 *)&srb->sg;
1709 	sg64->count		= cpu_to_le32(1);
1710 	sg64->sg[0].addr[1]	= cpu_to_le32(upper_32_bits(addr));
1711 	sg64->sg[0].addr[0]	= cpu_to_le32(lower_32_bits(addr));
1712 	sg64->sg[0].count	= cpu_to_le32(xfer_len);
1713 
1714 	/*
1715 	 * Copy the updated data for other dumping or other usage if needed
1716 	 */
1717 	memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1718 
1719 	/* issue request to the controller */
1720 	rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1721 					1, 1, NULL, NULL);
1722 
1723 	if (rcode == -ERESTARTSYS)
1724 		rcode = -ERESTART;
1725 
1726 	if (unlikely(rcode < 0))
1727 		goto bmic_error;
1728 
1729 	srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1730 	memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1731 
1732 bmic_error:
1733 	dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1734 fib_error:
1735 	aac_fib_complete(fibptr);
1736 	aac_fib_free(fibptr);
1737 	return rcode;
1738 }
1739 
1740 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1741 {
1742 
1743 	struct aac_ciss_identify_pd *identify_resp;
1744 
1745 	if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1746 		return;
1747 
1748 	identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1749 	if (identify_resp == NULL) {
1750 		dev->hba_map[bus][target].qd_limit = 32;
1751 		return;
1752 	}
1753 
1754 	if (identify_resp->current_queue_depth_limit <= 0 ||
1755 		identify_resp->current_queue_depth_limit > 255)
1756 		dev->hba_map[bus][target].qd_limit = 32;
1757 	else
1758 		dev->hba_map[bus][target].qd_limit =
1759 			identify_resp->current_queue_depth_limit;
1760 }
1761 
1762 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1763 	struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1764 {
1765 	int rcode = -ENOMEM;
1766 	int datasize;
1767 	struct aac_srb_unit srbu;
1768 	struct aac_srb *srbcmd;
1769 	struct aac_ciss_identify_pd *identify_reply;
1770 
1771 	datasize = sizeof(struct aac_ciss_identify_pd);
1772 	identify_reply = kmalloc(datasize, GFP_KERNEL);
1773 	if (!identify_reply)
1774 		goto out;
1775 
1776 	memset(&srbu, 0, sizeof(struct aac_srb_unit));
1777 
1778 	srbcmd = &srbu.srb;
1779 	srbcmd->flags	= cpu_to_le32(SRB_DataIn);
1780 	srbcmd->cdb[0]	= 0x26;
1781 	srbcmd->cdb[2]	= (u8)((AAC_MAX_LUN + target) & 0x00FF);
1782 	srbcmd->cdb[6]	= CISS_IDENTIFY_PHYSICAL_DEVICE;
1783 
1784 	rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1785 	if (unlikely(rcode < 0))
1786 		goto mem_free_all;
1787 
1788 	*identify_resp = identify_reply;
1789 
1790 out:
1791 	return rcode;
1792 mem_free_all:
1793 	kfree(identify_reply);
1794 	goto out;
1795 }
1796 
1797 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1798 {
1799 	kfree(dev->safw_phys_luns);
1800 	dev->safw_phys_luns = NULL;
1801 }
1802 
1803 /**
1804  *	aac_get_safw_ciss_luns()	Process topology change
1805  *	@dev:		aac_dev structure
1806  *
1807  *	Execute a CISS REPORT PHYS LUNS and process the results into
1808  *	the current hba_map.
1809  */
1810 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1811 {
1812 	int rcode = -ENOMEM;
1813 	int datasize;
1814 	struct aac_srb *srbcmd;
1815 	struct aac_srb_unit srbu;
1816 	struct aac_ciss_phys_luns_resp *phys_luns;
1817 
1818 	datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1819 		(AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1820 	phys_luns = kmalloc(datasize, GFP_KERNEL);
1821 	if (phys_luns == NULL)
1822 		goto out;
1823 
1824 	memset(&srbu, 0, sizeof(struct aac_srb_unit));
1825 
1826 	srbcmd = &srbu.srb;
1827 	srbcmd->flags	= cpu_to_le32(SRB_DataIn);
1828 	srbcmd->cdb[0]	= CISS_REPORT_PHYSICAL_LUNS;
1829 	srbcmd->cdb[1]	= 2; /* extended reporting */
1830 	srbcmd->cdb[8]	= (u8)(datasize >> 8);
1831 	srbcmd->cdb[9]	= (u8)(datasize);
1832 
1833 	rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1834 	if (unlikely(rcode < 0))
1835 		goto mem_free_all;
1836 
1837 	if (phys_luns->resp_flag != 2) {
1838 		rcode = -ENOMSG;
1839 		goto mem_free_all;
1840 	}
1841 
1842 	dev->safw_phys_luns = phys_luns;
1843 
1844 out:
1845 	return rcode;
1846 mem_free_all:
1847 	kfree(phys_luns);
1848 	goto out;
1849 }
1850 
1851 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1852 {
1853 	return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1854 }
1855 
1856 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1857 {
1858 	return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1859 }
1860 
1861 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1862 {
1863 	return dev->safw_phys_luns->lun[lun].level2[0];
1864 }
1865 
1866 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1867 {
1868 	return dev->safw_phys_luns->lun[lun].bus >> 6;
1869 }
1870 
1871 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1872 {
1873 	return dev->safw_phys_luns->lun[lun].node_ident[9];
1874 }
1875 
1876 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1877 {
1878 	return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1879 }
1880 
1881 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
1882 {
1883 	return dev->safw_phys_luns->lun[lun].node_ident[8];
1884 }
1885 
1886 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1887 						int bus, int target)
1888 {
1889 	kfree(dev->hba_map[bus][target].safw_identify_resp);
1890 	dev->hba_map[bus][target].safw_identify_resp = NULL;
1891 }
1892 
1893 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1894 	int lun_count)
1895 {
1896 	int luns;
1897 	int i;
1898 	u32 bus;
1899 	u32 target;
1900 
1901 	luns = aac_get_safw_phys_lun_count(dev);
1902 
1903 	if (luns < lun_count)
1904 		lun_count = luns;
1905 	else if (lun_count < 0)
1906 		lun_count = luns;
1907 
1908 	for (i = 0; i < lun_count; i++) {
1909 		bus = aac_get_safw_phys_bus(dev, i);
1910 		target = aac_get_safw_phys_target(dev, i);
1911 
1912 		aac_free_safw_identify_resp(dev, bus, target);
1913 	}
1914 }
1915 
1916 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1917 {
1918 	int i;
1919 	int rcode = 0;
1920 	u32 lun_count;
1921 	u32 bus;
1922 	u32 target;
1923 	struct aac_ciss_identify_pd *identify_resp = NULL;
1924 
1925 	lun_count = aac_get_safw_phys_lun_count(dev);
1926 
1927 	for (i = 0; i < lun_count; ++i) {
1928 
1929 		bus = aac_get_safw_phys_bus(dev, i);
1930 		target = aac_get_safw_phys_target(dev, i);
1931 
1932 		rcode = aac_issue_safw_bmic_identify(dev,
1933 						&identify_resp, bus, target);
1934 
1935 		if (unlikely(rcode < 0))
1936 			goto free_identify_resp;
1937 
1938 		dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1939 	}
1940 
1941 out:
1942 	return rcode;
1943 free_identify_resp:
1944 	aac_free_safw_all_identify_resp(dev, i);
1945 	goto out;
1946 }
1947 
1948 /**
1949  *	aac_set_safw_attr_all_targets-	update current hba map with data from FW
1950  *	@dev:	aac_dev structure
1951  *	@phys_luns: FW information from report phys luns
1952  *	@rescan: Indicates scan type
1953  *
1954  *	Update our hba map with the information gathered from the FW
1955  */
1956 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1957 {
1958 	/* ok and extended reporting */
1959 	u32 lun_count, nexus;
1960 	u32 i, bus, target;
1961 	u8 expose_flag, attribs;
1962 
1963 	lun_count = aac_get_safw_phys_lun_count(dev);
1964 
1965 	dev->scan_counter++;
1966 
1967 	for (i = 0; i < lun_count; ++i) {
1968 
1969 		bus = aac_get_safw_phys_bus(dev, i);
1970 		target = aac_get_safw_phys_target(dev, i);
1971 		expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1972 		attribs = aac_get_safw_phys_attribs(dev, i);
1973 		nexus = aac_get_safw_phys_nexus(dev, i);
1974 
1975 		if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1976 			continue;
1977 
1978 		if (expose_flag != 0) {
1979 			dev->hba_map[bus][target].devtype =
1980 				AAC_DEVTYPE_RAID_MEMBER;
1981 			continue;
1982 		}
1983 
1984 		if (nexus != 0 && (attribs & 8)) {
1985 			dev->hba_map[bus][target].devtype =
1986 				AAC_DEVTYPE_NATIVE_RAW;
1987 			dev->hba_map[bus][target].rmw_nexus =
1988 					nexus;
1989 		} else
1990 			dev->hba_map[bus][target].devtype =
1991 				AAC_DEVTYPE_ARC_RAW;
1992 
1993 		dev->hba_map[bus][target].scan_counter = dev->scan_counter;
1994 
1995 		aac_set_safw_target_qd(dev, bus, target);
1996 	}
1997 }
1998 
1999 static int aac_setup_safw_targets(struct aac_dev *dev)
2000 {
2001 	int rcode = 0;
2002 
2003 	rcode = aac_get_containers(dev);
2004 	if (unlikely(rcode < 0))
2005 		goto out;
2006 
2007 	rcode = aac_get_safw_ciss_luns(dev);
2008 	if (unlikely(rcode < 0))
2009 		goto out;
2010 
2011 	rcode = aac_get_safw_attr_all_targets(dev);
2012 	if (unlikely(rcode < 0))
2013 		goto free_ciss_luns;
2014 
2015 	aac_set_safw_attr_all_targets(dev);
2016 
2017 	aac_free_safw_all_identify_resp(dev, -1);
2018 free_ciss_luns:
2019 	aac_free_safw_ciss_luns(dev);
2020 out:
2021 	return rcode;
2022 }
2023 
2024 int aac_setup_safw_adapter(struct aac_dev *dev)
2025 {
2026 	return aac_setup_safw_targets(dev);
2027 }
2028 
2029 int aac_get_adapter_info(struct aac_dev* dev)
2030 {
2031 	struct fib* fibptr;
2032 	int rcode;
2033 	u32 tmp, bus, target;
2034 	struct aac_adapter_info *info;
2035 	struct aac_bus_info *command;
2036 	struct aac_bus_info_response *bus_info;
2037 
2038 	if (!(fibptr = aac_fib_alloc(dev)))
2039 		return -ENOMEM;
2040 
2041 	aac_fib_init(fibptr);
2042 	info = (struct aac_adapter_info *) fib_data(fibptr);
2043 	memset(info,0,sizeof(*info));
2044 
2045 	rcode = aac_fib_send(RequestAdapterInfo,
2046 			 fibptr,
2047 			 sizeof(*info),
2048 			 FsaNormal,
2049 			 -1, 1, /* First `interrupt' command uses special wait */
2050 			 NULL,
2051 			 NULL);
2052 
2053 	if (rcode < 0) {
2054 		/* FIB should be freed only after
2055 		 * getting the response from the F/W */
2056 		if (rcode != -ERESTARTSYS) {
2057 			aac_fib_complete(fibptr);
2058 			aac_fib_free(fibptr);
2059 		}
2060 		return rcode;
2061 	}
2062 	memcpy(&dev->adapter_info, info, sizeof(*info));
2063 
2064 	dev->supplement_adapter_info.virt_device_bus = 0xffff;
2065 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2066 		struct aac_supplement_adapter_info * sinfo;
2067 
2068 		aac_fib_init(fibptr);
2069 
2070 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2071 
2072 		memset(sinfo,0,sizeof(*sinfo));
2073 
2074 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
2075 				 fibptr,
2076 				 sizeof(*sinfo),
2077 				 FsaNormal,
2078 				 1, 1,
2079 				 NULL,
2080 				 NULL);
2081 
2082 		if (rcode >= 0)
2083 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2084 		if (rcode == -ERESTARTSYS) {
2085 			fibptr = aac_fib_alloc(dev);
2086 			if (!fibptr)
2087 				return -ENOMEM;
2088 		}
2089 
2090 	}
2091 
2092 	/* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2093 	for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2094 		for (target = 0; target < AAC_MAX_TARGETS; target++) {
2095 			dev->hba_map[bus][target].devtype = 0;
2096 			dev->hba_map[bus][target].qd_limit = 0;
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * GetBusInfo
2102 	 */
2103 
2104 	aac_fib_init(fibptr);
2105 
2106 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2107 
2108 	memset(bus_info, 0, sizeof(*bus_info));
2109 
2110 	command = (struct aac_bus_info *)bus_info;
2111 
2112 	command->Command = cpu_to_le32(VM_Ioctl);
2113 	command->ObjType = cpu_to_le32(FT_DRIVE);
2114 	command->MethodId = cpu_to_le32(1);
2115 	command->CtlCmd = cpu_to_le32(GetBusInfo);
2116 
2117 	rcode = aac_fib_send(ContainerCommand,
2118 			 fibptr,
2119 			 sizeof (*bus_info),
2120 			 FsaNormal,
2121 			 1, 1,
2122 			 NULL, NULL);
2123 
2124 	/* reasoned default */
2125 	dev->maximum_num_physicals = 16;
2126 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2127 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2128 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2129 	}
2130 
2131 	if (!dev->in_reset) {
2132 		char buffer[16];
2133 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2134 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2135 			dev->name,
2136 			dev->id,
2137 			tmp>>24,
2138 			(tmp>>16)&0xff,
2139 			tmp&0xff,
2140 			le32_to_cpu(dev->adapter_info.kernelbuild),
2141 			(int)sizeof(dev->supplement_adapter_info.build_date),
2142 			dev->supplement_adapter_info.build_date);
2143 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2144 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2145 			dev->name, dev->id,
2146 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2147 			le32_to_cpu(dev->adapter_info.monitorbuild));
2148 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
2149 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2150 			dev->name, dev->id,
2151 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2152 			le32_to_cpu(dev->adapter_info.biosbuild));
2153 		buffer[0] = '\0';
2154 		if (aac_get_serial_number(
2155 		  shost_to_class(dev->scsi_host_ptr), buffer))
2156 			printk(KERN_INFO "%s%d: serial %s",
2157 			  dev->name, dev->id, buffer);
2158 		if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2159 			printk(KERN_INFO "%s%d: TSID %.*s\n",
2160 			  dev->name, dev->id,
2161 			  (int)sizeof(dev->supplement_adapter_info
2162 							.vpd_info.tsid),
2163 				dev->supplement_adapter_info.vpd_info.tsid);
2164 		}
2165 		if (!aac_check_reset || ((aac_check_reset == 1) &&
2166 		  (dev->supplement_adapter_info.supported_options2 &
2167 		  AAC_OPTION_IGNORE_RESET))) {
2168 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2169 			  dev->name, dev->id);
2170 		}
2171 	}
2172 
2173 	dev->cache_protected = 0;
2174 	dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2175 		AAC_FEATURE_JBOD) != 0);
2176 	dev->nondasd_support = 0;
2177 	dev->raid_scsi_mode = 0;
2178 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
2179 		dev->nondasd_support = 1;
2180 
2181 	/*
2182 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2183 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2184 	 * force nondasd support on. If we decide to allow the non-dasd flag
2185 	 * additional changes changes will have to be made to support
2186 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
2187 	 * changed to support the new dev->raid_scsi_mode flag instead of
2188 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2189 	 * function aac_detect will have to be modified where it sets up the
2190 	 * max number of channels based on the aac->nondasd_support flag only.
2191 	 */
2192 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2193 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2194 		dev->nondasd_support = 1;
2195 		dev->raid_scsi_mode = 1;
2196 	}
2197 	if (dev->raid_scsi_mode != 0)
2198 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2199 				dev->name, dev->id);
2200 
2201 	if (nondasd != -1)
2202 		dev->nondasd_support = (nondasd!=0);
2203 	if (dev->nondasd_support && !dev->in_reset)
2204 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2205 
2206 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2207 		dev->needs_dac = 1;
2208 	dev->dac_support = 0;
2209 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2210 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2211 		if (!dev->in_reset)
2212 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2213 				dev->name, dev->id);
2214 		dev->dac_support = 1;
2215 	}
2216 
2217 	if(dacmode != -1) {
2218 		dev->dac_support = (dacmode!=0);
2219 	}
2220 
2221 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2222 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
2223 		& AAC_QUIRK_SCSI_32)) {
2224 		dev->nondasd_support = 0;
2225 		dev->jbod = 0;
2226 		expose_physicals = 0;
2227 	}
2228 
2229 	if (dev->dac_support) {
2230 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2231 			if (!dev->in_reset)
2232 				dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2233 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2234 			dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2235 			dev->dac_support = 0;
2236 		} else {
2237 			dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2238 			rcode = -ENOMEM;
2239 		}
2240 	}
2241 	/*
2242 	 * Deal with configuring for the individualized limits of each packet
2243 	 * interface.
2244 	 */
2245 	dev->a_ops.adapter_scsi = (dev->dac_support)
2246 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2247 				? aac_scsi_32_64
2248 				: aac_scsi_64)
2249 				: aac_scsi_32;
2250 	if (dev->raw_io_interface) {
2251 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
2252 					? aac_bounds_64
2253 					: aac_bounds_32;
2254 		dev->a_ops.adapter_read = aac_read_raw_io;
2255 		dev->a_ops.adapter_write = aac_write_raw_io;
2256 	} else {
2257 		dev->a_ops.adapter_bounds = aac_bounds_32;
2258 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2259 			sizeof(struct aac_fibhdr) -
2260 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
2261 				sizeof(struct sgentry);
2262 		if (dev->dac_support) {
2263 			dev->a_ops.adapter_read = aac_read_block64;
2264 			dev->a_ops.adapter_write = aac_write_block64;
2265 			/*
2266 			 * 38 scatter gather elements
2267 			 */
2268 			dev->scsi_host_ptr->sg_tablesize =
2269 				(dev->max_fib_size -
2270 				sizeof(struct aac_fibhdr) -
2271 				sizeof(struct aac_write64) +
2272 				sizeof(struct sgentry64)) /
2273 					sizeof(struct sgentry64);
2274 		} else {
2275 			dev->a_ops.adapter_read = aac_read_block;
2276 			dev->a_ops.adapter_write = aac_write_block;
2277 		}
2278 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2279 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2280 			/*
2281 			 * Worst case size that could cause sg overflow when
2282 			 * we break up SG elements that are larger than 64KB.
2283 			 * Would be nice if we could tell the SCSI layer what
2284 			 * the maximum SG element size can be. Worst case is
2285 			 * (sg_tablesize-1) 4KB elements with one 64KB
2286 			 * element.
2287 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
2288 			 */
2289 			dev->scsi_host_ptr->max_sectors =
2290 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2291 		}
2292 	}
2293 	if (!dev->sync_mode && dev->sa_firmware &&
2294 		dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2295 		dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2296 			HBA_MAX_SG_SEPARATE;
2297 
2298 	/* FIB should be freed only after getting the response from the F/W */
2299 	if (rcode != -ERESTARTSYS) {
2300 		aac_fib_complete(fibptr);
2301 		aac_fib_free(fibptr);
2302 	}
2303 
2304 	return rcode;
2305 }
2306 
2307 
2308 static void io_callback(void *context, struct fib * fibptr)
2309 {
2310 	struct aac_dev *dev;
2311 	struct aac_read_reply *readreply;
2312 	struct scsi_cmnd *scsicmd;
2313 	u32 cid;
2314 
2315 	scsicmd = (struct scsi_cmnd *) context;
2316 
2317 	if (!aac_valid_context(scsicmd, fibptr))
2318 		return;
2319 
2320 	dev = fibptr->dev;
2321 	cid = scmd_id(scsicmd);
2322 
2323 	if (nblank(dprintk(x))) {
2324 		u64 lba;
2325 		switch (scsicmd->cmnd[0]) {
2326 		case WRITE_6:
2327 		case READ_6:
2328 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2329 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2330 			break;
2331 		case WRITE_16:
2332 		case READ_16:
2333 			lba = ((u64)scsicmd->cmnd[2] << 56) |
2334 			      ((u64)scsicmd->cmnd[3] << 48) |
2335 			      ((u64)scsicmd->cmnd[4] << 40) |
2336 			      ((u64)scsicmd->cmnd[5] << 32) |
2337 			      ((u64)scsicmd->cmnd[6] << 24) |
2338 			      (scsicmd->cmnd[7] << 16) |
2339 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2340 			break;
2341 		case WRITE_12:
2342 		case READ_12:
2343 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2344 			      (scsicmd->cmnd[3] << 16) |
2345 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2346 			break;
2347 		default:
2348 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2349 			       (scsicmd->cmnd[3] << 16) |
2350 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2351 			break;
2352 		}
2353 		printk(KERN_DEBUG
2354 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2355 		  smp_processor_id(), (unsigned long long)lba, jiffies);
2356 	}
2357 
2358 	BUG_ON(fibptr == NULL);
2359 
2360 	scsi_dma_unmap(scsicmd);
2361 
2362 	readreply = (struct aac_read_reply *)fib_data(fibptr);
2363 	switch (le32_to_cpu(readreply->status)) {
2364 	case ST_OK:
2365 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2366 			SAM_STAT_GOOD;
2367 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2368 		break;
2369 	case ST_NOT_READY:
2370 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2371 			SAM_STAT_CHECK_CONDITION;
2372 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2373 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2374 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2375 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2376 			     SCSI_SENSE_BUFFERSIZE));
2377 		break;
2378 	case ST_MEDERR:
2379 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2380 			SAM_STAT_CHECK_CONDITION;
2381 		set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2382 		  SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2383 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2384 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2385 			     SCSI_SENSE_BUFFERSIZE));
2386 		break;
2387 	default:
2388 #ifdef AAC_DETAILED_STATUS_INFO
2389 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2390 		  le32_to_cpu(readreply->status));
2391 #endif
2392 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2393 			SAM_STAT_CHECK_CONDITION;
2394 		set_sense(&dev->fsa_dev[cid].sense_data,
2395 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2396 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2397 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2398 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2399 			     SCSI_SENSE_BUFFERSIZE));
2400 		break;
2401 	}
2402 	aac_fib_complete(fibptr);
2403 
2404 	scsicmd->scsi_done(scsicmd);
2405 }
2406 
2407 static int aac_read(struct scsi_cmnd * scsicmd)
2408 {
2409 	u64 lba;
2410 	u32 count;
2411 	int status;
2412 	struct aac_dev *dev;
2413 	struct fib * cmd_fibcontext;
2414 	int cid;
2415 
2416 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2417 	/*
2418 	 *	Get block address and transfer length
2419 	 */
2420 	switch (scsicmd->cmnd[0]) {
2421 	case READ_6:
2422 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2423 
2424 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2425 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2426 		count = scsicmd->cmnd[4];
2427 
2428 		if (count == 0)
2429 			count = 256;
2430 		break;
2431 	case READ_16:
2432 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2433 
2434 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2435 			((u64)scsicmd->cmnd[3] << 48) |
2436 			((u64)scsicmd->cmnd[4] << 40) |
2437 			((u64)scsicmd->cmnd[5] << 32) |
2438 			((u64)scsicmd->cmnd[6] << 24) |
2439 			(scsicmd->cmnd[7] << 16) |
2440 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2441 		count = (scsicmd->cmnd[10] << 24) |
2442 			(scsicmd->cmnd[11] << 16) |
2443 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2444 		break;
2445 	case READ_12:
2446 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2447 
2448 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2449 			(scsicmd->cmnd[3] << 16) |
2450 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2451 		count = (scsicmd->cmnd[6] << 24) |
2452 			(scsicmd->cmnd[7] << 16) |
2453 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2454 		break;
2455 	default:
2456 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2457 
2458 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2459 			(scsicmd->cmnd[3] << 16) |
2460 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2461 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2462 		break;
2463 	}
2464 
2465 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2466 		cid = scmd_id(scsicmd);
2467 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2468 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2469 			SAM_STAT_CHECK_CONDITION;
2470 		set_sense(&dev->fsa_dev[cid].sense_data,
2471 			  ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2472 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2473 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2474 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2475 			     SCSI_SENSE_BUFFERSIZE));
2476 		scsicmd->scsi_done(scsicmd);
2477 		return 0;
2478 	}
2479 
2480 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2481 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2482 	if (aac_adapter_bounds(dev,scsicmd,lba))
2483 		return 0;
2484 	/*
2485 	 *	Alocate and initialize a Fib
2486 	 */
2487 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2488 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2489 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2490 
2491 	/*
2492 	 *	Check that the command queued to the controller
2493 	 */
2494 	if (status == -EINPROGRESS)
2495 		return 0;
2496 
2497 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2498 	/*
2499 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2500 	 */
2501 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2502 	scsicmd->scsi_done(scsicmd);
2503 	aac_fib_complete(cmd_fibcontext);
2504 	aac_fib_free(cmd_fibcontext);
2505 	return 0;
2506 }
2507 
2508 static int aac_write(struct scsi_cmnd * scsicmd)
2509 {
2510 	u64 lba;
2511 	u32 count;
2512 	int fua;
2513 	int status;
2514 	struct aac_dev *dev;
2515 	struct fib * cmd_fibcontext;
2516 	int cid;
2517 
2518 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2519 	/*
2520 	 *	Get block address and transfer length
2521 	 */
2522 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
2523 	{
2524 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2525 		count = scsicmd->cmnd[4];
2526 		if (count == 0)
2527 			count = 256;
2528 		fua = 0;
2529 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2530 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2531 
2532 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2533 			((u64)scsicmd->cmnd[3] << 48) |
2534 			((u64)scsicmd->cmnd[4] << 40) |
2535 			((u64)scsicmd->cmnd[5] << 32) |
2536 			((u64)scsicmd->cmnd[6] << 24) |
2537 			(scsicmd->cmnd[7] << 16) |
2538 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2539 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2540 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2541 		fua = scsicmd->cmnd[1] & 0x8;
2542 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2543 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2544 
2545 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2546 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2547 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2548 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2549 		fua = scsicmd->cmnd[1] & 0x8;
2550 	} else {
2551 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2552 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2553 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2554 		fua = scsicmd->cmnd[1] & 0x8;
2555 	}
2556 
2557 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2558 		cid = scmd_id(scsicmd);
2559 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2560 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2561 			SAM_STAT_CHECK_CONDITION;
2562 		set_sense(&dev->fsa_dev[cid].sense_data,
2563 			  ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2564 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2565 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2566 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2567 			     SCSI_SENSE_BUFFERSIZE));
2568 		scsicmd->scsi_done(scsicmd);
2569 		return 0;
2570 	}
2571 
2572 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2573 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2574 	if (aac_adapter_bounds(dev,scsicmd,lba))
2575 		return 0;
2576 	/*
2577 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2578 	 */
2579 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2580 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2581 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2582 
2583 	/*
2584 	 *	Check that the command queued to the controller
2585 	 */
2586 	if (status == -EINPROGRESS)
2587 		return 0;
2588 
2589 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2590 	/*
2591 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2592 	 */
2593 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2594 	scsicmd->scsi_done(scsicmd);
2595 
2596 	aac_fib_complete(cmd_fibcontext);
2597 	aac_fib_free(cmd_fibcontext);
2598 	return 0;
2599 }
2600 
2601 static void synchronize_callback(void *context, struct fib *fibptr)
2602 {
2603 	struct aac_synchronize_reply *synchronizereply;
2604 	struct scsi_cmnd *cmd;
2605 
2606 	cmd = context;
2607 
2608 	if (!aac_valid_context(cmd, fibptr))
2609 		return;
2610 
2611 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2612 				smp_processor_id(), jiffies));
2613 	BUG_ON(fibptr == NULL);
2614 
2615 
2616 	synchronizereply = fib_data(fibptr);
2617 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
2618 		cmd->result = DID_OK << 16 |
2619 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2620 	else {
2621 		struct scsi_device *sdev = cmd->device;
2622 		struct aac_dev *dev = fibptr->dev;
2623 		u32 cid = sdev_id(sdev);
2624 		printk(KERN_WARNING
2625 		     "synchronize_callback: synchronize failed, status = %d\n",
2626 		     le32_to_cpu(synchronizereply->status));
2627 		cmd->result = DID_OK << 16 |
2628 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2629 		set_sense(&dev->fsa_dev[cid].sense_data,
2630 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2631 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2632 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2633 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2634 			     SCSI_SENSE_BUFFERSIZE));
2635 	}
2636 
2637 	aac_fib_complete(fibptr);
2638 	aac_fib_free(fibptr);
2639 	cmd->scsi_done(cmd);
2640 }
2641 
2642 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2643 {
2644 	int status;
2645 	struct fib *cmd_fibcontext;
2646 	struct aac_synchronize *synchronizecmd;
2647 	struct scsi_cmnd *cmd;
2648 	struct scsi_device *sdev = scsicmd->device;
2649 	int active = 0;
2650 	struct aac_dev *aac;
2651 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2652 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2653 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2654 	unsigned long flags;
2655 
2656 	/*
2657 	 * Wait for all outstanding queued commands to complete to this
2658 	 * specific target (block).
2659 	 */
2660 	spin_lock_irqsave(&sdev->list_lock, flags);
2661 	list_for_each_entry(cmd, &sdev->cmd_list, list)
2662 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2663 			u64 cmnd_lba;
2664 			u32 cmnd_count;
2665 
2666 			if (cmd->cmnd[0] == WRITE_6) {
2667 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2668 					(cmd->cmnd[2] << 8) |
2669 					cmd->cmnd[3];
2670 				cmnd_count = cmd->cmnd[4];
2671 				if (cmnd_count == 0)
2672 					cmnd_count = 256;
2673 			} else if (cmd->cmnd[0] == WRITE_16) {
2674 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2675 					((u64)cmd->cmnd[3] << 48) |
2676 					((u64)cmd->cmnd[4] << 40) |
2677 					((u64)cmd->cmnd[5] << 32) |
2678 					((u64)cmd->cmnd[6] << 24) |
2679 					(cmd->cmnd[7] << 16) |
2680 					(cmd->cmnd[8] << 8) |
2681 					cmd->cmnd[9];
2682 				cmnd_count = (cmd->cmnd[10] << 24) |
2683 					(cmd->cmnd[11] << 16) |
2684 					(cmd->cmnd[12] << 8) |
2685 					cmd->cmnd[13];
2686 			} else if (cmd->cmnd[0] == WRITE_12) {
2687 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2688 					(cmd->cmnd[3] << 16) |
2689 					(cmd->cmnd[4] << 8) |
2690 					cmd->cmnd[5];
2691 				cmnd_count = (cmd->cmnd[6] << 24) |
2692 					(cmd->cmnd[7] << 16) |
2693 					(cmd->cmnd[8] << 8) |
2694 					cmd->cmnd[9];
2695 			} else if (cmd->cmnd[0] == WRITE_10) {
2696 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2697 					(cmd->cmnd[3] << 16) |
2698 					(cmd->cmnd[4] << 8) |
2699 					cmd->cmnd[5];
2700 				cmnd_count = (cmd->cmnd[7] << 8) |
2701 					cmd->cmnd[8];
2702 			} else
2703 				continue;
2704 			if (((cmnd_lba + cmnd_count) < lba) ||
2705 			  (count && ((lba + count) < cmnd_lba)))
2706 				continue;
2707 			++active;
2708 			break;
2709 		}
2710 
2711 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2712 
2713 	/*
2714 	 *	Yield the processor (requeue for later)
2715 	 */
2716 	if (active)
2717 		return SCSI_MLQUEUE_DEVICE_BUSY;
2718 
2719 	aac = (struct aac_dev *)sdev->host->hostdata;
2720 	if (aac->in_reset)
2721 		return SCSI_MLQUEUE_HOST_BUSY;
2722 
2723 	/*
2724 	 *	Allocate and initialize a Fib
2725 	 */
2726 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2727 		return SCSI_MLQUEUE_HOST_BUSY;
2728 
2729 	aac_fib_init(cmd_fibcontext);
2730 
2731 	synchronizecmd = fib_data(cmd_fibcontext);
2732 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2733 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2734 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2735 	synchronizecmd->count =
2736 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2737 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2738 
2739 	/*
2740 	 *	Now send the Fib to the adapter
2741 	 */
2742 	status = aac_fib_send(ContainerCommand,
2743 		  cmd_fibcontext,
2744 		  sizeof(struct aac_synchronize),
2745 		  FsaNormal,
2746 		  0, 1,
2747 		  (fib_callback)synchronize_callback,
2748 		  (void *)scsicmd);
2749 
2750 	/*
2751 	 *	Check that the command queued to the controller
2752 	 */
2753 	if (status == -EINPROGRESS)
2754 		return 0;
2755 
2756 	printk(KERN_WARNING
2757 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2758 	aac_fib_complete(cmd_fibcontext);
2759 	aac_fib_free(cmd_fibcontext);
2760 	return SCSI_MLQUEUE_HOST_BUSY;
2761 }
2762 
2763 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2764 {
2765 	struct scsi_cmnd *scsicmd = context;
2766 
2767 	if (!aac_valid_context(scsicmd, fibptr))
2768 		return;
2769 
2770 	BUG_ON(fibptr == NULL);
2771 
2772 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2773 
2774 	aac_fib_complete(fibptr);
2775 	aac_fib_free(fibptr);
2776 	scsicmd->scsi_done(scsicmd);
2777 }
2778 
2779 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2780 {
2781 	int status;
2782 	struct fib *cmd_fibcontext;
2783 	struct aac_power_management *pmcmd;
2784 	struct scsi_device *sdev = scsicmd->device;
2785 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2786 
2787 	if (!(aac->supplement_adapter_info.supported_options2 &
2788 	      AAC_OPTION_POWER_MANAGEMENT)) {
2789 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2790 				  SAM_STAT_GOOD;
2791 		scsicmd->scsi_done(scsicmd);
2792 		return 0;
2793 	}
2794 
2795 	if (aac->in_reset)
2796 		return SCSI_MLQUEUE_HOST_BUSY;
2797 
2798 	/*
2799 	 *	Allocate and initialize a Fib
2800 	 */
2801 	cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2802 
2803 	aac_fib_init(cmd_fibcontext);
2804 
2805 	pmcmd = fib_data(cmd_fibcontext);
2806 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2807 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2808 	/* Eject bit ignored, not relevant */
2809 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2810 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2811 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2812 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2813 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2814 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2815 
2816 	/*
2817 	 *	Now send the Fib to the adapter
2818 	 */
2819 	status = aac_fib_send(ContainerCommand,
2820 		  cmd_fibcontext,
2821 		  sizeof(struct aac_power_management),
2822 		  FsaNormal,
2823 		  0, 1,
2824 		  (fib_callback)aac_start_stop_callback,
2825 		  (void *)scsicmd);
2826 
2827 	/*
2828 	 *	Check that the command queued to the controller
2829 	 */
2830 	if (status == -EINPROGRESS)
2831 		return 0;
2832 
2833 	aac_fib_complete(cmd_fibcontext);
2834 	aac_fib_free(cmd_fibcontext);
2835 	return SCSI_MLQUEUE_HOST_BUSY;
2836 }
2837 
2838 /**
2839  *	aac_scsi_cmd()		-	Process SCSI command
2840  *	@scsicmd:		SCSI command block
2841  *
2842  *	Emulate a SCSI command and queue the required request for the
2843  *	aacraid firmware.
2844  */
2845 
2846 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2847 {
2848 	u32 cid, bus;
2849 	struct Scsi_Host *host = scsicmd->device->host;
2850 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2851 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2852 
2853 	if (fsa_dev_ptr == NULL)
2854 		return -1;
2855 	/*
2856 	 *	If the bus, id or lun is out of range, return fail
2857 	 *	Test does not apply to ID 16, the pseudo id for the controller
2858 	 *	itself.
2859 	 */
2860 	cid = scmd_id(scsicmd);
2861 	if (cid != host->this_id) {
2862 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2863 			if((cid >= dev->maximum_num_containers) ||
2864 					(scsicmd->device->lun != 0)) {
2865 				scsicmd->result = DID_NO_CONNECT << 16;
2866 				goto scsi_done_ret;
2867 			}
2868 
2869 			/*
2870 			 *	If the target container doesn't exist, it may have
2871 			 *	been newly created
2872 			 */
2873 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2874 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2875 			   NOT_READY)) {
2876 				switch (scsicmd->cmnd[0]) {
2877 				case SERVICE_ACTION_IN_16:
2878 					if (!(dev->raw_io_interface) ||
2879 					    !(dev->raw_io_64) ||
2880 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2881 						break;
2882 					/* fall through */
2883 				case INQUIRY:
2884 				case READ_CAPACITY:
2885 				case TEST_UNIT_READY:
2886 					if (dev->in_reset)
2887 						return -1;
2888 					return _aac_probe_container(scsicmd,
2889 							aac_probe_container_callback2);
2890 				default:
2891 					break;
2892 				}
2893 			}
2894 		} else {  /* check for physical non-dasd devices */
2895 			bus = aac_logical_to_phys(scmd_channel(scsicmd));
2896 
2897 			if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2898 				dev->hba_map[bus][cid].devtype
2899 					== AAC_DEVTYPE_NATIVE_RAW) {
2900 				if (dev->in_reset)
2901 					return -1;
2902 				return aac_send_hba_fib(scsicmd);
2903 			} else if (dev->nondasd_support || expose_physicals ||
2904 				dev->jbod) {
2905 				if (dev->in_reset)
2906 					return -1;
2907 				return aac_send_srb_fib(scsicmd);
2908 			} else {
2909 				scsicmd->result = DID_NO_CONNECT << 16;
2910 				goto scsi_done_ret;
2911 			}
2912 		}
2913 	}
2914 	/*
2915 	 * else Command for the controller itself
2916 	 */
2917 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2918 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2919 	{
2920 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2921 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2922 		set_sense(&dev->fsa_dev[cid].sense_data,
2923 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2924 		  ASENCODE_INVALID_COMMAND, 0, 0);
2925 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2926 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2927 			     SCSI_SENSE_BUFFERSIZE));
2928 		goto scsi_done_ret;
2929 	}
2930 
2931 	switch (scsicmd->cmnd[0]) {
2932 	case READ_6:
2933 	case READ_10:
2934 	case READ_12:
2935 	case READ_16:
2936 		if (dev->in_reset)
2937 			return -1;
2938 		return aac_read(scsicmd);
2939 
2940 	case WRITE_6:
2941 	case WRITE_10:
2942 	case WRITE_12:
2943 	case WRITE_16:
2944 		if (dev->in_reset)
2945 			return -1;
2946 		return aac_write(scsicmd);
2947 
2948 	case SYNCHRONIZE_CACHE:
2949 		if (((aac_cache & 6) == 6) && dev->cache_protected) {
2950 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2951 					  SAM_STAT_GOOD;
2952 			break;
2953 		}
2954 		/* Issue FIB to tell Firmware to flush it's cache */
2955 		if ((aac_cache & 6) != 2)
2956 			return aac_synchronize(scsicmd);
2957 		/* fall through */
2958 	case INQUIRY:
2959 	{
2960 		struct inquiry_data inq_data;
2961 
2962 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2963 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2964 
2965 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2966 			char *arr = (char *)&inq_data;
2967 
2968 			/* EVPD bit set */
2969 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2970 			  INQD_PDT_PROC : INQD_PDT_DA;
2971 			if (scsicmd->cmnd[2] == 0) {
2972 				/* supported vital product data pages */
2973 				arr[3] = 3;
2974 				arr[4] = 0x0;
2975 				arr[5] = 0x80;
2976 				arr[6] = 0x83;
2977 				arr[1] = scsicmd->cmnd[2];
2978 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2979 							 sizeof(inq_data));
2980 				scsicmd->result = DID_OK << 16 |
2981 						  COMMAND_COMPLETE << 8 |
2982 						  SAM_STAT_GOOD;
2983 			} else if (scsicmd->cmnd[2] == 0x80) {
2984 				/* unit serial number page */
2985 				arr[3] = setinqserial(dev, &arr[4],
2986 				  scmd_id(scsicmd));
2987 				arr[1] = scsicmd->cmnd[2];
2988 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2989 							 sizeof(inq_data));
2990 				if (aac_wwn != 2)
2991 					return aac_get_container_serial(
2992 						scsicmd);
2993 				scsicmd->result = DID_OK << 16 |
2994 						  COMMAND_COMPLETE << 8 |
2995 						  SAM_STAT_GOOD;
2996 			} else if (scsicmd->cmnd[2] == 0x83) {
2997 				/* vpd page 0x83 - Device Identification Page */
2998 				char *sno = (char *)&inq_data;
2999 				sno[3] = setinqserial(dev, &sno[4],
3000 						      scmd_id(scsicmd));
3001 				if (aac_wwn != 2)
3002 					return aac_get_container_serial(
3003 						scsicmd);
3004 				scsicmd->result = DID_OK << 16 |
3005 						  COMMAND_COMPLETE << 8 |
3006 						  SAM_STAT_GOOD;
3007 			} else {
3008 				/* vpd page not implemented */
3009 				scsicmd->result = DID_OK << 16 |
3010 				  COMMAND_COMPLETE << 8 |
3011 				  SAM_STAT_CHECK_CONDITION;
3012 				set_sense(&dev->fsa_dev[cid].sense_data,
3013 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
3014 				  ASENCODE_NO_SENSE, 7, 2);
3015 				memcpy(scsicmd->sense_buffer,
3016 				  &dev->fsa_dev[cid].sense_data,
3017 				  min_t(size_t,
3018 					sizeof(dev->fsa_dev[cid].sense_data),
3019 					SCSI_SENSE_BUFFERSIZE));
3020 			}
3021 			break;
3022 		}
3023 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
3024 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
3025 		inq_data.inqd_len = 31;
3026 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
3027 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
3028 		/*
3029 		 *	Set the Vendor, Product, and Revision Level
3030 		 *	see: <vendor>.c i.e. aac.c
3031 		 */
3032 		if (cid == host->this_id) {
3033 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
3034 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
3035 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3036 						 sizeof(inq_data));
3037 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3038 					  SAM_STAT_GOOD;
3039 			break;
3040 		}
3041 		if (dev->in_reset)
3042 			return -1;
3043 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
3044 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
3045 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
3046 		return aac_get_container_name(scsicmd);
3047 	}
3048 	case SERVICE_ACTION_IN_16:
3049 		if (!(dev->raw_io_interface) ||
3050 		    !(dev->raw_io_64) ||
3051 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
3052 			break;
3053 	{
3054 		u64 capacity;
3055 		char cp[13];
3056 		unsigned int alloc_len;
3057 
3058 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
3059 		capacity = fsa_dev_ptr[cid].size - 1;
3060 		cp[0] = (capacity >> 56) & 0xff;
3061 		cp[1] = (capacity >> 48) & 0xff;
3062 		cp[2] = (capacity >> 40) & 0xff;
3063 		cp[3] = (capacity >> 32) & 0xff;
3064 		cp[4] = (capacity >> 24) & 0xff;
3065 		cp[5] = (capacity >> 16) & 0xff;
3066 		cp[6] = (capacity >> 8) & 0xff;
3067 		cp[7] = (capacity >> 0) & 0xff;
3068 		cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3069 		cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3070 		cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3071 		cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
3072 		cp[12] = 0;
3073 
3074 		alloc_len = ((scsicmd->cmnd[10] << 24)
3075 			     + (scsicmd->cmnd[11] << 16)
3076 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
3077 
3078 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
3079 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
3080 		if (alloc_len < scsi_bufflen(scsicmd))
3081 			scsi_set_resid(scsicmd,
3082 				       scsi_bufflen(scsicmd) - alloc_len);
3083 
3084 		/* Do not cache partition table for arrays */
3085 		scsicmd->device->removable = 1;
3086 
3087 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3088 				  SAM_STAT_GOOD;
3089 		break;
3090 	}
3091 
3092 	case READ_CAPACITY:
3093 	{
3094 		u32 capacity;
3095 		char cp[8];
3096 
3097 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3098 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3099 			capacity = fsa_dev_ptr[cid].size - 1;
3100 		else
3101 			capacity = (u32)-1;
3102 
3103 		cp[0] = (capacity >> 24) & 0xff;
3104 		cp[1] = (capacity >> 16) & 0xff;
3105 		cp[2] = (capacity >> 8) & 0xff;
3106 		cp[3] = (capacity >> 0) & 0xff;
3107 		cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3108 		cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3109 		cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3110 		cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3111 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3112 		/* Do not cache partition table for arrays */
3113 		scsicmd->device->removable = 1;
3114 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3115 				  SAM_STAT_GOOD;
3116 		break;
3117 	}
3118 
3119 	case MODE_SENSE:
3120 	{
3121 		int mode_buf_length = 4;
3122 		u32 capacity;
3123 		aac_modep_data mpd;
3124 
3125 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3126 			capacity = fsa_dev_ptr[cid].size - 1;
3127 		else
3128 			capacity = (u32)-1;
3129 
3130 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3131 		memset((char *)&mpd, 0, sizeof(aac_modep_data));
3132 
3133 		/* Mode data length */
3134 		mpd.hd.data_length = sizeof(mpd.hd) - 1;
3135 		/* Medium type - default */
3136 		mpd.hd.med_type = 0;
3137 		/* Device-specific param,
3138 		   bit 8: 0/1 = write enabled/protected
3139 		   bit 4: 0/1 = FUA enabled */
3140 		mpd.hd.dev_par = 0;
3141 
3142 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3143 			mpd.hd.dev_par = 0x10;
3144 		if (scsicmd->cmnd[1] & 0x8)
3145 			mpd.hd.bd_length = 0;	/* Block descriptor length */
3146 		else {
3147 			mpd.hd.bd_length = sizeof(mpd.bd);
3148 			mpd.hd.data_length += mpd.hd.bd_length;
3149 			mpd.bd.block_length[0] =
3150 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3151 			mpd.bd.block_length[1] =
3152 				(fsa_dev_ptr[cid].block_size >> 8) &  0xff;
3153 			mpd.bd.block_length[2] =
3154 				fsa_dev_ptr[cid].block_size  & 0xff;
3155 
3156 			mpd.mpc_buf[0] = scsicmd->cmnd[2];
3157 			if (scsicmd->cmnd[2] == 0x1C) {
3158 				/* page length */
3159 				mpd.mpc_buf[1] = 0xa;
3160 				/* Mode data length */
3161 				mpd.hd.data_length = 23;
3162 			} else {
3163 				/* Mode data length */
3164 				mpd.hd.data_length = 15;
3165 			}
3166 
3167 			if (capacity > 0xffffff) {
3168 				mpd.bd.block_count[0] = 0xff;
3169 				mpd.bd.block_count[1] = 0xff;
3170 				mpd.bd.block_count[2] = 0xff;
3171 			} else {
3172 				mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3173 				mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3174 				mpd.bd.block_count[2] = capacity  & 0xff;
3175 			}
3176 		}
3177 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3178 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3179 			mpd.hd.data_length += 3;
3180 			mpd.mpc_buf[0] = 8;
3181 			mpd.mpc_buf[1] = 1;
3182 			mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3183 				? 0 : 0x04; /* WCE */
3184 			mode_buf_length = sizeof(mpd);
3185 		}
3186 
3187 		if (mode_buf_length > scsicmd->cmnd[4])
3188 			mode_buf_length = scsicmd->cmnd[4];
3189 		else
3190 			mode_buf_length = sizeof(mpd);
3191 		scsi_sg_copy_from_buffer(scsicmd,
3192 					 (char *)&mpd,
3193 					 mode_buf_length);
3194 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3195 				  SAM_STAT_GOOD;
3196 		break;
3197 	}
3198 	case MODE_SENSE_10:
3199 	{
3200 		u32 capacity;
3201 		int mode_buf_length = 8;
3202 		aac_modep10_data mpd10;
3203 
3204 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3205 			capacity = fsa_dev_ptr[cid].size - 1;
3206 		else
3207 			capacity = (u32)-1;
3208 
3209 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3210 		memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3211 		/* Mode data length (MSB) */
3212 		mpd10.hd.data_length[0] = 0;
3213 		/* Mode data length (LSB) */
3214 		mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3215 		/* Medium type - default */
3216 		mpd10.hd.med_type = 0;
3217 		/* Device-specific param,
3218 		   bit 8: 0/1 = write enabled/protected
3219 		   bit 4: 0/1 = FUA enabled */
3220 		mpd10.hd.dev_par = 0;
3221 
3222 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3223 			mpd10.hd.dev_par = 0x10;
3224 		mpd10.hd.rsrvd[0] = 0;	/* reserved */
3225 		mpd10.hd.rsrvd[1] = 0;	/* reserved */
3226 		if (scsicmd->cmnd[1] & 0x8) {
3227 			/* Block descriptor length (MSB) */
3228 			mpd10.hd.bd_length[0] = 0;
3229 			/* Block descriptor length (LSB) */
3230 			mpd10.hd.bd_length[1] = 0;
3231 		} else {
3232 			mpd10.hd.bd_length[0] = 0;
3233 			mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3234 
3235 			mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3236 
3237 			mpd10.bd.block_length[0] =
3238 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3239 			mpd10.bd.block_length[1] =
3240 				(fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3241 			mpd10.bd.block_length[2] =
3242 				fsa_dev_ptr[cid].block_size  & 0xff;
3243 
3244 			if (capacity > 0xffffff) {
3245 				mpd10.bd.block_count[0] = 0xff;
3246 				mpd10.bd.block_count[1] = 0xff;
3247 				mpd10.bd.block_count[2] = 0xff;
3248 			} else {
3249 				mpd10.bd.block_count[0] =
3250 					(capacity >> 16) & 0xff;
3251 				mpd10.bd.block_count[1] =
3252 					(capacity >> 8) & 0xff;
3253 				mpd10.bd.block_count[2] =
3254 					capacity  & 0xff;
3255 			}
3256 		}
3257 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3258 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3259 			mpd10.hd.data_length[1] += 3;
3260 			mpd10.mpc_buf[0] = 8;
3261 			mpd10.mpc_buf[1] = 1;
3262 			mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3263 				? 0 : 0x04; /* WCE */
3264 			mode_buf_length = sizeof(mpd10);
3265 			if (mode_buf_length > scsicmd->cmnd[8])
3266 				mode_buf_length = scsicmd->cmnd[8];
3267 		}
3268 		scsi_sg_copy_from_buffer(scsicmd,
3269 					 (char *)&mpd10,
3270 					 mode_buf_length);
3271 
3272 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3273 				  SAM_STAT_GOOD;
3274 		break;
3275 	}
3276 	case REQUEST_SENSE:
3277 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3278 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3279 				sizeof(struct sense_data));
3280 		memset(&dev->fsa_dev[cid].sense_data, 0,
3281 				sizeof(struct sense_data));
3282 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3283 				  SAM_STAT_GOOD;
3284 		break;
3285 
3286 	case ALLOW_MEDIUM_REMOVAL:
3287 		dprintk((KERN_DEBUG "LOCK command.\n"));
3288 		if (scsicmd->cmnd[4])
3289 			fsa_dev_ptr[cid].locked = 1;
3290 		else
3291 			fsa_dev_ptr[cid].locked = 0;
3292 
3293 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3294 				  SAM_STAT_GOOD;
3295 		break;
3296 	/*
3297 	 *	These commands are all No-Ops
3298 	 */
3299 	case TEST_UNIT_READY:
3300 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3301 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3302 				SAM_STAT_CHECK_CONDITION;
3303 			set_sense(&dev->fsa_dev[cid].sense_data,
3304 				  NOT_READY, SENCODE_BECOMING_READY,
3305 				  ASENCODE_BECOMING_READY, 0, 0);
3306 			memcpy(scsicmd->sense_buffer,
3307 			       &dev->fsa_dev[cid].sense_data,
3308 			       min_t(size_t,
3309 				     sizeof(dev->fsa_dev[cid].sense_data),
3310 				     SCSI_SENSE_BUFFERSIZE));
3311 			break;
3312 		}
3313 		/* fall through */
3314 	case RESERVE:
3315 	case RELEASE:
3316 	case REZERO_UNIT:
3317 	case REASSIGN_BLOCKS:
3318 	case SEEK_10:
3319 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3320 				  SAM_STAT_GOOD;
3321 		break;
3322 
3323 	case START_STOP:
3324 		return aac_start_stop(scsicmd);
3325 
3326 	/* FALLTHRU */
3327 	default:
3328 	/*
3329 	 *	Unhandled commands
3330 	 */
3331 		dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3332 				scsicmd->cmnd[0]));
3333 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3334 				SAM_STAT_CHECK_CONDITION;
3335 		set_sense(&dev->fsa_dev[cid].sense_data,
3336 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3337 			  ASENCODE_INVALID_COMMAND, 0, 0);
3338 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3339 				min_t(size_t,
3340 				      sizeof(dev->fsa_dev[cid].sense_data),
3341 				      SCSI_SENSE_BUFFERSIZE));
3342 	}
3343 
3344 scsi_done_ret:
3345 
3346 	scsicmd->scsi_done(scsicmd);
3347 	return 0;
3348 }
3349 
3350 static int query_disk(struct aac_dev *dev, void __user *arg)
3351 {
3352 	struct aac_query_disk qd;
3353 	struct fsa_dev_info *fsa_dev_ptr;
3354 
3355 	fsa_dev_ptr = dev->fsa_dev;
3356 	if (!fsa_dev_ptr)
3357 		return -EBUSY;
3358 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3359 		return -EFAULT;
3360 	if (qd.cnum == -1) {
3361 		if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3362 			return -EINVAL;
3363 		qd.cnum = qd.id;
3364 	} else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3365 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3366 			return -EINVAL;
3367 		qd.instance = dev->scsi_host_ptr->host_no;
3368 		qd.bus = 0;
3369 		qd.id = CONTAINER_TO_ID(qd.cnum);
3370 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
3371 	}
3372 	else return -EINVAL;
3373 
3374 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3375 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
3376 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3377 
3378 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3379 		qd.unmapped = 1;
3380 	else
3381 		qd.unmapped = 0;
3382 
3383 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3384 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3385 
3386 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3387 		return -EFAULT;
3388 	return 0;
3389 }
3390 
3391 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3392 {
3393 	struct aac_delete_disk dd;
3394 	struct fsa_dev_info *fsa_dev_ptr;
3395 
3396 	fsa_dev_ptr = dev->fsa_dev;
3397 	if (!fsa_dev_ptr)
3398 		return -EBUSY;
3399 
3400 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3401 		return -EFAULT;
3402 
3403 	if (dd.cnum >= dev->maximum_num_containers)
3404 		return -EINVAL;
3405 	/*
3406 	 *	Mark this container as being deleted.
3407 	 */
3408 	fsa_dev_ptr[dd.cnum].deleted = 1;
3409 	/*
3410 	 *	Mark the container as no longer valid
3411 	 */
3412 	fsa_dev_ptr[dd.cnum].valid = 0;
3413 	return 0;
3414 }
3415 
3416 static int delete_disk(struct aac_dev *dev, void __user *arg)
3417 {
3418 	struct aac_delete_disk dd;
3419 	struct fsa_dev_info *fsa_dev_ptr;
3420 
3421 	fsa_dev_ptr = dev->fsa_dev;
3422 	if (!fsa_dev_ptr)
3423 		return -EBUSY;
3424 
3425 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3426 		return -EFAULT;
3427 
3428 	if (dd.cnum >= dev->maximum_num_containers)
3429 		return -EINVAL;
3430 	/*
3431 	 *	If the container is locked, it can not be deleted by the API.
3432 	 */
3433 	if (fsa_dev_ptr[dd.cnum].locked)
3434 		return -EBUSY;
3435 	else {
3436 		/*
3437 		 *	Mark the container as no longer being valid.
3438 		 */
3439 		fsa_dev_ptr[dd.cnum].valid = 0;
3440 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3441 		return 0;
3442 	}
3443 }
3444 
3445 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
3446 {
3447 	switch (cmd) {
3448 	case FSACTL_QUERY_DISK:
3449 		return query_disk(dev, arg);
3450 	case FSACTL_DELETE_DISK:
3451 		return delete_disk(dev, arg);
3452 	case FSACTL_FORCE_DELETE_DISK:
3453 		return force_delete_disk(dev, arg);
3454 	case FSACTL_GET_CONTAINERS:
3455 		return aac_get_containers(dev);
3456 	default:
3457 		return -ENOTTY;
3458 	}
3459 }
3460 
3461 /**
3462  *
3463  * aac_srb_callback
3464  * @context: the context set in the fib - here it is scsi cmd
3465  * @fibptr: pointer to the fib
3466  *
3467  * Handles the completion of a scsi command to a non dasd device
3468  *
3469  */
3470 
3471 static void aac_srb_callback(void *context, struct fib * fibptr)
3472 {
3473 	struct aac_srb_reply *srbreply;
3474 	struct scsi_cmnd *scsicmd;
3475 
3476 	scsicmd = (struct scsi_cmnd *) context;
3477 
3478 	if (!aac_valid_context(scsicmd, fibptr))
3479 		return;
3480 
3481 	BUG_ON(fibptr == NULL);
3482 
3483 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3484 
3485 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
3486 
3487 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3488 		/* fast response */
3489 		srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3490 		srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3491 	} else {
3492 		/*
3493 		 *	Calculate resid for sg
3494 		 */
3495 		scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3496 				   - le32_to_cpu(srbreply->data_xfer_length));
3497 	}
3498 
3499 
3500 	scsi_dma_unmap(scsicmd);
3501 
3502 	/* expose physical device if expose_physicald flag is on */
3503 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3504 	  && expose_physicals > 0)
3505 		aac_expose_phy_device(scsicmd);
3506 
3507 	/*
3508 	 * First check the fib status
3509 	 */
3510 
3511 	if (le32_to_cpu(srbreply->status) != ST_OK) {
3512 		int len;
3513 
3514 		pr_warn("aac_srb_callback: srb failed, status = %d\n",
3515 				le32_to_cpu(srbreply->status));
3516 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3517 			    SCSI_SENSE_BUFFERSIZE);
3518 		scsicmd->result = DID_ERROR << 16
3519 				| COMMAND_COMPLETE << 8
3520 				| SAM_STAT_CHECK_CONDITION;
3521 		memcpy(scsicmd->sense_buffer,
3522 				srbreply->sense_data, len);
3523 	}
3524 
3525 	/*
3526 	 * Next check the srb status
3527 	 */
3528 	switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3529 	case SRB_STATUS_ERROR_RECOVERY:
3530 	case SRB_STATUS_PENDING:
3531 	case SRB_STATUS_SUCCESS:
3532 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3533 		break;
3534 	case SRB_STATUS_DATA_OVERRUN:
3535 		switch (scsicmd->cmnd[0]) {
3536 		case  READ_6:
3537 		case  WRITE_6:
3538 		case  READ_10:
3539 		case  WRITE_10:
3540 		case  READ_12:
3541 		case  WRITE_12:
3542 		case  READ_16:
3543 		case  WRITE_16:
3544 			if (le32_to_cpu(srbreply->data_xfer_length)
3545 						< scsicmd->underflow)
3546 				pr_warn("aacraid: SCSI CMD underflow\n");
3547 			else
3548 				pr_warn("aacraid: SCSI CMD Data Overrun\n");
3549 			scsicmd->result = DID_ERROR << 16
3550 					| COMMAND_COMPLETE << 8;
3551 			break;
3552 		case INQUIRY:
3553 			scsicmd->result = DID_OK << 16
3554 					| COMMAND_COMPLETE << 8;
3555 			break;
3556 		default:
3557 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3558 			break;
3559 		}
3560 		break;
3561 	case SRB_STATUS_ABORTED:
3562 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3563 		break;
3564 	case SRB_STATUS_ABORT_FAILED:
3565 		/*
3566 		 * Not sure about this one - but assuming the
3567 		 * hba was trying to abort for some reason
3568 		 */
3569 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3570 		break;
3571 	case SRB_STATUS_PARITY_ERROR:
3572 		scsicmd->result = DID_PARITY << 16
3573 				| MSG_PARITY_ERROR << 8;
3574 		break;
3575 	case SRB_STATUS_NO_DEVICE:
3576 	case SRB_STATUS_INVALID_PATH_ID:
3577 	case SRB_STATUS_INVALID_TARGET_ID:
3578 	case SRB_STATUS_INVALID_LUN:
3579 	case SRB_STATUS_SELECTION_TIMEOUT:
3580 		scsicmd->result = DID_NO_CONNECT << 16
3581 				| COMMAND_COMPLETE << 8;
3582 		break;
3583 
3584 	case SRB_STATUS_COMMAND_TIMEOUT:
3585 	case SRB_STATUS_TIMEOUT:
3586 		scsicmd->result = DID_TIME_OUT << 16
3587 				| COMMAND_COMPLETE << 8;
3588 		break;
3589 
3590 	case SRB_STATUS_BUSY:
3591 		scsicmd->result = DID_BUS_BUSY << 16
3592 				| COMMAND_COMPLETE << 8;
3593 		break;
3594 
3595 	case SRB_STATUS_BUS_RESET:
3596 		scsicmd->result = DID_RESET << 16
3597 				| COMMAND_COMPLETE << 8;
3598 		break;
3599 
3600 	case SRB_STATUS_MESSAGE_REJECTED:
3601 		scsicmd->result = DID_ERROR << 16
3602 				| MESSAGE_REJECT << 8;
3603 		break;
3604 	case SRB_STATUS_REQUEST_FLUSHED:
3605 	case SRB_STATUS_ERROR:
3606 	case SRB_STATUS_INVALID_REQUEST:
3607 	case SRB_STATUS_REQUEST_SENSE_FAILED:
3608 	case SRB_STATUS_NO_HBA:
3609 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
3610 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3611 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3612 	case SRB_STATUS_DELAYED_RETRY:
3613 	case SRB_STATUS_BAD_FUNCTION:
3614 	case SRB_STATUS_NOT_STARTED:
3615 	case SRB_STATUS_NOT_IN_USE:
3616 	case SRB_STATUS_FORCE_ABORT:
3617 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3618 	default:
3619 #ifdef AAC_DETAILED_STATUS_INFO
3620 		pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3621 			le32_to_cpu(srbreply->srb_status) & 0x3F,
3622 			aac_get_status_string(
3623 				le32_to_cpu(srbreply->srb_status) & 0x3F),
3624 			scsicmd->cmnd[0],
3625 			le32_to_cpu(srbreply->scsi_status));
3626 #endif
3627 		/*
3628 		 * When the CC bit is SET by the host in ATA pass thru CDB,
3629 		 *  driver is supposed to return DID_OK
3630 		 *
3631 		 * When the CC bit is RESET by the host, driver should
3632 		 *  return DID_ERROR
3633 		 */
3634 		if ((scsicmd->cmnd[0] == ATA_12)
3635 			|| (scsicmd->cmnd[0] == ATA_16)) {
3636 
3637 			if (scsicmd->cmnd[2] & (0x01 << 5)) {
3638 				scsicmd->result = DID_OK << 16
3639 					| COMMAND_COMPLETE << 8;
3640 			break;
3641 			} else {
3642 				scsicmd->result = DID_ERROR << 16
3643 					| COMMAND_COMPLETE << 8;
3644 			break;
3645 			}
3646 		} else {
3647 			scsicmd->result = DID_ERROR << 16
3648 				| COMMAND_COMPLETE << 8;
3649 			break;
3650 		}
3651 	}
3652 	if (le32_to_cpu(srbreply->scsi_status)
3653 			== SAM_STAT_CHECK_CONDITION) {
3654 		int len;
3655 
3656 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3657 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3658 			    SCSI_SENSE_BUFFERSIZE);
3659 #ifdef AAC_DETAILED_STATUS_INFO
3660 		pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3661 					le32_to_cpu(srbreply->status), len);
3662 #endif
3663 		memcpy(scsicmd->sense_buffer,
3664 				srbreply->sense_data, len);
3665 	}
3666 
3667 	/*
3668 	 * OR in the scsi status (already shifted up a bit)
3669 	 */
3670 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3671 
3672 	aac_fib_complete(fibptr);
3673 	scsicmd->scsi_done(scsicmd);
3674 }
3675 
3676 static void hba_resp_task_complete(struct aac_dev *dev,
3677 					struct scsi_cmnd *scsicmd,
3678 					struct aac_hba_resp *err) {
3679 
3680 	scsicmd->result = err->status;
3681 	/* set residual count */
3682 	scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3683 
3684 	switch (err->status) {
3685 	case SAM_STAT_GOOD:
3686 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3687 		break;
3688 	case SAM_STAT_CHECK_CONDITION:
3689 	{
3690 		int len;
3691 
3692 		len = min_t(u8, err->sense_response_data_len,
3693 			SCSI_SENSE_BUFFERSIZE);
3694 		if (len)
3695 			memcpy(scsicmd->sense_buffer,
3696 				err->sense_response_buf, len);
3697 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3698 		break;
3699 	}
3700 	case SAM_STAT_BUSY:
3701 		scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3702 		break;
3703 	case SAM_STAT_TASK_ABORTED:
3704 		scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3705 		break;
3706 	case SAM_STAT_RESERVATION_CONFLICT:
3707 	case SAM_STAT_TASK_SET_FULL:
3708 	default:
3709 		scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3710 		break;
3711 	}
3712 }
3713 
3714 static void hba_resp_task_failure(struct aac_dev *dev,
3715 					struct scsi_cmnd *scsicmd,
3716 					struct aac_hba_resp *err)
3717 {
3718 	switch (err->status) {
3719 	case HBA_RESP_STAT_HBAMODE_DISABLED:
3720 	{
3721 		u32 bus, cid;
3722 
3723 		bus = aac_logical_to_phys(scmd_channel(scsicmd));
3724 		cid = scmd_id(scsicmd);
3725 		if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3726 			dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3727 			dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3728 		}
3729 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3730 		break;
3731 	}
3732 	case HBA_RESP_STAT_IO_ERROR:
3733 	case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3734 		scsicmd->result = DID_OK << 16 |
3735 			COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3736 		break;
3737 	case HBA_RESP_STAT_IO_ABORTED:
3738 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3739 		break;
3740 	case HBA_RESP_STAT_INVALID_DEVICE:
3741 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3742 		break;
3743 	case HBA_RESP_STAT_UNDERRUN:
3744 		/* UNDERRUN is OK */
3745 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3746 		break;
3747 	case HBA_RESP_STAT_OVERRUN:
3748 	default:
3749 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3750 		break;
3751 	}
3752 }
3753 
3754 /**
3755  *
3756  * aac_hba_callback
3757  * @context: the context set in the fib - here it is scsi cmd
3758  * @fibptr: pointer to the fib
3759  *
3760  * Handles the completion of a native HBA scsi command
3761  *
3762  */
3763 void aac_hba_callback(void *context, struct fib *fibptr)
3764 {
3765 	struct aac_dev *dev;
3766 	struct scsi_cmnd *scsicmd;
3767 
3768 	struct aac_hba_resp *err =
3769 			&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3770 
3771 	scsicmd = (struct scsi_cmnd *) context;
3772 
3773 	if (!aac_valid_context(scsicmd, fibptr))
3774 		return;
3775 
3776 	WARN_ON(fibptr == NULL);
3777 	dev = fibptr->dev;
3778 
3779 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3780 		scsi_dma_unmap(scsicmd);
3781 
3782 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3783 		/* fast response */
3784 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3785 		goto out;
3786 	}
3787 
3788 	switch (err->service_response) {
3789 	case HBA_RESP_SVCRES_TASK_COMPLETE:
3790 		hba_resp_task_complete(dev, scsicmd, err);
3791 		break;
3792 	case HBA_RESP_SVCRES_FAILURE:
3793 		hba_resp_task_failure(dev, scsicmd, err);
3794 		break;
3795 	case HBA_RESP_SVCRES_TMF_REJECTED:
3796 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3797 		break;
3798 	case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3799 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3800 		break;
3801 	case HBA_RESP_SVCRES_TMF_COMPLETE:
3802 	case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3803 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3804 		break;
3805 	default:
3806 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3807 		break;
3808 	}
3809 
3810 out:
3811 	aac_fib_complete(fibptr);
3812 
3813 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3814 		scsicmd->SCp.sent_command = 1;
3815 	else
3816 		scsicmd->scsi_done(scsicmd);
3817 }
3818 
3819 /**
3820  *
3821  * aac_send_srb_fib
3822  * @scsicmd: the scsi command block
3823  *
3824  * This routine will form a FIB and fill in the aac_srb from the
3825  * scsicmd passed in.
3826  */
3827 
3828 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3829 {
3830 	struct fib* cmd_fibcontext;
3831 	struct aac_dev* dev;
3832 	int status;
3833 
3834 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3835 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3836 			scsicmd->device->lun > 7) {
3837 		scsicmd->result = DID_NO_CONNECT << 16;
3838 		scsicmd->scsi_done(scsicmd);
3839 		return 0;
3840 	}
3841 
3842 	/*
3843 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3844 	 */
3845 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3846 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3847 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3848 
3849 	/*
3850 	 *	Check that the command queued to the controller
3851 	 */
3852 	if (status == -EINPROGRESS)
3853 		return 0;
3854 
3855 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3856 	aac_fib_complete(cmd_fibcontext);
3857 	aac_fib_free(cmd_fibcontext);
3858 
3859 	return -1;
3860 }
3861 
3862 /**
3863  *
3864  * aac_send_hba_fib
3865  * @scsicmd: the scsi command block
3866  *
3867  * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3868  * scsicmd passed in.
3869  */
3870 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3871 {
3872 	struct fib *cmd_fibcontext;
3873 	struct aac_dev *dev;
3874 	int status;
3875 
3876 	dev = shost_priv(scsicmd->device->host);
3877 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3878 			scsicmd->device->lun > AAC_MAX_LUN - 1) {
3879 		scsicmd->result = DID_NO_CONNECT << 16;
3880 		scsicmd->scsi_done(scsicmd);
3881 		return 0;
3882 	}
3883 
3884 	/*
3885 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3886 	 */
3887 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3888 	if (!cmd_fibcontext)
3889 		return -1;
3890 
3891 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3892 	status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3893 
3894 	/*
3895 	 *	Check that the command queued to the controller
3896 	 */
3897 	if (status == -EINPROGRESS)
3898 		return 0;
3899 
3900 	pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3901 		status);
3902 	aac_fib_complete(cmd_fibcontext);
3903 	aac_fib_free(cmd_fibcontext);
3904 
3905 	return -1;
3906 }
3907 
3908 
3909 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3910 {
3911 	unsigned long byte_count = 0;
3912 	int nseg;
3913 	struct scatterlist *sg;
3914 	int i;
3915 
3916 	// Get rid of old data
3917 	psg->count = 0;
3918 	psg->sg[0].addr = 0;
3919 	psg->sg[0].count = 0;
3920 
3921 	nseg = scsi_dma_map(scsicmd);
3922 	if (nseg <= 0)
3923 		return nseg;
3924 
3925 	psg->count = cpu_to_le32(nseg);
3926 
3927 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3928 		psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3929 		psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3930 		byte_count += sg_dma_len(sg);
3931 	}
3932 	/* hba wants the size to be exact */
3933 	if (byte_count > scsi_bufflen(scsicmd)) {
3934 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3935 			(byte_count - scsi_bufflen(scsicmd));
3936 		psg->sg[i-1].count = cpu_to_le32(temp);
3937 		byte_count = scsi_bufflen(scsicmd);
3938 	}
3939 	/* Check for command underflow */
3940 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3941 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3942 		       byte_count, scsicmd->underflow);
3943 	}
3944 
3945 	return byte_count;
3946 }
3947 
3948 
3949 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3950 {
3951 	unsigned long byte_count = 0;
3952 	u64 addr;
3953 	int nseg;
3954 	struct scatterlist *sg;
3955 	int i;
3956 
3957 	// Get rid of old data
3958 	psg->count = 0;
3959 	psg->sg[0].addr[0] = 0;
3960 	psg->sg[0].addr[1] = 0;
3961 	psg->sg[0].count = 0;
3962 
3963 	nseg = scsi_dma_map(scsicmd);
3964 	if (nseg <= 0)
3965 		return nseg;
3966 
3967 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3968 		int count = sg_dma_len(sg);
3969 		addr = sg_dma_address(sg);
3970 		psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3971 		psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3972 		psg->sg[i].count = cpu_to_le32(count);
3973 		byte_count += count;
3974 	}
3975 	psg->count = cpu_to_le32(nseg);
3976 	/* hba wants the size to be exact */
3977 	if (byte_count > scsi_bufflen(scsicmd)) {
3978 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3979 			(byte_count - scsi_bufflen(scsicmd));
3980 		psg->sg[i-1].count = cpu_to_le32(temp);
3981 		byte_count = scsi_bufflen(scsicmd);
3982 	}
3983 	/* Check for command underflow */
3984 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3985 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3986 		       byte_count, scsicmd->underflow);
3987 	}
3988 
3989 	return byte_count;
3990 }
3991 
3992 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3993 {
3994 	unsigned long byte_count = 0;
3995 	int nseg;
3996 	struct scatterlist *sg;
3997 	int i;
3998 
3999 	// Get rid of old data
4000 	psg->count = 0;
4001 	psg->sg[0].next = 0;
4002 	psg->sg[0].prev = 0;
4003 	psg->sg[0].addr[0] = 0;
4004 	psg->sg[0].addr[1] = 0;
4005 	psg->sg[0].count = 0;
4006 	psg->sg[0].flags = 0;
4007 
4008 	nseg = scsi_dma_map(scsicmd);
4009 	if (nseg <= 0)
4010 		return nseg;
4011 
4012 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4013 		int count = sg_dma_len(sg);
4014 		u64 addr = sg_dma_address(sg);
4015 		psg->sg[i].next = 0;
4016 		psg->sg[i].prev = 0;
4017 		psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
4018 		psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
4019 		psg->sg[i].count = cpu_to_le32(count);
4020 		psg->sg[i].flags = 0;
4021 		byte_count += count;
4022 	}
4023 	psg->count = cpu_to_le32(nseg);
4024 	/* hba wants the size to be exact */
4025 	if (byte_count > scsi_bufflen(scsicmd)) {
4026 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
4027 			(byte_count - scsi_bufflen(scsicmd));
4028 		psg->sg[i-1].count = cpu_to_le32(temp);
4029 		byte_count = scsi_bufflen(scsicmd);
4030 	}
4031 	/* Check for command underflow */
4032 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4033 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4034 		       byte_count, scsicmd->underflow);
4035 	}
4036 
4037 	return byte_count;
4038 }
4039 
4040 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
4041 				struct aac_raw_io2 *rio2, int sg_max)
4042 {
4043 	unsigned long byte_count = 0;
4044 	int nseg;
4045 	struct scatterlist *sg;
4046 	int i, conformable = 0;
4047 	u32 min_size = PAGE_SIZE, cur_size;
4048 
4049 	nseg = scsi_dma_map(scsicmd);
4050 	if (nseg <= 0)
4051 		return nseg;
4052 
4053 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4054 		int count = sg_dma_len(sg);
4055 		u64 addr = sg_dma_address(sg);
4056 
4057 		BUG_ON(i >= sg_max);
4058 		rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
4059 		rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
4060 		cur_size = cpu_to_le32(count);
4061 		rio2->sge[i].length = cur_size;
4062 		rio2->sge[i].flags = 0;
4063 		if (i == 0) {
4064 			conformable = 1;
4065 			rio2->sgeFirstSize = cur_size;
4066 		} else if (i == 1) {
4067 			rio2->sgeNominalSize = cur_size;
4068 			min_size = cur_size;
4069 		} else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
4070 			conformable = 0;
4071 			if (cur_size < min_size)
4072 				min_size = cur_size;
4073 		}
4074 		byte_count += count;
4075 	}
4076 
4077 	/* hba wants the size to be exact */
4078 	if (byte_count > scsi_bufflen(scsicmd)) {
4079 		u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
4080 			(byte_count - scsi_bufflen(scsicmd));
4081 		rio2->sge[i-1].length = cpu_to_le32(temp);
4082 		byte_count = scsi_bufflen(scsicmd);
4083 	}
4084 
4085 	rio2->sgeCnt = cpu_to_le32(nseg);
4086 	rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
4087 	/* not conformable: evaluate required sg elements */
4088 	if (!conformable) {
4089 		int j, nseg_new = nseg, err_found;
4090 		for (i = min_size / PAGE_SIZE; i >= 1; --i) {
4091 			err_found = 0;
4092 			nseg_new = 2;
4093 			for (j = 1; j < nseg - 1; ++j) {
4094 				if (rio2->sge[j].length % (i*PAGE_SIZE)) {
4095 					err_found = 1;
4096 					break;
4097 				}
4098 				nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
4099 			}
4100 			if (!err_found)
4101 				break;
4102 		}
4103 		if (i > 0 && nseg_new <= sg_max) {
4104 			int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
4105 
4106 			if (ret < 0)
4107 				return ret;
4108 		}
4109 	} else
4110 		rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4111 
4112 	/* Check for command underflow */
4113 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4114 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4115 		       byte_count, scsicmd->underflow);
4116 	}
4117 
4118 	return byte_count;
4119 }
4120 
4121 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4122 {
4123 	struct sge_ieee1212 *sge;
4124 	int i, j, pos;
4125 	u32 addr_low;
4126 
4127 	if (aac_convert_sgl == 0)
4128 		return 0;
4129 
4130 	sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC);
4131 	if (sge == NULL)
4132 		return -ENOMEM;
4133 
4134 	for (i = 1, pos = 1; i < nseg-1; ++i) {
4135 		for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4136 			addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4137 			sge[pos].addrLow = addr_low;
4138 			sge[pos].addrHigh = rio2->sge[i].addrHigh;
4139 			if (addr_low < rio2->sge[i].addrLow)
4140 				sge[pos].addrHigh++;
4141 			sge[pos].length = pages * PAGE_SIZE;
4142 			sge[pos].flags = 0;
4143 			pos++;
4144 		}
4145 	}
4146 	sge[pos] = rio2->sge[nseg-1];
4147 	memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4148 
4149 	kfree(sge);
4150 	rio2->sgeCnt = cpu_to_le32(nseg_new);
4151 	rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4152 	rio2->sgeNominalSize = pages * PAGE_SIZE;
4153 	return 0;
4154 }
4155 
4156 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4157 			struct aac_hba_cmd_req *hbacmd,
4158 			int sg_max,
4159 			u64 sg_address)
4160 {
4161 	unsigned long byte_count = 0;
4162 	int nseg;
4163 	struct scatterlist *sg;
4164 	int i;
4165 	u32 cur_size;
4166 	struct aac_hba_sgl *sge;
4167 
4168 	nseg = scsi_dma_map(scsicmd);
4169 	if (nseg <= 0) {
4170 		byte_count = nseg;
4171 		goto out;
4172 	}
4173 
4174 	if (nseg > HBA_MAX_SG_EMBEDDED)
4175 		sge = &hbacmd->sge[2];
4176 	else
4177 		sge = &hbacmd->sge[0];
4178 
4179 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4180 		int count = sg_dma_len(sg);
4181 		u64 addr = sg_dma_address(sg);
4182 
4183 		WARN_ON(i >= sg_max);
4184 		sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4185 		sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4186 		cur_size = cpu_to_le32(count);
4187 		sge->len = cur_size;
4188 		sge->flags = 0;
4189 		byte_count += count;
4190 		sge++;
4191 	}
4192 
4193 	sge--;
4194 	/* hba wants the size to be exact */
4195 	if (byte_count > scsi_bufflen(scsicmd)) {
4196 		u32 temp;
4197 
4198 		temp = le32_to_cpu(sge->len) - byte_count
4199 						- scsi_bufflen(scsicmd);
4200 		sge->len = cpu_to_le32(temp);
4201 		byte_count = scsi_bufflen(scsicmd);
4202 	}
4203 
4204 	if (nseg <= HBA_MAX_SG_EMBEDDED) {
4205 		hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4206 		sge->flags = cpu_to_le32(0x40000000);
4207 	} else {
4208 		/* not embedded */
4209 		hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4210 		hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4211 		hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4212 		hbacmd->sge[0].addr_lo =
4213 			cpu_to_le32((u32)(sg_address & 0xffffffff));
4214 	}
4215 
4216 	/* Check for command underflow */
4217 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4218 		pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4219 				byte_count, scsicmd->underflow);
4220 	}
4221 out:
4222 	return byte_count;
4223 }
4224 
4225 #ifdef AAC_DETAILED_STATUS_INFO
4226 
4227 struct aac_srb_status_info {
4228 	u32	status;
4229 	char	*str;
4230 };
4231 
4232 
4233 static struct aac_srb_status_info srb_status_info[] = {
4234 	{ SRB_STATUS_PENDING,		"Pending Status"},
4235 	{ SRB_STATUS_SUCCESS,		"Success"},
4236 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
4237 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
4238 	{ SRB_STATUS_ERROR,		"Error Event"},
4239 	{ SRB_STATUS_BUSY,		"Device Busy"},
4240 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
4241 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
4242 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
4243 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
4244 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
4245 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
4246 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
4247 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
4248 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
4249 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4250 	{ SRB_STATUS_NO_HBA,		"No HBA"},
4251 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
4252 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4253 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4254 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4255 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
4256 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
4257 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
4258 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
4259 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
4260 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
4261 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
4262 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
4263 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
4264 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4265 	{ 0xff,				"Unknown Error"}
4266 };
4267 
4268 char *aac_get_status_string(u32 status)
4269 {
4270 	int i;
4271 
4272 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4273 		if (srb_status_info[i].status == status)
4274 			return srb_status_info[i].str;
4275 
4276 	return "Bad Status Code";
4277 }
4278 
4279 #endif
4280