xref: /linux/drivers/scsi/aacraid/aachba.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
38 
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 
44 #include "aacraid.h"
45 
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
48 #define	INQD_PDT_PROC	0x03	/* Processor device */
49 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
50 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
51 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
52 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
53 
54 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
55 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
56 
57 /*
58  *	Sense codes
59  */
60 
61 #define SENCODE_NO_SENSE			0x00
62 #define SENCODE_END_OF_DATA			0x00
63 #define SENCODE_BECOMING_READY			0x04
64 #define SENCODE_INIT_CMD_REQUIRED		0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
66 #define SENCODE_INVALID_COMMAND			0x20
67 #define SENCODE_LBA_OUT_OF_RANGE		0x21
68 #define SENCODE_INVALID_CDB_FIELD		0x24
69 #define SENCODE_LUN_NOT_SUPPORTED		0x25
70 #define SENCODE_INVALID_PARAM_FIELD		0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
72 #define SENCODE_PARAM_VALUE_INVALID		0x26
73 #define SENCODE_RESET_OCCURRED			0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
81 #define SENCODE_OVERLAPPED_COMMAND		0x4E
82 
83 /*
84  *	Additional sense codes
85  */
86 
87 #define ASENCODE_NO_SENSE			0x00
88 #define ASENCODE_END_OF_DATA			0x05
89 #define ASENCODE_BECOMING_READY			0x01
90 #define ASENCODE_INIT_CMD_REQUIRED		0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
92 #define ASENCODE_INVALID_COMMAND		0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
94 #define ASENCODE_INVALID_CDB_FIELD		0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
96 #define ASENCODE_INVALID_PARAM_FIELD		0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
98 #define ASENCODE_PARAM_VALUE_INVALID		0x02
99 #define ASENCODE_RESET_OCCURRED			0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
107 #define ASENCODE_OVERLAPPED_COMMAND		0x00
108 
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
113 
114 /* MODE_SENSE data format */
115 typedef struct {
116 	struct {
117 		u8	data_length;
118 		u8	med_type;
119 		u8	dev_par;
120 		u8	bd_length;
121 	} __attribute__((packed)) hd;
122 	struct {
123 		u8	dens_code;
124 		u8	block_count[3];
125 		u8	reserved;
126 		u8	block_length[3];
127 	} __attribute__((packed)) bd;
128 		u8	mpc_buf[3];
129 } __attribute__((packed)) aac_modep_data;
130 
131 /* MODE_SENSE_10 data format */
132 typedef struct {
133 	struct {
134 		u8	data_length[2];
135 		u8	med_type;
136 		u8	dev_par;
137 		u8	rsrvd[2];
138 		u8	bd_length[2];
139 	} __attribute__((packed)) hd;
140 	struct {
141 		u8	dens_code;
142 		u8	block_count[3];
143 		u8	reserved;
144 		u8	block_length[3];
145 	} __attribute__((packed)) bd;
146 		u8	mpc_buf[3];
147 } __attribute__((packed)) aac_modep10_data;
148 
149 /*------------------------------------------------------------------------------
150  *              S T R U C T S / T Y P E D E F S
151  *----------------------------------------------------------------------------*/
152 /* SCSI inquiry data */
153 struct inquiry_data {
154 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
155 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
156 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
157 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
158 	u8 inqd_len;	/* Additional length (n-4) */
159 	u8 inqd_pad1[2];/* Reserved - must be zero */
160 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
161 	u8 inqd_vid[8];	/* Vendor ID */
162 	u8 inqd_pid[16];/* Product ID */
163 	u8 inqd_prl[4];	/* Product Revision Level */
164 };
165 
166 /* Added for VPD 0x83 */
167 typedef struct {
168 	u8 CodeSet:4;	/* VPD_CODE_SET */
169 	u8 Reserved:4;
170 	u8 IdentifierType:4;	/* VPD_IDENTIFIER_TYPE */
171 	u8 Reserved2:4;
172 	u8 Reserved3;
173 	u8 IdentifierLength;
174 	u8 VendId[8];
175 	u8 ProductId[16];
176 	u8 SerialNumber[8];	/* SN in ASCII */
177 
178 } TVPD_ID_Descriptor_Type_1;
179 
180 typedef struct {
181 	u8 CodeSet:4;	/* VPD_CODE_SET */
182 	u8 Reserved:4;
183 	u8 IdentifierType:4;	/* VPD_IDENTIFIER_TYPE */
184 	u8 Reserved2:4;
185 	u8 Reserved3;
186 	u8 IdentifierLength;
187 	struct TEU64Id {
188 		u32 Serial;
189 		 /* The serial number supposed to be 40 bits,
190 		  * bit we only support 32, so make the last byte zero. */
191 		u8 Reserved;
192 		u8 VendId[3];
193 	} EU64Id;
194 
195 } TVPD_ID_Descriptor_Type_2;
196 
197 typedef struct {
198 	u8 DeviceType:5;
199 	u8 DeviceTypeQualifier:3;
200 	u8 PageCode;
201 	u8 Reserved;
202 	u8 PageLength;
203 	TVPD_ID_Descriptor_Type_1 IdDescriptorType1;
204 	TVPD_ID_Descriptor_Type_2 IdDescriptorType2;
205 
206 } TVPD_Page83;
207 
208 /*
209  *              M O D U L E   G L O B A L S
210  */
211 
212 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
213 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
214 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
215 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
216 				struct aac_raw_io2 *rio2, int sg_max);
217 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
218 				int pages, int nseg, int nseg_new);
219 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
220 #ifdef AAC_DETAILED_STATUS_INFO
221 static char *aac_get_status_string(u32 status);
222 #endif
223 
224 /*
225  *	Non dasd selection is handled entirely in aachba now
226  */
227 
228 static int nondasd = -1;
229 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
230 static int dacmode = -1;
231 int aac_msi;
232 int aac_commit = -1;
233 int startup_timeout = 180;
234 int aif_timeout = 120;
235 int aac_sync_mode;  /* Only Sync. transfer - disabled */
236 int aac_convert_sgl = 1;	/* convert non-conformable s/g list - enabled */
237 
238 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
239 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
240 	" 0=off, 1=on");
241 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
242 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
243 	" 0=off, 1=on");
244 module_param(nondasd, int, S_IRUGO|S_IWUSR);
245 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
246 	" 0=off, 1=on");
247 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
248 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
249 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
250 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
251 	"\tbit 2 - Disable only if Battery is protecting Cache");
252 module_param(dacmode, int, S_IRUGO|S_IWUSR);
253 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
254 	" 0=off, 1=on");
255 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
256 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
257 	" adapter for foreign arrays.\n"
258 	"This is typically needed in systems that do not have a BIOS."
259 	" 0=off, 1=on");
260 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
261 MODULE_PARM_DESC(msi, "IRQ handling."
262 	" 0=PIC(default), 1=MSI, 2=MSI-X)");
263 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
264 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
265 	" adapter to have it's kernel up and\n"
266 	"running. This is typically adjusted for large systems that do not"
267 	" have a BIOS.");
268 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
269 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
270 	" applications to pick up AIFs before\n"
271 	"deregistering them. This is typically adjusted for heavily burdened"
272 	" systems.");
273 
274 int numacb = -1;
275 module_param(numacb, int, S_IRUGO|S_IWUSR);
276 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
277 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
278 	" to use suggestion from Firmware.");
279 
280 int acbsize = -1;
281 module_param(acbsize, int, S_IRUGO|S_IWUSR);
282 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
283 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
284 	" suggestion from Firmware.");
285 
286 int update_interval = 30 * 60;
287 module_param(update_interval, int, S_IRUGO|S_IWUSR);
288 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
289 	" updates issued to adapter.");
290 
291 int check_interval = 24 * 60 * 60;
292 module_param(check_interval, int, S_IRUGO|S_IWUSR);
293 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
294 	" checks.");
295 
296 int aac_check_reset = 1;
297 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
298 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
299 	" adapter. a value of -1 forces the reset to adapters programmed to"
300 	" ignore it.");
301 
302 int expose_physicals = -1;
303 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
304 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
305 	" -1=protect 0=off, 1=on");
306 
307 int aac_reset_devices;
308 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
309 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
310 
311 int aac_wwn = 1;
312 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
313 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
314 	"\t0 - Disable\n"
315 	"\t1 - Array Meta Data Signature (default)\n"
316 	"\t2 - Adapter Serial Number");
317 
318 
319 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
320 		struct fib *fibptr) {
321 	struct scsi_device *device;
322 
323 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
324 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
325 		aac_fib_complete(fibptr);
326 		return 0;
327 	}
328 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
329 	device = scsicmd->device;
330 	if (unlikely(!device || !scsi_device_online(device))) {
331 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
332 		aac_fib_complete(fibptr);
333 		return 0;
334 	}
335 	return 1;
336 }
337 
338 /**
339  *	aac_get_config_status	-	check the adapter configuration
340  *	@common: adapter to query
341  *
342  *	Query config status, and commit the configuration if needed.
343  */
344 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
345 {
346 	int status = 0;
347 	struct fib * fibptr;
348 
349 	if (!(fibptr = aac_fib_alloc(dev)))
350 		return -ENOMEM;
351 
352 	aac_fib_init(fibptr);
353 	{
354 		struct aac_get_config_status *dinfo;
355 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
356 
357 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
358 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
359 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
360 	}
361 
362 	status = aac_fib_send(ContainerCommand,
363 			    fibptr,
364 			    sizeof (struct aac_get_config_status),
365 			    FsaNormal,
366 			    1, 1,
367 			    NULL, NULL);
368 	if (status < 0) {
369 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
370 	} else {
371 		struct aac_get_config_status_resp *reply
372 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
373 		dprintk((KERN_WARNING
374 		  "aac_get_config_status: response=%d status=%d action=%d\n",
375 		  le32_to_cpu(reply->response),
376 		  le32_to_cpu(reply->status),
377 		  le32_to_cpu(reply->data.action)));
378 		if ((le32_to_cpu(reply->response) != ST_OK) ||
379 		     (le32_to_cpu(reply->status) != CT_OK) ||
380 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
381 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
382 			status = -EINVAL;
383 		}
384 	}
385 	/* Do not set XferState to zero unless receives a response from F/W */
386 	if (status >= 0)
387 		aac_fib_complete(fibptr);
388 
389 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
390 	if (status >= 0) {
391 		if ((aac_commit == 1) || commit_flag) {
392 			struct aac_commit_config * dinfo;
393 			aac_fib_init(fibptr);
394 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
395 
396 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
397 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
398 
399 			status = aac_fib_send(ContainerCommand,
400 				    fibptr,
401 				    sizeof (struct aac_commit_config),
402 				    FsaNormal,
403 				    1, 1,
404 				    NULL, NULL);
405 			/* Do not set XferState to zero unless
406 			 * receives a response from F/W */
407 			if (status >= 0)
408 				aac_fib_complete(fibptr);
409 		} else if (aac_commit == 0) {
410 			printk(KERN_WARNING
411 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
412 		}
413 	}
414 	/* FIB should be freed only after getting the response from the F/W */
415 	if (status != -ERESTARTSYS)
416 		aac_fib_free(fibptr);
417 	return status;
418 }
419 
420 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
421 {
422 	char inq_data;
423 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
424 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
425 		inq_data &= 0xdf;
426 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
427 	}
428 }
429 
430 /**
431  *	aac_get_containers	-	list containers
432  *	@common: adapter to probe
433  *
434  *	Make a list of all containers on this controller
435  */
436 int aac_get_containers(struct aac_dev *dev)
437 {
438 	struct fsa_dev_info *fsa_dev_ptr;
439 	u32 index;
440 	int status = 0;
441 	struct fib * fibptr;
442 	struct aac_get_container_count *dinfo;
443 	struct aac_get_container_count_resp *dresp;
444 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
445 
446 	if (!(fibptr = aac_fib_alloc(dev)))
447 		return -ENOMEM;
448 
449 	aac_fib_init(fibptr);
450 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
451 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
452 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
453 
454 	status = aac_fib_send(ContainerCommand,
455 		    fibptr,
456 		    sizeof (struct aac_get_container_count),
457 		    FsaNormal,
458 		    1, 1,
459 		    NULL, NULL);
460 	if (status >= 0) {
461 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
462 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
463 		if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
464 		    AAC_OPTION_SUPPORTED_240_VOLUMES) {
465 			maximum_num_containers =
466 				le32_to_cpu(dresp->MaxSimpleVolumes);
467 		}
468 		aac_fib_complete(fibptr);
469 	}
470 	/* FIB should be freed only after getting the response from the F/W */
471 	if (status != -ERESTARTSYS)
472 		aac_fib_free(fibptr);
473 
474 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
475 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
476 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
477 			GFP_KERNEL);
478 	if (!fsa_dev_ptr)
479 		return -ENOMEM;
480 
481 	dev->fsa_dev = fsa_dev_ptr;
482 	dev->maximum_num_containers = maximum_num_containers;
483 
484 	for (index = 0; index < dev->maximum_num_containers; ) {
485 		fsa_dev_ptr[index].devname[0] = '\0';
486 
487 		status = aac_probe_container(dev, index);
488 
489 		if (status < 0) {
490 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
491 			break;
492 		}
493 
494 		/*
495 		 *	If there are no more containers, then stop asking.
496 		 */
497 		if (++index >= status)
498 			break;
499 	}
500 	return status;
501 }
502 
503 static void get_container_name_callback(void *context, struct fib * fibptr)
504 {
505 	struct aac_get_name_resp * get_name_reply;
506 	struct scsi_cmnd * scsicmd;
507 
508 	scsicmd = (struct scsi_cmnd *) context;
509 
510 	if (!aac_valid_context(scsicmd, fibptr))
511 		return;
512 
513 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
514 	BUG_ON(fibptr == NULL);
515 
516 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
517 	/* Failure is irrelevant, using default value instead */
518 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
519 	 && (get_name_reply->data[0] != '\0')) {
520 		char *sp = get_name_reply->data;
521 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)] = '\0';
522 		while (*sp == ' ')
523 			++sp;
524 		if (*sp) {
525 			struct inquiry_data inq;
526 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
527 			int count = sizeof(d);
528 			char *dp = d;
529 			do {
530 				*dp++ = (*sp) ? *sp++ : ' ';
531 			} while (--count > 0);
532 
533 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
534 			memcpy(inq.inqd_pid, d, sizeof(d));
535 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
536 		}
537 	}
538 
539 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
540 
541 	aac_fib_complete(fibptr);
542 	scsicmd->scsi_done(scsicmd);
543 }
544 
545 /**
546  *	aac_get_container_name	-	get container name, none blocking.
547  */
548 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
549 {
550 	int status;
551 	struct aac_get_name *dinfo;
552 	struct fib * cmd_fibcontext;
553 	struct aac_dev * dev;
554 
555 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
556 
557 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
558 
559 	aac_fib_init(cmd_fibcontext);
560 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
561 
562 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
563 	dinfo->type = cpu_to_le32(CT_READ_NAME);
564 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
565 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
566 
567 	status = aac_fib_send(ContainerCommand,
568 		  cmd_fibcontext,
569 		  sizeof(struct aac_get_name_resp),
570 		  FsaNormal,
571 		  0, 1,
572 		  (fib_callback)get_container_name_callback,
573 		  (void *) scsicmd);
574 
575 	/*
576 	 *	Check that the command queued to the controller
577 	 */
578 	if (status == -EINPROGRESS) {
579 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
580 		return 0;
581 	}
582 
583 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
584 	aac_fib_complete(cmd_fibcontext);
585 	return -1;
586 }
587 
588 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
589 {
590 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
591 
592 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
593 		return aac_scsi_cmd(scsicmd);
594 
595 	scsicmd->result = DID_NO_CONNECT << 16;
596 	scsicmd->scsi_done(scsicmd);
597 	return 0;
598 }
599 
600 static void _aac_probe_container2(void * context, struct fib * fibptr)
601 {
602 	struct fsa_dev_info *fsa_dev_ptr;
603 	int (*callback)(struct scsi_cmnd *);
604 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
605 
606 
607 	if (!aac_valid_context(scsicmd, fibptr))
608 		return;
609 
610 	scsicmd->SCp.Status = 0;
611 	fsa_dev_ptr = fibptr->dev->fsa_dev;
612 	if (fsa_dev_ptr) {
613 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
614 		fsa_dev_ptr += scmd_id(scsicmd);
615 
616 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
617 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
618 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
619 			if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 &
620 			    AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
621 				dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
622 				fsa_dev_ptr->block_size = 0x200;
623 			} else {
624 				fsa_dev_ptr->block_size =
625 					le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
626 			}
627 			fsa_dev_ptr->valid = 1;
628 			/* sense_key holds the current state of the spin-up */
629 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
630 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
631 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
632 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
633 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
634 			fsa_dev_ptr->size
635 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
636 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
637 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
638 		}
639 		if ((fsa_dev_ptr->valid & 1) == 0)
640 			fsa_dev_ptr->valid = 0;
641 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
642 	}
643 	aac_fib_complete(fibptr);
644 	aac_fib_free(fibptr);
645 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
646 	scsicmd->SCp.ptr = NULL;
647 	(*callback)(scsicmd);
648 	return;
649 }
650 
651 static void _aac_probe_container1(void * context, struct fib * fibptr)
652 {
653 	struct scsi_cmnd * scsicmd;
654 	struct aac_mount * dresp;
655 	struct aac_query_mount *dinfo;
656 	int status;
657 
658 	dresp = (struct aac_mount *) fib_data(fibptr);
659 	if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 &
660 	    AAC_OPTION_VARIABLE_BLOCK_SIZE))
661 		dresp->mnt[0].capacityhigh = 0;
662 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
663 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
664 		_aac_probe_container2(context, fibptr);
665 		return;
666 	}
667 	scsicmd = (struct scsi_cmnd *) context;
668 
669 	if (!aac_valid_context(scsicmd, fibptr))
670 		return;
671 
672 	aac_fib_init(fibptr);
673 
674 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
675 
676 	if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
677 	    AAC_OPTION_VARIABLE_BLOCK_SIZE)
678 		dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
679 	else
680 		dinfo->command = cpu_to_le32(VM_NameServe64);
681 
682 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
683 	dinfo->type = cpu_to_le32(FT_FILESYS);
684 
685 	status = aac_fib_send(ContainerCommand,
686 			  fibptr,
687 			  sizeof(struct aac_query_mount),
688 			  FsaNormal,
689 			  0, 1,
690 			  _aac_probe_container2,
691 			  (void *) scsicmd);
692 	/*
693 	 *	Check that the command queued to the controller
694 	 */
695 	if (status == -EINPROGRESS)
696 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
697 	else if (status < 0) {
698 		/* Inherit results from VM_NameServe, if any */
699 		dresp->status = cpu_to_le32(ST_OK);
700 		_aac_probe_container2(context, fibptr);
701 	}
702 }
703 
704 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
705 {
706 	struct fib * fibptr;
707 	int status = -ENOMEM;
708 
709 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
710 		struct aac_query_mount *dinfo;
711 
712 		aac_fib_init(fibptr);
713 
714 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
715 
716 		if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
717 		    AAC_OPTION_VARIABLE_BLOCK_SIZE)
718 			dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
719 		else
720 			dinfo->command = cpu_to_le32(VM_NameServe);
721 
722 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
723 		dinfo->type = cpu_to_le32(FT_FILESYS);
724 		scsicmd->SCp.ptr = (char *)callback;
725 
726 		status = aac_fib_send(ContainerCommand,
727 			  fibptr,
728 			  sizeof(struct aac_query_mount),
729 			  FsaNormal,
730 			  0, 1,
731 			  _aac_probe_container1,
732 			  (void *) scsicmd);
733 		/*
734 		 *	Check that the command queued to the controller
735 		 */
736 		if (status == -EINPROGRESS) {
737 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
738 			return 0;
739 		}
740 		if (status < 0) {
741 			scsicmd->SCp.ptr = NULL;
742 			aac_fib_complete(fibptr);
743 			aac_fib_free(fibptr);
744 		}
745 	}
746 	if (status < 0) {
747 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
748 		if (fsa_dev_ptr) {
749 			fsa_dev_ptr += scmd_id(scsicmd);
750 			if ((fsa_dev_ptr->valid & 1) == 0) {
751 				fsa_dev_ptr->valid = 0;
752 				return (*callback)(scsicmd);
753 			}
754 		}
755 	}
756 	return status;
757 }
758 
759 /**
760  *	aac_probe_container		-	query a logical volume
761  *	@dev: device to query
762  *	@cid: container identifier
763  *
764  *	Queries the controller about the given volume. The volume information
765  *	is updated in the struct fsa_dev_info structure rather than returned.
766  */
767 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
768 {
769 	scsicmd->device = NULL;
770 	return 0;
771 }
772 
773 int aac_probe_container(struct aac_dev *dev, int cid)
774 {
775 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
776 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
777 	int status;
778 
779 	if (!scsicmd || !scsidev) {
780 		kfree(scsicmd);
781 		kfree(scsidev);
782 		return -ENOMEM;
783 	}
784 	scsicmd->list.next = NULL;
785 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
786 
787 	scsicmd->device = scsidev;
788 	scsidev->sdev_state = 0;
789 	scsidev->id = cid;
790 	scsidev->host = dev->scsi_host_ptr;
791 
792 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
793 		while (scsicmd->device == scsidev)
794 			schedule();
795 	kfree(scsidev);
796 	status = scsicmd->SCp.Status;
797 	kfree(scsicmd);
798 	return status;
799 }
800 
801 /* Local Structure to set SCSI inquiry data strings */
802 struct scsi_inq {
803 	char vid[8];         /* Vendor ID */
804 	char pid[16];        /* Product ID */
805 	char prl[4];         /* Product Revision Level */
806 };
807 
808 /**
809  *	InqStrCopy	-	string merge
810  *	@a:	string to copy from
811  *	@b:	string to copy to
812  *
813  *	Copy a String from one location to another
814  *	without copying \0
815  */
816 
817 static void inqstrcpy(char *a, char *b)
818 {
819 
820 	while (*a != (char)0)
821 		*b++ = *a++;
822 }
823 
824 static char *container_types[] = {
825 	"None",
826 	"Volume",
827 	"Mirror",
828 	"Stripe",
829 	"RAID5",
830 	"SSRW",
831 	"SSRO",
832 	"Morph",
833 	"Legacy",
834 	"RAID4",
835 	"RAID10",
836 	"RAID00",
837 	"V-MIRRORS",
838 	"PSEUDO R4",
839 	"RAID50",
840 	"RAID5D",
841 	"RAID5D0",
842 	"RAID1E",
843 	"RAID6",
844 	"RAID60",
845 	"Unknown"
846 };
847 
848 char * get_container_type(unsigned tindex)
849 {
850 	if (tindex >= ARRAY_SIZE(container_types))
851 		tindex = ARRAY_SIZE(container_types) - 1;
852 	return container_types[tindex];
853 }
854 
855 /* Function: setinqstr
856  *
857  * Arguments: [1] pointer to void [1] int
858  *
859  * Purpose: Sets SCSI inquiry data strings for vendor, product
860  * and revision level. Allows strings to be set in platform dependent
861  * files instead of in OS dependent driver source.
862  */
863 
864 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
865 {
866 	struct scsi_inq *str;
867 
868 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
869 	memset(str, ' ', sizeof(*str));
870 
871 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
872 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
873 		int c;
874 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
875 			inqstrcpy("SMC", str->vid);
876 		else {
877 			c = sizeof(str->vid);
878 			while (*cp && *cp != ' ' && --c)
879 				++cp;
880 			c = *cp;
881 			*cp = '\0';
882 			inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
883 				   str->vid);
884 			*cp = c;
885 			while (*cp && *cp != ' ')
886 				++cp;
887 		}
888 		while (*cp == ' ')
889 			++cp;
890 		/* last six chars reserved for vol type */
891 		c = 0;
892 		if (strlen(cp) > sizeof(str->pid)) {
893 			c = cp[sizeof(str->pid)];
894 			cp[sizeof(str->pid)] = '\0';
895 		}
896 		inqstrcpy (cp, str->pid);
897 		if (c)
898 			cp[sizeof(str->pid)] = c;
899 	} else {
900 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
901 
902 		inqstrcpy (mp->vname, str->vid);
903 		/* last six chars reserved for vol type */
904 		inqstrcpy (mp->model, str->pid);
905 	}
906 
907 	if (tindex < ARRAY_SIZE(container_types)){
908 		char *findit = str->pid;
909 
910 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
911 		/* RAID is superfluous in the context of a RAID device */
912 		if (memcmp(findit-4, "RAID", 4) == 0)
913 			*(findit -= 4) = ' ';
914 		if (((findit - str->pid) + strlen(container_types[tindex]))
915 		 < (sizeof(str->pid) + sizeof(str->prl)))
916 			inqstrcpy (container_types[tindex], findit + 1);
917 	}
918 	inqstrcpy ("V1.0", str->prl);
919 }
920 
921 static void get_container_serial_callback(void *context, struct fib * fibptr)
922 {
923 	struct aac_get_serial_resp * get_serial_reply;
924 	struct scsi_cmnd * scsicmd;
925 
926 	BUG_ON(fibptr == NULL);
927 
928 	scsicmd = (struct scsi_cmnd *) context;
929 	if (!aac_valid_context(scsicmd, fibptr))
930 		return;
931 
932 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
933 	/* Failure is irrelevant, using default value instead */
934 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
935 		/*Check to see if it's for VPD 0x83 or 0x80 */
936 		if (scsicmd->cmnd[2] == 0x83) {
937 			/* vpd page 0x83 - Device Identification Page */
938 			int i;
939 			TVPD_Page83 VPDPage83Data;
940 
941 			memset(((u8 *)&VPDPage83Data), 0,
942 			       sizeof(VPDPage83Data));
943 
944 			/* DIRECT_ACCESS_DEVIC */
945 			VPDPage83Data.DeviceType = 0;
946 			/* DEVICE_CONNECTED */
947 			VPDPage83Data.DeviceTypeQualifier = 0;
948 			/* VPD_DEVICE_IDENTIFIERS */
949 			VPDPage83Data.PageCode = 0x83;
950 			VPDPage83Data.Reserved = 0;
951 			VPDPage83Data.PageLength =
952 				sizeof(VPDPage83Data.IdDescriptorType1) +
953 				sizeof(VPDPage83Data.IdDescriptorType2);
954 
955 			/* T10 Vendor Identifier Field Format */
956 			/* VpdCodeSetAscii */
957 			VPDPage83Data.IdDescriptorType1.CodeSet = 2;
958 			/* VpdIdentifierTypeVendorId */
959 			VPDPage83Data.IdDescriptorType1.IdentifierType = 1;
960 			VPDPage83Data.IdDescriptorType1.IdentifierLength =
961 				sizeof(VPDPage83Data.IdDescriptorType1) - 4;
962 
963 			/* "ADAPTEC " for adaptec */
964 			memcpy(VPDPage83Data.IdDescriptorType1.VendId,
965 				"ADAPTEC ",
966 				sizeof(VPDPage83Data.IdDescriptorType1.VendId));
967 			memcpy(VPDPage83Data.IdDescriptorType1.ProductId,
968 				"ARRAY           ",
969 				sizeof(
970 				VPDPage83Data.IdDescriptorType1.ProductId));
971 
972 			/* Convert to ascii based serial number.
973 			 * The LSB is the the end.
974 			 */
975 			for (i = 0; i < 8; i++) {
976 				u8 temp =
977 					(u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
978 				if (temp  > 0x9) {
979 					VPDPage83Data.IdDescriptorType1.SerialNumber[i] =
980 							'A' + (temp - 0xA);
981 				} else {
982 					VPDPage83Data.IdDescriptorType1.SerialNumber[i] =
983 							'0' + temp;
984 				}
985 			}
986 
987 			/* VpdCodeSetBinary */
988 			VPDPage83Data.IdDescriptorType2.CodeSet = 1;
989 			/* VpdIdentifierTypeEUI64 */
990 			VPDPage83Data.IdDescriptorType2.IdentifierType = 2;
991 			VPDPage83Data.IdDescriptorType2.IdentifierLength =
992 				sizeof(VPDPage83Data.IdDescriptorType2) - 4;
993 
994 			VPDPage83Data.IdDescriptorType2.EU64Id.VendId[0] = 0xD0;
995 			VPDPage83Data.IdDescriptorType2.EU64Id.VendId[1] = 0;
996 			VPDPage83Data.IdDescriptorType2.EU64Id.VendId[2] = 0;
997 
998 			VPDPage83Data.IdDescriptorType2.EU64Id.Serial =
999 							get_serial_reply->uid;
1000 			VPDPage83Data.IdDescriptorType2.EU64Id.Reserved = 0;
1001 
1002 			/* Move the inquiry data to the response buffer. */
1003 			scsi_sg_copy_from_buffer(scsicmd, &VPDPage83Data,
1004 						 sizeof(VPDPage83Data));
1005 		} else {
1006 			/* It must be for VPD 0x80 */
1007 			char sp[13];
1008 			/* EVPD bit set */
1009 			sp[0] = INQD_PDT_DA;
1010 			sp[1] = scsicmd->cmnd[2];
1011 			sp[2] = 0;
1012 			sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1013 				le32_to_cpu(get_serial_reply->uid));
1014 			scsi_sg_copy_from_buffer(scsicmd, sp,
1015 						 sizeof(sp));
1016 		}
1017 	}
1018 
1019 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1020 
1021 	aac_fib_complete(fibptr);
1022 	scsicmd->scsi_done(scsicmd);
1023 }
1024 
1025 /**
1026  *	aac_get_container_serial - get container serial, none blocking.
1027  */
1028 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1029 {
1030 	int status;
1031 	struct aac_get_serial *dinfo;
1032 	struct fib * cmd_fibcontext;
1033 	struct aac_dev * dev;
1034 
1035 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1036 
1037 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1038 
1039 	aac_fib_init(cmd_fibcontext);
1040 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1041 
1042 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
1043 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1044 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1045 
1046 	status = aac_fib_send(ContainerCommand,
1047 		  cmd_fibcontext,
1048 		  sizeof(struct aac_get_serial_resp),
1049 		  FsaNormal,
1050 		  0, 1,
1051 		  (fib_callback) get_container_serial_callback,
1052 		  (void *) scsicmd);
1053 
1054 	/*
1055 	 *	Check that the command queued to the controller
1056 	 */
1057 	if (status == -EINPROGRESS) {
1058 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1059 		return 0;
1060 	}
1061 
1062 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1063 	aac_fib_complete(cmd_fibcontext);
1064 	return -1;
1065 }
1066 
1067 /* Function: setinqserial
1068  *
1069  * Arguments: [1] pointer to void [1] int
1070  *
1071  * Purpose: Sets SCSI Unit Serial number.
1072  *          This is a fake. We should read a proper
1073  *          serial number from the container. <SuSE>But
1074  *          without docs it's quite hard to do it :-)
1075  *          So this will have to do in the meantime.</SuSE>
1076  */
1077 
1078 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1079 {
1080 	/*
1081 	 *	This breaks array migration.
1082 	 */
1083 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1084 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
1085 }
1086 
1087 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1088 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1089 {
1090 	u8 *sense_buf = (u8 *)sense_data;
1091 	/* Sense data valid, err code 70h */
1092 	sense_buf[0] = 0x70; /* No info field */
1093 	sense_buf[1] = 0;	/* Segment number, always zero */
1094 
1095 	sense_buf[2] = sense_key;	/* Sense key */
1096 
1097 	sense_buf[12] = sense_code;	/* Additional sense code */
1098 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
1099 
1100 	if (sense_key == ILLEGAL_REQUEST) {
1101 		sense_buf[7] = 10;	/* Additional sense length */
1102 
1103 		sense_buf[15] = bit_pointer;
1104 		/* Illegal parameter is in the parameter block */
1105 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
1106 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
1107 		/* Illegal parameter is in the CDB block */
1108 		sense_buf[16] = field_pointer >> 8;	/* MSB */
1109 		sense_buf[17] = field_pointer;		/* LSB */
1110 	} else
1111 		sense_buf[7] = 6;	/* Additional sense length */
1112 }
1113 
1114 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1115 {
1116 	if (lba & 0xffffffff00000000LL) {
1117 		int cid = scmd_id(cmd);
1118 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1119 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1120 			SAM_STAT_CHECK_CONDITION;
1121 		set_sense(&dev->fsa_dev[cid].sense_data,
1122 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1123 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1124 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1125 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1126 			     SCSI_SENSE_BUFFERSIZE));
1127 		cmd->scsi_done(cmd);
1128 		return 1;
1129 	}
1130 	return 0;
1131 }
1132 
1133 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1134 {
1135 	return 0;
1136 }
1137 
1138 static void io_callback(void *context, struct fib * fibptr);
1139 
1140 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1141 {
1142 	struct aac_dev *dev = fib->dev;
1143 	u16 fibsize, command;
1144 	long ret;
1145 
1146 	aac_fib_init(fib);
1147 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
1148 		struct aac_raw_io2 *readcmd2;
1149 		readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1150 		memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1151 		readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1152 		readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1153 		readcmd2->byteCount = cpu_to_le32(count *
1154 			dev->fsa_dev[scmd_id(cmd)].block_size);
1155 		readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1156 		readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1157 		ret = aac_build_sgraw2(cmd, readcmd2,
1158 				dev->scsi_host_ptr->sg_tablesize);
1159 		if (ret < 0)
1160 			return ret;
1161 		command = ContainerRawIo2;
1162 		fibsize = sizeof(struct aac_raw_io2) +
1163 			((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1164 	} else {
1165 		struct aac_raw_io *readcmd;
1166 		readcmd = (struct aac_raw_io *) fib_data(fib);
1167 		readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1168 		readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1169 		readcmd->count = cpu_to_le32(count *
1170 			dev->fsa_dev[scmd_id(cmd)].block_size);
1171 		readcmd->cid = cpu_to_le16(scmd_id(cmd));
1172 		readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1173 		readcmd->bpTotal = 0;
1174 		readcmd->bpComplete = 0;
1175 		ret = aac_build_sgraw(cmd, &readcmd->sg);
1176 		if (ret < 0)
1177 			return ret;
1178 		command = ContainerRawIo;
1179 		fibsize = sizeof(struct aac_raw_io) +
1180 			((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1181 	}
1182 
1183 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1184 	/*
1185 	 *	Now send the Fib to the adapter
1186 	 */
1187 	return aac_fib_send(command,
1188 			  fib,
1189 			  fibsize,
1190 			  FsaNormal,
1191 			  0, 1,
1192 			  (fib_callback) io_callback,
1193 			  (void *) cmd);
1194 }
1195 
1196 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1197 {
1198 	u16 fibsize;
1199 	struct aac_read64 *readcmd;
1200 	long ret;
1201 
1202 	aac_fib_init(fib);
1203 	readcmd = (struct aac_read64 *) fib_data(fib);
1204 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
1205 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
1206 	readcmd->sector_count = cpu_to_le16(count);
1207 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1208 	readcmd->pad   = 0;
1209 	readcmd->flags = 0;
1210 
1211 	ret = aac_build_sg64(cmd, &readcmd->sg);
1212 	if (ret < 0)
1213 		return ret;
1214 	fibsize = sizeof(struct aac_read64) +
1215 		((le32_to_cpu(readcmd->sg.count) - 1) *
1216 		 sizeof (struct sgentry64));
1217 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1218 				sizeof(struct aac_fibhdr)));
1219 	/*
1220 	 *	Now send the Fib to the adapter
1221 	 */
1222 	return aac_fib_send(ContainerCommand64,
1223 			  fib,
1224 			  fibsize,
1225 			  FsaNormal,
1226 			  0, 1,
1227 			  (fib_callback) io_callback,
1228 			  (void *) cmd);
1229 }
1230 
1231 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1232 {
1233 	u16 fibsize;
1234 	struct aac_read *readcmd;
1235 	struct aac_dev *dev = fib->dev;
1236 	long ret;
1237 
1238 	aac_fib_init(fib);
1239 	readcmd = (struct aac_read *) fib_data(fib);
1240 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1241 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1242 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1243 	readcmd->count = cpu_to_le32(count *
1244 		dev->fsa_dev[scmd_id(cmd)].block_size);
1245 
1246 	ret = aac_build_sg(cmd, &readcmd->sg);
1247 	if (ret < 0)
1248 		return ret;
1249 	fibsize = sizeof(struct aac_read) +
1250 			((le32_to_cpu(readcmd->sg.count) - 1) *
1251 			 sizeof (struct sgentry));
1252 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1253 				sizeof(struct aac_fibhdr)));
1254 	/*
1255 	 *	Now send the Fib to the adapter
1256 	 */
1257 	return aac_fib_send(ContainerCommand,
1258 			  fib,
1259 			  fibsize,
1260 			  FsaNormal,
1261 			  0, 1,
1262 			  (fib_callback) io_callback,
1263 			  (void *) cmd);
1264 }
1265 
1266 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1267 {
1268 	struct aac_dev *dev = fib->dev;
1269 	u16 fibsize, command;
1270 	long ret;
1271 
1272 	aac_fib_init(fib);
1273 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
1274 		struct aac_raw_io2 *writecmd2;
1275 		writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1276 		memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1277 		writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1278 		writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1279 		writecmd2->byteCount = cpu_to_le32(count *
1280 			dev->fsa_dev[scmd_id(cmd)].block_size);
1281 		writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1282 		writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1283 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1284 			cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1285 			cpu_to_le16(RIO2_IO_TYPE_WRITE);
1286 		ret = aac_build_sgraw2(cmd, writecmd2,
1287 				dev->scsi_host_ptr->sg_tablesize);
1288 		if (ret < 0)
1289 			return ret;
1290 		command = ContainerRawIo2;
1291 		fibsize = sizeof(struct aac_raw_io2) +
1292 			((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1293 	} else {
1294 		struct aac_raw_io *writecmd;
1295 		writecmd = (struct aac_raw_io *) fib_data(fib);
1296 		writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1297 		writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1298 		writecmd->count = cpu_to_le32(count *
1299 			dev->fsa_dev[scmd_id(cmd)].block_size);
1300 		writecmd->cid = cpu_to_le16(scmd_id(cmd));
1301 		writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1302 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1303 			cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1304 			cpu_to_le16(RIO_TYPE_WRITE);
1305 		writecmd->bpTotal = 0;
1306 		writecmd->bpComplete = 0;
1307 		ret = aac_build_sgraw(cmd, &writecmd->sg);
1308 		if (ret < 0)
1309 			return ret;
1310 		command = ContainerRawIo;
1311 		fibsize = sizeof(struct aac_raw_io) +
1312 			((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1313 	}
1314 
1315 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1316 	/*
1317 	 *	Now send the Fib to the adapter
1318 	 */
1319 	return aac_fib_send(command,
1320 			  fib,
1321 			  fibsize,
1322 			  FsaNormal,
1323 			  0, 1,
1324 			  (fib_callback) io_callback,
1325 			  (void *) cmd);
1326 }
1327 
1328 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1329 {
1330 	u16 fibsize;
1331 	struct aac_write64 *writecmd;
1332 	long ret;
1333 
1334 	aac_fib_init(fib);
1335 	writecmd = (struct aac_write64 *) fib_data(fib);
1336 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1337 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1338 	writecmd->sector_count = cpu_to_le16(count);
1339 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1340 	writecmd->pad	= 0;
1341 	writecmd->flags	= 0;
1342 
1343 	ret = aac_build_sg64(cmd, &writecmd->sg);
1344 	if (ret < 0)
1345 		return ret;
1346 	fibsize = sizeof(struct aac_write64) +
1347 		((le32_to_cpu(writecmd->sg.count) - 1) *
1348 		 sizeof (struct sgentry64));
1349 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1350 				sizeof(struct aac_fibhdr)));
1351 	/*
1352 	 *	Now send the Fib to the adapter
1353 	 */
1354 	return aac_fib_send(ContainerCommand64,
1355 			  fib,
1356 			  fibsize,
1357 			  FsaNormal,
1358 			  0, 1,
1359 			  (fib_callback) io_callback,
1360 			  (void *) cmd);
1361 }
1362 
1363 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1364 {
1365 	u16 fibsize;
1366 	struct aac_write *writecmd;
1367 	struct aac_dev *dev = fib->dev;
1368 	long ret;
1369 
1370 	aac_fib_init(fib);
1371 	writecmd = (struct aac_write *) fib_data(fib);
1372 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1373 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1374 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1375 	writecmd->count = cpu_to_le32(count *
1376 		dev->fsa_dev[scmd_id(cmd)].block_size);
1377 	writecmd->sg.count = cpu_to_le32(1);
1378 	/* ->stable is not used - it did mean which type of write */
1379 
1380 	ret = aac_build_sg(cmd, &writecmd->sg);
1381 	if (ret < 0)
1382 		return ret;
1383 	fibsize = sizeof(struct aac_write) +
1384 		((le32_to_cpu(writecmd->sg.count) - 1) *
1385 		 sizeof (struct sgentry));
1386 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1387 				sizeof(struct aac_fibhdr)));
1388 	/*
1389 	 *	Now send the Fib to the adapter
1390 	 */
1391 	return aac_fib_send(ContainerCommand,
1392 			  fib,
1393 			  fibsize,
1394 			  FsaNormal,
1395 			  0, 1,
1396 			  (fib_callback) io_callback,
1397 			  (void *) cmd);
1398 }
1399 
1400 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1401 {
1402 	struct aac_srb * srbcmd;
1403 	u32 flag;
1404 	u32 timeout;
1405 
1406 	aac_fib_init(fib);
1407 	switch(cmd->sc_data_direction){
1408 	case DMA_TO_DEVICE:
1409 		flag = SRB_DataOut;
1410 		break;
1411 	case DMA_BIDIRECTIONAL:
1412 		flag = SRB_DataIn | SRB_DataOut;
1413 		break;
1414 	case DMA_FROM_DEVICE:
1415 		flag = SRB_DataIn;
1416 		break;
1417 	case DMA_NONE:
1418 	default:	/* shuts up some versions of gcc */
1419 		flag = SRB_NoDataXfer;
1420 		break;
1421 	}
1422 
1423 	srbcmd = (struct aac_srb*) fib_data(fib);
1424 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1425 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1426 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1427 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1428 	srbcmd->flags    = cpu_to_le32(flag);
1429 	timeout = cmd->request->timeout/HZ;
1430 	if (timeout == 0)
1431 		timeout = 1;
1432 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1433 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1434 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1435 	return srbcmd;
1436 }
1437 
1438 static void aac_srb_callback(void *context, struct fib * fibptr);
1439 
1440 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1441 {
1442 	u16 fibsize;
1443 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1444 	long ret;
1445 
1446 	ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1447 	if (ret < 0)
1448 		return ret;
1449 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1450 
1451 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1452 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1453 	/*
1454 	 *	Build Scatter/Gather list
1455 	 */
1456 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1457 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1458 		 sizeof (struct sgentry64));
1459 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1460 				sizeof(struct aac_fibhdr)));
1461 
1462 	/*
1463 	 *	Now send the Fib to the adapter
1464 	 */
1465 	return aac_fib_send(ScsiPortCommand64, fib,
1466 				fibsize, FsaNormal, 0, 1,
1467 				  (fib_callback) aac_srb_callback,
1468 				  (void *) cmd);
1469 }
1470 
1471 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1472 {
1473 	u16 fibsize;
1474 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1475 	long ret;
1476 
1477 	ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1478 	if (ret < 0)
1479 		return ret;
1480 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1481 
1482 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1483 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1484 	/*
1485 	 *	Build Scatter/Gather list
1486 	 */
1487 	fibsize = sizeof (struct aac_srb) +
1488 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1489 		 sizeof (struct sgentry));
1490 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1491 				sizeof(struct aac_fibhdr)));
1492 
1493 	/*
1494 	 *	Now send the Fib to the adapter
1495 	 */
1496 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1497 				  (fib_callback) aac_srb_callback, (void *) cmd);
1498 }
1499 
1500 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1501 {
1502 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1503 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1504 		return FAILED;
1505 	return aac_scsi_32(fib, cmd);
1506 }
1507 
1508 int aac_get_adapter_info(struct aac_dev* dev)
1509 {
1510 	struct fib* fibptr;
1511 	int rcode;
1512 	u32 tmp;
1513 	struct aac_adapter_info *info;
1514 	struct aac_bus_info *command;
1515 	struct aac_bus_info_response *bus_info;
1516 
1517 	if (!(fibptr = aac_fib_alloc(dev)))
1518 		return -ENOMEM;
1519 
1520 	aac_fib_init(fibptr);
1521 	info = (struct aac_adapter_info *) fib_data(fibptr);
1522 	memset(info,0,sizeof(*info));
1523 
1524 	rcode = aac_fib_send(RequestAdapterInfo,
1525 			 fibptr,
1526 			 sizeof(*info),
1527 			 FsaNormal,
1528 			 -1, 1, /* First `interrupt' command uses special wait */
1529 			 NULL,
1530 			 NULL);
1531 
1532 	if (rcode < 0) {
1533 		/* FIB should be freed only after
1534 		 * getting the response from the F/W */
1535 		if (rcode != -ERESTARTSYS) {
1536 			aac_fib_complete(fibptr);
1537 			aac_fib_free(fibptr);
1538 		}
1539 		return rcode;
1540 	}
1541 	memcpy(&dev->adapter_info, info, sizeof(*info));
1542 
1543 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1544 		struct aac_supplement_adapter_info * sinfo;
1545 
1546 		aac_fib_init(fibptr);
1547 
1548 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1549 
1550 		memset(sinfo,0,sizeof(*sinfo));
1551 
1552 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1553 				 fibptr,
1554 				 sizeof(*sinfo),
1555 				 FsaNormal,
1556 				 1, 1,
1557 				 NULL,
1558 				 NULL);
1559 
1560 		if (rcode >= 0)
1561 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1562 		if (rcode == -ERESTARTSYS) {
1563 			fibptr = aac_fib_alloc(dev);
1564 			if (!fibptr)
1565 				return -ENOMEM;
1566 		}
1567 
1568 	}
1569 
1570 
1571 	/*
1572 	 * GetBusInfo
1573 	 */
1574 
1575 	aac_fib_init(fibptr);
1576 
1577 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1578 
1579 	memset(bus_info, 0, sizeof(*bus_info));
1580 
1581 	command = (struct aac_bus_info *)bus_info;
1582 
1583 	command->Command = cpu_to_le32(VM_Ioctl);
1584 	command->ObjType = cpu_to_le32(FT_DRIVE);
1585 	command->MethodId = cpu_to_le32(1);
1586 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1587 
1588 	rcode = aac_fib_send(ContainerCommand,
1589 			 fibptr,
1590 			 sizeof (*bus_info),
1591 			 FsaNormal,
1592 			 1, 1,
1593 			 NULL, NULL);
1594 
1595 	/* reasoned default */
1596 	dev->maximum_num_physicals = 16;
1597 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1598 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1599 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1600 	}
1601 
1602 	if (!dev->in_reset) {
1603 		char buffer[16];
1604 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1605 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1606 			dev->name,
1607 			dev->id,
1608 			tmp>>24,
1609 			(tmp>>16)&0xff,
1610 			tmp&0xff,
1611 			le32_to_cpu(dev->adapter_info.kernelbuild),
1612 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1613 			dev->supplement_adapter_info.BuildDate);
1614 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1615 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1616 			dev->name, dev->id,
1617 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1618 			le32_to_cpu(dev->adapter_info.monitorbuild));
1619 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1620 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1621 			dev->name, dev->id,
1622 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1623 			le32_to_cpu(dev->adapter_info.biosbuild));
1624 		buffer[0] = '\0';
1625 		if (aac_get_serial_number(
1626 		  shost_to_class(dev->scsi_host_ptr), buffer))
1627 			printk(KERN_INFO "%s%d: serial %s",
1628 			  dev->name, dev->id, buffer);
1629 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1630 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1631 			  dev->name, dev->id,
1632 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1633 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1634 		}
1635 		if (!aac_check_reset || ((aac_check_reset == 1) &&
1636 		  (dev->supplement_adapter_info.SupportedOptions2 &
1637 		  AAC_OPTION_IGNORE_RESET))) {
1638 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1639 			  dev->name, dev->id);
1640 		}
1641 	}
1642 
1643 	dev->cache_protected = 0;
1644 	dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1645 		AAC_FEATURE_JBOD) != 0);
1646 	dev->nondasd_support = 0;
1647 	dev->raid_scsi_mode = 0;
1648 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
1649 		dev->nondasd_support = 1;
1650 
1651 	/*
1652 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1653 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1654 	 * force nondasd support on. If we decide to allow the non-dasd flag
1655 	 * additional changes changes will have to be made to support
1656 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1657 	 * changed to support the new dev->raid_scsi_mode flag instead of
1658 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1659 	 * function aac_detect will have to be modified where it sets up the
1660 	 * max number of channels based on the aac->nondasd_support flag only.
1661 	 */
1662 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1663 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1664 		dev->nondasd_support = 1;
1665 		dev->raid_scsi_mode = 1;
1666 	}
1667 	if (dev->raid_scsi_mode != 0)
1668 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1669 				dev->name, dev->id);
1670 
1671 	if (nondasd != -1)
1672 		dev->nondasd_support = (nondasd!=0);
1673 	if (dev->nondasd_support && !dev->in_reset)
1674 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1675 
1676 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1677 		dev->needs_dac = 1;
1678 	dev->dac_support = 0;
1679 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1680 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1681 		if (!dev->in_reset)
1682 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1683 				dev->name, dev->id);
1684 		dev->dac_support = 1;
1685 	}
1686 
1687 	if(dacmode != -1) {
1688 		dev->dac_support = (dacmode!=0);
1689 	}
1690 
1691 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1692 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
1693 		& AAC_QUIRK_SCSI_32)) {
1694 		dev->nondasd_support = 0;
1695 		dev->jbod = 0;
1696 		expose_physicals = 0;
1697 	}
1698 
1699 	if(dev->dac_support != 0) {
1700 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1701 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1702 			if (!dev->in_reset)
1703 				printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1704 					dev->name, dev->id);
1705 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1706 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1707 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1708 				dev->name, dev->id);
1709 			dev->dac_support = 0;
1710 		} else {
1711 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1712 				dev->name, dev->id);
1713 			rcode = -ENOMEM;
1714 		}
1715 	}
1716 	/*
1717 	 * Deal with configuring for the individualized limits of each packet
1718 	 * interface.
1719 	 */
1720 	dev->a_ops.adapter_scsi = (dev->dac_support)
1721 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1722 				? aac_scsi_32_64
1723 				: aac_scsi_64)
1724 				: aac_scsi_32;
1725 	if (dev->raw_io_interface) {
1726 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1727 					? aac_bounds_64
1728 					: aac_bounds_32;
1729 		dev->a_ops.adapter_read = aac_read_raw_io;
1730 		dev->a_ops.adapter_write = aac_write_raw_io;
1731 	} else {
1732 		dev->a_ops.adapter_bounds = aac_bounds_32;
1733 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1734 			sizeof(struct aac_fibhdr) -
1735 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1736 				sizeof(struct sgentry);
1737 		if (dev->dac_support) {
1738 			dev->a_ops.adapter_read = aac_read_block64;
1739 			dev->a_ops.adapter_write = aac_write_block64;
1740 			/*
1741 			 * 38 scatter gather elements
1742 			 */
1743 			dev->scsi_host_ptr->sg_tablesize =
1744 				(dev->max_fib_size -
1745 				sizeof(struct aac_fibhdr) -
1746 				sizeof(struct aac_write64) +
1747 				sizeof(struct sgentry64)) /
1748 					sizeof(struct sgentry64);
1749 		} else {
1750 			dev->a_ops.adapter_read = aac_read_block;
1751 			dev->a_ops.adapter_write = aac_write_block;
1752 		}
1753 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1754 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1755 			/*
1756 			 * Worst case size that could cause sg overflow when
1757 			 * we break up SG elements that are larger than 64KB.
1758 			 * Would be nice if we could tell the SCSI layer what
1759 			 * the maximum SG element size can be. Worst case is
1760 			 * (sg_tablesize-1) 4KB elements with one 64KB
1761 			 * element.
1762 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1763 			 */
1764 			dev->scsi_host_ptr->max_sectors =
1765 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1766 		}
1767 	}
1768 	/* FIB should be freed only after getting the response from the F/W */
1769 	if (rcode != -ERESTARTSYS) {
1770 		aac_fib_complete(fibptr);
1771 		aac_fib_free(fibptr);
1772 	}
1773 
1774 	return rcode;
1775 }
1776 
1777 
1778 static void io_callback(void *context, struct fib * fibptr)
1779 {
1780 	struct aac_dev *dev;
1781 	struct aac_read_reply *readreply;
1782 	struct scsi_cmnd *scsicmd;
1783 	u32 cid;
1784 
1785 	scsicmd = (struct scsi_cmnd *) context;
1786 
1787 	if (!aac_valid_context(scsicmd, fibptr))
1788 		return;
1789 
1790 	dev = fibptr->dev;
1791 	cid = scmd_id(scsicmd);
1792 
1793 	if (nblank(dprintk(x))) {
1794 		u64 lba;
1795 		switch (scsicmd->cmnd[0]) {
1796 		case WRITE_6:
1797 		case READ_6:
1798 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1799 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1800 			break;
1801 		case WRITE_16:
1802 		case READ_16:
1803 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1804 			      ((u64)scsicmd->cmnd[3] << 48) |
1805 			      ((u64)scsicmd->cmnd[4] << 40) |
1806 			      ((u64)scsicmd->cmnd[5] << 32) |
1807 			      ((u64)scsicmd->cmnd[6] << 24) |
1808 			      (scsicmd->cmnd[7] << 16) |
1809 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1810 			break;
1811 		case WRITE_12:
1812 		case READ_12:
1813 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1814 			      (scsicmd->cmnd[3] << 16) |
1815 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1816 			break;
1817 		default:
1818 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1819 			       (scsicmd->cmnd[3] << 16) |
1820 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1821 			break;
1822 		}
1823 		printk(KERN_DEBUG
1824 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1825 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1826 	}
1827 
1828 	BUG_ON(fibptr == NULL);
1829 
1830 	scsi_dma_unmap(scsicmd);
1831 
1832 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1833 	switch (le32_to_cpu(readreply->status)) {
1834 	case ST_OK:
1835 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1836 			SAM_STAT_GOOD;
1837 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1838 		break;
1839 	case ST_NOT_READY:
1840 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1841 			SAM_STAT_CHECK_CONDITION;
1842 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1843 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1844 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1845 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1846 			     SCSI_SENSE_BUFFERSIZE));
1847 		break;
1848 	default:
1849 #ifdef AAC_DETAILED_STATUS_INFO
1850 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1851 		  le32_to_cpu(readreply->status));
1852 #endif
1853 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1854 			SAM_STAT_CHECK_CONDITION;
1855 		set_sense(&dev->fsa_dev[cid].sense_data,
1856 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1857 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1858 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1859 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1860 			     SCSI_SENSE_BUFFERSIZE));
1861 		break;
1862 	}
1863 	aac_fib_complete(fibptr);
1864 
1865 	scsicmd->scsi_done(scsicmd);
1866 }
1867 
1868 static int aac_read(struct scsi_cmnd * scsicmd)
1869 {
1870 	u64 lba;
1871 	u32 count;
1872 	int status;
1873 	struct aac_dev *dev;
1874 	struct fib * cmd_fibcontext;
1875 	int cid;
1876 
1877 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1878 	/*
1879 	 *	Get block address and transfer length
1880 	 */
1881 	switch (scsicmd->cmnd[0]) {
1882 	case READ_6:
1883 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1884 
1885 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1886 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1887 		count = scsicmd->cmnd[4];
1888 
1889 		if (count == 0)
1890 			count = 256;
1891 		break;
1892 	case READ_16:
1893 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1894 
1895 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1896 			((u64)scsicmd->cmnd[3] << 48) |
1897 			((u64)scsicmd->cmnd[4] << 40) |
1898 			((u64)scsicmd->cmnd[5] << 32) |
1899 			((u64)scsicmd->cmnd[6] << 24) |
1900 			(scsicmd->cmnd[7] << 16) |
1901 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1902 		count = (scsicmd->cmnd[10] << 24) |
1903 			(scsicmd->cmnd[11] << 16) |
1904 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1905 		break;
1906 	case READ_12:
1907 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1908 
1909 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1910 			(scsicmd->cmnd[3] << 16) |
1911 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1912 		count = (scsicmd->cmnd[6] << 24) |
1913 			(scsicmd->cmnd[7] << 16) |
1914 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1915 		break;
1916 	default:
1917 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1918 
1919 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1920 			(scsicmd->cmnd[3] << 16) |
1921 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1922 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1923 		break;
1924 	}
1925 
1926 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1927 		cid = scmd_id(scsicmd);
1928 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1929 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1930 			SAM_STAT_CHECK_CONDITION;
1931 		set_sense(&dev->fsa_dev[cid].sense_data,
1932 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1933 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1934 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1935 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1936 			     SCSI_SENSE_BUFFERSIZE));
1937 		scsicmd->scsi_done(scsicmd);
1938 		return 1;
1939 	}
1940 
1941 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1942 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1943 	if (aac_adapter_bounds(dev,scsicmd,lba))
1944 		return 0;
1945 	/*
1946 	 *	Alocate and initialize a Fib
1947 	 */
1948 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1949 
1950 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1951 
1952 	/*
1953 	 *	Check that the command queued to the controller
1954 	 */
1955 	if (status == -EINPROGRESS) {
1956 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1957 		return 0;
1958 	}
1959 
1960 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1961 	/*
1962 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1963 	 */
1964 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1965 	scsicmd->scsi_done(scsicmd);
1966 	aac_fib_complete(cmd_fibcontext);
1967 	aac_fib_free(cmd_fibcontext);
1968 	return 0;
1969 }
1970 
1971 static int aac_write(struct scsi_cmnd * scsicmd)
1972 {
1973 	u64 lba;
1974 	u32 count;
1975 	int fua;
1976 	int status;
1977 	struct aac_dev *dev;
1978 	struct fib * cmd_fibcontext;
1979 	int cid;
1980 
1981 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1982 	/*
1983 	 *	Get block address and transfer length
1984 	 */
1985 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1986 	{
1987 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1988 		count = scsicmd->cmnd[4];
1989 		if (count == 0)
1990 			count = 256;
1991 		fua = 0;
1992 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1993 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1994 
1995 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1996 			((u64)scsicmd->cmnd[3] << 48) |
1997 			((u64)scsicmd->cmnd[4] << 40) |
1998 			((u64)scsicmd->cmnd[5] << 32) |
1999 			((u64)scsicmd->cmnd[6] << 24) |
2000 			(scsicmd->cmnd[7] << 16) |
2001 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2002 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2003 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2004 		fua = scsicmd->cmnd[1] & 0x8;
2005 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2006 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2007 
2008 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2009 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2010 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2011 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2012 		fua = scsicmd->cmnd[1] & 0x8;
2013 	} else {
2014 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2015 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2016 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2017 		fua = scsicmd->cmnd[1] & 0x8;
2018 	}
2019 
2020 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2021 		cid = scmd_id(scsicmd);
2022 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2023 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2024 			SAM_STAT_CHECK_CONDITION;
2025 		set_sense(&dev->fsa_dev[cid].sense_data,
2026 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2027 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2028 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2029 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2030 			     SCSI_SENSE_BUFFERSIZE));
2031 		scsicmd->scsi_done(scsicmd);
2032 		return 1;
2033 	}
2034 
2035 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2036 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2037 	if (aac_adapter_bounds(dev,scsicmd,lba))
2038 		return 0;
2039 	/*
2040 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2041 	 */
2042 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2043 
2044 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2045 
2046 	/*
2047 	 *	Check that the command queued to the controller
2048 	 */
2049 	if (status == -EINPROGRESS) {
2050 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2051 		return 0;
2052 	}
2053 
2054 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2055 	/*
2056 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2057 	 */
2058 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2059 	scsicmd->scsi_done(scsicmd);
2060 
2061 	aac_fib_complete(cmd_fibcontext);
2062 	aac_fib_free(cmd_fibcontext);
2063 	return 0;
2064 }
2065 
2066 static void synchronize_callback(void *context, struct fib *fibptr)
2067 {
2068 	struct aac_synchronize_reply *synchronizereply;
2069 	struct scsi_cmnd *cmd;
2070 
2071 	cmd = context;
2072 
2073 	if (!aac_valid_context(cmd, fibptr))
2074 		return;
2075 
2076 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2077 				smp_processor_id(), jiffies));
2078 	BUG_ON(fibptr == NULL);
2079 
2080 
2081 	synchronizereply = fib_data(fibptr);
2082 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
2083 		cmd->result = DID_OK << 16 |
2084 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2085 	else {
2086 		struct scsi_device *sdev = cmd->device;
2087 		struct aac_dev *dev = fibptr->dev;
2088 		u32 cid = sdev_id(sdev);
2089 		printk(KERN_WARNING
2090 		     "synchronize_callback: synchronize failed, status = %d\n",
2091 		     le32_to_cpu(synchronizereply->status));
2092 		cmd->result = DID_OK << 16 |
2093 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2094 		set_sense(&dev->fsa_dev[cid].sense_data,
2095 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2096 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2097 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2098 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2099 			     SCSI_SENSE_BUFFERSIZE));
2100 	}
2101 
2102 	aac_fib_complete(fibptr);
2103 	aac_fib_free(fibptr);
2104 	cmd->scsi_done(cmd);
2105 }
2106 
2107 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2108 {
2109 	int status;
2110 	struct fib *cmd_fibcontext;
2111 	struct aac_synchronize *synchronizecmd;
2112 	struct scsi_cmnd *cmd;
2113 	struct scsi_device *sdev = scsicmd->device;
2114 	int active = 0;
2115 	struct aac_dev *aac;
2116 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2117 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2118 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2119 	unsigned long flags;
2120 
2121 	/*
2122 	 * Wait for all outstanding queued commands to complete to this
2123 	 * specific target (block).
2124 	 */
2125 	spin_lock_irqsave(&sdev->list_lock, flags);
2126 	list_for_each_entry(cmd, &sdev->cmd_list, list)
2127 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2128 			u64 cmnd_lba;
2129 			u32 cmnd_count;
2130 
2131 			if (cmd->cmnd[0] == WRITE_6) {
2132 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2133 					(cmd->cmnd[2] << 8) |
2134 					cmd->cmnd[3];
2135 				cmnd_count = cmd->cmnd[4];
2136 				if (cmnd_count == 0)
2137 					cmnd_count = 256;
2138 			} else if (cmd->cmnd[0] == WRITE_16) {
2139 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2140 					((u64)cmd->cmnd[3] << 48) |
2141 					((u64)cmd->cmnd[4] << 40) |
2142 					((u64)cmd->cmnd[5] << 32) |
2143 					((u64)cmd->cmnd[6] << 24) |
2144 					(cmd->cmnd[7] << 16) |
2145 					(cmd->cmnd[8] << 8) |
2146 					cmd->cmnd[9];
2147 				cmnd_count = (cmd->cmnd[10] << 24) |
2148 					(cmd->cmnd[11] << 16) |
2149 					(cmd->cmnd[12] << 8) |
2150 					cmd->cmnd[13];
2151 			} else if (cmd->cmnd[0] == WRITE_12) {
2152 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2153 					(cmd->cmnd[3] << 16) |
2154 					(cmd->cmnd[4] << 8) |
2155 					cmd->cmnd[5];
2156 				cmnd_count = (cmd->cmnd[6] << 24) |
2157 					(cmd->cmnd[7] << 16) |
2158 					(cmd->cmnd[8] << 8) |
2159 					cmd->cmnd[9];
2160 			} else if (cmd->cmnd[0] == WRITE_10) {
2161 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2162 					(cmd->cmnd[3] << 16) |
2163 					(cmd->cmnd[4] << 8) |
2164 					cmd->cmnd[5];
2165 				cmnd_count = (cmd->cmnd[7] << 8) |
2166 					cmd->cmnd[8];
2167 			} else
2168 				continue;
2169 			if (((cmnd_lba + cmnd_count) < lba) ||
2170 			  (count && ((lba + count) < cmnd_lba)))
2171 				continue;
2172 			++active;
2173 			break;
2174 		}
2175 
2176 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2177 
2178 	/*
2179 	 *	Yield the processor (requeue for later)
2180 	 */
2181 	if (active)
2182 		return SCSI_MLQUEUE_DEVICE_BUSY;
2183 
2184 	aac = (struct aac_dev *)sdev->host->hostdata;
2185 	if (aac->in_reset)
2186 		return SCSI_MLQUEUE_HOST_BUSY;
2187 
2188 	/*
2189 	 *	Allocate and initialize a Fib
2190 	 */
2191 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2192 		return SCSI_MLQUEUE_HOST_BUSY;
2193 
2194 	aac_fib_init(cmd_fibcontext);
2195 
2196 	synchronizecmd = fib_data(cmd_fibcontext);
2197 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2198 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2199 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2200 	synchronizecmd->count =
2201 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2202 
2203 	/*
2204 	 *	Now send the Fib to the adapter
2205 	 */
2206 	status = aac_fib_send(ContainerCommand,
2207 		  cmd_fibcontext,
2208 		  sizeof(struct aac_synchronize),
2209 		  FsaNormal,
2210 		  0, 1,
2211 		  (fib_callback)synchronize_callback,
2212 		  (void *)scsicmd);
2213 
2214 	/*
2215 	 *	Check that the command queued to the controller
2216 	 */
2217 	if (status == -EINPROGRESS) {
2218 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2219 		return 0;
2220 	}
2221 
2222 	printk(KERN_WARNING
2223 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2224 	aac_fib_complete(cmd_fibcontext);
2225 	aac_fib_free(cmd_fibcontext);
2226 	return SCSI_MLQUEUE_HOST_BUSY;
2227 }
2228 
2229 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2230 {
2231 	struct scsi_cmnd *scsicmd = context;
2232 
2233 	if (!aac_valid_context(scsicmd, fibptr))
2234 		return;
2235 
2236 	BUG_ON(fibptr == NULL);
2237 
2238 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2239 
2240 	aac_fib_complete(fibptr);
2241 	aac_fib_free(fibptr);
2242 	scsicmd->scsi_done(scsicmd);
2243 }
2244 
2245 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2246 {
2247 	int status;
2248 	struct fib *cmd_fibcontext;
2249 	struct aac_power_management *pmcmd;
2250 	struct scsi_device *sdev = scsicmd->device;
2251 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2252 
2253 	if (!(aac->supplement_adapter_info.SupportedOptions2 &
2254 	      AAC_OPTION_POWER_MANAGEMENT)) {
2255 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2256 				  SAM_STAT_GOOD;
2257 		scsicmd->scsi_done(scsicmd);
2258 		return 0;
2259 	}
2260 
2261 	if (aac->in_reset)
2262 		return SCSI_MLQUEUE_HOST_BUSY;
2263 
2264 	/*
2265 	 *	Allocate and initialize a Fib
2266 	 */
2267 	cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2268 
2269 	aac_fib_init(cmd_fibcontext);
2270 
2271 	pmcmd = fib_data(cmd_fibcontext);
2272 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2273 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2274 	/* Eject bit ignored, not relevant */
2275 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2276 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2277 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2278 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2279 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2280 
2281 	/*
2282 	 *	Now send the Fib to the adapter
2283 	 */
2284 	status = aac_fib_send(ContainerCommand,
2285 		  cmd_fibcontext,
2286 		  sizeof(struct aac_power_management),
2287 		  FsaNormal,
2288 		  0, 1,
2289 		  (fib_callback)aac_start_stop_callback,
2290 		  (void *)scsicmd);
2291 
2292 	/*
2293 	 *	Check that the command queued to the controller
2294 	 */
2295 	if (status == -EINPROGRESS) {
2296 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2297 		return 0;
2298 	}
2299 
2300 	aac_fib_complete(cmd_fibcontext);
2301 	aac_fib_free(cmd_fibcontext);
2302 	return SCSI_MLQUEUE_HOST_BUSY;
2303 }
2304 
2305 /**
2306  *	aac_scsi_cmd()		-	Process SCSI command
2307  *	@scsicmd:		SCSI command block
2308  *
2309  *	Emulate a SCSI command and queue the required request for the
2310  *	aacraid firmware.
2311  */
2312 
2313 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2314 {
2315 	u32 cid;
2316 	struct Scsi_Host *host = scsicmd->device->host;
2317 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2318 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2319 
2320 	if (fsa_dev_ptr == NULL)
2321 		return -1;
2322 	/*
2323 	 *	If the bus, id or lun is out of range, return fail
2324 	 *	Test does not apply to ID 16, the pseudo id for the controller
2325 	 *	itself.
2326 	 */
2327 	cid = scmd_id(scsicmd);
2328 	if (cid != host->this_id) {
2329 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2330 			if((cid >= dev->maximum_num_containers) ||
2331 					(scsicmd->device->lun != 0)) {
2332 				scsicmd->result = DID_NO_CONNECT << 16;
2333 				scsicmd->scsi_done(scsicmd);
2334 				return 0;
2335 			}
2336 
2337 			/*
2338 			 *	If the target container doesn't exist, it may have
2339 			 *	been newly created
2340 			 */
2341 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2342 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2343 			   NOT_READY)) {
2344 				switch (scsicmd->cmnd[0]) {
2345 				case SERVICE_ACTION_IN_16:
2346 					if (!(dev->raw_io_interface) ||
2347 					    !(dev->raw_io_64) ||
2348 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2349 						break;
2350 				case INQUIRY:
2351 				case READ_CAPACITY:
2352 				case TEST_UNIT_READY:
2353 					if (dev->in_reset)
2354 						return -1;
2355 					return _aac_probe_container(scsicmd,
2356 							aac_probe_container_callback2);
2357 				default:
2358 					break;
2359 				}
2360 			}
2361 		} else {  /* check for physical non-dasd devices */
2362 			if (dev->nondasd_support || expose_physicals ||
2363 					dev->jbod) {
2364 				if (dev->in_reset)
2365 					return -1;
2366 				return aac_send_srb_fib(scsicmd);
2367 			} else {
2368 				scsicmd->result = DID_NO_CONNECT << 16;
2369 				scsicmd->scsi_done(scsicmd);
2370 				return 0;
2371 			}
2372 		}
2373 	}
2374 	/*
2375 	 * else Command for the controller itself
2376 	 */
2377 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2378 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2379 	{
2380 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2381 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2382 		set_sense(&dev->fsa_dev[cid].sense_data,
2383 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2384 		  ASENCODE_INVALID_COMMAND, 0, 0);
2385 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2386 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2387 			     SCSI_SENSE_BUFFERSIZE));
2388 		scsicmd->scsi_done(scsicmd);
2389 		return 0;
2390 	}
2391 
2392 
2393 	/* Handle commands here that don't really require going out to the adapter */
2394 	switch (scsicmd->cmnd[0]) {
2395 	case INQUIRY:
2396 	{
2397 		struct inquiry_data inq_data;
2398 
2399 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2400 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2401 
2402 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2403 			char *arr = (char *)&inq_data;
2404 
2405 			/* EVPD bit set */
2406 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2407 			  INQD_PDT_PROC : INQD_PDT_DA;
2408 			if (scsicmd->cmnd[2] == 0) {
2409 				/* supported vital product data pages */
2410 				arr[3] = 3;
2411 				arr[4] = 0x0;
2412 				arr[5] = 0x80;
2413 				arr[6] = 0x83;
2414 				arr[1] = scsicmd->cmnd[2];
2415 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2416 							 sizeof(inq_data));
2417 				scsicmd->result = DID_OK << 16 |
2418 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2419 			} else if (scsicmd->cmnd[2] == 0x80) {
2420 				/* unit serial number page */
2421 				arr[3] = setinqserial(dev, &arr[4],
2422 				  scmd_id(scsicmd));
2423 				arr[1] = scsicmd->cmnd[2];
2424 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2425 							 sizeof(inq_data));
2426 				if (aac_wwn != 2)
2427 					return aac_get_container_serial(
2428 						scsicmd);
2429 				scsicmd->result = DID_OK << 16 |
2430 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2431 			} else if (scsicmd->cmnd[2] == 0x83) {
2432 				/* vpd page 0x83 - Device Identification Page */
2433 				char *sno = (char *)&inq_data;
2434 				sno[3] = setinqserial(dev, &sno[4],
2435 						      scmd_id(scsicmd));
2436 				if (aac_wwn != 2)
2437 					return aac_get_container_serial(
2438 						scsicmd);
2439 				scsicmd->result = DID_OK << 16 |
2440 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2441 			} else {
2442 				/* vpd page not implemented */
2443 				scsicmd->result = DID_OK << 16 |
2444 				  COMMAND_COMPLETE << 8 |
2445 				  SAM_STAT_CHECK_CONDITION;
2446 				set_sense(&dev->fsa_dev[cid].sense_data,
2447 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2448 				  ASENCODE_NO_SENSE, 7, 2);
2449 				memcpy(scsicmd->sense_buffer,
2450 				  &dev->fsa_dev[cid].sense_data,
2451 				  min_t(size_t,
2452 					sizeof(dev->fsa_dev[cid].sense_data),
2453 					SCSI_SENSE_BUFFERSIZE));
2454 			}
2455 			scsicmd->scsi_done(scsicmd);
2456 			return 0;
2457 		}
2458 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2459 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2460 		inq_data.inqd_len = 31;
2461 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2462 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2463 		/*
2464 		 *	Set the Vendor, Product, and Revision Level
2465 		 *	see: <vendor>.c i.e. aac.c
2466 		 */
2467 		if (cid == host->this_id) {
2468 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2469 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2470 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2471 						 sizeof(inq_data));
2472 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2473 			scsicmd->scsi_done(scsicmd);
2474 			return 0;
2475 		}
2476 		if (dev->in_reset)
2477 			return -1;
2478 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2479 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2480 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2481 		return aac_get_container_name(scsicmd);
2482 	}
2483 	case SERVICE_ACTION_IN_16:
2484 		if (!(dev->raw_io_interface) ||
2485 		    !(dev->raw_io_64) ||
2486 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2487 			break;
2488 	{
2489 		u64 capacity;
2490 		char cp[13];
2491 		unsigned int alloc_len;
2492 
2493 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2494 		capacity = fsa_dev_ptr[cid].size - 1;
2495 		cp[0] = (capacity >> 56) & 0xff;
2496 		cp[1] = (capacity >> 48) & 0xff;
2497 		cp[2] = (capacity >> 40) & 0xff;
2498 		cp[3] = (capacity >> 32) & 0xff;
2499 		cp[4] = (capacity >> 24) & 0xff;
2500 		cp[5] = (capacity >> 16) & 0xff;
2501 		cp[6] = (capacity >> 8) & 0xff;
2502 		cp[7] = (capacity >> 0) & 0xff;
2503 		cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2504 		cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2505 		cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2506 		cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2507 		cp[12] = 0;
2508 
2509 		alloc_len = ((scsicmd->cmnd[10] << 24)
2510 			     + (scsicmd->cmnd[11] << 16)
2511 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2512 
2513 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2514 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2515 		if (alloc_len < scsi_bufflen(scsicmd))
2516 			scsi_set_resid(scsicmd,
2517 				       scsi_bufflen(scsicmd) - alloc_len);
2518 
2519 		/* Do not cache partition table for arrays */
2520 		scsicmd->device->removable = 1;
2521 
2522 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2523 		scsicmd->scsi_done(scsicmd);
2524 
2525 		return 0;
2526 	}
2527 
2528 	case READ_CAPACITY:
2529 	{
2530 		u32 capacity;
2531 		char cp[8];
2532 
2533 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2534 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2535 			capacity = fsa_dev_ptr[cid].size - 1;
2536 		else
2537 			capacity = (u32)-1;
2538 
2539 		cp[0] = (capacity >> 24) & 0xff;
2540 		cp[1] = (capacity >> 16) & 0xff;
2541 		cp[2] = (capacity >> 8) & 0xff;
2542 		cp[3] = (capacity >> 0) & 0xff;
2543 		cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2544 		cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2545 		cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2546 		cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
2547 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2548 		/* Do not cache partition table for arrays */
2549 		scsicmd->device->removable = 1;
2550 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2551 		  SAM_STAT_GOOD;
2552 		scsicmd->scsi_done(scsicmd);
2553 
2554 		return 0;
2555 	}
2556 
2557 	case MODE_SENSE:
2558 	{
2559 		int mode_buf_length = 4;
2560 		u32 capacity;
2561 		aac_modep_data mpd;
2562 
2563 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2564 			capacity = fsa_dev_ptr[cid].size - 1;
2565 		else
2566 			capacity = (u32)-1;
2567 
2568 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2569 		memset((char *)&mpd, 0, sizeof(aac_modep_data));
2570 
2571 		/* Mode data length */
2572 		mpd.hd.data_length = sizeof(mpd.hd) - 1;
2573 		/* Medium type - default */
2574 		mpd.hd.med_type = 0;
2575 		/* Device-specific param,
2576 		   bit 8: 0/1 = write enabled/protected
2577 		   bit 4: 0/1 = FUA enabled */
2578 		mpd.hd.dev_par = 0;
2579 
2580 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2581 			mpd.hd.dev_par = 0x10;
2582 		if (scsicmd->cmnd[1] & 0x8)
2583 			mpd.hd.bd_length = 0;	/* Block descriptor length */
2584 		else {
2585 			mpd.hd.bd_length = sizeof(mpd.bd);
2586 			mpd.hd.data_length += mpd.hd.bd_length;
2587 			mpd.bd.block_length[0] =
2588 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2589 			mpd.bd.block_length[1] =
2590 				(fsa_dev_ptr[cid].block_size >> 8) &  0xff;
2591 			mpd.bd.block_length[2] =
2592 				fsa_dev_ptr[cid].block_size  & 0xff;
2593 
2594 			mpd.mpc_buf[0] = scsicmd->cmnd[2];
2595 			if (scsicmd->cmnd[2] == 0x1C) {
2596 				/* page length */
2597 				mpd.mpc_buf[1] = 0xa;
2598 				/* Mode data length */
2599 				mpd.hd.data_length = 23;
2600 			} else {
2601 				/* Mode data length */
2602 				mpd.hd.data_length = 15;
2603 			}
2604 
2605 			if (capacity > 0xffffff) {
2606 				mpd.bd.block_count[0] = 0xff;
2607 				mpd.bd.block_count[1] = 0xff;
2608 				mpd.bd.block_count[2] = 0xff;
2609 			} else {
2610 				mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
2611 				mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
2612 				mpd.bd.block_count[2] = capacity  & 0xff;
2613 			}
2614 		}
2615 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2616 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2617 			mpd.hd.data_length += 3;
2618 			mpd.mpc_buf[0] = 8;
2619 			mpd.mpc_buf[1] = 1;
2620 			mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
2621 				? 0 : 0x04; /* WCE */
2622 			mode_buf_length = sizeof(mpd);
2623 		}
2624 
2625 		if (mode_buf_length > scsicmd->cmnd[4])
2626 			mode_buf_length = scsicmd->cmnd[4];
2627 		else
2628 			mode_buf_length = sizeof(mpd);
2629 		scsi_sg_copy_from_buffer(scsicmd,
2630 					 (char *)&mpd,
2631 					 mode_buf_length);
2632 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2633 		scsicmd->scsi_done(scsicmd);
2634 
2635 		return 0;
2636 	}
2637 	case MODE_SENSE_10:
2638 	{
2639 		u32 capacity;
2640 		int mode_buf_length = 8;
2641 		aac_modep10_data mpd10;
2642 
2643 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2644 			capacity = fsa_dev_ptr[cid].size - 1;
2645 		else
2646 			capacity = (u32)-1;
2647 
2648 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2649 		memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
2650 		/* Mode data length (MSB) */
2651 		mpd10.hd.data_length[0] = 0;
2652 		/* Mode data length (LSB) */
2653 		mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
2654 		/* Medium type - default */
2655 		mpd10.hd.med_type = 0;
2656 		/* Device-specific param,
2657 		   bit 8: 0/1 = write enabled/protected
2658 		   bit 4: 0/1 = FUA enabled */
2659 		mpd10.hd.dev_par = 0;
2660 
2661 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2662 			mpd10.hd.dev_par = 0x10;
2663 		mpd10.hd.rsrvd[0] = 0;	/* reserved */
2664 		mpd10.hd.rsrvd[1] = 0;	/* reserved */
2665 		if (scsicmd->cmnd[1] & 0x8) {
2666 			/* Block descriptor length (MSB) */
2667 			mpd10.hd.bd_length[0] = 0;
2668 			/* Block descriptor length (LSB) */
2669 			mpd10.hd.bd_length[1] = 0;
2670 		} else {
2671 			mpd10.hd.bd_length[0] = 0;
2672 			mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
2673 
2674 			mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
2675 
2676 			mpd10.bd.block_length[0] =
2677 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2678 			mpd10.bd.block_length[1] =
2679 				(fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2680 			mpd10.bd.block_length[2] =
2681 				fsa_dev_ptr[cid].block_size  & 0xff;
2682 
2683 			if (capacity > 0xffffff) {
2684 				mpd10.bd.block_count[0] = 0xff;
2685 				mpd10.bd.block_count[1] = 0xff;
2686 				mpd10.bd.block_count[2] = 0xff;
2687 			} else {
2688 				mpd10.bd.block_count[0] =
2689 					(capacity >> 16) & 0xff;
2690 				mpd10.bd.block_count[1] =
2691 					(capacity >> 8) & 0xff;
2692 				mpd10.bd.block_count[2] =
2693 					capacity  & 0xff;
2694 			}
2695 		}
2696 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2697 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2698 			mpd10.hd.data_length[1] += 3;
2699 			mpd10.mpc_buf[0] = 8;
2700 			mpd10.mpc_buf[1] = 1;
2701 			mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
2702 				? 0 : 0x04; /* WCE */
2703 			mode_buf_length = sizeof(mpd10);
2704 			if (mode_buf_length > scsicmd->cmnd[8])
2705 				mode_buf_length = scsicmd->cmnd[8];
2706 		}
2707 		scsi_sg_copy_from_buffer(scsicmd,
2708 					 (char *)&mpd10,
2709 					 mode_buf_length);
2710 
2711 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2712 		scsicmd->scsi_done(scsicmd);
2713 
2714 		return 0;
2715 	}
2716 	case REQUEST_SENSE:
2717 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2718 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2719 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2720 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2721 		scsicmd->scsi_done(scsicmd);
2722 		return 0;
2723 
2724 	case ALLOW_MEDIUM_REMOVAL:
2725 		dprintk((KERN_DEBUG "LOCK command.\n"));
2726 		if (scsicmd->cmnd[4])
2727 			fsa_dev_ptr[cid].locked = 1;
2728 		else
2729 			fsa_dev_ptr[cid].locked = 0;
2730 
2731 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2732 		scsicmd->scsi_done(scsicmd);
2733 		return 0;
2734 	/*
2735 	 *	These commands are all No-Ops
2736 	 */
2737 	case TEST_UNIT_READY:
2738 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2739 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2740 				SAM_STAT_CHECK_CONDITION;
2741 			set_sense(&dev->fsa_dev[cid].sense_data,
2742 				  NOT_READY, SENCODE_BECOMING_READY,
2743 				  ASENCODE_BECOMING_READY, 0, 0);
2744 			memcpy(scsicmd->sense_buffer,
2745 			       &dev->fsa_dev[cid].sense_data,
2746 			       min_t(size_t,
2747 				     sizeof(dev->fsa_dev[cid].sense_data),
2748 				     SCSI_SENSE_BUFFERSIZE));
2749 			scsicmd->scsi_done(scsicmd);
2750 			return 0;
2751 		}
2752 		/* FALLTHRU */
2753 	case RESERVE:
2754 	case RELEASE:
2755 	case REZERO_UNIT:
2756 	case REASSIGN_BLOCKS:
2757 	case SEEK_10:
2758 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2759 		scsicmd->scsi_done(scsicmd);
2760 		return 0;
2761 
2762 	case START_STOP:
2763 		return aac_start_stop(scsicmd);
2764 	}
2765 
2766 	switch (scsicmd->cmnd[0])
2767 	{
2768 		case READ_6:
2769 		case READ_10:
2770 		case READ_12:
2771 		case READ_16:
2772 			if (dev->in_reset)
2773 				return -1;
2774 			/*
2775 			 *	Hack to keep track of ordinal number of the device that
2776 			 *	corresponds to a container. Needed to convert
2777 			 *	containers to /dev/sd device names
2778 			 */
2779 
2780 			if (scsicmd->request->rq_disk)
2781 				strlcpy(fsa_dev_ptr[cid].devname,
2782 				scsicmd->request->rq_disk->disk_name,
2783 				min(sizeof(fsa_dev_ptr[cid].devname),
2784 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2785 
2786 			return aac_read(scsicmd);
2787 
2788 		case WRITE_6:
2789 		case WRITE_10:
2790 		case WRITE_12:
2791 		case WRITE_16:
2792 			if (dev->in_reset)
2793 				return -1;
2794 			return aac_write(scsicmd);
2795 
2796 		case SYNCHRONIZE_CACHE:
2797 			if (((aac_cache & 6) == 6) && dev->cache_protected) {
2798 				scsicmd->result = DID_OK << 16 |
2799 					COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2800 				scsicmd->scsi_done(scsicmd);
2801 				return 0;
2802 			}
2803 			/* Issue FIB to tell Firmware to flush it's cache */
2804 			if ((aac_cache & 6) != 2)
2805 				return aac_synchronize(scsicmd);
2806 			/* FALLTHRU */
2807 		default:
2808 			/*
2809 			 *	Unhandled commands
2810 			 */
2811 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2812 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2813 			set_sense(&dev->fsa_dev[cid].sense_data,
2814 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2815 			  ASENCODE_INVALID_COMMAND, 0, 0);
2816 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2817 				min_t(size_t,
2818 				      sizeof(dev->fsa_dev[cid].sense_data),
2819 				      SCSI_SENSE_BUFFERSIZE));
2820 			scsicmd->scsi_done(scsicmd);
2821 			return 0;
2822 	}
2823 }
2824 
2825 static int query_disk(struct aac_dev *dev, void __user *arg)
2826 {
2827 	struct aac_query_disk qd;
2828 	struct fsa_dev_info *fsa_dev_ptr;
2829 
2830 	fsa_dev_ptr = dev->fsa_dev;
2831 	if (!fsa_dev_ptr)
2832 		return -EBUSY;
2833 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2834 		return -EFAULT;
2835 	if (qd.cnum == -1)
2836 		qd.cnum = qd.id;
2837 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2838 	{
2839 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2840 			return -EINVAL;
2841 		qd.instance = dev->scsi_host_ptr->host_no;
2842 		qd.bus = 0;
2843 		qd.id = CONTAINER_TO_ID(qd.cnum);
2844 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2845 	}
2846 	else return -EINVAL;
2847 
2848 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2849 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2850 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2851 
2852 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2853 		qd.unmapped = 1;
2854 	else
2855 		qd.unmapped = 0;
2856 
2857 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2858 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2859 
2860 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2861 		return -EFAULT;
2862 	return 0;
2863 }
2864 
2865 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2866 {
2867 	struct aac_delete_disk dd;
2868 	struct fsa_dev_info *fsa_dev_ptr;
2869 
2870 	fsa_dev_ptr = dev->fsa_dev;
2871 	if (!fsa_dev_ptr)
2872 		return -EBUSY;
2873 
2874 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2875 		return -EFAULT;
2876 
2877 	if (dd.cnum >= dev->maximum_num_containers)
2878 		return -EINVAL;
2879 	/*
2880 	 *	Mark this container as being deleted.
2881 	 */
2882 	fsa_dev_ptr[dd.cnum].deleted = 1;
2883 	/*
2884 	 *	Mark the container as no longer valid
2885 	 */
2886 	fsa_dev_ptr[dd.cnum].valid = 0;
2887 	return 0;
2888 }
2889 
2890 static int delete_disk(struct aac_dev *dev, void __user *arg)
2891 {
2892 	struct aac_delete_disk dd;
2893 	struct fsa_dev_info *fsa_dev_ptr;
2894 
2895 	fsa_dev_ptr = dev->fsa_dev;
2896 	if (!fsa_dev_ptr)
2897 		return -EBUSY;
2898 
2899 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2900 		return -EFAULT;
2901 
2902 	if (dd.cnum >= dev->maximum_num_containers)
2903 		return -EINVAL;
2904 	/*
2905 	 *	If the container is locked, it can not be deleted by the API.
2906 	 */
2907 	if (fsa_dev_ptr[dd.cnum].locked)
2908 		return -EBUSY;
2909 	else {
2910 		/*
2911 		 *	Mark the container as no longer being valid.
2912 		 */
2913 		fsa_dev_ptr[dd.cnum].valid = 0;
2914 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2915 		return 0;
2916 	}
2917 }
2918 
2919 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2920 {
2921 	switch (cmd) {
2922 	case FSACTL_QUERY_DISK:
2923 		return query_disk(dev, arg);
2924 	case FSACTL_DELETE_DISK:
2925 		return delete_disk(dev, arg);
2926 	case FSACTL_FORCE_DELETE_DISK:
2927 		return force_delete_disk(dev, arg);
2928 	case FSACTL_GET_CONTAINERS:
2929 		return aac_get_containers(dev);
2930 	default:
2931 		return -ENOTTY;
2932 	}
2933 }
2934 
2935 /**
2936  *
2937  * aac_srb_callback
2938  * @context: the context set in the fib - here it is scsi cmd
2939  * @fibptr: pointer to the fib
2940  *
2941  * Handles the completion of a scsi command to a non dasd device
2942  *
2943  */
2944 
2945 static void aac_srb_callback(void *context, struct fib * fibptr)
2946 {
2947 	struct aac_dev *dev;
2948 	struct aac_srb_reply *srbreply;
2949 	struct scsi_cmnd *scsicmd;
2950 
2951 	scsicmd = (struct scsi_cmnd *) context;
2952 
2953 	if (!aac_valid_context(scsicmd, fibptr))
2954 		return;
2955 
2956 	BUG_ON(fibptr == NULL);
2957 	dev = fibptr->dev;
2958 
2959 	scsi_dma_unmap(scsicmd);
2960 
2961 	/* expose physical device if expose_physicald flag is on */
2962 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2963 	  && expose_physicals > 0)
2964 		aac_expose_phy_device(scsicmd);
2965 
2966 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2967 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2968 
2969 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
2970 		/* fast response */
2971 		srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
2972 		srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
2973 	} else {
2974 		/*
2975 		 *	Calculate resid for sg
2976 		 */
2977 		scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2978 				   - le32_to_cpu(srbreply->data_xfer_length));
2979 		/*
2980 		 * First check the fib status
2981 		 */
2982 
2983 		if (le32_to_cpu(srbreply->status) != ST_OK) {
2984 			int len;
2985 
2986 			printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2987 			len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2988 				    SCSI_SENSE_BUFFERSIZE);
2989 			scsicmd->result = DID_ERROR << 16
2990 						| COMMAND_COMPLETE << 8
2991 						| SAM_STAT_CHECK_CONDITION;
2992 			memcpy(scsicmd->sense_buffer,
2993 					srbreply->sense_data, len);
2994 		}
2995 
2996 		/*
2997 		 * Next check the srb status
2998 		 */
2999 		switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3000 		case SRB_STATUS_ERROR_RECOVERY:
3001 		case SRB_STATUS_PENDING:
3002 		case SRB_STATUS_SUCCESS:
3003 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3004 			break;
3005 		case SRB_STATUS_DATA_OVERRUN:
3006 			switch (scsicmd->cmnd[0]) {
3007 			case  READ_6:
3008 			case  WRITE_6:
3009 			case  READ_10:
3010 			case  WRITE_10:
3011 			case  READ_12:
3012 			case  WRITE_12:
3013 			case  READ_16:
3014 			case  WRITE_16:
3015 				if (le32_to_cpu(srbreply->data_xfer_length)
3016 							< scsicmd->underflow)
3017 					printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
3018 				else
3019 					printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
3020 				scsicmd->result = DID_ERROR << 16
3021 							| COMMAND_COMPLETE << 8;
3022 				break;
3023 			case INQUIRY: {
3024 				scsicmd->result = DID_OK << 16
3025 							| COMMAND_COMPLETE << 8;
3026 				break;
3027 			}
3028 			default:
3029 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3030 				break;
3031 			}
3032 			break;
3033 		case SRB_STATUS_ABORTED:
3034 			scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3035 			break;
3036 		case SRB_STATUS_ABORT_FAILED:
3037 			/*
3038 			 * Not sure about this one - but assuming the
3039 			 * hba was trying to abort for some reason
3040 			 */
3041 			scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3042 			break;
3043 		case SRB_STATUS_PARITY_ERROR:
3044 			scsicmd->result = DID_PARITY << 16
3045 						| MSG_PARITY_ERROR << 8;
3046 			break;
3047 		case SRB_STATUS_NO_DEVICE:
3048 		case SRB_STATUS_INVALID_PATH_ID:
3049 		case SRB_STATUS_INVALID_TARGET_ID:
3050 		case SRB_STATUS_INVALID_LUN:
3051 		case SRB_STATUS_SELECTION_TIMEOUT:
3052 			scsicmd->result = DID_NO_CONNECT << 16
3053 						| COMMAND_COMPLETE << 8;
3054 			break;
3055 
3056 		case SRB_STATUS_COMMAND_TIMEOUT:
3057 		case SRB_STATUS_TIMEOUT:
3058 			scsicmd->result = DID_TIME_OUT << 16
3059 						| COMMAND_COMPLETE << 8;
3060 			break;
3061 
3062 		case SRB_STATUS_BUSY:
3063 			scsicmd->result = DID_BUS_BUSY << 16
3064 						| COMMAND_COMPLETE << 8;
3065 			break;
3066 
3067 		case SRB_STATUS_BUS_RESET:
3068 			scsicmd->result = DID_RESET << 16
3069 						| COMMAND_COMPLETE << 8;
3070 			break;
3071 
3072 		case SRB_STATUS_MESSAGE_REJECTED:
3073 			scsicmd->result = DID_ERROR << 16
3074 						| MESSAGE_REJECT << 8;
3075 			break;
3076 		case SRB_STATUS_REQUEST_FLUSHED:
3077 		case SRB_STATUS_ERROR:
3078 		case SRB_STATUS_INVALID_REQUEST:
3079 		case SRB_STATUS_REQUEST_SENSE_FAILED:
3080 		case SRB_STATUS_NO_HBA:
3081 		case SRB_STATUS_UNEXPECTED_BUS_FREE:
3082 		case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3083 		case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3084 		case SRB_STATUS_DELAYED_RETRY:
3085 		case SRB_STATUS_BAD_FUNCTION:
3086 		case SRB_STATUS_NOT_STARTED:
3087 		case SRB_STATUS_NOT_IN_USE:
3088 		case SRB_STATUS_FORCE_ABORT:
3089 		case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3090 		default:
3091 #ifdef AAC_DETAILED_STATUS_INFO
3092 			printk(KERN_INFO "aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
3093 				le32_to_cpu(srbreply->srb_status) & 0x3F,
3094 				aac_get_status_string(
3095 					le32_to_cpu(srbreply->srb_status) & 0x3F),
3096 				scsicmd->cmnd[0],
3097 				le32_to_cpu(srbreply->scsi_status));
3098 #endif
3099 			if ((scsicmd->cmnd[0] == ATA_12)
3100 				|| (scsicmd->cmnd[0] == ATA_16)) {
3101 					if (scsicmd->cmnd[2] & (0x01 << 5)) {
3102 						scsicmd->result = DID_OK << 16
3103 							| COMMAND_COMPLETE << 8;
3104 				break;
3105 				} else {
3106 					scsicmd->result = DID_ERROR << 16
3107 						| COMMAND_COMPLETE << 8;
3108 					break;
3109 				}
3110 			} else {
3111 				scsicmd->result = DID_ERROR << 16
3112 					| COMMAND_COMPLETE << 8;
3113 				break;
3114 			}
3115 		}
3116 		if (le32_to_cpu(srbreply->scsi_status)
3117 				== SAM_STAT_CHECK_CONDITION) {
3118 			int len;
3119 
3120 			scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3121 			len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3122 				    SCSI_SENSE_BUFFERSIZE);
3123 #ifdef AAC_DETAILED_STATUS_INFO
3124 			printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
3125 						le32_to_cpu(srbreply->status), len);
3126 #endif
3127 			memcpy(scsicmd->sense_buffer,
3128 					srbreply->sense_data, len);
3129 		}
3130 	}
3131 	/*
3132 	 * OR in the scsi status (already shifted up a bit)
3133 	 */
3134 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3135 
3136 	aac_fib_complete(fibptr);
3137 	scsicmd->scsi_done(scsicmd);
3138 }
3139 
3140 /**
3141  *
3142  * aac_send_scb_fib
3143  * @scsicmd: the scsi command block
3144  *
3145  * This routine will form a FIB and fill in the aac_srb from the
3146  * scsicmd passed in.
3147  */
3148 
3149 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3150 {
3151 	struct fib* cmd_fibcontext;
3152 	struct aac_dev* dev;
3153 	int status;
3154 
3155 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3156 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3157 			scsicmd->device->lun > 7) {
3158 		scsicmd->result = DID_NO_CONNECT << 16;
3159 		scsicmd->scsi_done(scsicmd);
3160 		return 0;
3161 	}
3162 
3163 	/*
3164 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3165 	 */
3166 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3167 
3168 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3169 
3170 	/*
3171 	 *	Check that the command queued to the controller
3172 	 */
3173 	if (status == -EINPROGRESS) {
3174 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3175 		return 0;
3176 	}
3177 
3178 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3179 	aac_fib_complete(cmd_fibcontext);
3180 	aac_fib_free(cmd_fibcontext);
3181 
3182 	return -1;
3183 }
3184 
3185 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3186 {
3187 	struct aac_dev *dev;
3188 	unsigned long byte_count = 0;
3189 	int nseg;
3190 
3191 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3192 	// Get rid of old data
3193 	psg->count = 0;
3194 	psg->sg[0].addr = 0;
3195 	psg->sg[0].count = 0;
3196 
3197 	nseg = scsi_dma_map(scsicmd);
3198 	if (nseg < 0)
3199 		return nseg;
3200 	if (nseg) {
3201 		struct scatterlist *sg;
3202 		int i;
3203 
3204 		psg->count = cpu_to_le32(nseg);
3205 
3206 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
3207 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3208 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3209 			byte_count += sg_dma_len(sg);
3210 		}
3211 		/* hba wants the size to be exact */
3212 		if (byte_count > scsi_bufflen(scsicmd)) {
3213 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3214 				(byte_count - scsi_bufflen(scsicmd));
3215 			psg->sg[i-1].count = cpu_to_le32(temp);
3216 			byte_count = scsi_bufflen(scsicmd);
3217 		}
3218 		/* Check for command underflow */
3219 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3220 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3221 					byte_count, scsicmd->underflow);
3222 		}
3223 	}
3224 	return byte_count;
3225 }
3226 
3227 
3228 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3229 {
3230 	struct aac_dev *dev;
3231 	unsigned long byte_count = 0;
3232 	u64 addr;
3233 	int nseg;
3234 
3235 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3236 	// Get rid of old data
3237 	psg->count = 0;
3238 	psg->sg[0].addr[0] = 0;
3239 	psg->sg[0].addr[1] = 0;
3240 	psg->sg[0].count = 0;
3241 
3242 	nseg = scsi_dma_map(scsicmd);
3243 	if (nseg < 0)
3244 		return nseg;
3245 	if (nseg) {
3246 		struct scatterlist *sg;
3247 		int i;
3248 
3249 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
3250 			int count = sg_dma_len(sg);
3251 			addr = sg_dma_address(sg);
3252 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3253 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3254 			psg->sg[i].count = cpu_to_le32(count);
3255 			byte_count += count;
3256 		}
3257 		psg->count = cpu_to_le32(nseg);
3258 		/* hba wants the size to be exact */
3259 		if (byte_count > scsi_bufflen(scsicmd)) {
3260 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3261 				(byte_count - scsi_bufflen(scsicmd));
3262 			psg->sg[i-1].count = cpu_to_le32(temp);
3263 			byte_count = scsi_bufflen(scsicmd);
3264 		}
3265 		/* Check for command underflow */
3266 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3267 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3268 					byte_count, scsicmd->underflow);
3269 		}
3270 	}
3271 	return byte_count;
3272 }
3273 
3274 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3275 {
3276 	unsigned long byte_count = 0;
3277 	int nseg;
3278 
3279 	// Get rid of old data
3280 	psg->count = 0;
3281 	psg->sg[0].next = 0;
3282 	psg->sg[0].prev = 0;
3283 	psg->sg[0].addr[0] = 0;
3284 	psg->sg[0].addr[1] = 0;
3285 	psg->sg[0].count = 0;
3286 	psg->sg[0].flags = 0;
3287 
3288 	nseg = scsi_dma_map(scsicmd);
3289 	if (nseg < 0)
3290 		return nseg;
3291 	if (nseg) {
3292 		struct scatterlist *sg;
3293 		int i;
3294 
3295 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
3296 			int count = sg_dma_len(sg);
3297 			u64 addr = sg_dma_address(sg);
3298 			psg->sg[i].next = 0;
3299 			psg->sg[i].prev = 0;
3300 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3301 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3302 			psg->sg[i].count = cpu_to_le32(count);
3303 			psg->sg[i].flags = 0;
3304 			byte_count += count;
3305 		}
3306 		psg->count = cpu_to_le32(nseg);
3307 		/* hba wants the size to be exact */
3308 		if (byte_count > scsi_bufflen(scsicmd)) {
3309 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3310 				(byte_count - scsi_bufflen(scsicmd));
3311 			psg->sg[i-1].count = cpu_to_le32(temp);
3312 			byte_count = scsi_bufflen(scsicmd);
3313 		}
3314 		/* Check for command underflow */
3315 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3316 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3317 					byte_count, scsicmd->underflow);
3318 		}
3319 	}
3320 	return byte_count;
3321 }
3322 
3323 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3324 				struct aac_raw_io2 *rio2, int sg_max)
3325 {
3326 	unsigned long byte_count = 0;
3327 	int nseg;
3328 
3329 	nseg = scsi_dma_map(scsicmd);
3330 	if (nseg < 0)
3331 		return nseg;
3332 	if (nseg) {
3333 		struct scatterlist *sg;
3334 		int i, conformable = 0;
3335 		u32 min_size = PAGE_SIZE, cur_size;
3336 
3337 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
3338 			int count = sg_dma_len(sg);
3339 			u64 addr = sg_dma_address(sg);
3340 
3341 			BUG_ON(i >= sg_max);
3342 			rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3343 			rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3344 			cur_size = cpu_to_le32(count);
3345 			rio2->sge[i].length = cur_size;
3346 			rio2->sge[i].flags = 0;
3347 			if (i == 0) {
3348 				conformable = 1;
3349 				rio2->sgeFirstSize = cur_size;
3350 			} else if (i == 1) {
3351 				rio2->sgeNominalSize = cur_size;
3352 				min_size = cur_size;
3353 			} else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3354 				conformable = 0;
3355 				if (cur_size < min_size)
3356 					min_size = cur_size;
3357 			}
3358 			byte_count += count;
3359 		}
3360 
3361 		/* hba wants the size to be exact */
3362 		if (byte_count > scsi_bufflen(scsicmd)) {
3363 			u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3364 				(byte_count - scsi_bufflen(scsicmd));
3365 			rio2->sge[i-1].length = cpu_to_le32(temp);
3366 			byte_count = scsi_bufflen(scsicmd);
3367 		}
3368 
3369 		rio2->sgeCnt = cpu_to_le32(nseg);
3370 		rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3371 		/* not conformable: evaluate required sg elements */
3372 		if (!conformable) {
3373 			int j, nseg_new = nseg, err_found;
3374 			for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3375 				err_found = 0;
3376 				nseg_new = 2;
3377 				for (j = 1; j < nseg - 1; ++j) {
3378 					if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3379 						err_found = 1;
3380 						break;
3381 					}
3382 					nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3383 				}
3384 				if (!err_found)
3385 					break;
3386 			}
3387 			if (i > 0 && nseg_new <= sg_max)
3388 				aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3389 		} else
3390 			rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3391 
3392 		/* Check for command underflow */
3393 		if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3394 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3395 					byte_count, scsicmd->underflow);
3396 		}
3397 	}
3398 
3399 	return byte_count;
3400 }
3401 
3402 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3403 {
3404 	struct sge_ieee1212 *sge;
3405 	int i, j, pos;
3406 	u32 addr_low;
3407 
3408 	if (aac_convert_sgl == 0)
3409 		return 0;
3410 
3411 	sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3412 	if (sge == NULL)
3413 		return -1;
3414 
3415 	for (i = 1, pos = 1; i < nseg-1; ++i) {
3416 		for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3417 			addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3418 			sge[pos].addrLow = addr_low;
3419 			sge[pos].addrHigh = rio2->sge[i].addrHigh;
3420 			if (addr_low < rio2->sge[i].addrLow)
3421 				sge[pos].addrHigh++;
3422 			sge[pos].length = pages * PAGE_SIZE;
3423 			sge[pos].flags = 0;
3424 			pos++;
3425 		}
3426 	}
3427 	sge[pos] = rio2->sge[nseg-1];
3428 	memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3429 
3430 	kfree(sge);
3431 	rio2->sgeCnt = cpu_to_le32(nseg_new);
3432 	rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3433 	rio2->sgeNominalSize = pages * PAGE_SIZE;
3434 	return 0;
3435 }
3436 
3437 #ifdef AAC_DETAILED_STATUS_INFO
3438 
3439 struct aac_srb_status_info {
3440 	u32	status;
3441 	char	*str;
3442 };
3443 
3444 
3445 static struct aac_srb_status_info srb_status_info[] = {
3446 	{ SRB_STATUS_PENDING,		"Pending Status"},
3447 	{ SRB_STATUS_SUCCESS,		"Success"},
3448 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
3449 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
3450 	{ SRB_STATUS_ERROR,		"Error Event"},
3451 	{ SRB_STATUS_BUSY,		"Device Busy"},
3452 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
3453 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
3454 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
3455 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
3456 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
3457 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
3458 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
3459 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
3460 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
3461 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
3462 	{ SRB_STATUS_NO_HBA,		"No HBA"},
3463 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
3464 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
3465 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
3466 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
3467 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
3468 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
3469 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
3470 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
3471 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
3472 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
3473 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
3474 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
3475 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
3476 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
3477 	{ 0xff,				"Unknown Error"}
3478 };
3479 
3480 char *aac_get_status_string(u32 status)
3481 {
3482 	int i;
3483 
3484 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3485 		if (srb_status_info[i].status == status)
3486 			return srb_status_info[i].str;
3487 
3488 	return "Bad Status Code";
3489 }
3490 
3491 #endif
3492