1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/module.h> 29 30 #include <asm/unaligned.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 37 #include "aacraid.h" 38 39 /* values for inqd_pdt: Peripheral device type in plain English */ 40 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 41 #define INQD_PDT_PROC 0x03 /* Processor device */ 42 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 43 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 44 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 45 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 46 47 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 48 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 49 50 /* 51 * Sense codes 52 */ 53 54 #define SENCODE_NO_SENSE 0x00 55 #define SENCODE_END_OF_DATA 0x00 56 #define SENCODE_BECOMING_READY 0x04 57 #define SENCODE_INIT_CMD_REQUIRED 0x04 58 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 59 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 60 #define SENCODE_INVALID_COMMAND 0x20 61 #define SENCODE_LBA_OUT_OF_RANGE 0x21 62 #define SENCODE_INVALID_CDB_FIELD 0x24 63 #define SENCODE_LUN_NOT_SUPPORTED 0x25 64 #define SENCODE_INVALID_PARAM_FIELD 0x26 65 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 66 #define SENCODE_PARAM_VALUE_INVALID 0x26 67 #define SENCODE_RESET_OCCURRED 0x29 68 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 69 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 70 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 71 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 72 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 73 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 74 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 75 #define SENCODE_OVERLAPPED_COMMAND 0x4E 76 77 /* 78 * Additional sense codes 79 */ 80 81 #define ASENCODE_NO_SENSE 0x00 82 #define ASENCODE_END_OF_DATA 0x05 83 #define ASENCODE_BECOMING_READY 0x01 84 #define ASENCODE_INIT_CMD_REQUIRED 0x02 85 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 86 #define ASENCODE_INVALID_COMMAND 0x00 87 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 88 #define ASENCODE_INVALID_CDB_FIELD 0x00 89 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 90 #define ASENCODE_INVALID_PARAM_FIELD 0x00 91 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 92 #define ASENCODE_PARAM_VALUE_INVALID 0x02 93 #define ASENCODE_RESET_OCCURRED 0x00 94 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 95 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 96 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 97 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 98 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 99 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 100 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 101 #define ASENCODE_OVERLAPPED_COMMAND 0x00 102 103 #define BYTE0(x) (unsigned char)(x) 104 #define BYTE1(x) (unsigned char)((x) >> 8) 105 #define BYTE2(x) (unsigned char)((x) >> 16) 106 #define BYTE3(x) (unsigned char)((x) >> 24) 107 108 /* MODE_SENSE data format */ 109 typedef struct { 110 struct { 111 u8 data_length; 112 u8 med_type; 113 u8 dev_par; 114 u8 bd_length; 115 } __attribute__((packed)) hd; 116 struct { 117 u8 dens_code; 118 u8 block_count[3]; 119 u8 reserved; 120 u8 block_length[3]; 121 } __attribute__((packed)) bd; 122 u8 mpc_buf[3]; 123 } __attribute__((packed)) aac_modep_data; 124 125 /* MODE_SENSE_10 data format */ 126 typedef struct { 127 struct { 128 u8 data_length[2]; 129 u8 med_type; 130 u8 dev_par; 131 u8 rsrvd[2]; 132 u8 bd_length[2]; 133 } __attribute__((packed)) hd; 134 struct { 135 u8 dens_code; 136 u8 block_count[3]; 137 u8 reserved; 138 u8 block_length[3]; 139 } __attribute__((packed)) bd; 140 u8 mpc_buf[3]; 141 } __attribute__((packed)) aac_modep10_data; 142 143 /*------------------------------------------------------------------------------ 144 * S T R U C T S / T Y P E D E F S 145 *----------------------------------------------------------------------------*/ 146 /* SCSI inquiry data */ 147 struct inquiry_data { 148 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 149 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 150 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 151 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 152 u8 inqd_len; /* Additional length (n-4) */ 153 u8 inqd_pad1[2];/* Reserved - must be zero */ 154 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 155 u8 inqd_vid[8]; /* Vendor ID */ 156 u8 inqd_pid[16];/* Product ID */ 157 u8 inqd_prl[4]; /* Product Revision Level */ 158 }; 159 160 /* Added for VPD 0x83 */ 161 struct tvpd_id_descriptor_type_1 { 162 u8 codeset:4; /* VPD_CODE_SET */ 163 u8 reserved:4; 164 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 165 u8 reserved2:4; 166 u8 reserved3; 167 u8 identifierlength; 168 u8 venid[8]; 169 u8 productid[16]; 170 u8 serialnumber[8]; /* SN in ASCII */ 171 172 }; 173 174 struct tvpd_id_descriptor_type_2 { 175 u8 codeset:4; /* VPD_CODE_SET */ 176 u8 reserved:4; 177 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 178 u8 reserved2:4; 179 u8 reserved3; 180 u8 identifierlength; 181 struct teu64id { 182 u32 Serial; 183 /* The serial number supposed to be 40 bits, 184 * bit we only support 32, so make the last byte zero. */ 185 u8 reserved; 186 u8 venid[3]; 187 } eu64id; 188 189 }; 190 191 struct tvpd_id_descriptor_type_3 { 192 u8 codeset : 4; /* VPD_CODE_SET */ 193 u8 reserved : 4; 194 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 195 u8 reserved2 : 4; 196 u8 reserved3; 197 u8 identifierlength; 198 u8 Identifier[16]; 199 }; 200 201 struct tvpd_page83 { 202 u8 DeviceType:5; 203 u8 DeviceTypeQualifier:3; 204 u8 PageCode; 205 u8 reserved; 206 u8 PageLength; 207 struct tvpd_id_descriptor_type_1 type1; 208 struct tvpd_id_descriptor_type_2 type2; 209 struct tvpd_id_descriptor_type_3 type3; 210 }; 211 212 /* 213 * M O D U L E G L O B A L S 214 */ 215 216 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 217 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 218 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 219 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 220 struct aac_raw_io2 *rio2, int sg_max); 221 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 222 struct aac_hba_cmd_req *hbacmd, 223 int sg_max, u64 sg_address); 224 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 225 int pages, int nseg, int nseg_new); 226 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have its kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 static int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 static int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 aac_priv(scsicmd)->owner = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @dev: aac driver data 354 * @commit_flag: force sending CT_COMMIT_CONFIG 355 * 356 * Query config status, and commit the configuration if needed. 357 */ 358 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 359 { 360 int status = 0; 361 struct fib * fibptr; 362 363 if (!(fibptr = aac_fib_alloc(dev))) 364 return -ENOMEM; 365 366 aac_fib_init(fibptr); 367 { 368 struct aac_get_config_status *dinfo; 369 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 370 371 dinfo->command = cpu_to_le32(VM_ContainerConfig); 372 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 373 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 374 } 375 376 status = aac_fib_send(ContainerCommand, 377 fibptr, 378 sizeof (struct aac_get_config_status), 379 FsaNormal, 380 1, 1, 381 NULL, NULL); 382 if (status < 0) { 383 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 384 } else { 385 struct aac_get_config_status_resp *reply 386 = (struct aac_get_config_status_resp *) fib_data(fibptr); 387 dprintk((KERN_WARNING 388 "aac_get_config_status: response=%d status=%d action=%d\n", 389 le32_to_cpu(reply->response), 390 le32_to_cpu(reply->status), 391 le32_to_cpu(reply->data.action))); 392 if ((le32_to_cpu(reply->response) != ST_OK) || 393 (le32_to_cpu(reply->status) != CT_OK) || 394 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 395 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 396 status = -EINVAL; 397 } 398 } 399 /* Do not set XferState to zero unless receives a response from F/W */ 400 if (status >= 0) 401 aac_fib_complete(fibptr); 402 403 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 404 if (status >= 0) { 405 if ((aac_commit == 1) || commit_flag) { 406 struct aac_commit_config * dinfo; 407 aac_fib_init(fibptr); 408 dinfo = (struct aac_commit_config *) fib_data(fibptr); 409 410 dinfo->command = cpu_to_le32(VM_ContainerConfig); 411 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 412 413 status = aac_fib_send(ContainerCommand, 414 fibptr, 415 sizeof (struct aac_commit_config), 416 FsaNormal, 417 1, 1, 418 NULL, NULL); 419 /* Do not set XferState to zero unless 420 * receives a response from F/W */ 421 if (status >= 0) 422 aac_fib_complete(fibptr); 423 } else if (aac_commit == 0) { 424 printk(KERN_WARNING 425 "aac_get_config_status: Foreign device configurations are being ignored\n"); 426 } 427 } 428 /* FIB should be freed only after getting the response from the F/W */ 429 if (status != -ERESTARTSYS) 430 aac_fib_free(fibptr); 431 return status; 432 } 433 434 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 435 { 436 char inq_data; 437 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 438 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 439 inq_data &= 0xdf; 440 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 441 } 442 } 443 444 /** 445 * aac_get_containers - list containers 446 * @dev: aac driver data 447 * 448 * Make a list of all containers on this controller 449 */ 450 int aac_get_containers(struct aac_dev *dev) 451 { 452 struct fsa_dev_info *fsa_dev_ptr; 453 u32 index; 454 int status = 0; 455 struct fib * fibptr; 456 struct aac_get_container_count *dinfo; 457 struct aac_get_container_count_resp *dresp; 458 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 459 460 if (!(fibptr = aac_fib_alloc(dev))) 461 return -ENOMEM; 462 463 aac_fib_init(fibptr); 464 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 465 dinfo->command = cpu_to_le32(VM_ContainerConfig); 466 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 467 468 status = aac_fib_send(ContainerCommand, 469 fibptr, 470 sizeof (struct aac_get_container_count), 471 FsaNormal, 472 1, 1, 473 NULL, NULL); 474 if (status >= 0) { 475 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 476 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 477 if (fibptr->dev->supplement_adapter_info.supported_options2 & 478 AAC_OPTION_SUPPORTED_240_VOLUMES) { 479 maximum_num_containers = 480 le32_to_cpu(dresp->MaxSimpleVolumes); 481 } 482 aac_fib_complete(fibptr); 483 } 484 /* FIB should be freed only after getting the response from the F/W */ 485 if (status != -ERESTARTSYS) 486 aac_fib_free(fibptr); 487 488 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 489 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 490 if (dev->fsa_dev == NULL || 491 dev->maximum_num_containers != maximum_num_containers) { 492 493 fsa_dev_ptr = dev->fsa_dev; 494 495 dev->fsa_dev = kcalloc(maximum_num_containers, 496 sizeof(*fsa_dev_ptr), GFP_KERNEL); 497 498 kfree(fsa_dev_ptr); 499 fsa_dev_ptr = NULL; 500 501 502 if (!dev->fsa_dev) 503 return -ENOMEM; 504 505 dev->maximum_num_containers = maximum_num_containers; 506 } 507 for (index = 0; index < dev->maximum_num_containers; index++) { 508 dev->fsa_dev[index].devname[0] = '\0'; 509 dev->fsa_dev[index].valid = 0; 510 511 status = aac_probe_container(dev, index); 512 513 if (status < 0) { 514 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 515 break; 516 } 517 } 518 return status; 519 } 520 521 static void aac_scsi_done(struct scsi_cmnd *scmd) 522 { 523 if (scmd->device->request_queue) { 524 /* SCSI command has been submitted by the SCSI mid-layer. */ 525 scsi_done(scmd); 526 } else { 527 /* SCSI command has been submitted by aac_probe_container(). */ 528 aac_probe_container_scsi_done(scmd); 529 } 530 } 531 532 static void get_container_name_callback(void *context, struct fib * fibptr) 533 { 534 struct aac_get_name_resp * get_name_reply; 535 struct scsi_cmnd * scsicmd; 536 537 scsicmd = (struct scsi_cmnd *) context; 538 539 if (!aac_valid_context(scsicmd, fibptr)) 540 return; 541 542 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 543 BUG_ON(fibptr == NULL); 544 545 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 546 /* Failure is irrelevant, using default value instead */ 547 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 548 && (get_name_reply->data[0] != '\0')) { 549 char *sp = get_name_reply->data; 550 int data_size = sizeof_field(struct aac_get_name_resp, data); 551 552 sp[data_size - 1] = '\0'; 553 while (*sp == ' ') 554 ++sp; 555 if (*sp) { 556 struct inquiry_data inq; 557 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 558 int count = sizeof(d); 559 char *dp = d; 560 do { 561 *dp++ = (*sp) ? *sp++ : ' '; 562 } while (--count > 0); 563 564 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 565 memcpy(inq.inqd_pid, d, sizeof(d)); 566 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 567 } 568 } 569 570 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 571 572 aac_fib_complete(fibptr); 573 aac_scsi_done(scsicmd); 574 } 575 576 /* 577 * aac_get_container_name - get container name, none blocking. 578 */ 579 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 580 { 581 int status; 582 int data_size; 583 struct aac_get_name *dinfo; 584 struct fib * cmd_fibcontext; 585 struct aac_dev * dev; 586 587 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 588 589 data_size = sizeof_field(struct aac_get_name_resp, data); 590 591 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 592 593 aac_fib_init(cmd_fibcontext); 594 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 595 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 596 597 dinfo->command = cpu_to_le32(VM_ContainerConfig); 598 dinfo->type = cpu_to_le32(CT_READ_NAME); 599 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 600 dinfo->count = cpu_to_le32(data_size - 1); 601 602 status = aac_fib_send(ContainerCommand, 603 cmd_fibcontext, 604 sizeof(struct aac_get_name_resp), 605 FsaNormal, 606 0, 1, 607 (fib_callback)get_container_name_callback, 608 (void *) scsicmd); 609 610 /* 611 * Check that the command queued to the controller 612 */ 613 if (status == -EINPROGRESS) 614 return 0; 615 616 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 617 aac_fib_complete(cmd_fibcontext); 618 return -1; 619 } 620 621 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 622 { 623 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 624 625 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 626 return aac_scsi_cmd(scsicmd); 627 628 scsicmd->result = DID_NO_CONNECT << 16; 629 aac_scsi_done(scsicmd); 630 return 0; 631 } 632 633 static void _aac_probe_container2(void * context, struct fib * fibptr) 634 { 635 struct fsa_dev_info *fsa_dev_ptr; 636 int (*callback)(struct scsi_cmnd *); 637 struct scsi_cmnd *scsicmd = context; 638 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd); 639 int i; 640 641 642 if (!aac_valid_context(scsicmd, fibptr)) 643 return; 644 645 cmd_priv->status = 0; 646 fsa_dev_ptr = fibptr->dev->fsa_dev; 647 if (fsa_dev_ptr) { 648 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 649 __le32 sup_options2; 650 651 fsa_dev_ptr += scmd_id(scsicmd); 652 sup_options2 = 653 fibptr->dev->supplement_adapter_info.supported_options2; 654 655 if ((le32_to_cpu(dresp->status) == ST_OK) && 656 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 657 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 658 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 659 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 660 fsa_dev_ptr->block_size = 0x200; 661 } else { 662 fsa_dev_ptr->block_size = 663 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 664 } 665 for (i = 0; i < 16; i++) 666 fsa_dev_ptr->identifier[i] = 667 dresp->mnt[0].fileinfo.bdevinfo 668 .identifier[i]; 669 fsa_dev_ptr->valid = 1; 670 /* sense_key holds the current state of the spin-up */ 671 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 672 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 673 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 674 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 675 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 676 fsa_dev_ptr->size 677 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 678 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 679 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 680 } 681 if ((fsa_dev_ptr->valid & 1) == 0) 682 fsa_dev_ptr->valid = 0; 683 cmd_priv->status = le32_to_cpu(dresp->count); 684 } 685 aac_fib_complete(fibptr); 686 aac_fib_free(fibptr); 687 callback = cmd_priv->callback; 688 cmd_priv->callback = NULL; 689 (*callback)(scsicmd); 690 return; 691 } 692 693 static void _aac_probe_container1(void * context, struct fib * fibptr) 694 { 695 struct scsi_cmnd * scsicmd; 696 struct aac_mount * dresp; 697 struct aac_query_mount *dinfo; 698 int status; 699 700 dresp = (struct aac_mount *) fib_data(fibptr); 701 if (!aac_supports_2T(fibptr->dev)) { 702 dresp->mnt[0].capacityhigh = 0; 703 if ((le32_to_cpu(dresp->status) == ST_OK) && 704 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 705 _aac_probe_container2(context, fibptr); 706 return; 707 } 708 } 709 scsicmd = (struct scsi_cmnd *) context; 710 711 if (!aac_valid_context(scsicmd, fibptr)) 712 return; 713 714 aac_fib_init(fibptr); 715 716 dinfo = (struct aac_query_mount *)fib_data(fibptr); 717 718 if (fibptr->dev->supplement_adapter_info.supported_options2 & 719 AAC_OPTION_VARIABLE_BLOCK_SIZE) 720 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 721 else 722 dinfo->command = cpu_to_le32(VM_NameServe64); 723 724 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 725 dinfo->type = cpu_to_le32(FT_FILESYS); 726 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 727 728 status = aac_fib_send(ContainerCommand, 729 fibptr, 730 sizeof(struct aac_query_mount), 731 FsaNormal, 732 0, 1, 733 _aac_probe_container2, 734 (void *) scsicmd); 735 /* 736 * Check that the command queued to the controller 737 */ 738 if (status < 0 && status != -EINPROGRESS) { 739 /* Inherit results from VM_NameServe, if any */ 740 dresp->status = cpu_to_le32(ST_OK); 741 _aac_probe_container2(context, fibptr); 742 } 743 } 744 745 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 746 { 747 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd); 748 struct fib * fibptr; 749 int status = -ENOMEM; 750 751 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 752 struct aac_query_mount *dinfo; 753 754 aac_fib_init(fibptr); 755 756 dinfo = (struct aac_query_mount *)fib_data(fibptr); 757 758 if (fibptr->dev->supplement_adapter_info.supported_options2 & 759 AAC_OPTION_VARIABLE_BLOCK_SIZE) 760 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 761 else 762 dinfo->command = cpu_to_le32(VM_NameServe); 763 764 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 765 dinfo->type = cpu_to_le32(FT_FILESYS); 766 cmd_priv->callback = callback; 767 cmd_priv->owner = AAC_OWNER_FIRMWARE; 768 769 status = aac_fib_send(ContainerCommand, 770 fibptr, 771 sizeof(struct aac_query_mount), 772 FsaNormal, 773 0, 1, 774 _aac_probe_container1, 775 (void *) scsicmd); 776 /* 777 * Check that the command queued to the controller 778 */ 779 if (status == -EINPROGRESS) 780 return 0; 781 782 if (status < 0) { 783 cmd_priv->callback = NULL; 784 aac_fib_complete(fibptr); 785 aac_fib_free(fibptr); 786 } 787 } 788 if (status < 0) { 789 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 790 if (fsa_dev_ptr) { 791 fsa_dev_ptr += scmd_id(scsicmd); 792 if ((fsa_dev_ptr->valid & 1) == 0) { 793 fsa_dev_ptr->valid = 0; 794 return (*callback)(scsicmd); 795 } 796 } 797 } 798 return status; 799 } 800 801 /** 802 * aac_probe_container_callback1 - query a logical volume 803 * @scsicmd: the scsi command block 804 * 805 * Queries the controller about the given volume. The volume information 806 * is updated in the struct fsa_dev_info structure rather than returned. 807 */ 808 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 809 { 810 scsicmd->device = NULL; 811 return 0; 812 } 813 814 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 815 { 816 aac_probe_container_callback1(scsi_cmnd); 817 } 818 819 int aac_probe_container(struct aac_dev *dev, int cid) 820 { 821 struct aac_cmd_priv *cmd_priv; 822 struct scsi_cmnd *scsicmd = kzalloc(sizeof(*scsicmd) + sizeof(*cmd_priv), GFP_KERNEL); 823 struct scsi_device *scsidev = kzalloc(sizeof(*scsidev), GFP_KERNEL); 824 int status; 825 826 if (!scsicmd || !scsidev) { 827 kfree(scsicmd); 828 kfree(scsidev); 829 return -ENOMEM; 830 } 831 832 scsicmd->device = scsidev; 833 scsidev->sdev_state = 0; 834 scsidev->id = cid; 835 scsidev->host = dev->scsi_host_ptr; 836 837 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 838 while (scsicmd->device == scsidev) 839 schedule(); 840 kfree(scsidev); 841 cmd_priv = aac_priv(scsicmd); 842 status = cmd_priv->status; 843 kfree(scsicmd); 844 return status; 845 } 846 847 /* Local Structure to set SCSI inquiry data strings */ 848 struct scsi_inq { 849 char vid[8]; /* Vendor ID */ 850 char pid[16]; /* Product ID */ 851 char prl[4]; /* Product Revision Level */ 852 }; 853 854 /** 855 * inqstrcpy - string merge 856 * @a: string to copy from 857 * @b: string to copy to 858 * 859 * Copy a String from one location to another 860 * without copying \0 861 */ 862 863 static void inqstrcpy(char *a, char *b) 864 { 865 866 while (*a != (char)0) 867 *b++ = *a++; 868 } 869 870 static char *container_types[] = { 871 "None", 872 "Volume", 873 "Mirror", 874 "Stripe", 875 "RAID5", 876 "SSRW", 877 "SSRO", 878 "Morph", 879 "Legacy", 880 "RAID4", 881 "RAID10", 882 "RAID00", 883 "V-MIRRORS", 884 "PSEUDO R4", 885 "RAID50", 886 "RAID5D", 887 "RAID5D0", 888 "RAID1E", 889 "RAID6", 890 "RAID60", 891 "Unknown" 892 }; 893 894 char * get_container_type(unsigned tindex) 895 { 896 if (tindex >= ARRAY_SIZE(container_types)) 897 tindex = ARRAY_SIZE(container_types) - 1; 898 return container_types[tindex]; 899 } 900 901 /* Function: setinqstr 902 * 903 * Arguments: [1] pointer to void [1] int 904 * 905 * Purpose: Sets SCSI inquiry data strings for vendor, product 906 * and revision level. Allows strings to be set in platform dependent 907 * files instead of in OS dependent driver source. 908 */ 909 910 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 911 { 912 struct scsi_inq *str; 913 struct aac_supplement_adapter_info *sup_adap_info; 914 915 sup_adap_info = &dev->supplement_adapter_info; 916 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 917 memset(str, ' ', sizeof(*str)); 918 919 if (sup_adap_info->adapter_type_text[0]) { 920 int c; 921 char *cp; 922 char *cname = kmemdup(sup_adap_info->adapter_type_text, 923 sizeof(sup_adap_info->adapter_type_text), 924 GFP_ATOMIC); 925 if (!cname) 926 return; 927 928 cp = cname; 929 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 930 inqstrcpy("SMC", str->vid); 931 else { 932 c = sizeof(str->vid); 933 while (*cp && *cp != ' ' && --c) 934 ++cp; 935 c = *cp; 936 *cp = '\0'; 937 inqstrcpy(cname, str->vid); 938 *cp = c; 939 while (*cp && *cp != ' ') 940 ++cp; 941 } 942 while (*cp == ' ') 943 ++cp; 944 /* last six chars reserved for vol type */ 945 if (strlen(cp) > sizeof(str->pid)) 946 cp[sizeof(str->pid)] = '\0'; 947 inqstrcpy (cp, str->pid); 948 949 kfree(cname); 950 } else { 951 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 952 953 inqstrcpy (mp->vname, str->vid); 954 /* last six chars reserved for vol type */ 955 inqstrcpy (mp->model, str->pid); 956 } 957 958 if (tindex < ARRAY_SIZE(container_types)){ 959 char *findit = str->pid; 960 961 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 962 /* RAID is superfluous in the context of a RAID device */ 963 if (memcmp(findit-4, "RAID", 4) == 0) 964 *(findit -= 4) = ' '; 965 if (((findit - str->pid) + strlen(container_types[tindex])) 966 < (sizeof(str->pid) + sizeof(str->prl))) 967 inqstrcpy (container_types[tindex], findit + 1); 968 } 969 inqstrcpy ("V1.0", str->prl); 970 } 971 972 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 973 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 974 { 975 int container; 976 977 vpdpage83data->type3.codeset = 1; 978 vpdpage83data->type3.identifiertype = 3; 979 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 980 - 4; 981 982 for (container = 0; container < dev->maximum_num_containers; 983 container++) { 984 985 if (scmd_id(scsicmd) == container) { 986 memcpy(vpdpage83data->type3.Identifier, 987 dev->fsa_dev[container].identifier, 988 16); 989 break; 990 } 991 } 992 } 993 994 static void get_container_serial_callback(void *context, struct fib * fibptr) 995 { 996 struct aac_get_serial_resp * get_serial_reply; 997 struct scsi_cmnd * scsicmd; 998 999 BUG_ON(fibptr == NULL); 1000 1001 scsicmd = (struct scsi_cmnd *) context; 1002 if (!aac_valid_context(scsicmd, fibptr)) 1003 return; 1004 1005 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 1006 /* Failure is irrelevant, using default value instead */ 1007 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 1008 /*Check to see if it's for VPD 0x83 or 0x80 */ 1009 if (scsicmd->cmnd[2] == 0x83) { 1010 /* vpd page 0x83 - Device Identification Page */ 1011 struct aac_dev *dev; 1012 int i; 1013 struct tvpd_page83 vpdpage83data; 1014 1015 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1016 1017 memset(((u8 *)&vpdpage83data), 0, 1018 sizeof(vpdpage83data)); 1019 1020 /* DIRECT_ACCESS_DEVIC */ 1021 vpdpage83data.DeviceType = 0; 1022 /* DEVICE_CONNECTED */ 1023 vpdpage83data.DeviceTypeQualifier = 0; 1024 /* VPD_DEVICE_IDENTIFIERS */ 1025 vpdpage83data.PageCode = 0x83; 1026 vpdpage83data.reserved = 0; 1027 vpdpage83data.PageLength = 1028 sizeof(vpdpage83data.type1) + 1029 sizeof(vpdpage83data.type2); 1030 1031 /* VPD 83 Type 3 is not supported for ARC */ 1032 if (dev->sa_firmware) 1033 vpdpage83data.PageLength += 1034 sizeof(vpdpage83data.type3); 1035 1036 /* T10 Vendor Identifier Field Format */ 1037 /* VpdcodesetAscii */ 1038 vpdpage83data.type1.codeset = 2; 1039 /* VpdIdentifierTypeVendorId */ 1040 vpdpage83data.type1.identifiertype = 1; 1041 vpdpage83data.type1.identifierlength = 1042 sizeof(vpdpage83data.type1) - 4; 1043 1044 /* "ADAPTEC " for adaptec */ 1045 memcpy(vpdpage83data.type1.venid, 1046 "ADAPTEC ", 1047 sizeof(vpdpage83data.type1.venid)); 1048 memcpy(vpdpage83data.type1.productid, 1049 "ARRAY ", 1050 sizeof( 1051 vpdpage83data.type1.productid)); 1052 1053 /* Convert to ascii based serial number. 1054 * The LSB is the end. 1055 */ 1056 for (i = 0; i < 8; i++) { 1057 u8 temp = 1058 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1059 if (temp > 0x9) { 1060 vpdpage83data.type1.serialnumber[i] = 1061 'A' + (temp - 0xA); 1062 } else { 1063 vpdpage83data.type1.serialnumber[i] = 1064 '0' + temp; 1065 } 1066 } 1067 1068 /* VpdCodeSetBinary */ 1069 vpdpage83data.type2.codeset = 1; 1070 /* VpdidentifiertypeEUI64 */ 1071 vpdpage83data.type2.identifiertype = 2; 1072 vpdpage83data.type2.identifierlength = 1073 sizeof(vpdpage83data.type2) - 4; 1074 1075 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1076 vpdpage83data.type2.eu64id.venid[1] = 0; 1077 vpdpage83data.type2.eu64id.venid[2] = 0; 1078 1079 vpdpage83data.type2.eu64id.Serial = 1080 get_serial_reply->uid; 1081 vpdpage83data.type2.eu64id.reserved = 0; 1082 1083 /* 1084 * VpdIdentifierTypeFCPHName 1085 * VPD 0x83 Type 3 not supported for ARC 1086 */ 1087 if (dev->sa_firmware) { 1088 build_vpd83_type3(&vpdpage83data, 1089 dev, scsicmd); 1090 } 1091 1092 /* Move the inquiry data to the response buffer. */ 1093 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1094 sizeof(vpdpage83data)); 1095 } else { 1096 /* It must be for VPD 0x80 */ 1097 char sp[13]; 1098 /* EVPD bit set */ 1099 sp[0] = INQD_PDT_DA; 1100 sp[1] = scsicmd->cmnd[2]; 1101 sp[2] = 0; 1102 sp[3] = scnprintf(sp+4, sizeof(sp)-4, "%08X", 1103 le32_to_cpu(get_serial_reply->uid)); 1104 scsi_sg_copy_from_buffer(scsicmd, sp, 1105 sizeof(sp)); 1106 } 1107 } 1108 1109 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 1110 1111 aac_fib_complete(fibptr); 1112 aac_scsi_done(scsicmd); 1113 } 1114 1115 /* 1116 * aac_get_container_serial - get container serial, none blocking. 1117 */ 1118 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1119 { 1120 int status; 1121 struct aac_get_serial *dinfo; 1122 struct fib * cmd_fibcontext; 1123 struct aac_dev * dev; 1124 1125 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1126 1127 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1128 1129 aac_fib_init(cmd_fibcontext); 1130 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1131 1132 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1133 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1134 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1135 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 1136 1137 status = aac_fib_send(ContainerCommand, 1138 cmd_fibcontext, 1139 sizeof(struct aac_get_serial_resp), 1140 FsaNormal, 1141 0, 1, 1142 (fib_callback) get_container_serial_callback, 1143 (void *) scsicmd); 1144 1145 /* 1146 * Check that the command queued to the controller 1147 */ 1148 if (status == -EINPROGRESS) 1149 return 0; 1150 1151 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1152 aac_fib_complete(cmd_fibcontext); 1153 return -1; 1154 } 1155 1156 /* Function: setinqserial 1157 * 1158 * Arguments: [1] pointer to void [1] int 1159 * 1160 * Purpose: Sets SCSI Unit Serial number. 1161 * This is a fake. We should read a proper 1162 * serial number from the container. <SuSE>But 1163 * without docs it's quite hard to do it :-) 1164 * So this will have to do in the meantime.</SuSE> 1165 */ 1166 1167 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1168 { 1169 /* 1170 * This breaks array migration. 1171 */ 1172 return scnprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1173 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1174 } 1175 1176 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1177 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1178 { 1179 u8 *sense_buf = (u8 *)sense_data; 1180 /* Sense data valid, err code 70h */ 1181 sense_buf[0] = 0x70; /* No info field */ 1182 sense_buf[1] = 0; /* Segment number, always zero */ 1183 1184 sense_buf[2] = sense_key; /* Sense key */ 1185 1186 sense_buf[12] = sense_code; /* Additional sense code */ 1187 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1188 1189 if (sense_key == ILLEGAL_REQUEST) { 1190 sense_buf[7] = 10; /* Additional sense length */ 1191 1192 sense_buf[15] = bit_pointer; 1193 /* Illegal parameter is in the parameter block */ 1194 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1195 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1196 /* Illegal parameter is in the CDB block */ 1197 sense_buf[16] = field_pointer >> 8; /* MSB */ 1198 sense_buf[17] = field_pointer; /* LSB */ 1199 } else 1200 sense_buf[7] = 6; /* Additional sense length */ 1201 } 1202 1203 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1204 { 1205 if (lba & 0xffffffff00000000LL) { 1206 int cid = scmd_id(cmd); 1207 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1208 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 1209 set_sense(&dev->fsa_dev[cid].sense_data, 1210 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1211 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1212 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1213 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1214 SCSI_SENSE_BUFFERSIZE)); 1215 aac_scsi_done(cmd); 1216 return 1; 1217 } 1218 return 0; 1219 } 1220 1221 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1222 { 1223 return 0; 1224 } 1225 1226 static void io_callback(void *context, struct fib * fibptr); 1227 1228 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1229 { 1230 struct aac_dev *dev = fib->dev; 1231 u16 fibsize, command; 1232 long ret; 1233 1234 aac_fib_init(fib); 1235 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1236 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1237 !dev->sync_mode) { 1238 struct aac_raw_io2 *readcmd2; 1239 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1240 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1241 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1242 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1243 readcmd2->byteCount = cpu_to_le32(count * 1244 dev->fsa_dev[scmd_id(cmd)].block_size); 1245 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1246 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1247 ret = aac_build_sgraw2(cmd, readcmd2, 1248 dev->scsi_host_ptr->sg_tablesize); 1249 if (ret < 0) 1250 return ret; 1251 command = ContainerRawIo2; 1252 fibsize = struct_size(readcmd2, sge, 1253 le32_to_cpu(readcmd2->sgeCnt)); 1254 } else { 1255 struct aac_raw_io *readcmd; 1256 readcmd = (struct aac_raw_io *) fib_data(fib); 1257 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1258 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1259 readcmd->count = cpu_to_le32(count * 1260 dev->fsa_dev[scmd_id(cmd)].block_size); 1261 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1262 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1263 readcmd->bpTotal = 0; 1264 readcmd->bpComplete = 0; 1265 ret = aac_build_sgraw(cmd, &readcmd->sg); 1266 if (ret < 0) 1267 return ret; 1268 command = ContainerRawIo; 1269 fibsize = sizeof(struct aac_raw_io) + 1270 (le32_to_cpu(readcmd->sg.count) * sizeof(struct sgentryraw)); 1271 } 1272 1273 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1274 /* 1275 * Now send the Fib to the adapter 1276 */ 1277 return aac_fib_send(command, 1278 fib, 1279 fibsize, 1280 FsaNormal, 1281 0, 1, 1282 (fib_callback) io_callback, 1283 (void *) cmd); 1284 } 1285 1286 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1287 { 1288 u16 fibsize; 1289 struct aac_read64 *readcmd; 1290 long ret; 1291 1292 aac_fib_init(fib); 1293 readcmd = (struct aac_read64 *) fib_data(fib); 1294 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1295 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1296 readcmd->sector_count = cpu_to_le16(count); 1297 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1298 readcmd->pad = 0; 1299 readcmd->flags = 0; 1300 1301 ret = aac_build_sg64(cmd, &readcmd->sg); 1302 if (ret < 0) 1303 return ret; 1304 fibsize = sizeof(struct aac_read64) + 1305 (le32_to_cpu(readcmd->sg.count) * 1306 sizeof (struct sgentry64)); 1307 BUG_ON (fibsize > (fib->dev->max_fib_size - 1308 sizeof(struct aac_fibhdr))); 1309 /* 1310 * Now send the Fib to the adapter 1311 */ 1312 return aac_fib_send(ContainerCommand64, 1313 fib, 1314 fibsize, 1315 FsaNormal, 1316 0, 1, 1317 (fib_callback) io_callback, 1318 (void *) cmd); 1319 } 1320 1321 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1322 { 1323 u16 fibsize; 1324 struct aac_read *readcmd; 1325 struct aac_dev *dev = fib->dev; 1326 long ret; 1327 1328 aac_fib_init(fib); 1329 readcmd = (struct aac_read *) fib_data(fib); 1330 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1331 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1332 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1333 readcmd->count = cpu_to_le32(count * 1334 dev->fsa_dev[scmd_id(cmd)].block_size); 1335 1336 ret = aac_build_sg(cmd, &readcmd->sg); 1337 if (ret < 0) 1338 return ret; 1339 fibsize = sizeof(struct aac_read) + 1340 (le32_to_cpu(readcmd->sg.count) * 1341 sizeof (struct sgentry)); 1342 BUG_ON (fibsize > (fib->dev->max_fib_size - 1343 sizeof(struct aac_fibhdr))); 1344 /* 1345 * Now send the Fib to the adapter 1346 */ 1347 return aac_fib_send(ContainerCommand, 1348 fib, 1349 fibsize, 1350 FsaNormal, 1351 0, 1, 1352 (fib_callback) io_callback, 1353 (void *) cmd); 1354 } 1355 1356 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1357 { 1358 struct aac_dev *dev = fib->dev; 1359 u16 fibsize, command; 1360 long ret; 1361 1362 aac_fib_init(fib); 1363 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1364 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1365 !dev->sync_mode) { 1366 struct aac_raw_io2 *writecmd2; 1367 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1368 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1369 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1370 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1371 writecmd2->byteCount = cpu_to_le32(count * 1372 dev->fsa_dev[scmd_id(cmd)].block_size); 1373 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1374 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1375 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1376 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1377 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1378 ret = aac_build_sgraw2(cmd, writecmd2, 1379 dev->scsi_host_ptr->sg_tablesize); 1380 if (ret < 0) 1381 return ret; 1382 command = ContainerRawIo2; 1383 fibsize = struct_size(writecmd2, sge, 1384 le32_to_cpu(writecmd2->sgeCnt)); 1385 } else { 1386 struct aac_raw_io *writecmd; 1387 writecmd = (struct aac_raw_io *) fib_data(fib); 1388 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1389 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1390 writecmd->count = cpu_to_le32(count * 1391 dev->fsa_dev[scmd_id(cmd)].block_size); 1392 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1393 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1394 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1395 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1396 cpu_to_le16(RIO_TYPE_WRITE); 1397 writecmd->bpTotal = 0; 1398 writecmd->bpComplete = 0; 1399 ret = aac_build_sgraw(cmd, &writecmd->sg); 1400 if (ret < 0) 1401 return ret; 1402 command = ContainerRawIo; 1403 fibsize = sizeof(struct aac_raw_io) + 1404 (le32_to_cpu(writecmd->sg.count) * sizeof(struct sgentryraw)); 1405 } 1406 1407 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1408 /* 1409 * Now send the Fib to the adapter 1410 */ 1411 return aac_fib_send(command, 1412 fib, 1413 fibsize, 1414 FsaNormal, 1415 0, 1, 1416 (fib_callback) io_callback, 1417 (void *) cmd); 1418 } 1419 1420 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1421 { 1422 u16 fibsize; 1423 struct aac_write64 *writecmd; 1424 long ret; 1425 1426 aac_fib_init(fib); 1427 writecmd = (struct aac_write64 *) fib_data(fib); 1428 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1429 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1430 writecmd->sector_count = cpu_to_le16(count); 1431 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1432 writecmd->pad = 0; 1433 writecmd->flags = 0; 1434 1435 ret = aac_build_sg64(cmd, &writecmd->sg); 1436 if (ret < 0) 1437 return ret; 1438 fibsize = sizeof(struct aac_write64) + 1439 (le32_to_cpu(writecmd->sg.count) * 1440 sizeof (struct sgentry64)); 1441 BUG_ON (fibsize > (fib->dev->max_fib_size - 1442 sizeof(struct aac_fibhdr))); 1443 /* 1444 * Now send the Fib to the adapter 1445 */ 1446 return aac_fib_send(ContainerCommand64, 1447 fib, 1448 fibsize, 1449 FsaNormal, 1450 0, 1, 1451 (fib_callback) io_callback, 1452 (void *) cmd); 1453 } 1454 1455 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1456 { 1457 u16 fibsize; 1458 struct aac_write *writecmd; 1459 struct aac_dev *dev = fib->dev; 1460 long ret; 1461 1462 aac_fib_init(fib); 1463 writecmd = (struct aac_write *) fib_data(fib); 1464 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1465 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1466 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1467 writecmd->count = cpu_to_le32(count * 1468 dev->fsa_dev[scmd_id(cmd)].block_size); 1469 writecmd->sg.count = cpu_to_le32(1); 1470 /* ->stable is not used - it did mean which type of write */ 1471 1472 ret = aac_build_sg(cmd, &writecmd->sg); 1473 if (ret < 0) 1474 return ret; 1475 fibsize = sizeof(struct aac_write) + 1476 (le32_to_cpu(writecmd->sg.count) * 1477 sizeof (struct sgentry)); 1478 BUG_ON (fibsize > (fib->dev->max_fib_size - 1479 sizeof(struct aac_fibhdr))); 1480 /* 1481 * Now send the Fib to the adapter 1482 */ 1483 return aac_fib_send(ContainerCommand, 1484 fib, 1485 fibsize, 1486 FsaNormal, 1487 0, 1, 1488 (fib_callback) io_callback, 1489 (void *) cmd); 1490 } 1491 1492 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1493 { 1494 struct aac_srb * srbcmd; 1495 u32 flag; 1496 u32 timeout; 1497 struct aac_dev *dev = fib->dev; 1498 1499 aac_fib_init(fib); 1500 switch(cmd->sc_data_direction){ 1501 case DMA_TO_DEVICE: 1502 flag = SRB_DataOut; 1503 break; 1504 case DMA_BIDIRECTIONAL: 1505 flag = SRB_DataIn | SRB_DataOut; 1506 break; 1507 case DMA_FROM_DEVICE: 1508 flag = SRB_DataIn; 1509 break; 1510 case DMA_NONE: 1511 default: /* shuts up some versions of gcc */ 1512 flag = SRB_NoDataXfer; 1513 break; 1514 } 1515 1516 srbcmd = (struct aac_srb*) fib_data(fib); 1517 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1518 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1519 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1520 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1521 srbcmd->flags = cpu_to_le32(flag); 1522 timeout = scsi_cmd_to_rq(cmd)->timeout / HZ; 1523 if (timeout == 0) 1524 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1525 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1526 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1527 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1528 return srbcmd; 1529 } 1530 1531 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1532 struct scsi_cmnd *cmd) 1533 { 1534 struct aac_hba_cmd_req *hbacmd; 1535 struct aac_dev *dev; 1536 int bus, target; 1537 u64 address; 1538 1539 dev = (struct aac_dev *)cmd->device->host->hostdata; 1540 1541 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1542 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1543 /* iu_type is a parameter of aac_hba_send */ 1544 switch (cmd->sc_data_direction) { 1545 case DMA_TO_DEVICE: 1546 hbacmd->byte1 = 2; 1547 break; 1548 case DMA_FROM_DEVICE: 1549 case DMA_BIDIRECTIONAL: 1550 hbacmd->byte1 = 1; 1551 break; 1552 case DMA_NONE: 1553 default: 1554 break; 1555 } 1556 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1557 1558 bus = aac_logical_to_phys(scmd_channel(cmd)); 1559 target = scmd_id(cmd); 1560 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1561 1562 /* we fill in reply_qid later in aac_src_deliver_message */ 1563 /* we fill in iu_type, request_id later in aac_hba_send */ 1564 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1565 1566 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1567 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1568 1569 address = (u64)fib->hw_error_pa; 1570 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1571 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1572 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1573 1574 return hbacmd; 1575 } 1576 1577 static void aac_srb_callback(void *context, struct fib * fibptr); 1578 1579 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1580 { 1581 u16 fibsize; 1582 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1583 long ret; 1584 1585 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1586 if (ret < 0) 1587 return ret; 1588 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1589 1590 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1591 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1592 /* 1593 * Build Scatter/Gather list 1594 */ 1595 fibsize = sizeof(struct aac_srb) + 1596 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1597 sizeof(struct sgentry64)); 1598 BUG_ON (fibsize > (fib->dev->max_fib_size - 1599 sizeof(struct aac_fibhdr))); 1600 1601 /* 1602 * Now send the Fib to the adapter 1603 */ 1604 return aac_fib_send(ScsiPortCommand64, fib, 1605 fibsize, FsaNormal, 0, 1, 1606 (fib_callback) aac_srb_callback, 1607 (void *) cmd); 1608 } 1609 1610 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1611 { 1612 u16 fibsize; 1613 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1614 long ret; 1615 1616 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1617 if (ret < 0) 1618 return ret; 1619 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1620 1621 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1622 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1623 /* 1624 * Build Scatter/Gather list 1625 */ 1626 fibsize = sizeof (struct aac_srb) + 1627 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1628 sizeof (struct sgentry)); 1629 BUG_ON (fibsize > (fib->dev->max_fib_size - 1630 sizeof(struct aac_fibhdr))); 1631 1632 /* 1633 * Now send the Fib to the adapter 1634 */ 1635 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1636 (fib_callback) aac_srb_callback, (void *) cmd); 1637 } 1638 1639 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1640 { 1641 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1642 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1643 return FAILED; 1644 return aac_scsi_32(fib, cmd); 1645 } 1646 1647 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1648 { 1649 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1650 struct aac_dev *dev; 1651 long ret; 1652 1653 dev = (struct aac_dev *)cmd->device->host->hostdata; 1654 1655 ret = aac_build_sghba(cmd, hbacmd, 1656 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1657 if (ret < 0) 1658 return ret; 1659 1660 /* 1661 * Now send the HBA command to the adapter 1662 */ 1663 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1664 sizeof(struct aac_hba_sgl); 1665 1666 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1667 (fib_callback) aac_hba_callback, 1668 (void *) cmd); 1669 } 1670 1671 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1672 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1673 { 1674 struct fib *fibptr; 1675 dma_addr_t addr; 1676 int rcode; 1677 int fibsize; 1678 struct aac_srb *srb; 1679 struct aac_srb_reply *srb_reply; 1680 struct sgmap64 *sg64; 1681 u32 vbus; 1682 u32 vid; 1683 1684 if (!dev->sa_firmware) 1685 return 0; 1686 1687 /* allocate FIB */ 1688 fibptr = aac_fib_alloc(dev); 1689 if (!fibptr) 1690 return -ENOMEM; 1691 1692 aac_fib_init(fibptr); 1693 fibptr->hw_fib_va->header.XferState &= 1694 ~cpu_to_le32(FastResponseCapable); 1695 1696 fibsize = sizeof(struct aac_srb) + sizeof(struct sgentry64); 1697 1698 /* allocate DMA buffer for response */ 1699 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1700 DMA_BIDIRECTIONAL); 1701 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1702 rcode = -ENOMEM; 1703 goto fib_error; 1704 } 1705 1706 srb = fib_data(fibptr); 1707 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1708 1709 vbus = (u32)le16_to_cpu( 1710 dev->supplement_adapter_info.virt_device_bus); 1711 vid = (u32)le16_to_cpu( 1712 dev->supplement_adapter_info.virt_device_target); 1713 1714 /* set the common request fields */ 1715 srb->channel = cpu_to_le32(vbus); 1716 srb->id = cpu_to_le32(vid); 1717 srb->lun = 0; 1718 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1719 srb->timeout = 0; 1720 srb->retry_limit = 0; 1721 srb->cdb_size = cpu_to_le32(16); 1722 srb->count = cpu_to_le32(xfer_len); 1723 1724 sg64 = (struct sgmap64 *)&srb->sg; 1725 sg64->count = cpu_to_le32(1); 1726 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1727 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1728 sg64->sg[0].count = cpu_to_le32(xfer_len); 1729 1730 /* 1731 * Copy the updated data for other dumping or other usage if needed 1732 */ 1733 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1734 1735 /* issue request to the controller */ 1736 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1737 1, 1, NULL, NULL); 1738 1739 if (rcode == -ERESTARTSYS) 1740 rcode = -ERESTART; 1741 1742 if (unlikely(rcode < 0)) 1743 goto bmic_error; 1744 1745 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1746 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1747 1748 bmic_error: 1749 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1750 fib_error: 1751 aac_fib_complete(fibptr); 1752 aac_fib_free(fibptr); 1753 return rcode; 1754 } 1755 1756 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1757 { 1758 1759 struct aac_ciss_identify_pd *identify_resp; 1760 1761 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1762 return; 1763 1764 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1765 if (identify_resp == NULL) { 1766 dev->hba_map[bus][target].qd_limit = 32; 1767 return; 1768 } 1769 1770 if (identify_resp->current_queue_depth_limit <= 0 || 1771 identify_resp->current_queue_depth_limit > 255) 1772 dev->hba_map[bus][target].qd_limit = 32; 1773 else 1774 dev->hba_map[bus][target].qd_limit = 1775 identify_resp->current_queue_depth_limit; 1776 } 1777 1778 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1779 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1780 { 1781 int rcode = -ENOMEM; 1782 int datasize; 1783 struct aac_srb_unit srbu; 1784 struct aac_srb *srbcmd; 1785 struct aac_ciss_identify_pd *identify_reply; 1786 1787 datasize = sizeof(struct aac_ciss_identify_pd); 1788 identify_reply = kmalloc(datasize, GFP_KERNEL); 1789 if (!identify_reply) 1790 goto out; 1791 1792 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1793 1794 srbcmd = &srbu.srb; 1795 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1796 srbcmd->cdb[0] = 0x26; 1797 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1798 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1799 1800 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1801 if (unlikely(rcode < 0)) 1802 goto mem_free_all; 1803 1804 *identify_resp = identify_reply; 1805 1806 out: 1807 return rcode; 1808 mem_free_all: 1809 kfree(identify_reply); 1810 goto out; 1811 } 1812 1813 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1814 { 1815 kfree(dev->safw_phys_luns); 1816 dev->safw_phys_luns = NULL; 1817 } 1818 1819 /** 1820 * aac_get_safw_ciss_luns() - Process topology change 1821 * @dev: aac_dev structure 1822 * 1823 * Execute a CISS REPORT PHYS LUNS and process the results into 1824 * the current hba_map. 1825 */ 1826 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1827 { 1828 int rcode = -ENOMEM; 1829 int datasize; 1830 struct aac_srb *srbcmd; 1831 struct aac_srb_unit srbu; 1832 struct aac_ciss_phys_luns_resp *phys_luns; 1833 1834 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1835 AAC_MAX_TARGETS * sizeof(struct _ciss_lun); 1836 phys_luns = kmalloc(datasize, GFP_KERNEL); 1837 if (phys_luns == NULL) 1838 goto out; 1839 1840 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1841 1842 srbcmd = &srbu.srb; 1843 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1844 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1845 srbcmd->cdb[1] = 2; /* extended reporting */ 1846 srbcmd->cdb[8] = (u8)(datasize >> 8); 1847 srbcmd->cdb[9] = (u8)(datasize); 1848 1849 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1850 if (unlikely(rcode < 0)) 1851 goto mem_free_all; 1852 1853 if (phys_luns->resp_flag != 2) { 1854 rcode = -ENOMSG; 1855 goto mem_free_all; 1856 } 1857 1858 dev->safw_phys_luns = phys_luns; 1859 1860 out: 1861 return rcode; 1862 mem_free_all: 1863 kfree(phys_luns); 1864 goto out; 1865 } 1866 1867 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1868 { 1869 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1870 } 1871 1872 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1873 { 1874 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1875 } 1876 1877 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1878 { 1879 return dev->safw_phys_luns->lun[lun].level2[0]; 1880 } 1881 1882 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1883 { 1884 return dev->safw_phys_luns->lun[lun].bus >> 6; 1885 } 1886 1887 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1888 { 1889 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1890 } 1891 1892 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1893 { 1894 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1895 } 1896 1897 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1898 int bus, int target) 1899 { 1900 kfree(dev->hba_map[bus][target].safw_identify_resp); 1901 dev->hba_map[bus][target].safw_identify_resp = NULL; 1902 } 1903 1904 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1905 int lun_count) 1906 { 1907 int luns; 1908 int i; 1909 u32 bus; 1910 u32 target; 1911 1912 luns = aac_get_safw_phys_lun_count(dev); 1913 1914 if (luns < lun_count) 1915 lun_count = luns; 1916 else if (lun_count < 0) 1917 lun_count = luns; 1918 1919 for (i = 0; i < lun_count; i++) { 1920 bus = aac_get_safw_phys_bus(dev, i); 1921 target = aac_get_safw_phys_target(dev, i); 1922 1923 aac_free_safw_identify_resp(dev, bus, target); 1924 } 1925 } 1926 1927 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1928 { 1929 int i; 1930 int rcode = 0; 1931 u32 lun_count; 1932 u32 bus; 1933 u32 target; 1934 struct aac_ciss_identify_pd *identify_resp = NULL; 1935 1936 lun_count = aac_get_safw_phys_lun_count(dev); 1937 1938 for (i = 0; i < lun_count; ++i) { 1939 1940 bus = aac_get_safw_phys_bus(dev, i); 1941 target = aac_get_safw_phys_target(dev, i); 1942 1943 rcode = aac_issue_safw_bmic_identify(dev, 1944 &identify_resp, bus, target); 1945 1946 if (unlikely(rcode < 0)) 1947 goto free_identify_resp; 1948 1949 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1950 } 1951 1952 out: 1953 return rcode; 1954 free_identify_resp: 1955 aac_free_safw_all_identify_resp(dev, i); 1956 goto out; 1957 } 1958 1959 /** 1960 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1961 * @dev: aac_dev structure 1962 * 1963 * Update our hba map with the information gathered from the FW 1964 */ 1965 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1966 { 1967 /* ok and extended reporting */ 1968 u32 lun_count, nexus; 1969 u32 i, bus, target; 1970 u8 expose_flag, attribs; 1971 1972 lun_count = aac_get_safw_phys_lun_count(dev); 1973 1974 dev->scan_counter++; 1975 1976 for (i = 0; i < lun_count; ++i) { 1977 1978 bus = aac_get_safw_phys_bus(dev, i); 1979 target = aac_get_safw_phys_target(dev, i); 1980 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1981 attribs = aac_get_safw_phys_attribs(dev, i); 1982 nexus = aac_get_safw_phys_nexus(dev, i); 1983 1984 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1985 continue; 1986 1987 if (expose_flag != 0) { 1988 dev->hba_map[bus][target].devtype = 1989 AAC_DEVTYPE_RAID_MEMBER; 1990 continue; 1991 } 1992 1993 if (nexus != 0 && (attribs & 8)) { 1994 dev->hba_map[bus][target].devtype = 1995 AAC_DEVTYPE_NATIVE_RAW; 1996 dev->hba_map[bus][target].rmw_nexus = 1997 nexus; 1998 } else 1999 dev->hba_map[bus][target].devtype = 2000 AAC_DEVTYPE_ARC_RAW; 2001 2002 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 2003 2004 aac_set_safw_target_qd(dev, bus, target); 2005 } 2006 } 2007 2008 static int aac_setup_safw_targets(struct aac_dev *dev) 2009 { 2010 int rcode = 0; 2011 2012 rcode = aac_get_containers(dev); 2013 if (unlikely(rcode < 0)) 2014 goto out; 2015 2016 rcode = aac_get_safw_ciss_luns(dev); 2017 if (unlikely(rcode < 0)) 2018 goto out; 2019 2020 rcode = aac_get_safw_attr_all_targets(dev); 2021 if (unlikely(rcode < 0)) 2022 goto free_ciss_luns; 2023 2024 aac_set_safw_attr_all_targets(dev); 2025 2026 aac_free_safw_all_identify_resp(dev, -1); 2027 free_ciss_luns: 2028 aac_free_safw_ciss_luns(dev); 2029 out: 2030 return rcode; 2031 } 2032 2033 int aac_setup_safw_adapter(struct aac_dev *dev) 2034 { 2035 return aac_setup_safw_targets(dev); 2036 } 2037 2038 int aac_get_adapter_info(struct aac_dev* dev) 2039 { 2040 struct fib* fibptr; 2041 int rcode; 2042 u32 tmp, bus, target; 2043 struct aac_adapter_info *info; 2044 struct aac_bus_info *command; 2045 struct aac_bus_info_response *bus_info; 2046 2047 if (!(fibptr = aac_fib_alloc(dev))) 2048 return -ENOMEM; 2049 2050 aac_fib_init(fibptr); 2051 info = (struct aac_adapter_info *) fib_data(fibptr); 2052 memset(info,0,sizeof(*info)); 2053 2054 rcode = aac_fib_send(RequestAdapterInfo, 2055 fibptr, 2056 sizeof(*info), 2057 FsaNormal, 2058 -1, 1, /* First `interrupt' command uses special wait */ 2059 NULL, 2060 NULL); 2061 2062 if (rcode < 0) { 2063 /* FIB should be freed only after 2064 * getting the response from the F/W */ 2065 if (rcode != -ERESTARTSYS) { 2066 aac_fib_complete(fibptr); 2067 aac_fib_free(fibptr); 2068 } 2069 return rcode; 2070 } 2071 memcpy(&dev->adapter_info, info, sizeof(*info)); 2072 2073 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2074 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2075 struct aac_supplement_adapter_info * sinfo; 2076 2077 aac_fib_init(fibptr); 2078 2079 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2080 2081 memset(sinfo,0,sizeof(*sinfo)); 2082 2083 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2084 fibptr, 2085 sizeof(*sinfo), 2086 FsaNormal, 2087 1, 1, 2088 NULL, 2089 NULL); 2090 2091 if (rcode >= 0) 2092 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2093 if (rcode == -ERESTARTSYS) { 2094 fibptr = aac_fib_alloc(dev); 2095 if (!fibptr) 2096 return -ENOMEM; 2097 } 2098 2099 } 2100 2101 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2102 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2103 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2104 dev->hba_map[bus][target].devtype = 0; 2105 dev->hba_map[bus][target].qd_limit = 0; 2106 } 2107 } 2108 2109 /* 2110 * GetBusInfo 2111 */ 2112 2113 aac_fib_init(fibptr); 2114 2115 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2116 2117 memset(bus_info, 0, sizeof(*bus_info)); 2118 2119 command = (struct aac_bus_info *)bus_info; 2120 2121 command->Command = cpu_to_le32(VM_Ioctl); 2122 command->ObjType = cpu_to_le32(FT_DRIVE); 2123 command->MethodId = cpu_to_le32(1); 2124 command->CtlCmd = cpu_to_le32(GetBusInfo); 2125 2126 rcode = aac_fib_send(ContainerCommand, 2127 fibptr, 2128 sizeof (*bus_info), 2129 FsaNormal, 2130 1, 1, 2131 NULL, NULL); 2132 2133 /* reasoned default */ 2134 dev->maximum_num_physicals = 16; 2135 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2136 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2137 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2138 } 2139 2140 if (!dev->in_reset) { 2141 char buffer[16]; 2142 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2143 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2144 dev->name, 2145 dev->id, 2146 tmp>>24, 2147 (tmp>>16)&0xff, 2148 tmp&0xff, 2149 le32_to_cpu(dev->adapter_info.kernelbuild), 2150 (int)sizeof(dev->supplement_adapter_info.build_date), 2151 dev->supplement_adapter_info.build_date); 2152 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2153 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2154 dev->name, dev->id, 2155 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2156 le32_to_cpu(dev->adapter_info.monitorbuild)); 2157 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2158 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2159 dev->name, dev->id, 2160 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2161 le32_to_cpu(dev->adapter_info.biosbuild)); 2162 buffer[0] = '\0'; 2163 if (aac_get_serial_number( 2164 shost_to_class(dev->scsi_host_ptr), buffer)) 2165 printk(KERN_INFO "%s%d: serial %s", 2166 dev->name, dev->id, buffer); 2167 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2168 printk(KERN_INFO "%s%d: TSID %.*s\n", 2169 dev->name, dev->id, 2170 (int)sizeof(dev->supplement_adapter_info 2171 .vpd_info.tsid), 2172 dev->supplement_adapter_info.vpd_info.tsid); 2173 } 2174 if (!aac_check_reset || ((aac_check_reset == 1) && 2175 (dev->supplement_adapter_info.supported_options2 & 2176 AAC_OPTION_IGNORE_RESET))) { 2177 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2178 dev->name, dev->id); 2179 } 2180 } 2181 2182 dev->cache_protected = 0; 2183 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2184 AAC_FEATURE_JBOD) != 0); 2185 dev->nondasd_support = 0; 2186 dev->raid_scsi_mode = 0; 2187 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2188 dev->nondasd_support = 1; 2189 2190 /* 2191 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2192 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2193 * force nondasd support on. If we decide to allow the non-dasd flag 2194 * additional changes changes will have to be made to support 2195 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2196 * changed to support the new dev->raid_scsi_mode flag instead of 2197 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2198 * function aac_detect will have to be modified where it sets up the 2199 * max number of channels based on the aac->nondasd_support flag only. 2200 */ 2201 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2202 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2203 dev->nondasd_support = 1; 2204 dev->raid_scsi_mode = 1; 2205 } 2206 if (dev->raid_scsi_mode != 0) 2207 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2208 dev->name, dev->id); 2209 2210 if (nondasd != -1) 2211 dev->nondasd_support = (nondasd!=0); 2212 if (dev->nondasd_support && !dev->in_reset) 2213 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2214 2215 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2216 dev->needs_dac = 1; 2217 dev->dac_support = 0; 2218 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2219 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2220 if (!dev->in_reset) 2221 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2222 dev->name, dev->id); 2223 dev->dac_support = 1; 2224 } 2225 2226 if(dacmode != -1) { 2227 dev->dac_support = (dacmode!=0); 2228 } 2229 2230 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2231 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2232 & AAC_QUIRK_SCSI_32)) { 2233 dev->nondasd_support = 0; 2234 dev->jbod = 0; 2235 expose_physicals = 0; 2236 } 2237 2238 if (dev->dac_support) { 2239 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) { 2240 if (!dev->in_reset) 2241 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2242 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) { 2243 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2244 dev->dac_support = 0; 2245 } else { 2246 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2247 rcode = -ENOMEM; 2248 } 2249 } 2250 /* 2251 * Deal with configuring for the individualized limits of each packet 2252 * interface. 2253 */ 2254 dev->a_ops.adapter_scsi = (dev->dac_support) 2255 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2256 ? aac_scsi_32_64 2257 : aac_scsi_64) 2258 : aac_scsi_32; 2259 if (dev->raw_io_interface) { 2260 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2261 ? aac_bounds_64 2262 : aac_bounds_32; 2263 dev->a_ops.adapter_read = aac_read_raw_io; 2264 dev->a_ops.adapter_write = aac_write_raw_io; 2265 } else { 2266 dev->a_ops.adapter_bounds = aac_bounds_32; 2267 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2268 sizeof(struct aac_fibhdr) - 2269 sizeof(struct aac_write)) / 2270 sizeof(struct sgentry); 2271 if (dev->dac_support) { 2272 dev->a_ops.adapter_read = aac_read_block64; 2273 dev->a_ops.adapter_write = aac_write_block64; 2274 /* 2275 * 38 scatter gather elements 2276 */ 2277 dev->scsi_host_ptr->sg_tablesize = 2278 (dev->max_fib_size - 2279 sizeof(struct aac_fibhdr) - 2280 sizeof(struct aac_write64)) / 2281 sizeof(struct sgentry64); 2282 } else { 2283 dev->a_ops.adapter_read = aac_read_block; 2284 dev->a_ops.adapter_write = aac_write_block; 2285 } 2286 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2287 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2288 /* 2289 * Worst case size that could cause sg overflow when 2290 * we break up SG elements that are larger than 64KB. 2291 * Would be nice if we could tell the SCSI layer what 2292 * the maximum SG element size can be. Worst case is 2293 * (sg_tablesize-1) 4KB elements with one 64KB 2294 * element. 2295 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2296 */ 2297 dev->scsi_host_ptr->max_sectors = 2298 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2299 } 2300 } 2301 if (!dev->sync_mode && dev->sa_firmware && 2302 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2303 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2304 HBA_MAX_SG_SEPARATE; 2305 2306 /* FIB should be freed only after getting the response from the F/W */ 2307 if (rcode != -ERESTARTSYS) { 2308 aac_fib_complete(fibptr); 2309 aac_fib_free(fibptr); 2310 } 2311 2312 return rcode; 2313 } 2314 2315 2316 static void io_callback(void *context, struct fib * fibptr) 2317 { 2318 struct aac_dev *dev; 2319 struct aac_read_reply *readreply; 2320 struct scsi_cmnd *scsicmd; 2321 u32 cid; 2322 2323 scsicmd = (struct scsi_cmnd *) context; 2324 2325 if (!aac_valid_context(scsicmd, fibptr)) 2326 return; 2327 2328 dev = fibptr->dev; 2329 cid = scmd_id(scsicmd); 2330 2331 if (nblank(dprintk(x))) { 2332 u64 lba; 2333 switch (scsicmd->cmnd[0]) { 2334 case WRITE_6: 2335 case READ_6: 2336 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2337 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2338 break; 2339 case WRITE_16: 2340 case READ_16: 2341 lba = ((u64)scsicmd->cmnd[2] << 56) | 2342 ((u64)scsicmd->cmnd[3] << 48) | 2343 ((u64)scsicmd->cmnd[4] << 40) | 2344 ((u64)scsicmd->cmnd[5] << 32) | 2345 ((u64)scsicmd->cmnd[6] << 24) | 2346 (scsicmd->cmnd[7] << 16) | 2347 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2348 break; 2349 case WRITE_12: 2350 case READ_12: 2351 lba = ((u64)scsicmd->cmnd[2] << 24) | 2352 (scsicmd->cmnd[3] << 16) | 2353 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2354 break; 2355 default: 2356 lba = ((u64)scsicmd->cmnd[2] << 24) | 2357 (scsicmd->cmnd[3] << 16) | 2358 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2359 break; 2360 } 2361 printk(KERN_DEBUG 2362 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2363 smp_processor_id(), (unsigned long long)lba, jiffies); 2364 } 2365 2366 BUG_ON(fibptr == NULL); 2367 2368 scsi_dma_unmap(scsicmd); 2369 2370 readreply = (struct aac_read_reply *)fib_data(fibptr); 2371 switch (le32_to_cpu(readreply->status)) { 2372 case ST_OK: 2373 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2374 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2375 break; 2376 case ST_NOT_READY: 2377 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2378 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2379 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2380 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2381 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2382 SCSI_SENSE_BUFFERSIZE)); 2383 break; 2384 case ST_MEDERR: 2385 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2386 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2387 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2388 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2389 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2390 SCSI_SENSE_BUFFERSIZE)); 2391 break; 2392 default: 2393 #ifdef AAC_DETAILED_STATUS_INFO 2394 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2395 le32_to_cpu(readreply->status)); 2396 #endif 2397 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2398 set_sense(&dev->fsa_dev[cid].sense_data, 2399 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2400 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2401 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2402 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2403 SCSI_SENSE_BUFFERSIZE)); 2404 break; 2405 } 2406 aac_fib_complete(fibptr); 2407 2408 aac_scsi_done(scsicmd); 2409 } 2410 2411 static int aac_read(struct scsi_cmnd * scsicmd) 2412 { 2413 u64 lba; 2414 u32 count; 2415 int status; 2416 struct aac_dev *dev; 2417 struct fib * cmd_fibcontext; 2418 int cid; 2419 2420 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2421 /* 2422 * Get block address and transfer length 2423 */ 2424 switch (scsicmd->cmnd[0]) { 2425 case READ_6: 2426 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2427 2428 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2429 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2430 count = scsicmd->cmnd[4]; 2431 2432 if (count == 0) 2433 count = 256; 2434 break; 2435 case READ_16: 2436 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2437 2438 lba = ((u64)scsicmd->cmnd[2] << 56) | 2439 ((u64)scsicmd->cmnd[3] << 48) | 2440 ((u64)scsicmd->cmnd[4] << 40) | 2441 ((u64)scsicmd->cmnd[5] << 32) | 2442 ((u64)scsicmd->cmnd[6] << 24) | 2443 (scsicmd->cmnd[7] << 16) | 2444 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2445 count = (scsicmd->cmnd[10] << 24) | 2446 (scsicmd->cmnd[11] << 16) | 2447 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2448 break; 2449 case READ_12: 2450 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2451 2452 lba = ((u64)scsicmd->cmnd[2] << 24) | 2453 (scsicmd->cmnd[3] << 16) | 2454 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2455 count = (scsicmd->cmnd[6] << 24) | 2456 (scsicmd->cmnd[7] << 16) | 2457 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2458 break; 2459 default: 2460 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2461 2462 lba = ((u64)scsicmd->cmnd[2] << 24) | 2463 (scsicmd->cmnd[3] << 16) | 2464 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2465 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2466 break; 2467 } 2468 2469 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2470 cid = scmd_id(scsicmd); 2471 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2472 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2473 set_sense(&dev->fsa_dev[cid].sense_data, 2474 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2475 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2476 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2477 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2478 SCSI_SENSE_BUFFERSIZE)); 2479 aac_scsi_done(scsicmd); 2480 return 0; 2481 } 2482 2483 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2484 smp_processor_id(), (unsigned long long)lba, jiffies)); 2485 if (aac_adapter_bounds(dev,scsicmd,lba)) 2486 return 0; 2487 /* 2488 * Alocate and initialize a Fib 2489 */ 2490 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2491 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2492 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2493 2494 /* 2495 * Check that the command queued to the controller 2496 */ 2497 if (status == -EINPROGRESS) 2498 return 0; 2499 2500 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2501 /* 2502 * For some reason, the Fib didn't queue, return QUEUE_FULL 2503 */ 2504 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2505 aac_scsi_done(scsicmd); 2506 aac_fib_complete(cmd_fibcontext); 2507 aac_fib_free(cmd_fibcontext); 2508 return 0; 2509 } 2510 2511 static int aac_write(struct scsi_cmnd * scsicmd) 2512 { 2513 u64 lba; 2514 u32 count; 2515 int fua; 2516 int status; 2517 struct aac_dev *dev; 2518 struct fib * cmd_fibcontext; 2519 int cid; 2520 2521 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2522 /* 2523 * Get block address and transfer length 2524 */ 2525 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2526 { 2527 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2528 count = scsicmd->cmnd[4]; 2529 if (count == 0) 2530 count = 256; 2531 fua = 0; 2532 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2533 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2534 2535 lba = ((u64)scsicmd->cmnd[2] << 56) | 2536 ((u64)scsicmd->cmnd[3] << 48) | 2537 ((u64)scsicmd->cmnd[4] << 40) | 2538 ((u64)scsicmd->cmnd[5] << 32) | 2539 ((u64)scsicmd->cmnd[6] << 24) | 2540 (scsicmd->cmnd[7] << 16) | 2541 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2542 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2543 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2544 fua = scsicmd->cmnd[1] & 0x8; 2545 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2546 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2547 2548 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2549 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2550 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2551 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2552 fua = scsicmd->cmnd[1] & 0x8; 2553 } else { 2554 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2555 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2556 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2557 fua = scsicmd->cmnd[1] & 0x8; 2558 } 2559 2560 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2561 cid = scmd_id(scsicmd); 2562 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2563 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2564 set_sense(&dev->fsa_dev[cid].sense_data, 2565 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2566 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2567 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2568 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2569 SCSI_SENSE_BUFFERSIZE)); 2570 aac_scsi_done(scsicmd); 2571 return 0; 2572 } 2573 2574 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2575 smp_processor_id(), (unsigned long long)lba, jiffies)); 2576 if (aac_adapter_bounds(dev,scsicmd,lba)) 2577 return 0; 2578 /* 2579 * Allocate and initialize a Fib then setup a BlockWrite command 2580 */ 2581 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2582 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2583 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2584 2585 /* 2586 * Check that the command queued to the controller 2587 */ 2588 if (status == -EINPROGRESS) 2589 return 0; 2590 2591 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2592 /* 2593 * For some reason, the Fib didn't queue, return QUEUE_FULL 2594 */ 2595 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2596 aac_scsi_done(scsicmd); 2597 2598 aac_fib_complete(cmd_fibcontext); 2599 aac_fib_free(cmd_fibcontext); 2600 return 0; 2601 } 2602 2603 static void synchronize_callback(void *context, struct fib *fibptr) 2604 { 2605 struct aac_synchronize_reply *synchronizereply; 2606 struct scsi_cmnd *cmd = context; 2607 2608 if (!aac_valid_context(cmd, fibptr)) 2609 return; 2610 2611 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2612 smp_processor_id(), jiffies)); 2613 BUG_ON(fibptr == NULL); 2614 2615 2616 synchronizereply = fib_data(fibptr); 2617 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2618 cmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2619 else { 2620 struct scsi_device *sdev = cmd->device; 2621 struct aac_dev *dev = fibptr->dev; 2622 u32 cid = sdev_id(sdev); 2623 printk(KERN_WARNING 2624 "synchronize_callback: synchronize failed, status = %d\n", 2625 le32_to_cpu(synchronizereply->status)); 2626 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2627 set_sense(&dev->fsa_dev[cid].sense_data, 2628 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2629 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2630 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2631 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2632 SCSI_SENSE_BUFFERSIZE)); 2633 } 2634 2635 aac_fib_complete(fibptr); 2636 aac_fib_free(fibptr); 2637 aac_scsi_done(cmd); 2638 } 2639 2640 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2641 { 2642 int status; 2643 struct fib *cmd_fibcontext; 2644 struct aac_synchronize *synchronizecmd; 2645 struct scsi_device *sdev = scsicmd->device; 2646 struct aac_dev *aac; 2647 2648 aac = (struct aac_dev *)sdev->host->hostdata; 2649 if (aac->in_reset) 2650 return SCSI_MLQUEUE_HOST_BUSY; 2651 2652 /* 2653 * Allocate and initialize a Fib 2654 */ 2655 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2656 2657 aac_fib_init(cmd_fibcontext); 2658 2659 synchronizecmd = fib_data(cmd_fibcontext); 2660 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2661 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2662 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2663 synchronizecmd->count = 2664 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2665 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2666 2667 /* 2668 * Now send the Fib to the adapter 2669 */ 2670 status = aac_fib_send(ContainerCommand, 2671 cmd_fibcontext, 2672 sizeof(struct aac_synchronize), 2673 FsaNormal, 2674 0, 1, 2675 (fib_callback)synchronize_callback, 2676 (void *)scsicmd); 2677 2678 /* 2679 * Check that the command queued to the controller 2680 */ 2681 if (status == -EINPROGRESS) 2682 return 0; 2683 2684 printk(KERN_WARNING 2685 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2686 aac_fib_complete(cmd_fibcontext); 2687 aac_fib_free(cmd_fibcontext); 2688 return SCSI_MLQUEUE_HOST_BUSY; 2689 } 2690 2691 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2692 { 2693 struct scsi_cmnd *scsicmd = context; 2694 2695 if (!aac_valid_context(scsicmd, fibptr)) 2696 return; 2697 2698 BUG_ON(fibptr == NULL); 2699 2700 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2701 2702 aac_fib_complete(fibptr); 2703 aac_fib_free(fibptr); 2704 aac_scsi_done(scsicmd); 2705 } 2706 2707 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2708 { 2709 int status; 2710 struct fib *cmd_fibcontext; 2711 struct aac_power_management *pmcmd; 2712 struct scsi_device *sdev = scsicmd->device; 2713 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2714 2715 if (!(aac->supplement_adapter_info.supported_options2 & 2716 AAC_OPTION_POWER_MANAGEMENT)) { 2717 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2718 aac_scsi_done(scsicmd); 2719 return 0; 2720 } 2721 2722 if (aac->in_reset) 2723 return SCSI_MLQUEUE_HOST_BUSY; 2724 2725 /* 2726 * Allocate and initialize a Fib 2727 */ 2728 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2729 2730 aac_fib_init(cmd_fibcontext); 2731 2732 pmcmd = fib_data(cmd_fibcontext); 2733 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2734 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2735 /* Eject bit ignored, not relevant */ 2736 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2737 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2738 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2739 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2740 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2741 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2742 2743 /* 2744 * Now send the Fib to the adapter 2745 */ 2746 status = aac_fib_send(ContainerCommand, 2747 cmd_fibcontext, 2748 sizeof(struct aac_power_management), 2749 FsaNormal, 2750 0, 1, 2751 (fib_callback)aac_start_stop_callback, 2752 (void *)scsicmd); 2753 2754 /* 2755 * Check that the command queued to the controller 2756 */ 2757 if (status == -EINPROGRESS) 2758 return 0; 2759 2760 aac_fib_complete(cmd_fibcontext); 2761 aac_fib_free(cmd_fibcontext); 2762 return SCSI_MLQUEUE_HOST_BUSY; 2763 } 2764 2765 /** 2766 * aac_scsi_cmd() - Process SCSI command 2767 * @scsicmd: SCSI command block 2768 * 2769 * Emulate a SCSI command and queue the required request for the 2770 * aacraid firmware. 2771 */ 2772 2773 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2774 { 2775 u32 cid, bus; 2776 struct Scsi_Host *host = scsicmd->device->host; 2777 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2778 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2779 2780 if (fsa_dev_ptr == NULL) 2781 return -1; 2782 /* 2783 * If the bus, id or lun is out of range, return fail 2784 * Test does not apply to ID 16, the pseudo id for the controller 2785 * itself. 2786 */ 2787 cid = scmd_id(scsicmd); 2788 if (cid != host->this_id) { 2789 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2790 if((cid >= dev->maximum_num_containers) || 2791 (scsicmd->device->lun != 0)) { 2792 scsicmd->result = DID_NO_CONNECT << 16; 2793 goto scsi_done_ret; 2794 } 2795 2796 /* 2797 * If the target container doesn't exist, it may have 2798 * been newly created 2799 */ 2800 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2801 (fsa_dev_ptr[cid].sense_data.sense_key == 2802 NOT_READY)) { 2803 switch (scsicmd->cmnd[0]) { 2804 case SERVICE_ACTION_IN_16: 2805 if (!(dev->raw_io_interface) || 2806 !(dev->raw_io_64) || 2807 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2808 break; 2809 fallthrough; 2810 case INQUIRY: 2811 case READ_CAPACITY: 2812 case TEST_UNIT_READY: 2813 if (dev->in_reset) 2814 return -1; 2815 return _aac_probe_container(scsicmd, 2816 aac_probe_container_callback2); 2817 default: 2818 break; 2819 } 2820 } 2821 } else { /* check for physical non-dasd devices */ 2822 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2823 2824 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2825 dev->hba_map[bus][cid].devtype 2826 == AAC_DEVTYPE_NATIVE_RAW) { 2827 if (dev->in_reset) 2828 return -1; 2829 return aac_send_hba_fib(scsicmd); 2830 } else if (dev->nondasd_support || expose_physicals || 2831 dev->jbod) { 2832 if (dev->in_reset) 2833 return -1; 2834 return aac_send_srb_fib(scsicmd); 2835 } else { 2836 scsicmd->result = DID_NO_CONNECT << 16; 2837 goto scsi_done_ret; 2838 } 2839 } 2840 } 2841 /* 2842 * else Command for the controller itself 2843 */ 2844 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2845 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2846 { 2847 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2848 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2849 set_sense(&dev->fsa_dev[cid].sense_data, 2850 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2851 ASENCODE_INVALID_COMMAND, 0, 0); 2852 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2853 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2854 SCSI_SENSE_BUFFERSIZE)); 2855 goto scsi_done_ret; 2856 } 2857 2858 switch (scsicmd->cmnd[0]) { 2859 case READ_6: 2860 case READ_10: 2861 case READ_12: 2862 case READ_16: 2863 if (dev->in_reset) 2864 return -1; 2865 return aac_read(scsicmd); 2866 2867 case WRITE_6: 2868 case WRITE_10: 2869 case WRITE_12: 2870 case WRITE_16: 2871 if (dev->in_reset) 2872 return -1; 2873 return aac_write(scsicmd); 2874 2875 case SYNCHRONIZE_CACHE: 2876 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2877 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2878 break; 2879 } 2880 /* Issue FIB to tell Firmware to flush it's cache */ 2881 if ((aac_cache & 6) != 2) 2882 return aac_synchronize(scsicmd); 2883 fallthrough; 2884 case INQUIRY: 2885 { 2886 struct inquiry_data inq_data; 2887 2888 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2889 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2890 2891 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2892 char *arr = (char *)&inq_data; 2893 2894 /* EVPD bit set */ 2895 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2896 INQD_PDT_PROC : INQD_PDT_DA; 2897 if (scsicmd->cmnd[2] == 0) { 2898 /* supported vital product data pages */ 2899 arr[3] = 3; 2900 arr[4] = 0x0; 2901 arr[5] = 0x80; 2902 arr[6] = 0x83; 2903 arr[1] = scsicmd->cmnd[2]; 2904 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2905 sizeof(inq_data)); 2906 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2907 } else if (scsicmd->cmnd[2] == 0x80) { 2908 /* unit serial number page */ 2909 arr[3] = setinqserial(dev, &arr[4], 2910 scmd_id(scsicmd)); 2911 arr[1] = scsicmd->cmnd[2]; 2912 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2913 sizeof(inq_data)); 2914 if (aac_wwn != 2) 2915 return aac_get_container_serial( 2916 scsicmd); 2917 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2918 } else if (scsicmd->cmnd[2] == 0x83) { 2919 /* vpd page 0x83 - Device Identification Page */ 2920 char *sno = (char *)&inq_data; 2921 sno[3] = setinqserial(dev, &sno[4], 2922 scmd_id(scsicmd)); 2923 if (aac_wwn != 2) 2924 return aac_get_container_serial( 2925 scsicmd); 2926 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2927 } else { 2928 /* vpd page not implemented */ 2929 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2930 set_sense(&dev->fsa_dev[cid].sense_data, 2931 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2932 ASENCODE_NO_SENSE, 7, 2); 2933 memcpy(scsicmd->sense_buffer, 2934 &dev->fsa_dev[cid].sense_data, 2935 min_t(size_t, 2936 sizeof(dev->fsa_dev[cid].sense_data), 2937 SCSI_SENSE_BUFFERSIZE)); 2938 } 2939 break; 2940 } 2941 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2942 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2943 inq_data.inqd_len = 31; 2944 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2945 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2946 /* 2947 * Set the Vendor, Product, and Revision Level 2948 * see: <vendor>.c i.e. aac.c 2949 */ 2950 if (cid == host->this_id) { 2951 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2952 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2953 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2954 sizeof(inq_data)); 2955 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2956 break; 2957 } 2958 if (dev->in_reset) 2959 return -1; 2960 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2961 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2962 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2963 return aac_get_container_name(scsicmd); 2964 } 2965 case SERVICE_ACTION_IN_16: 2966 if (!(dev->raw_io_interface) || 2967 !(dev->raw_io_64) || 2968 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2969 break; 2970 { 2971 u64 capacity; 2972 char cp[13]; 2973 unsigned int alloc_len; 2974 2975 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2976 capacity = fsa_dev_ptr[cid].size - 1; 2977 cp[0] = (capacity >> 56) & 0xff; 2978 cp[1] = (capacity >> 48) & 0xff; 2979 cp[2] = (capacity >> 40) & 0xff; 2980 cp[3] = (capacity >> 32) & 0xff; 2981 cp[4] = (capacity >> 24) & 0xff; 2982 cp[5] = (capacity >> 16) & 0xff; 2983 cp[6] = (capacity >> 8) & 0xff; 2984 cp[7] = (capacity >> 0) & 0xff; 2985 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2986 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2987 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 2988 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 2989 cp[12] = 0; 2990 2991 alloc_len = ((scsicmd->cmnd[10] << 24) 2992 + (scsicmd->cmnd[11] << 16) 2993 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 2994 2995 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 2996 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 2997 if (alloc_len < scsi_bufflen(scsicmd)) 2998 scsi_set_resid(scsicmd, 2999 scsi_bufflen(scsicmd) - alloc_len); 3000 3001 /* Do not cache partition table for arrays */ 3002 scsicmd->device->removable = 1; 3003 3004 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3005 break; 3006 } 3007 3008 case READ_CAPACITY: 3009 { 3010 u32 capacity; 3011 char cp[8]; 3012 3013 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3014 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3015 capacity = fsa_dev_ptr[cid].size - 1; 3016 else 3017 capacity = (u32)-1; 3018 3019 cp[0] = (capacity >> 24) & 0xff; 3020 cp[1] = (capacity >> 16) & 0xff; 3021 cp[2] = (capacity >> 8) & 0xff; 3022 cp[3] = (capacity >> 0) & 0xff; 3023 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3024 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3025 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3026 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3027 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3028 /* Do not cache partition table for arrays */ 3029 scsicmd->device->removable = 1; 3030 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3031 break; 3032 } 3033 3034 case MODE_SENSE: 3035 { 3036 int mode_buf_length = 4; 3037 u32 capacity; 3038 aac_modep_data mpd; 3039 3040 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3041 capacity = fsa_dev_ptr[cid].size - 1; 3042 else 3043 capacity = (u32)-1; 3044 3045 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3046 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3047 3048 /* Mode data length */ 3049 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3050 /* Medium type - default */ 3051 mpd.hd.med_type = 0; 3052 /* Device-specific param, 3053 bit 8: 0/1 = write enabled/protected 3054 bit 4: 0/1 = FUA enabled */ 3055 mpd.hd.dev_par = 0; 3056 3057 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3058 mpd.hd.dev_par = 0x10; 3059 if (scsicmd->cmnd[1] & 0x8) 3060 mpd.hd.bd_length = 0; /* Block descriptor length */ 3061 else { 3062 mpd.hd.bd_length = sizeof(mpd.bd); 3063 mpd.hd.data_length += mpd.hd.bd_length; 3064 mpd.bd.block_length[0] = 3065 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3066 mpd.bd.block_length[1] = 3067 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3068 mpd.bd.block_length[2] = 3069 fsa_dev_ptr[cid].block_size & 0xff; 3070 3071 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3072 if (scsicmd->cmnd[2] == 0x1C) { 3073 /* page length */ 3074 mpd.mpc_buf[1] = 0xa; 3075 /* Mode data length */ 3076 mpd.hd.data_length = 23; 3077 } else { 3078 /* Mode data length */ 3079 mpd.hd.data_length = 15; 3080 } 3081 3082 if (capacity > 0xffffff) { 3083 mpd.bd.block_count[0] = 0xff; 3084 mpd.bd.block_count[1] = 0xff; 3085 mpd.bd.block_count[2] = 0xff; 3086 } else { 3087 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3088 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3089 mpd.bd.block_count[2] = capacity & 0xff; 3090 } 3091 } 3092 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3093 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3094 mpd.hd.data_length += 3; 3095 mpd.mpc_buf[0] = 8; 3096 mpd.mpc_buf[1] = 1; 3097 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3098 ? 0 : 0x04; /* WCE */ 3099 mode_buf_length = sizeof(mpd); 3100 } 3101 3102 if (mode_buf_length > scsicmd->cmnd[4]) 3103 mode_buf_length = scsicmd->cmnd[4]; 3104 else 3105 mode_buf_length = sizeof(mpd); 3106 scsi_sg_copy_from_buffer(scsicmd, 3107 (char *)&mpd, 3108 mode_buf_length); 3109 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3110 break; 3111 } 3112 case MODE_SENSE_10: 3113 { 3114 u32 capacity; 3115 int mode_buf_length = 8; 3116 aac_modep10_data mpd10; 3117 3118 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3119 capacity = fsa_dev_ptr[cid].size - 1; 3120 else 3121 capacity = (u32)-1; 3122 3123 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3124 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3125 /* Mode data length (MSB) */ 3126 mpd10.hd.data_length[0] = 0; 3127 /* Mode data length (LSB) */ 3128 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3129 /* Medium type - default */ 3130 mpd10.hd.med_type = 0; 3131 /* Device-specific param, 3132 bit 8: 0/1 = write enabled/protected 3133 bit 4: 0/1 = FUA enabled */ 3134 mpd10.hd.dev_par = 0; 3135 3136 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3137 mpd10.hd.dev_par = 0x10; 3138 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3139 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3140 if (scsicmd->cmnd[1] & 0x8) { 3141 /* Block descriptor length (MSB) */ 3142 mpd10.hd.bd_length[0] = 0; 3143 /* Block descriptor length (LSB) */ 3144 mpd10.hd.bd_length[1] = 0; 3145 } else { 3146 mpd10.hd.bd_length[0] = 0; 3147 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3148 3149 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3150 3151 mpd10.bd.block_length[0] = 3152 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3153 mpd10.bd.block_length[1] = 3154 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3155 mpd10.bd.block_length[2] = 3156 fsa_dev_ptr[cid].block_size & 0xff; 3157 3158 if (capacity > 0xffffff) { 3159 mpd10.bd.block_count[0] = 0xff; 3160 mpd10.bd.block_count[1] = 0xff; 3161 mpd10.bd.block_count[2] = 0xff; 3162 } else { 3163 mpd10.bd.block_count[0] = 3164 (capacity >> 16) & 0xff; 3165 mpd10.bd.block_count[1] = 3166 (capacity >> 8) & 0xff; 3167 mpd10.bd.block_count[2] = 3168 capacity & 0xff; 3169 } 3170 } 3171 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3172 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3173 mpd10.hd.data_length[1] += 3; 3174 mpd10.mpc_buf[0] = 8; 3175 mpd10.mpc_buf[1] = 1; 3176 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3177 ? 0 : 0x04; /* WCE */ 3178 mode_buf_length = sizeof(mpd10); 3179 if (mode_buf_length > scsicmd->cmnd[8]) 3180 mode_buf_length = scsicmd->cmnd[8]; 3181 } 3182 scsi_sg_copy_from_buffer(scsicmd, 3183 (char *)&mpd10, 3184 mode_buf_length); 3185 3186 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3187 break; 3188 } 3189 case REQUEST_SENSE: 3190 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3191 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3192 sizeof(struct sense_data)); 3193 memset(&dev->fsa_dev[cid].sense_data, 0, 3194 sizeof(struct sense_data)); 3195 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3196 break; 3197 3198 case ALLOW_MEDIUM_REMOVAL: 3199 dprintk((KERN_DEBUG "LOCK command.\n")); 3200 if (scsicmd->cmnd[4]) 3201 fsa_dev_ptr[cid].locked = 1; 3202 else 3203 fsa_dev_ptr[cid].locked = 0; 3204 3205 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3206 break; 3207 /* 3208 * These commands are all No-Ops 3209 */ 3210 case TEST_UNIT_READY: 3211 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3212 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3213 set_sense(&dev->fsa_dev[cid].sense_data, 3214 NOT_READY, SENCODE_BECOMING_READY, 3215 ASENCODE_BECOMING_READY, 0, 0); 3216 memcpy(scsicmd->sense_buffer, 3217 &dev->fsa_dev[cid].sense_data, 3218 min_t(size_t, 3219 sizeof(dev->fsa_dev[cid].sense_data), 3220 SCSI_SENSE_BUFFERSIZE)); 3221 break; 3222 } 3223 fallthrough; 3224 case RESERVE: 3225 case RELEASE: 3226 case REZERO_UNIT: 3227 case REASSIGN_BLOCKS: 3228 case SEEK_10: 3229 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3230 break; 3231 3232 case START_STOP: 3233 return aac_start_stop(scsicmd); 3234 3235 default: 3236 /* 3237 * Unhandled commands 3238 */ 3239 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3240 scsicmd->cmnd[0])); 3241 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3242 set_sense(&dev->fsa_dev[cid].sense_data, 3243 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3244 ASENCODE_INVALID_COMMAND, 0, 0); 3245 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3246 min_t(size_t, 3247 sizeof(dev->fsa_dev[cid].sense_data), 3248 SCSI_SENSE_BUFFERSIZE)); 3249 } 3250 3251 scsi_done_ret: 3252 3253 aac_scsi_done(scsicmd); 3254 return 0; 3255 } 3256 3257 static int query_disk(struct aac_dev *dev, void __user *arg) 3258 { 3259 struct aac_query_disk qd; 3260 struct fsa_dev_info *fsa_dev_ptr; 3261 3262 fsa_dev_ptr = dev->fsa_dev; 3263 if (!fsa_dev_ptr) 3264 return -EBUSY; 3265 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3266 return -EFAULT; 3267 if (qd.cnum == -1) { 3268 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3269 return -EINVAL; 3270 qd.cnum = qd.id; 3271 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3272 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3273 return -EINVAL; 3274 qd.instance = dev->scsi_host_ptr->host_no; 3275 qd.bus = 0; 3276 qd.id = CONTAINER_TO_ID(qd.cnum); 3277 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3278 } 3279 else return -EINVAL; 3280 3281 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3282 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3283 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3284 3285 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3286 qd.unmapped = 1; 3287 else 3288 qd.unmapped = 0; 3289 3290 strscpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3291 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3292 3293 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3294 return -EFAULT; 3295 return 0; 3296 } 3297 3298 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3299 { 3300 struct aac_delete_disk dd; 3301 struct fsa_dev_info *fsa_dev_ptr; 3302 3303 fsa_dev_ptr = dev->fsa_dev; 3304 if (!fsa_dev_ptr) 3305 return -EBUSY; 3306 3307 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3308 return -EFAULT; 3309 3310 if (dd.cnum >= dev->maximum_num_containers) 3311 return -EINVAL; 3312 /* 3313 * Mark this container as being deleted. 3314 */ 3315 fsa_dev_ptr[dd.cnum].deleted = 1; 3316 /* 3317 * Mark the container as no longer valid 3318 */ 3319 fsa_dev_ptr[dd.cnum].valid = 0; 3320 return 0; 3321 } 3322 3323 static int delete_disk(struct aac_dev *dev, void __user *arg) 3324 { 3325 struct aac_delete_disk dd; 3326 struct fsa_dev_info *fsa_dev_ptr; 3327 3328 fsa_dev_ptr = dev->fsa_dev; 3329 if (!fsa_dev_ptr) 3330 return -EBUSY; 3331 3332 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3333 return -EFAULT; 3334 3335 if (dd.cnum >= dev->maximum_num_containers) 3336 return -EINVAL; 3337 /* 3338 * If the container is locked, it can not be deleted by the API. 3339 */ 3340 if (fsa_dev_ptr[dd.cnum].locked) 3341 return -EBUSY; 3342 else { 3343 /* 3344 * Mark the container as no longer being valid. 3345 */ 3346 fsa_dev_ptr[dd.cnum].valid = 0; 3347 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3348 return 0; 3349 } 3350 } 3351 3352 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3353 { 3354 switch (cmd) { 3355 case FSACTL_QUERY_DISK: 3356 return query_disk(dev, arg); 3357 case FSACTL_DELETE_DISK: 3358 return delete_disk(dev, arg); 3359 case FSACTL_FORCE_DELETE_DISK: 3360 return force_delete_disk(dev, arg); 3361 case FSACTL_GET_CONTAINERS: 3362 return aac_get_containers(dev); 3363 default: 3364 return -ENOTTY; 3365 } 3366 } 3367 3368 /** 3369 * aac_srb_callback 3370 * @context: the context set in the fib - here it is scsi cmd 3371 * @fibptr: pointer to the fib 3372 * 3373 * Handles the completion of a scsi command to a non dasd device 3374 */ 3375 static void aac_srb_callback(void *context, struct fib * fibptr) 3376 { 3377 struct aac_srb_reply *srbreply; 3378 struct scsi_cmnd *scsicmd; 3379 3380 scsicmd = (struct scsi_cmnd *) context; 3381 3382 if (!aac_valid_context(scsicmd, fibptr)) 3383 return; 3384 3385 BUG_ON(fibptr == NULL); 3386 3387 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3388 3389 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3390 3391 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3392 /* fast response */ 3393 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3394 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3395 } else { 3396 /* 3397 * Calculate resid for sg 3398 */ 3399 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3400 - le32_to_cpu(srbreply->data_xfer_length)); 3401 } 3402 3403 3404 scsi_dma_unmap(scsicmd); 3405 3406 /* expose physical device if expose_physicald flag is on */ 3407 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3408 && expose_physicals > 0) 3409 aac_expose_phy_device(scsicmd); 3410 3411 /* 3412 * First check the fib status 3413 */ 3414 3415 if (le32_to_cpu(srbreply->status) != ST_OK) { 3416 int len; 3417 3418 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3419 le32_to_cpu(srbreply->status)); 3420 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3421 SCSI_SENSE_BUFFERSIZE); 3422 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION; 3423 memcpy(scsicmd->sense_buffer, 3424 srbreply->sense_data, len); 3425 } 3426 3427 /* 3428 * Next check the srb status 3429 */ 3430 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3431 case SRB_STATUS_ERROR_RECOVERY: 3432 case SRB_STATUS_PENDING: 3433 case SRB_STATUS_SUCCESS: 3434 scsicmd->result = DID_OK << 16; 3435 break; 3436 case SRB_STATUS_DATA_OVERRUN: 3437 switch (scsicmd->cmnd[0]) { 3438 case READ_6: 3439 case WRITE_6: 3440 case READ_10: 3441 case WRITE_10: 3442 case READ_12: 3443 case WRITE_12: 3444 case READ_16: 3445 case WRITE_16: 3446 if (le32_to_cpu(srbreply->data_xfer_length) 3447 < scsicmd->underflow) 3448 pr_warn("aacraid: SCSI CMD underflow\n"); 3449 else 3450 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3451 scsicmd->result = DID_ERROR << 16; 3452 break; 3453 case INQUIRY: 3454 scsicmd->result = DID_OK << 16; 3455 break; 3456 default: 3457 scsicmd->result = DID_OK << 16; 3458 break; 3459 } 3460 break; 3461 case SRB_STATUS_ABORTED: 3462 scsicmd->result = DID_ABORT << 16; 3463 break; 3464 case SRB_STATUS_ABORT_FAILED: 3465 /* 3466 * Not sure about this one - but assuming the 3467 * hba was trying to abort for some reason 3468 */ 3469 scsicmd->result = DID_ERROR << 16; 3470 break; 3471 case SRB_STATUS_PARITY_ERROR: 3472 scsicmd->result = DID_PARITY << 16; 3473 break; 3474 case SRB_STATUS_NO_DEVICE: 3475 case SRB_STATUS_INVALID_PATH_ID: 3476 case SRB_STATUS_INVALID_TARGET_ID: 3477 case SRB_STATUS_INVALID_LUN: 3478 case SRB_STATUS_SELECTION_TIMEOUT: 3479 scsicmd->result = DID_NO_CONNECT << 16; 3480 break; 3481 3482 case SRB_STATUS_COMMAND_TIMEOUT: 3483 case SRB_STATUS_TIMEOUT: 3484 scsicmd->result = DID_TIME_OUT << 16; 3485 break; 3486 3487 case SRB_STATUS_BUSY: 3488 scsicmd->result = DID_BUS_BUSY << 16; 3489 break; 3490 3491 case SRB_STATUS_BUS_RESET: 3492 scsicmd->result = DID_RESET << 16; 3493 break; 3494 3495 case SRB_STATUS_MESSAGE_REJECTED: 3496 scsicmd->result = DID_ERROR << 16; 3497 break; 3498 case SRB_STATUS_REQUEST_FLUSHED: 3499 case SRB_STATUS_ERROR: 3500 case SRB_STATUS_INVALID_REQUEST: 3501 case SRB_STATUS_REQUEST_SENSE_FAILED: 3502 case SRB_STATUS_NO_HBA: 3503 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3504 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3505 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3506 case SRB_STATUS_DELAYED_RETRY: 3507 case SRB_STATUS_BAD_FUNCTION: 3508 case SRB_STATUS_NOT_STARTED: 3509 case SRB_STATUS_NOT_IN_USE: 3510 case SRB_STATUS_FORCE_ABORT: 3511 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3512 default: 3513 #ifdef AAC_DETAILED_STATUS_INFO 3514 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3515 le32_to_cpu(srbreply->srb_status) & 0x3F, 3516 aac_get_status_string( 3517 le32_to_cpu(srbreply->srb_status) & 0x3F), 3518 scsicmd->cmnd[0], 3519 le32_to_cpu(srbreply->scsi_status)); 3520 #endif 3521 /* 3522 * When the CC bit is SET by the host in ATA pass thru CDB, 3523 * driver is supposed to return DID_OK 3524 * 3525 * When the CC bit is RESET by the host, driver should 3526 * return DID_ERROR 3527 */ 3528 if ((scsicmd->cmnd[0] == ATA_12) 3529 || (scsicmd->cmnd[0] == ATA_16)) { 3530 3531 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3532 scsicmd->result = DID_OK << 16; 3533 } else { 3534 scsicmd->result = DID_ERROR << 16; 3535 } 3536 } else { 3537 scsicmd->result = DID_ERROR << 16; 3538 } 3539 break; 3540 } 3541 if (le32_to_cpu(srbreply->scsi_status) 3542 == SAM_STAT_CHECK_CONDITION) { 3543 int len; 3544 3545 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3546 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3547 SCSI_SENSE_BUFFERSIZE); 3548 #ifdef AAC_DETAILED_STATUS_INFO 3549 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3550 le32_to_cpu(srbreply->status), len); 3551 #endif 3552 memcpy(scsicmd->sense_buffer, 3553 srbreply->sense_data, len); 3554 } 3555 3556 /* 3557 * OR in the scsi status (already shifted up a bit) 3558 */ 3559 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3560 3561 aac_fib_complete(fibptr); 3562 aac_scsi_done(scsicmd); 3563 } 3564 3565 static void hba_resp_task_complete(struct aac_dev *dev, 3566 struct scsi_cmnd *scsicmd, 3567 struct aac_hba_resp *err) { 3568 3569 scsicmd->result = err->status; 3570 /* set residual count */ 3571 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3572 3573 switch (err->status) { 3574 case SAM_STAT_GOOD: 3575 scsicmd->result |= DID_OK << 16; 3576 break; 3577 case SAM_STAT_CHECK_CONDITION: 3578 { 3579 int len; 3580 3581 len = min_t(u8, err->sense_response_data_len, 3582 SCSI_SENSE_BUFFERSIZE); 3583 if (len) 3584 memcpy(scsicmd->sense_buffer, 3585 err->sense_response_buf, len); 3586 scsicmd->result |= DID_OK << 16; 3587 break; 3588 } 3589 case SAM_STAT_BUSY: 3590 scsicmd->result |= DID_BUS_BUSY << 16; 3591 break; 3592 case SAM_STAT_TASK_ABORTED: 3593 scsicmd->result |= DID_ABORT << 16; 3594 break; 3595 case SAM_STAT_RESERVATION_CONFLICT: 3596 case SAM_STAT_TASK_SET_FULL: 3597 default: 3598 scsicmd->result |= DID_ERROR << 16; 3599 break; 3600 } 3601 } 3602 3603 static void hba_resp_task_failure(struct aac_dev *dev, 3604 struct scsi_cmnd *scsicmd, 3605 struct aac_hba_resp *err) 3606 { 3607 switch (err->status) { 3608 case HBA_RESP_STAT_HBAMODE_DISABLED: 3609 { 3610 u32 bus, cid; 3611 3612 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3613 cid = scmd_id(scsicmd); 3614 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3615 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3616 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3617 } 3618 scsicmd->result = DID_NO_CONNECT << 16; 3619 break; 3620 } 3621 case HBA_RESP_STAT_IO_ERROR: 3622 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3623 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY; 3624 break; 3625 case HBA_RESP_STAT_IO_ABORTED: 3626 scsicmd->result = DID_ABORT << 16; 3627 break; 3628 case HBA_RESP_STAT_INVALID_DEVICE: 3629 scsicmd->result = DID_NO_CONNECT << 16; 3630 break; 3631 case HBA_RESP_STAT_UNDERRUN: 3632 /* UNDERRUN is OK */ 3633 scsicmd->result = DID_OK << 16; 3634 break; 3635 case HBA_RESP_STAT_OVERRUN: 3636 default: 3637 scsicmd->result = DID_ERROR << 16; 3638 break; 3639 } 3640 } 3641 3642 /** 3643 * aac_hba_callback 3644 * @context: the context set in the fib - here it is scsi cmd 3645 * @fibptr: pointer to the fib 3646 * 3647 * Handles the completion of a native HBA scsi command 3648 */ 3649 void aac_hba_callback(void *context, struct fib *fibptr) 3650 { 3651 struct aac_dev *dev; 3652 struct scsi_cmnd *scsicmd; 3653 3654 struct aac_hba_resp *err = 3655 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3656 3657 scsicmd = (struct scsi_cmnd *) context; 3658 3659 if (!aac_valid_context(scsicmd, fibptr)) 3660 return; 3661 3662 WARN_ON(fibptr == NULL); 3663 dev = fibptr->dev; 3664 3665 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3666 scsi_dma_unmap(scsicmd); 3667 3668 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3669 /* fast response */ 3670 scsicmd->result = DID_OK << 16; 3671 goto out; 3672 } 3673 3674 switch (err->service_response) { 3675 case HBA_RESP_SVCRES_TASK_COMPLETE: 3676 hba_resp_task_complete(dev, scsicmd, err); 3677 break; 3678 case HBA_RESP_SVCRES_FAILURE: 3679 hba_resp_task_failure(dev, scsicmd, err); 3680 break; 3681 case HBA_RESP_SVCRES_TMF_REJECTED: 3682 scsicmd->result = DID_ERROR << 16; 3683 break; 3684 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3685 scsicmd->result = DID_NO_CONNECT << 16; 3686 break; 3687 case HBA_RESP_SVCRES_TMF_COMPLETE: 3688 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3689 scsicmd->result = DID_OK << 16; 3690 break; 3691 default: 3692 scsicmd->result = DID_ERROR << 16; 3693 break; 3694 } 3695 3696 out: 3697 aac_fib_complete(fibptr); 3698 3699 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3700 aac_priv(scsicmd)->sent_command = 1; 3701 else 3702 aac_scsi_done(scsicmd); 3703 } 3704 3705 /** 3706 * aac_send_srb_fib 3707 * @scsicmd: the scsi command block 3708 * 3709 * This routine will form a FIB and fill in the aac_srb from the 3710 * scsicmd passed in. 3711 */ 3712 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3713 { 3714 struct fib* cmd_fibcontext; 3715 struct aac_dev* dev; 3716 int status; 3717 3718 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3719 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3720 scsicmd->device->lun > 7) { 3721 scsicmd->result = DID_NO_CONNECT << 16; 3722 aac_scsi_done(scsicmd); 3723 return 0; 3724 } 3725 3726 /* 3727 * Allocate and initialize a Fib then setup a BlockWrite command 3728 */ 3729 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3730 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 3731 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3732 3733 /* 3734 * Check that the command queued to the controller 3735 */ 3736 if (status == -EINPROGRESS) 3737 return 0; 3738 3739 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3740 aac_fib_complete(cmd_fibcontext); 3741 aac_fib_free(cmd_fibcontext); 3742 3743 return -1; 3744 } 3745 3746 /** 3747 * aac_send_hba_fib 3748 * @scsicmd: the scsi command block 3749 * 3750 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3751 * scsicmd passed in. 3752 */ 3753 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3754 { 3755 struct fib *cmd_fibcontext; 3756 struct aac_dev *dev; 3757 int status; 3758 3759 dev = shost_priv(scsicmd->device->host); 3760 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3761 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3762 scsicmd->result = DID_NO_CONNECT << 16; 3763 aac_scsi_done(scsicmd); 3764 return 0; 3765 } 3766 3767 /* 3768 * Allocate and initialize a Fib then setup a BlockWrite command 3769 */ 3770 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3771 if (!cmd_fibcontext) 3772 return -1; 3773 3774 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 3775 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3776 3777 /* 3778 * Check that the command queued to the controller 3779 */ 3780 if (status == -EINPROGRESS) 3781 return 0; 3782 3783 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3784 status); 3785 aac_fib_complete(cmd_fibcontext); 3786 aac_fib_free(cmd_fibcontext); 3787 3788 return -1; 3789 } 3790 3791 3792 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3793 { 3794 unsigned long byte_count = 0; 3795 int nseg; 3796 struct scatterlist *sg; 3797 int i; 3798 3799 // Get rid of old data 3800 psg->count = 0; 3801 psg->sg[0].addr = 0; 3802 psg->sg[0].count = 0; 3803 3804 nseg = scsi_dma_map(scsicmd); 3805 if (nseg <= 0) 3806 return nseg; 3807 3808 psg->count = cpu_to_le32(nseg); 3809 3810 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3811 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3812 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3813 byte_count += sg_dma_len(sg); 3814 } 3815 /* hba wants the size to be exact */ 3816 if (byte_count > scsi_bufflen(scsicmd)) { 3817 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3818 (byte_count - scsi_bufflen(scsicmd)); 3819 psg->sg[i-1].count = cpu_to_le32(temp); 3820 byte_count = scsi_bufflen(scsicmd); 3821 } 3822 /* Check for command underflow */ 3823 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3824 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3825 byte_count, scsicmd->underflow); 3826 } 3827 3828 return byte_count; 3829 } 3830 3831 3832 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3833 { 3834 unsigned long byte_count = 0; 3835 u64 addr; 3836 int nseg; 3837 struct scatterlist *sg; 3838 int i; 3839 3840 // Get rid of old data 3841 psg->count = 0; 3842 psg->sg[0].addr[0] = 0; 3843 psg->sg[0].addr[1] = 0; 3844 psg->sg[0].count = 0; 3845 3846 nseg = scsi_dma_map(scsicmd); 3847 if (nseg <= 0) 3848 return nseg; 3849 3850 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3851 int count = sg_dma_len(sg); 3852 addr = sg_dma_address(sg); 3853 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3854 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3855 psg->sg[i].count = cpu_to_le32(count); 3856 byte_count += count; 3857 } 3858 psg->count = cpu_to_le32(nseg); 3859 /* hba wants the size to be exact */ 3860 if (byte_count > scsi_bufflen(scsicmd)) { 3861 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3862 (byte_count - scsi_bufflen(scsicmd)); 3863 psg->sg[i-1].count = cpu_to_le32(temp); 3864 byte_count = scsi_bufflen(scsicmd); 3865 } 3866 /* Check for command underflow */ 3867 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3868 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3869 byte_count, scsicmd->underflow); 3870 } 3871 3872 return byte_count; 3873 } 3874 3875 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3876 { 3877 unsigned long byte_count = 0; 3878 int nseg; 3879 struct scatterlist *sg; 3880 int i; 3881 3882 // Get rid of old data 3883 psg->count = 0; 3884 psg->sg[0].next = 0; 3885 psg->sg[0].prev = 0; 3886 psg->sg[0].addr[0] = 0; 3887 psg->sg[0].addr[1] = 0; 3888 psg->sg[0].count = 0; 3889 psg->sg[0].flags = 0; 3890 3891 nseg = scsi_dma_map(scsicmd); 3892 if (nseg <= 0) 3893 return nseg; 3894 3895 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3896 int count = sg_dma_len(sg); 3897 u64 addr = sg_dma_address(sg); 3898 psg->sg[i].next = 0; 3899 psg->sg[i].prev = 0; 3900 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3901 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3902 psg->sg[i].count = cpu_to_le32(count); 3903 psg->sg[i].flags = 0; 3904 byte_count += count; 3905 } 3906 psg->count = cpu_to_le32(nseg); 3907 /* hba wants the size to be exact */ 3908 if (byte_count > scsi_bufflen(scsicmd)) { 3909 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3910 (byte_count - scsi_bufflen(scsicmd)); 3911 psg->sg[i-1].count = cpu_to_le32(temp); 3912 byte_count = scsi_bufflen(scsicmd); 3913 } 3914 /* Check for command underflow */ 3915 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3916 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3917 byte_count, scsicmd->underflow); 3918 } 3919 3920 return byte_count; 3921 } 3922 3923 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3924 struct aac_raw_io2 *rio2, int sg_max) 3925 { 3926 unsigned long byte_count = 0; 3927 int nseg; 3928 struct scatterlist *sg; 3929 int i, conformable = 0; 3930 u32 min_size = PAGE_SIZE, cur_size; 3931 3932 nseg = scsi_dma_map(scsicmd); 3933 if (nseg <= 0) 3934 return nseg; 3935 3936 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3937 int count = sg_dma_len(sg); 3938 u64 addr = sg_dma_address(sg); 3939 3940 BUG_ON(i >= sg_max); 3941 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3942 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3943 cur_size = cpu_to_le32(count); 3944 rio2->sge[i].length = cur_size; 3945 rio2->sge[i].flags = 0; 3946 if (i == 0) { 3947 conformable = 1; 3948 rio2->sgeFirstSize = cur_size; 3949 } else if (i == 1) { 3950 rio2->sgeNominalSize = cur_size; 3951 min_size = cur_size; 3952 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 3953 conformable = 0; 3954 if (cur_size < min_size) 3955 min_size = cur_size; 3956 } 3957 byte_count += count; 3958 } 3959 3960 /* hba wants the size to be exact */ 3961 if (byte_count > scsi_bufflen(scsicmd)) { 3962 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 3963 (byte_count - scsi_bufflen(scsicmd)); 3964 rio2->sge[i-1].length = cpu_to_le32(temp); 3965 byte_count = scsi_bufflen(scsicmd); 3966 } 3967 3968 rio2->sgeCnt = cpu_to_le32(nseg); 3969 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 3970 /* not conformable: evaluate required sg elements */ 3971 if (!conformable) { 3972 int j, nseg_new = nseg, err_found; 3973 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 3974 err_found = 0; 3975 nseg_new = 2; 3976 for (j = 1; j < nseg - 1; ++j) { 3977 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 3978 err_found = 1; 3979 break; 3980 } 3981 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 3982 } 3983 if (!err_found) 3984 break; 3985 } 3986 if (i > 0 && nseg_new <= sg_max) { 3987 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 3988 3989 if (ret < 0) 3990 return ret; 3991 } 3992 } else 3993 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 3994 3995 /* Check for command underflow */ 3996 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3997 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3998 byte_count, scsicmd->underflow); 3999 } 4000 4001 return byte_count; 4002 } 4003 4004 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4005 { 4006 struct sge_ieee1212 *sge; 4007 int i, j, pos; 4008 u32 addr_low; 4009 4010 if (aac_convert_sgl == 0) 4011 return 0; 4012 4013 sge = kmalloc_array(nseg_new, sizeof(*sge), GFP_ATOMIC); 4014 if (sge == NULL) 4015 return -ENOMEM; 4016 4017 for (i = 1, pos = 1; i < nseg-1; ++i) { 4018 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4019 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4020 sge[pos].addrLow = addr_low; 4021 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4022 if (addr_low < rio2->sge[i].addrLow) 4023 sge[pos].addrHigh++; 4024 sge[pos].length = pages * PAGE_SIZE; 4025 sge[pos].flags = 0; 4026 pos++; 4027 } 4028 } 4029 sge[pos] = rio2->sge[nseg-1]; 4030 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4031 4032 kfree(sge); 4033 rio2->sgeCnt = cpu_to_le32(nseg_new); 4034 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4035 rio2->sgeNominalSize = pages * PAGE_SIZE; 4036 return 0; 4037 } 4038 4039 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4040 struct aac_hba_cmd_req *hbacmd, 4041 int sg_max, 4042 u64 sg_address) 4043 { 4044 unsigned long byte_count = 0; 4045 int nseg; 4046 struct scatterlist *sg; 4047 int i; 4048 u32 cur_size; 4049 struct aac_hba_sgl *sge; 4050 4051 nseg = scsi_dma_map(scsicmd); 4052 if (nseg <= 0) { 4053 byte_count = nseg; 4054 goto out; 4055 } 4056 4057 if (nseg > HBA_MAX_SG_EMBEDDED) 4058 sge = &hbacmd->sge[2]; 4059 else 4060 sge = &hbacmd->sge[0]; 4061 4062 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4063 int count = sg_dma_len(sg); 4064 u64 addr = sg_dma_address(sg); 4065 4066 WARN_ON(i >= sg_max); 4067 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4068 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4069 cur_size = cpu_to_le32(count); 4070 sge->len = cur_size; 4071 sge->flags = 0; 4072 byte_count += count; 4073 sge++; 4074 } 4075 4076 sge--; 4077 /* hba wants the size to be exact */ 4078 if (byte_count > scsi_bufflen(scsicmd)) { 4079 u32 temp; 4080 4081 temp = le32_to_cpu(sge->len) - byte_count 4082 - scsi_bufflen(scsicmd); 4083 sge->len = cpu_to_le32(temp); 4084 byte_count = scsi_bufflen(scsicmd); 4085 } 4086 4087 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4088 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4089 sge->flags = cpu_to_le32(0x40000000); 4090 } else { 4091 /* not embedded */ 4092 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4093 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4094 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4095 hbacmd->sge[0].addr_lo = 4096 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4097 } 4098 4099 /* Check for command underflow */ 4100 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4101 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4102 byte_count, scsicmd->underflow); 4103 } 4104 out: 4105 return byte_count; 4106 } 4107 4108 #ifdef AAC_DETAILED_STATUS_INFO 4109 4110 struct aac_srb_status_info { 4111 u32 status; 4112 char *str; 4113 }; 4114 4115 4116 static struct aac_srb_status_info srb_status_info[] = { 4117 { SRB_STATUS_PENDING, "Pending Status"}, 4118 { SRB_STATUS_SUCCESS, "Success"}, 4119 { SRB_STATUS_ABORTED, "Aborted Command"}, 4120 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4121 { SRB_STATUS_ERROR, "Error Event"}, 4122 { SRB_STATUS_BUSY, "Device Busy"}, 4123 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4124 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4125 { SRB_STATUS_NO_DEVICE, "No Device"}, 4126 { SRB_STATUS_TIMEOUT, "Timeout"}, 4127 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4128 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4129 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4130 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4131 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4132 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4133 { SRB_STATUS_NO_HBA, "No HBA"}, 4134 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4135 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4136 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4137 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4138 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4139 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4140 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4141 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4142 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4143 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4144 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4145 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4146 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4147 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4148 { 0xff, "Unknown Error"} 4149 }; 4150 4151 char *aac_get_status_string(u32 status) 4152 { 4153 int i; 4154 4155 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4156 if (srb_status_info[i].status == status) 4157 return srb_status_info[i].str; 4158 4159 return "Bad Status Code"; 4160 } 4161 4162 #endif 4163