xref: /linux/drivers/s390/crypto/vfio_ap_ops.c (revision ba1dc7f273c73b93e0e1dd9707b239ed69eebd70)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Adjunct processor matrix VFIO device driver callbacks.
4  *
5  * Copyright IBM Corp. 2018
6  *
7  * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8  *	      Halil Pasic <pasic@linux.ibm.com>
9  *	      Pierre Morel <pmorel@linux.ibm.com>
10  */
11 #include <linux/string.h>
12 #include <linux/vfio.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/ctype.h>
16 #include <linux/bitops.h>
17 #include <linux/kvm_host.h>
18 #include <linux/module.h>
19 #include <asm/kvm.h>
20 #include <asm/zcrypt.h>
21 
22 #include "vfio_ap_private.h"
23 
24 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
25 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
26 
27 static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev);
28 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
29 
30 static int match_apqn(struct device *dev, const void *data)
31 {
32 	struct vfio_ap_queue *q = dev_get_drvdata(dev);
33 
34 	return (q->apqn == *(int *)(data)) ? 1 : 0;
35 }
36 
37 /**
38  * vfio_ap_get_queue - retrieve a queue with a specific APQN from a list
39  * @matrix_mdev: the associated mediated matrix
40  * @apqn: The queue APQN
41  *
42  * Retrieve a queue with a specific APQN from the list of the
43  * devices of the vfio_ap_drv.
44  * Verify that the APID and the APQI are set in the matrix.
45  *
46  * Return: the pointer to the associated vfio_ap_queue
47  */
48 static struct vfio_ap_queue *vfio_ap_get_queue(
49 					struct ap_matrix_mdev *matrix_mdev,
50 					int apqn)
51 {
52 	struct vfio_ap_queue *q;
53 
54 	if (!test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm))
55 		return NULL;
56 	if (!test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm))
57 		return NULL;
58 
59 	q = vfio_ap_find_queue(apqn);
60 	if (q)
61 		q->matrix_mdev = matrix_mdev;
62 
63 	return q;
64 }
65 
66 /**
67  * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries
68  * @apqn: The AP Queue number
69  *
70  * Checks the IRQ bit for the status of this APQN using ap_tapq.
71  * Returns if the ap_tapq function succeeded and the bit is clear.
72  * Returns if ap_tapq function failed with invalid, deconfigured or
73  * checkstopped AP.
74  * Otherwise retries up to 5 times after waiting 20ms.
75  */
76 static void vfio_ap_wait_for_irqclear(int apqn)
77 {
78 	struct ap_queue_status status;
79 	int retry = 5;
80 
81 	do {
82 		status = ap_tapq(apqn, NULL);
83 		switch (status.response_code) {
84 		case AP_RESPONSE_NORMAL:
85 		case AP_RESPONSE_RESET_IN_PROGRESS:
86 			if (!status.irq_enabled)
87 				return;
88 			fallthrough;
89 		case AP_RESPONSE_BUSY:
90 			msleep(20);
91 			break;
92 		case AP_RESPONSE_Q_NOT_AVAIL:
93 		case AP_RESPONSE_DECONFIGURED:
94 		case AP_RESPONSE_CHECKSTOPPED:
95 		default:
96 			WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
97 				  status.response_code, apqn);
98 			return;
99 		}
100 	} while (--retry);
101 
102 	WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
103 		  __func__, status.response_code, apqn);
104 }
105 
106 /**
107  * vfio_ap_free_aqic_resources - free vfio_ap_queue resources
108  * @q: The vfio_ap_queue
109  *
110  * Unregisters the ISC in the GIB when the saved ISC not invalid.
111  * Unpins the guest's page holding the NIB when it exists.
112  * Resets the saved_pfn and saved_isc to invalid values.
113  */
114 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
115 {
116 	if (!q)
117 		return;
118 	if (q->saved_isc != VFIO_AP_ISC_INVALID &&
119 	    !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
120 		kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
121 		q->saved_isc = VFIO_AP_ISC_INVALID;
122 	}
123 	if (q->saved_pfn && !WARN_ON(!q->matrix_mdev)) {
124 		vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev),
125 				 &q->saved_pfn, 1);
126 		q->saved_pfn = 0;
127 	}
128 }
129 
130 /**
131  * vfio_ap_irq_disable - disables and clears an ap_queue interrupt
132  * @q: The vfio_ap_queue
133  *
134  * Uses ap_aqic to disable the interruption and in case of success, reset
135  * in progress or IRQ disable command already proceeded: calls
136  * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
137  * and calls vfio_ap_free_aqic_resources() to free the resources associated
138  * with the AP interrupt handling.
139  *
140  * In the case the AP is busy, or a reset is in progress,
141  * retries after 20ms, up to 5 times.
142  *
143  * Returns if ap_aqic function failed with invalid, deconfigured or
144  * checkstopped AP.
145  *
146  * Return: &struct ap_queue_status
147  */
148 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
149 {
150 	struct ap_qirq_ctrl aqic_gisa = {};
151 	struct ap_queue_status status;
152 	int retries = 5;
153 
154 	do {
155 		status = ap_aqic(q->apqn, aqic_gisa, NULL);
156 		switch (status.response_code) {
157 		case AP_RESPONSE_OTHERWISE_CHANGED:
158 		case AP_RESPONSE_NORMAL:
159 			vfio_ap_wait_for_irqclear(q->apqn);
160 			goto end_free;
161 		case AP_RESPONSE_RESET_IN_PROGRESS:
162 		case AP_RESPONSE_BUSY:
163 			msleep(20);
164 			break;
165 		case AP_RESPONSE_Q_NOT_AVAIL:
166 		case AP_RESPONSE_DECONFIGURED:
167 		case AP_RESPONSE_CHECKSTOPPED:
168 		case AP_RESPONSE_INVALID_ADDRESS:
169 		default:
170 			/* All cases in default means AP not operational */
171 			WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
172 				  status.response_code);
173 			goto end_free;
174 		}
175 	} while (retries--);
176 
177 	WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
178 		  status.response_code);
179 end_free:
180 	vfio_ap_free_aqic_resources(q);
181 	q->matrix_mdev = NULL;
182 	return status;
183 }
184 
185 /**
186  * vfio_ap_irq_enable - Enable Interruption for a APQN
187  *
188  * @q:	 the vfio_ap_queue holding AQIC parameters
189  *
190  * Pin the NIB saved in *q
191  * Register the guest ISC to GIB interface and retrieve the
192  * host ISC to issue the host side PQAP/AQIC
193  *
194  * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
195  * vfio_pin_pages failed.
196  *
197  * Otherwise return the ap_queue_status returned by the ap_aqic(),
198  * all retry handling will be done by the guest.
199  *
200  * Return: &struct ap_queue_status
201  */
202 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
203 						 int isc,
204 						 unsigned long nib)
205 {
206 	struct ap_qirq_ctrl aqic_gisa = {};
207 	struct ap_queue_status status = {};
208 	struct kvm_s390_gisa *gisa;
209 	struct kvm *kvm;
210 	unsigned long h_nib, g_pfn, h_pfn;
211 	int ret;
212 
213 	g_pfn = nib >> PAGE_SHIFT;
214 	ret = vfio_pin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1,
215 			     IOMMU_READ | IOMMU_WRITE, &h_pfn);
216 	switch (ret) {
217 	case 1:
218 		break;
219 	default:
220 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
221 		return status;
222 	}
223 
224 	kvm = q->matrix_mdev->kvm;
225 	gisa = kvm->arch.gisa_int.origin;
226 
227 	h_nib = (h_pfn << PAGE_SHIFT) | (nib & ~PAGE_MASK);
228 	aqic_gisa.gisc = isc;
229 	aqic_gisa.isc = kvm_s390_gisc_register(kvm, isc);
230 	aqic_gisa.ir = 1;
231 	aqic_gisa.gisa = (uint64_t)gisa >> 4;
232 
233 	status = ap_aqic(q->apqn, aqic_gisa, (void *)h_nib);
234 	switch (status.response_code) {
235 	case AP_RESPONSE_NORMAL:
236 		/* See if we did clear older IRQ configuration */
237 		vfio_ap_free_aqic_resources(q);
238 		q->saved_pfn = g_pfn;
239 		q->saved_isc = isc;
240 		break;
241 	case AP_RESPONSE_OTHERWISE_CHANGED:
242 		/* We could not modify IRQ setings: clear new configuration */
243 		vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1);
244 		kvm_s390_gisc_unregister(kvm, isc);
245 		break;
246 	default:
247 		pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
248 			status.response_code);
249 		vfio_ap_irq_disable(q);
250 		break;
251 	}
252 
253 	return status;
254 }
255 
256 /**
257  * handle_pqap - PQAP instruction callback
258  *
259  * @vcpu: The vcpu on which we received the PQAP instruction
260  *
261  * Get the general register contents to initialize internal variables.
262  * REG[0]: APQN
263  * REG[1]: IR and ISC
264  * REG[2]: NIB
265  *
266  * Response.status may be set to following Response Code:
267  * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
268  * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
269  * - AP_RESPONSE_NORMAL (0) : in case of successs
270  *   Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
271  * We take the matrix_dev lock to ensure serialization on queues and
272  * mediated device access.
273  *
274  * Return: 0 if we could handle the request inside KVM.
275  * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
276  */
277 static int handle_pqap(struct kvm_vcpu *vcpu)
278 {
279 	uint64_t status;
280 	uint16_t apqn;
281 	struct vfio_ap_queue *q;
282 	struct ap_queue_status qstatus = {
283 			       .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
284 	struct ap_matrix_mdev *matrix_mdev;
285 
286 	/* If we do not use the AIV facility just go to userland */
287 	if (!(vcpu->arch.sie_block->eca & ECA_AIV))
288 		return -EOPNOTSUPP;
289 
290 	apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
291 	mutex_lock(&matrix_dev->lock);
292 
293 	if (!vcpu->kvm->arch.crypto.pqap_hook)
294 		goto out_unlock;
295 	matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
296 				   struct ap_matrix_mdev, pqap_hook);
297 
298 	/*
299 	 * If the KVM pointer is in the process of being set, wait until the
300 	 * process has completed.
301 	 */
302 	wait_event_cmd(matrix_mdev->wait_for_kvm,
303 		       !matrix_mdev->kvm_busy,
304 		       mutex_unlock(&matrix_dev->lock),
305 		       mutex_lock(&matrix_dev->lock));
306 
307 	/* If the there is no guest using the mdev, there is nothing to do */
308 	if (!matrix_mdev->kvm)
309 		goto out_unlock;
310 
311 	q = vfio_ap_get_queue(matrix_mdev, apqn);
312 	if (!q)
313 		goto out_unlock;
314 
315 	status = vcpu->run->s.regs.gprs[1];
316 
317 	/* If IR bit(16) is set we enable the interrupt */
318 	if ((status >> (63 - 16)) & 0x01)
319 		qstatus = vfio_ap_irq_enable(q, status & 0x07,
320 					     vcpu->run->s.regs.gprs[2]);
321 	else
322 		qstatus = vfio_ap_irq_disable(q);
323 
324 out_unlock:
325 	memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
326 	vcpu->run->s.regs.gprs[1] >>= 32;
327 	mutex_unlock(&matrix_dev->lock);
328 	return 0;
329 }
330 
331 static void vfio_ap_matrix_init(struct ap_config_info *info,
332 				struct ap_matrix *matrix)
333 {
334 	matrix->apm_max = info->apxa ? info->Na : 63;
335 	matrix->aqm_max = info->apxa ? info->Nd : 15;
336 	matrix->adm_max = info->apxa ? info->Nd : 15;
337 }
338 
339 static int vfio_ap_mdev_create(struct mdev_device *mdev)
340 {
341 	struct ap_matrix_mdev *matrix_mdev;
342 
343 	if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
344 		return -EPERM;
345 
346 	matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
347 	if (!matrix_mdev) {
348 		atomic_inc(&matrix_dev->available_instances);
349 		return -ENOMEM;
350 	}
351 
352 	matrix_mdev->mdev = mdev;
353 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
354 	init_waitqueue_head(&matrix_mdev->wait_for_kvm);
355 	mdev_set_drvdata(mdev, matrix_mdev);
356 	matrix_mdev->pqap_hook.hook = handle_pqap;
357 	matrix_mdev->pqap_hook.owner = THIS_MODULE;
358 	mutex_lock(&matrix_dev->lock);
359 	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
360 	mutex_unlock(&matrix_dev->lock);
361 
362 	return 0;
363 }
364 
365 static int vfio_ap_mdev_remove(struct mdev_device *mdev)
366 {
367 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
368 
369 	mutex_lock(&matrix_dev->lock);
370 	vfio_ap_mdev_reset_queues(mdev);
371 	list_del(&matrix_mdev->node);
372 	kfree(matrix_mdev);
373 	mdev_set_drvdata(mdev, NULL);
374 	atomic_inc(&matrix_dev->available_instances);
375 	mutex_unlock(&matrix_dev->lock);
376 
377 	return 0;
378 }
379 
380 static ssize_t name_show(struct mdev_type *mtype,
381 			 struct mdev_type_attribute *attr, char *buf)
382 {
383 	return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
384 }
385 
386 static MDEV_TYPE_ATTR_RO(name);
387 
388 static ssize_t available_instances_show(struct mdev_type *mtype,
389 					struct mdev_type_attribute *attr,
390 					char *buf)
391 {
392 	return sprintf(buf, "%d\n",
393 		       atomic_read(&matrix_dev->available_instances));
394 }
395 
396 static MDEV_TYPE_ATTR_RO(available_instances);
397 
398 static ssize_t device_api_show(struct mdev_type *mtype,
399 			       struct mdev_type_attribute *attr, char *buf)
400 {
401 	return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
402 }
403 
404 static MDEV_TYPE_ATTR_RO(device_api);
405 
406 static struct attribute *vfio_ap_mdev_type_attrs[] = {
407 	&mdev_type_attr_name.attr,
408 	&mdev_type_attr_device_api.attr,
409 	&mdev_type_attr_available_instances.attr,
410 	NULL,
411 };
412 
413 static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
414 	.name = VFIO_AP_MDEV_TYPE_HWVIRT,
415 	.attrs = vfio_ap_mdev_type_attrs,
416 };
417 
418 static struct attribute_group *vfio_ap_mdev_type_groups[] = {
419 	&vfio_ap_mdev_hwvirt_type_group,
420 	NULL,
421 };
422 
423 struct vfio_ap_queue_reserved {
424 	unsigned long *apid;
425 	unsigned long *apqi;
426 	bool reserved;
427 };
428 
429 /**
430  * vfio_ap_has_queue - determines if the AP queue containing the target in @data
431  *
432  * @dev: an AP queue device
433  * @data: a struct vfio_ap_queue_reserved reference
434  *
435  * Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
436  * apid or apqi specified in @data:
437  *
438  * - If @data contains both an apid and apqi value, then @data will be flagged
439  *   as reserved if the APID and APQI fields for the AP queue device matches
440  *
441  * - If @data contains only an apid value, @data will be flagged as
442  *   reserved if the APID field in the AP queue device matches
443  *
444  * - If @data contains only an apqi value, @data will be flagged as
445  *   reserved if the APQI field in the AP queue device matches
446  *
447  * Return: 0 to indicate the input to function succeeded. Returns -EINVAL if
448  * @data does not contain either an apid or apqi.
449  */
450 static int vfio_ap_has_queue(struct device *dev, void *data)
451 {
452 	struct vfio_ap_queue_reserved *qres = data;
453 	struct ap_queue *ap_queue = to_ap_queue(dev);
454 	ap_qid_t qid;
455 	unsigned long id;
456 
457 	if (qres->apid && qres->apqi) {
458 		qid = AP_MKQID(*qres->apid, *qres->apqi);
459 		if (qid == ap_queue->qid)
460 			qres->reserved = true;
461 	} else if (qres->apid && !qres->apqi) {
462 		id = AP_QID_CARD(ap_queue->qid);
463 		if (id == *qres->apid)
464 			qres->reserved = true;
465 	} else if (!qres->apid && qres->apqi) {
466 		id = AP_QID_QUEUE(ap_queue->qid);
467 		if (id == *qres->apqi)
468 			qres->reserved = true;
469 	} else {
470 		return -EINVAL;
471 	}
472 
473 	return 0;
474 }
475 
476 /**
477  * vfio_ap_verify_queue_reserved - verifies that the AP queue containing
478  * @apid or @aqpi is reserved
479  *
480  * @apid: an AP adapter ID
481  * @apqi: an AP queue index
482  *
483  * Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
484  * driver according to the following rules:
485  *
486  * - If both @apid and @apqi are not NULL, then there must be an AP queue
487  *   device bound to the vfio_ap driver with the APQN identified by @apid and
488  *   @apqi
489  *
490  * - If only @apid is not NULL, then there must be an AP queue device bound
491  *   to the vfio_ap driver with an APQN containing @apid
492  *
493  * - If only @apqi is not NULL, then there must be an AP queue device bound
494  *   to the vfio_ap driver with an APQN containing @apqi
495  *
496  * Return: 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
497  */
498 static int vfio_ap_verify_queue_reserved(unsigned long *apid,
499 					 unsigned long *apqi)
500 {
501 	int ret;
502 	struct vfio_ap_queue_reserved qres;
503 
504 	qres.apid = apid;
505 	qres.apqi = apqi;
506 	qres.reserved = false;
507 
508 	ret = driver_for_each_device(&matrix_dev->vfio_ap_drv->driver, NULL,
509 				     &qres, vfio_ap_has_queue);
510 	if (ret)
511 		return ret;
512 
513 	if (qres.reserved)
514 		return 0;
515 
516 	return -EADDRNOTAVAIL;
517 }
518 
519 static int
520 vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
521 					     unsigned long apid)
522 {
523 	int ret;
524 	unsigned long apqi;
525 	unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;
526 
527 	if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
528 		return vfio_ap_verify_queue_reserved(&apid, NULL);
529 
530 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
531 		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
532 		if (ret)
533 			return ret;
534 	}
535 
536 	return 0;
537 }
538 
539 /**
540  * vfio_ap_mdev_verify_no_sharing - verifies that the AP matrix is not configured
541  *
542  * @matrix_mdev: the mediated matrix device
543  *
544  * Verifies that the APQNs derived from the cross product of the AP adapter IDs
545  * and AP queue indexes comprising the AP matrix are not configured for another
546  * mediated device. AP queue sharing is not allowed.
547  *
548  * Return: 0 if the APQNs are not shared; otherwise returns -EADDRINUSE.
549  */
550 static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
551 {
552 	struct ap_matrix_mdev *lstdev;
553 	DECLARE_BITMAP(apm, AP_DEVICES);
554 	DECLARE_BITMAP(aqm, AP_DOMAINS);
555 
556 	list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
557 		if (matrix_mdev == lstdev)
558 			continue;
559 
560 		memset(apm, 0, sizeof(apm));
561 		memset(aqm, 0, sizeof(aqm));
562 
563 		/*
564 		 * We work on full longs, as we can only exclude the leftover
565 		 * bits in non-inverse order. The leftover is all zeros.
566 		 */
567 		if (!bitmap_and(apm, matrix_mdev->matrix.apm,
568 				lstdev->matrix.apm, AP_DEVICES))
569 			continue;
570 
571 		if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
572 				lstdev->matrix.aqm, AP_DOMAINS))
573 			continue;
574 
575 		return -EADDRINUSE;
576 	}
577 
578 	return 0;
579 }
580 
581 /**
582  * assign_adapter_store - parses the APID from @buf and sets the
583  * corresponding bit in the mediated matrix device's APM
584  *
585  * @dev:	the matrix device
586  * @attr:	the mediated matrix device's assign_adapter attribute
587  * @buf:	a buffer containing the AP adapter number (APID) to
588  *		be assigned
589  * @count:	the number of bytes in @buf
590  *
591  * Return: the number of bytes processed if the APID is valid; otherwise,
592  * returns one of the following errors:
593  *
594  *	1. -EINVAL
595  *	   The APID is not a valid number
596  *
597  *	2. -ENODEV
598  *	   The APID exceeds the maximum value configured for the system
599  *
600  *	3. -EADDRNOTAVAIL
601  *	   An APQN derived from the cross product of the APID being assigned
602  *	   and the APQIs previously assigned is not bound to the vfio_ap device
603  *	   driver; or, if no APQIs have yet been assigned, the APID is not
604  *	   contained in an APQN bound to the vfio_ap device driver.
605  *
606  *	4. -EADDRINUSE
607  *	   An APQN derived from the cross product of the APID being assigned
608  *	   and the APQIs previously assigned is being used by another mediated
609  *	   matrix device
610  */
611 static ssize_t assign_adapter_store(struct device *dev,
612 				    struct device_attribute *attr,
613 				    const char *buf, size_t count)
614 {
615 	int ret;
616 	unsigned long apid;
617 	struct mdev_device *mdev = mdev_from_dev(dev);
618 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
619 
620 	mutex_lock(&matrix_dev->lock);
621 
622 	/*
623 	 * If the KVM pointer is in flux or the guest is running, disallow
624 	 * un-assignment of adapter
625 	 */
626 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
627 		ret = -EBUSY;
628 		goto done;
629 	}
630 
631 	ret = kstrtoul(buf, 0, &apid);
632 	if (ret)
633 		goto done;
634 
635 	if (apid > matrix_mdev->matrix.apm_max) {
636 		ret = -ENODEV;
637 		goto done;
638 	}
639 
640 	/*
641 	 * Set the bit in the AP mask (APM) corresponding to the AP adapter
642 	 * number (APID). The bits in the mask, from most significant to least
643 	 * significant bit, correspond to APIDs 0-255.
644 	 */
645 	ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
646 	if (ret)
647 		goto done;
648 
649 	set_bit_inv(apid, matrix_mdev->matrix.apm);
650 
651 	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
652 	if (ret)
653 		goto share_err;
654 
655 	ret = count;
656 	goto done;
657 
658 share_err:
659 	clear_bit_inv(apid, matrix_mdev->matrix.apm);
660 done:
661 	mutex_unlock(&matrix_dev->lock);
662 
663 	return ret;
664 }
665 static DEVICE_ATTR_WO(assign_adapter);
666 
667 /**
668  * unassign_adapter_store - parses the APID from @buf and clears the
669  * corresponding bit in the mediated matrix device's APM
670  *
671  * @dev:	the matrix device
672  * @attr:	the mediated matrix device's unassign_adapter attribute
673  * @buf:	a buffer containing the adapter number (APID) to be unassigned
674  * @count:	the number of bytes in @buf
675  *
676  * Return: the number of bytes processed if the APID is valid; otherwise,
677  * returns one of the following errors:
678  *	-EINVAL if the APID is not a number
679  *	-ENODEV if the APID it exceeds the maximum value configured for the
680  *		system
681  */
682 static ssize_t unassign_adapter_store(struct device *dev,
683 				      struct device_attribute *attr,
684 				      const char *buf, size_t count)
685 {
686 	int ret;
687 	unsigned long apid;
688 	struct mdev_device *mdev = mdev_from_dev(dev);
689 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
690 
691 	mutex_lock(&matrix_dev->lock);
692 
693 	/*
694 	 * If the KVM pointer is in flux or the guest is running, disallow
695 	 * un-assignment of adapter
696 	 */
697 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
698 		ret = -EBUSY;
699 		goto done;
700 	}
701 
702 	ret = kstrtoul(buf, 0, &apid);
703 	if (ret)
704 		goto done;
705 
706 	if (apid > matrix_mdev->matrix.apm_max) {
707 		ret = -ENODEV;
708 		goto done;
709 	}
710 
711 	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
712 	ret = count;
713 done:
714 	mutex_unlock(&matrix_dev->lock);
715 	return ret;
716 }
717 static DEVICE_ATTR_WO(unassign_adapter);
718 
719 static int
720 vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
721 					     unsigned long apqi)
722 {
723 	int ret;
724 	unsigned long apid;
725 	unsigned long nbits = matrix_mdev->matrix.apm_max + 1;
726 
727 	if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
728 		return vfio_ap_verify_queue_reserved(NULL, &apqi);
729 
730 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
731 		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
732 		if (ret)
733 			return ret;
734 	}
735 
736 	return 0;
737 }
738 
739 /**
740  * assign_domain_store - parses the APQI from @buf and sets the
741  * corresponding bit in the mediated matrix device's AQM
742  *
743  *
744  * @dev:	the matrix device
745  * @attr:	the mediated matrix device's assign_domain attribute
746  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
747  *		be assigned
748  * @count:	the number of bytes in @buf
749  *
750  * Return: the number of bytes processed if the APQI is valid; otherwise returns
751  * one of the following errors:
752  *
753  *	1. -EINVAL
754  *	   The APQI is not a valid number
755  *
756  *	2. -ENODEV
757  *	   The APQI exceeds the maximum value configured for the system
758  *
759  *	3. -EADDRNOTAVAIL
760  *	   An APQN derived from the cross product of the APQI being assigned
761  *	   and the APIDs previously assigned is not bound to the vfio_ap device
762  *	   driver; or, if no APIDs have yet been assigned, the APQI is not
763  *	   contained in an APQN bound to the vfio_ap device driver.
764  *
765  *	4. -EADDRINUSE
766  *	   An APQN derived from the cross product of the APQI being assigned
767  *	   and the APIDs previously assigned is being used by another mediated
768  *	   matrix device
769  */
770 static ssize_t assign_domain_store(struct device *dev,
771 				   struct device_attribute *attr,
772 				   const char *buf, size_t count)
773 {
774 	int ret;
775 	unsigned long apqi;
776 	struct mdev_device *mdev = mdev_from_dev(dev);
777 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
778 	unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
779 
780 	mutex_lock(&matrix_dev->lock);
781 
782 	/*
783 	 * If the KVM pointer is in flux or the guest is running, disallow
784 	 * assignment of domain
785 	 */
786 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
787 		ret = -EBUSY;
788 		goto done;
789 	}
790 
791 	ret = kstrtoul(buf, 0, &apqi);
792 	if (ret)
793 		goto done;
794 	if (apqi > max_apqi) {
795 		ret = -ENODEV;
796 		goto done;
797 	}
798 
799 	ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
800 	if (ret)
801 		goto done;
802 
803 	set_bit_inv(apqi, matrix_mdev->matrix.aqm);
804 
805 	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
806 	if (ret)
807 		goto share_err;
808 
809 	ret = count;
810 	goto done;
811 
812 share_err:
813 	clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
814 done:
815 	mutex_unlock(&matrix_dev->lock);
816 
817 	return ret;
818 }
819 static DEVICE_ATTR_WO(assign_domain);
820 
821 
822 /**
823  * unassign_domain_store - parses the APQI from @buf and clears the
824  * corresponding bit in the mediated matrix device's AQM
825  *
826  * @dev:	the matrix device
827  * @attr:	the mediated matrix device's unassign_domain attribute
828  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
829  *		be unassigned
830  * @count:	the number of bytes in @buf
831  *
832  * Return: the number of bytes processed if the APQI is valid; otherwise,
833  * returns one of the following errors:
834  *	-EINVAL if the APQI is not a number
835  *	-ENODEV if the APQI exceeds the maximum value configured for the system
836  */
837 static ssize_t unassign_domain_store(struct device *dev,
838 				     struct device_attribute *attr,
839 				     const char *buf, size_t count)
840 {
841 	int ret;
842 	unsigned long apqi;
843 	struct mdev_device *mdev = mdev_from_dev(dev);
844 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
845 
846 	mutex_lock(&matrix_dev->lock);
847 
848 	/*
849 	 * If the KVM pointer is in flux or the guest is running, disallow
850 	 * un-assignment of domain
851 	 */
852 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
853 		ret = -EBUSY;
854 		goto done;
855 	}
856 
857 	ret = kstrtoul(buf, 0, &apqi);
858 	if (ret)
859 		goto done;
860 
861 	if (apqi > matrix_mdev->matrix.aqm_max) {
862 		ret = -ENODEV;
863 		goto done;
864 	}
865 
866 	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
867 	ret = count;
868 
869 done:
870 	mutex_unlock(&matrix_dev->lock);
871 	return ret;
872 }
873 static DEVICE_ATTR_WO(unassign_domain);
874 
875 /**
876  * assign_control_domain_store - parses the domain ID from @buf and sets
877  * the corresponding bit in the mediated matrix device's ADM
878  *
879  *
880  * @dev:	the matrix device
881  * @attr:	the mediated matrix device's assign_control_domain attribute
882  * @buf:	a buffer containing the domain ID to be assigned
883  * @count:	the number of bytes in @buf
884  *
885  * Return: the number of bytes processed if the domain ID is valid; otherwise,
886  * returns one of the following errors:
887  *	-EINVAL if the ID is not a number
888  *	-ENODEV if the ID exceeds the maximum value configured for the system
889  */
890 static ssize_t assign_control_domain_store(struct device *dev,
891 					   struct device_attribute *attr,
892 					   const char *buf, size_t count)
893 {
894 	int ret;
895 	unsigned long id;
896 	struct mdev_device *mdev = mdev_from_dev(dev);
897 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
898 
899 	mutex_lock(&matrix_dev->lock);
900 
901 	/*
902 	 * If the KVM pointer is in flux or the guest is running, disallow
903 	 * assignment of control domain.
904 	 */
905 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
906 		ret = -EBUSY;
907 		goto done;
908 	}
909 
910 	ret = kstrtoul(buf, 0, &id);
911 	if (ret)
912 		goto done;
913 
914 	if (id > matrix_mdev->matrix.adm_max) {
915 		ret = -ENODEV;
916 		goto done;
917 	}
918 
919 	/* Set the bit in the ADM (bitmask) corresponding to the AP control
920 	 * domain number (id). The bits in the mask, from most significant to
921 	 * least significant, correspond to IDs 0 up to the one less than the
922 	 * number of control domains that can be assigned.
923 	 */
924 	set_bit_inv(id, matrix_mdev->matrix.adm);
925 	ret = count;
926 done:
927 	mutex_unlock(&matrix_dev->lock);
928 	return ret;
929 }
930 static DEVICE_ATTR_WO(assign_control_domain);
931 
932 /**
933  * unassign_control_domain_store - parses the domain ID from @buf and
934  * clears the corresponding bit in the mediated matrix device's ADM
935  *
936  * @dev:	the matrix device
937  * @attr:	the mediated matrix device's unassign_control_domain attribute
938  * @buf:	a buffer containing the domain ID to be unassigned
939  * @count:	the number of bytes in @buf
940  *
941  * Return: the number of bytes processed if the domain ID is valid; otherwise,
942  * returns one of the following errors:
943  *	-EINVAL if the ID is not a number
944  *	-ENODEV if the ID exceeds the maximum value configured for the system
945  */
946 static ssize_t unassign_control_domain_store(struct device *dev,
947 					     struct device_attribute *attr,
948 					     const char *buf, size_t count)
949 {
950 	int ret;
951 	unsigned long domid;
952 	struct mdev_device *mdev = mdev_from_dev(dev);
953 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
954 	unsigned long max_domid =  matrix_mdev->matrix.adm_max;
955 
956 	mutex_lock(&matrix_dev->lock);
957 
958 	/*
959 	 * If the KVM pointer is in flux or the guest is running, disallow
960 	 * un-assignment of control domain.
961 	 */
962 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
963 		ret = -EBUSY;
964 		goto done;
965 	}
966 
967 	ret = kstrtoul(buf, 0, &domid);
968 	if (ret)
969 		goto done;
970 	if (domid > max_domid) {
971 		ret = -ENODEV;
972 		goto done;
973 	}
974 
975 	clear_bit_inv(domid, matrix_mdev->matrix.adm);
976 	ret = count;
977 done:
978 	mutex_unlock(&matrix_dev->lock);
979 	return ret;
980 }
981 static DEVICE_ATTR_WO(unassign_control_domain);
982 
983 static ssize_t control_domains_show(struct device *dev,
984 				    struct device_attribute *dev_attr,
985 				    char *buf)
986 {
987 	unsigned long id;
988 	int nchars = 0;
989 	int n;
990 	char *bufpos = buf;
991 	struct mdev_device *mdev = mdev_from_dev(dev);
992 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
993 	unsigned long max_domid = matrix_mdev->matrix.adm_max;
994 
995 	mutex_lock(&matrix_dev->lock);
996 	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
997 		n = sprintf(bufpos, "%04lx\n", id);
998 		bufpos += n;
999 		nchars += n;
1000 	}
1001 	mutex_unlock(&matrix_dev->lock);
1002 
1003 	return nchars;
1004 }
1005 static DEVICE_ATTR_RO(control_domains);
1006 
1007 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
1008 			   char *buf)
1009 {
1010 	struct mdev_device *mdev = mdev_from_dev(dev);
1011 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1012 	char *bufpos = buf;
1013 	unsigned long apid;
1014 	unsigned long apqi;
1015 	unsigned long apid1;
1016 	unsigned long apqi1;
1017 	unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
1018 	unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
1019 	int nchars = 0;
1020 	int n;
1021 
1022 	apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
1023 	apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
1024 
1025 	mutex_lock(&matrix_dev->lock);
1026 
1027 	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
1028 		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
1029 			for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
1030 					     naqm_bits) {
1031 				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
1032 					    apqi);
1033 				bufpos += n;
1034 				nchars += n;
1035 			}
1036 		}
1037 	} else if (apid1 < napm_bits) {
1038 		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
1039 			n = sprintf(bufpos, "%02lx.\n", apid);
1040 			bufpos += n;
1041 			nchars += n;
1042 		}
1043 	} else if (apqi1 < naqm_bits) {
1044 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
1045 			n = sprintf(bufpos, ".%04lx\n", apqi);
1046 			bufpos += n;
1047 			nchars += n;
1048 		}
1049 	}
1050 
1051 	mutex_unlock(&matrix_dev->lock);
1052 
1053 	return nchars;
1054 }
1055 static DEVICE_ATTR_RO(matrix);
1056 
1057 static struct attribute *vfio_ap_mdev_attrs[] = {
1058 	&dev_attr_assign_adapter.attr,
1059 	&dev_attr_unassign_adapter.attr,
1060 	&dev_attr_assign_domain.attr,
1061 	&dev_attr_unassign_domain.attr,
1062 	&dev_attr_assign_control_domain.attr,
1063 	&dev_attr_unassign_control_domain.attr,
1064 	&dev_attr_control_domains.attr,
1065 	&dev_attr_matrix.attr,
1066 	NULL,
1067 };
1068 
1069 static struct attribute_group vfio_ap_mdev_attr_group = {
1070 	.attrs = vfio_ap_mdev_attrs
1071 };
1072 
1073 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1074 	&vfio_ap_mdev_attr_group,
1075 	NULL
1076 };
1077 
1078 /**
1079  * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed
1080  * to manage AP resources for the guest whose state is represented by @kvm
1081  *
1082  * @matrix_mdev: a mediated matrix device
1083  * @kvm: reference to KVM instance
1084  *
1085  * Note: The matrix_dev->lock must be taken prior to calling
1086  * this function; however, the lock will be temporarily released while the
1087  * guest's AP configuration is set to avoid a potential lockdep splat.
1088  * The kvm->lock is taken to set the guest's AP configuration which, under
1089  * certain circumstances, will result in a circular lock dependency if this is
1090  * done under the @matrix_mdev->lock.
1091  *
1092  * Return: 0 if no other mediated matrix device has a reference to @kvm;
1093  * otherwise, returns an -EPERM.
1094  */
1095 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1096 				struct kvm *kvm)
1097 {
1098 	struct ap_matrix_mdev *m;
1099 
1100 	if (kvm->arch.crypto.crycbd) {
1101 		list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1102 			if (m != matrix_mdev && m->kvm == kvm)
1103 				return -EPERM;
1104 		}
1105 
1106 		kvm_get_kvm(kvm);
1107 		matrix_mdev->kvm_busy = true;
1108 		mutex_unlock(&matrix_dev->lock);
1109 		kvm_arch_crypto_set_masks(kvm,
1110 					  matrix_mdev->matrix.apm,
1111 					  matrix_mdev->matrix.aqm,
1112 					  matrix_mdev->matrix.adm);
1113 		mutex_lock(&matrix_dev->lock);
1114 		kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1115 		matrix_mdev->kvm = kvm;
1116 		matrix_mdev->kvm_busy = false;
1117 		wake_up_all(&matrix_mdev->wait_for_kvm);
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * vfio_ap_mdev_iommu_notifier - IOMMU notifier callback
1125  *
1126  * @nb: The notifier block
1127  * @action: Action to be taken
1128  * @data: data associated with the request
1129  *
1130  * For an UNMAP request, unpin the guest IOVA (the NIB guest address we
1131  * pinned before). Other requests are ignored.
1132  *
1133  * Return: for an UNMAP request, NOFITY_OK; otherwise NOTIFY_DONE.
1134  */
1135 static int vfio_ap_mdev_iommu_notifier(struct notifier_block *nb,
1136 				       unsigned long action, void *data)
1137 {
1138 	struct ap_matrix_mdev *matrix_mdev;
1139 
1140 	matrix_mdev = container_of(nb, struct ap_matrix_mdev, iommu_notifier);
1141 
1142 	if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
1143 		struct vfio_iommu_type1_dma_unmap *unmap = data;
1144 		unsigned long g_pfn = unmap->iova >> PAGE_SHIFT;
1145 
1146 		vfio_unpin_pages(mdev_dev(matrix_mdev->mdev), &g_pfn, 1);
1147 		return NOTIFY_OK;
1148 	}
1149 
1150 	return NOTIFY_DONE;
1151 }
1152 
1153 /**
1154  * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed
1155  * by @matrix_mdev.
1156  *
1157  * @matrix_mdev: a matrix mediated device
1158  *
1159  * Note: The matrix_dev->lock must be taken prior to calling
1160  * this function; however, the lock will be temporarily released while the
1161  * guest's AP configuration is cleared to avoid a potential lockdep splat.
1162  * The kvm->lock is taken to clear the guest's AP configuration which, under
1163  * certain circumstances, will result in a circular lock dependency if this is
1164  * done under the @matrix_mdev->lock.
1165  */
1166 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1167 {
1168 	/*
1169 	 * If the KVM pointer is in the process of being set, wait until the
1170 	 * process has completed.
1171 	 */
1172 	wait_event_cmd(matrix_mdev->wait_for_kvm,
1173 		       !matrix_mdev->kvm_busy,
1174 		       mutex_unlock(&matrix_dev->lock),
1175 		       mutex_lock(&matrix_dev->lock));
1176 
1177 	if (matrix_mdev->kvm) {
1178 		matrix_mdev->kvm_busy = true;
1179 		mutex_unlock(&matrix_dev->lock);
1180 		kvm_arch_crypto_clear_masks(matrix_mdev->kvm);
1181 		mutex_lock(&matrix_dev->lock);
1182 		vfio_ap_mdev_reset_queues(matrix_mdev->mdev);
1183 		matrix_mdev->kvm->arch.crypto.pqap_hook = NULL;
1184 		kvm_put_kvm(matrix_mdev->kvm);
1185 		matrix_mdev->kvm = NULL;
1186 		matrix_mdev->kvm_busy = false;
1187 		wake_up_all(&matrix_mdev->wait_for_kvm);
1188 	}
1189 }
1190 
1191 static int vfio_ap_mdev_group_notifier(struct notifier_block *nb,
1192 				       unsigned long action, void *data)
1193 {
1194 	int notify_rc = NOTIFY_OK;
1195 	struct ap_matrix_mdev *matrix_mdev;
1196 
1197 	if (action != VFIO_GROUP_NOTIFY_SET_KVM)
1198 		return NOTIFY_OK;
1199 
1200 	mutex_lock(&matrix_dev->lock);
1201 	matrix_mdev = container_of(nb, struct ap_matrix_mdev, group_notifier);
1202 
1203 	if (!data)
1204 		vfio_ap_mdev_unset_kvm(matrix_mdev);
1205 	else if (vfio_ap_mdev_set_kvm(matrix_mdev, data))
1206 		notify_rc = NOTIFY_DONE;
1207 
1208 	mutex_unlock(&matrix_dev->lock);
1209 
1210 	return notify_rc;
1211 }
1212 
1213 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1214 {
1215 	struct device *dev;
1216 	struct vfio_ap_queue *q = NULL;
1217 
1218 	dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL,
1219 				 &apqn, match_apqn);
1220 	if (dev) {
1221 		q = dev_get_drvdata(dev);
1222 		put_device(dev);
1223 	}
1224 
1225 	return q;
1226 }
1227 
1228 int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q,
1229 			     unsigned int retry)
1230 {
1231 	struct ap_queue_status status;
1232 	int ret;
1233 	int retry2 = 2;
1234 
1235 	if (!q)
1236 		return 0;
1237 
1238 retry_zapq:
1239 	status = ap_zapq(q->apqn);
1240 	switch (status.response_code) {
1241 	case AP_RESPONSE_NORMAL:
1242 		ret = 0;
1243 		break;
1244 	case AP_RESPONSE_RESET_IN_PROGRESS:
1245 		if (retry--) {
1246 			msleep(20);
1247 			goto retry_zapq;
1248 		}
1249 		ret = -EBUSY;
1250 		break;
1251 	case AP_RESPONSE_Q_NOT_AVAIL:
1252 	case AP_RESPONSE_DECONFIGURED:
1253 	case AP_RESPONSE_CHECKSTOPPED:
1254 		WARN_ON_ONCE(status.irq_enabled);
1255 		ret = -EBUSY;
1256 		goto free_resources;
1257 	default:
1258 		/* things are really broken, give up */
1259 		WARN(true, "PQAP/ZAPQ completed with invalid rc (%x)\n",
1260 		     status.response_code);
1261 		return -EIO;
1262 	}
1263 
1264 	/* wait for the reset to take effect */
1265 	while (retry2--) {
1266 		if (status.queue_empty && !status.irq_enabled)
1267 			break;
1268 		msleep(20);
1269 		status = ap_tapq(q->apqn, NULL);
1270 	}
1271 	WARN_ON_ONCE(retry2 <= 0);
1272 
1273 free_resources:
1274 	vfio_ap_free_aqic_resources(q);
1275 
1276 	return ret;
1277 }
1278 
1279 static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev)
1280 {
1281 	int ret;
1282 	int rc = 0;
1283 	unsigned long apid, apqi;
1284 	struct vfio_ap_queue *q;
1285 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1286 
1287 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm,
1288 			     matrix_mdev->matrix.apm_max + 1) {
1289 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
1290 				     matrix_mdev->matrix.aqm_max + 1) {
1291 			q = vfio_ap_find_queue(AP_MKQID(apid, apqi));
1292 			ret = vfio_ap_mdev_reset_queue(q, 1);
1293 			/*
1294 			 * Regardless whether a queue turns out to be busy, or
1295 			 * is not operational, we need to continue resetting
1296 			 * the remaining queues.
1297 			 */
1298 			if (ret)
1299 				rc = ret;
1300 		}
1301 	}
1302 
1303 	return rc;
1304 }
1305 
1306 static int vfio_ap_mdev_open(struct mdev_device *mdev)
1307 {
1308 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1309 	unsigned long events;
1310 	int ret;
1311 
1312 
1313 	if (!try_module_get(THIS_MODULE))
1314 		return -ENODEV;
1315 
1316 	matrix_mdev->group_notifier.notifier_call = vfio_ap_mdev_group_notifier;
1317 	events = VFIO_GROUP_NOTIFY_SET_KVM;
1318 
1319 	ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1320 				     &events, &matrix_mdev->group_notifier);
1321 	if (ret) {
1322 		module_put(THIS_MODULE);
1323 		return ret;
1324 	}
1325 
1326 	matrix_mdev->iommu_notifier.notifier_call = vfio_ap_mdev_iommu_notifier;
1327 	events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1328 	ret = vfio_register_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1329 				     &events, &matrix_mdev->iommu_notifier);
1330 	if (!ret)
1331 		return ret;
1332 
1333 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1334 				 &matrix_mdev->group_notifier);
1335 	module_put(THIS_MODULE);
1336 	return ret;
1337 }
1338 
1339 static void vfio_ap_mdev_release(struct mdev_device *mdev)
1340 {
1341 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1342 
1343 	mutex_lock(&matrix_dev->lock);
1344 	vfio_ap_mdev_unset_kvm(matrix_mdev);
1345 	mutex_unlock(&matrix_dev->lock);
1346 
1347 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1348 				 &matrix_mdev->iommu_notifier);
1349 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1350 				 &matrix_mdev->group_notifier);
1351 	module_put(THIS_MODULE);
1352 }
1353 
1354 static int vfio_ap_mdev_get_device_info(unsigned long arg)
1355 {
1356 	unsigned long minsz;
1357 	struct vfio_device_info info;
1358 
1359 	minsz = offsetofend(struct vfio_device_info, num_irqs);
1360 
1361 	if (copy_from_user(&info, (void __user *)arg, minsz))
1362 		return -EFAULT;
1363 
1364 	if (info.argsz < minsz)
1365 		return -EINVAL;
1366 
1367 	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1368 	info.num_regions = 0;
1369 	info.num_irqs = 0;
1370 
1371 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1372 }
1373 
1374 static ssize_t vfio_ap_mdev_ioctl(struct mdev_device *mdev,
1375 				    unsigned int cmd, unsigned long arg)
1376 {
1377 	int ret;
1378 	struct ap_matrix_mdev *matrix_mdev;
1379 
1380 	mutex_lock(&matrix_dev->lock);
1381 	switch (cmd) {
1382 	case VFIO_DEVICE_GET_INFO:
1383 		ret = vfio_ap_mdev_get_device_info(arg);
1384 		break;
1385 	case VFIO_DEVICE_RESET:
1386 		matrix_mdev = mdev_get_drvdata(mdev);
1387 		if (WARN(!matrix_mdev, "Driver data missing from mdev!!")) {
1388 			ret = -EINVAL;
1389 			break;
1390 		}
1391 
1392 		/*
1393 		 * If the KVM pointer is in the process of being set, wait until
1394 		 * the process has completed.
1395 		 */
1396 		wait_event_cmd(matrix_mdev->wait_for_kvm,
1397 			       !matrix_mdev->kvm_busy,
1398 			       mutex_unlock(&matrix_dev->lock),
1399 			       mutex_lock(&matrix_dev->lock));
1400 
1401 		ret = vfio_ap_mdev_reset_queues(mdev);
1402 		break;
1403 	default:
1404 		ret = -EOPNOTSUPP;
1405 		break;
1406 	}
1407 	mutex_unlock(&matrix_dev->lock);
1408 
1409 	return ret;
1410 }
1411 
1412 static const struct mdev_parent_ops vfio_ap_matrix_ops = {
1413 	.owner			= THIS_MODULE,
1414 	.supported_type_groups	= vfio_ap_mdev_type_groups,
1415 	.mdev_attr_groups	= vfio_ap_mdev_attr_groups,
1416 	.create			= vfio_ap_mdev_create,
1417 	.remove			= vfio_ap_mdev_remove,
1418 	.open			= vfio_ap_mdev_open,
1419 	.release		= vfio_ap_mdev_release,
1420 	.ioctl			= vfio_ap_mdev_ioctl,
1421 };
1422 
1423 int vfio_ap_mdev_register(void)
1424 {
1425 	atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
1426 
1427 	return mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_ops);
1428 }
1429 
1430 void vfio_ap_mdev_unregister(void)
1431 {
1432 	mdev_unregister_device(&matrix_dev->device);
1433 }
1434