xref: /linux/drivers/s390/crypto/vfio_ap_ops.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Adjunct processor matrix VFIO device driver callbacks.
4  *
5  * Copyright IBM Corp. 2018
6  *
7  * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8  *	      Halil Pasic <pasic@linux.ibm.com>
9  *	      Pierre Morel <pmorel@linux.ibm.com>
10  */
11 #include <linux/string.h>
12 #include <linux/vfio.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/ctype.h>
16 #include <linux/bitops.h>
17 #include <linux/kvm_host.h>
18 #include <linux/module.h>
19 #include <linux/uuid.h>
20 #include <asm/kvm.h>
21 #include <asm/zcrypt.h>
22 
23 #include "vfio_ap_private.h"
24 #include "vfio_ap_debug.h"
25 
26 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
27 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
28 
29 #define AP_QUEUE_ASSIGNED "assigned"
30 #define AP_QUEUE_UNASSIGNED "unassigned"
31 #define AP_QUEUE_IN_USE "in use"
32 
33 #define AP_RESET_INTERVAL		20	/* Reset sleep interval (20ms)		*/
34 
35 static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev);
36 static int vfio_ap_mdev_reset_qlist(struct list_head *qlist);
37 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
38 static const struct vfio_device_ops vfio_ap_matrix_dev_ops;
39 static void vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q);
40 
41 /**
42  * get_update_locks_for_kvm: Acquire the locks required to dynamically update a
43  *			     KVM guest's APCB in the proper order.
44  *
45  * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
46  *
47  * The proper locking order is:
48  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
49  *			       guest's APCB.
50  * 2. kvm->lock:	       required to update a guest's APCB
51  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
52  *
53  * Note: If @kvm is NULL, the KVM lock will not be taken.
54  */
55 static inline void get_update_locks_for_kvm(struct kvm *kvm)
56 {
57 	mutex_lock(&matrix_dev->guests_lock);
58 	if (kvm)
59 		mutex_lock(&kvm->lock);
60 	mutex_lock(&matrix_dev->mdevs_lock);
61 }
62 
63 /**
64  * release_update_locks_for_kvm: Release the locks used to dynamically update a
65  *				 KVM guest's APCB in the proper order.
66  *
67  * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
68  *
69  * The proper unlocking order is:
70  * 1. matrix_dev->mdevs_lock
71  * 2. kvm->lock
72  * 3. matrix_dev->guests_lock
73  *
74  * Note: If @kvm is NULL, the KVM lock will not be released.
75  */
76 static inline void release_update_locks_for_kvm(struct kvm *kvm)
77 {
78 	mutex_unlock(&matrix_dev->mdevs_lock);
79 	if (kvm)
80 		mutex_unlock(&kvm->lock);
81 	mutex_unlock(&matrix_dev->guests_lock);
82 }
83 
84 /**
85  * get_update_locks_for_mdev: Acquire the locks required to dynamically update a
86  *			      KVM guest's APCB in the proper order.
87  *
88  * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
89  *		 configuration data to use to update a KVM guest's APCB.
90  *
91  * The proper locking order is:
92  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
93  *			       guest's APCB.
94  * 2. matrix_mdev->kvm->lock:  required to update a guest's APCB
95  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
96  *
97  * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
98  *	 lock will not be taken.
99  */
100 static inline void get_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
101 {
102 	mutex_lock(&matrix_dev->guests_lock);
103 	if (matrix_mdev && matrix_mdev->kvm)
104 		mutex_lock(&matrix_mdev->kvm->lock);
105 	mutex_lock(&matrix_dev->mdevs_lock);
106 }
107 
108 /**
109  * release_update_locks_for_mdev: Release the locks used to dynamically update a
110  *				  KVM guest's APCB in the proper order.
111  *
112  * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
113  *		 configuration data to use to update a KVM guest's APCB.
114  *
115  * The proper unlocking order is:
116  * 1. matrix_dev->mdevs_lock
117  * 2. matrix_mdev->kvm->lock
118  * 3. matrix_dev->guests_lock
119  *
120  * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
121  *	 lock will not be released.
122  */
123 static inline void release_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
124 {
125 	mutex_unlock(&matrix_dev->mdevs_lock);
126 	if (matrix_mdev && matrix_mdev->kvm)
127 		mutex_unlock(&matrix_mdev->kvm->lock);
128 	mutex_unlock(&matrix_dev->guests_lock);
129 }
130 
131 /**
132  * get_update_locks_by_apqn: Find the mdev to which an APQN is assigned and
133  *			     acquire the locks required to update the APCB of
134  *			     the KVM guest to which the mdev is attached.
135  *
136  * @apqn: the APQN of a queue device.
137  *
138  * The proper locking order is:
139  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
140  *			       guest's APCB.
141  * 2. matrix_mdev->kvm->lock:  required to update a guest's APCB
142  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
143  *
144  * Note: If @apqn is not assigned to a matrix_mdev, the matrix_mdev->kvm->lock
145  *	 will not be taken.
146  *
147  * Return: the ap_matrix_mdev object to which @apqn is assigned or NULL if @apqn
148  *	   is not assigned to an ap_matrix_mdev.
149  */
150 static struct ap_matrix_mdev *get_update_locks_by_apqn(int apqn)
151 {
152 	struct ap_matrix_mdev *matrix_mdev;
153 
154 	mutex_lock(&matrix_dev->guests_lock);
155 
156 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
157 		if (test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm) &&
158 		    test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm)) {
159 			if (matrix_mdev->kvm)
160 				mutex_lock(&matrix_mdev->kvm->lock);
161 
162 			mutex_lock(&matrix_dev->mdevs_lock);
163 
164 			return matrix_mdev;
165 		}
166 	}
167 
168 	mutex_lock(&matrix_dev->mdevs_lock);
169 
170 	return NULL;
171 }
172 
173 /**
174  * get_update_locks_for_queue: get the locks required to update the APCB of the
175  *			       KVM guest to which the matrix mdev linked to a
176  *			       vfio_ap_queue object is attached.
177  *
178  * @q: a pointer to a vfio_ap_queue object.
179  *
180  * The proper locking order is:
181  * 1. q->matrix_dev->guests_lock: required to use the KVM pointer to update a
182  *				  KVM guest's APCB.
183  * 2. q->matrix_mdev->kvm->lock:  required to update a guest's APCB
184  * 3. matrix_dev->mdevs_lock:	  required to access data stored in matrix_mdev
185  *
186  * Note: if @queue is not linked to an ap_matrix_mdev object, the KVM lock
187  *	  will not be taken.
188  */
189 static inline void get_update_locks_for_queue(struct vfio_ap_queue *q)
190 {
191 	mutex_lock(&matrix_dev->guests_lock);
192 	if (q->matrix_mdev && q->matrix_mdev->kvm)
193 		mutex_lock(&q->matrix_mdev->kvm->lock);
194 	mutex_lock(&matrix_dev->mdevs_lock);
195 }
196 
197 /**
198  * vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a
199  *			    hash table of queues assigned to a matrix mdev
200  * @matrix_mdev: the matrix mdev
201  * @apqn: The APQN of a queue device
202  *
203  * Return: the pointer to the vfio_ap_queue struct representing the queue or
204  *	   NULL if the queue is not assigned to @matrix_mdev
205  */
206 static struct vfio_ap_queue *vfio_ap_mdev_get_queue(
207 					struct ap_matrix_mdev *matrix_mdev,
208 					int apqn)
209 {
210 	struct vfio_ap_queue *q;
211 
212 	hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode,
213 			       apqn) {
214 		if (q && q->apqn == apqn)
215 			return q;
216 	}
217 
218 	return NULL;
219 }
220 
221 /**
222  * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries
223  * @apqn: The AP Queue number
224  *
225  * Checks the IRQ bit for the status of this APQN using ap_tapq.
226  * Returns if the ap_tapq function succeeded and the bit is clear.
227  * Returns if ap_tapq function failed with invalid, deconfigured or
228  * checkstopped AP.
229  * Otherwise retries up to 5 times after waiting 20ms.
230  */
231 static void vfio_ap_wait_for_irqclear(int apqn)
232 {
233 	struct ap_queue_status status;
234 	int retry = 5;
235 
236 	do {
237 		status = ap_tapq(apqn, NULL);
238 		switch (status.response_code) {
239 		case AP_RESPONSE_NORMAL:
240 		case AP_RESPONSE_RESET_IN_PROGRESS:
241 			if (!status.irq_enabled)
242 				return;
243 			fallthrough;
244 		case AP_RESPONSE_BUSY:
245 			msleep(20);
246 			break;
247 		case AP_RESPONSE_Q_NOT_AVAIL:
248 		case AP_RESPONSE_DECONFIGURED:
249 		case AP_RESPONSE_CHECKSTOPPED:
250 		default:
251 			WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
252 				  status.response_code, apqn);
253 			return;
254 		}
255 	} while (--retry);
256 
257 	WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
258 		  __func__, status.response_code, apqn);
259 }
260 
261 /**
262  * vfio_ap_free_aqic_resources - free vfio_ap_queue resources
263  * @q: The vfio_ap_queue
264  *
265  * Unregisters the ISC in the GIB when the saved ISC not invalid.
266  * Unpins the guest's page holding the NIB when it exists.
267  * Resets the saved_iova and saved_isc to invalid values.
268  */
269 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
270 {
271 	if (!q)
272 		return;
273 	if (q->saved_isc != VFIO_AP_ISC_INVALID &&
274 	    !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
275 		kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
276 		q->saved_isc = VFIO_AP_ISC_INVALID;
277 	}
278 	if (q->saved_iova && !WARN_ON(!q->matrix_mdev)) {
279 		vfio_unpin_pages(&q->matrix_mdev->vdev, q->saved_iova, 1);
280 		q->saved_iova = 0;
281 	}
282 }
283 
284 /**
285  * vfio_ap_irq_disable - disables and clears an ap_queue interrupt
286  * @q: The vfio_ap_queue
287  *
288  * Uses ap_aqic to disable the interruption and in case of success, reset
289  * in progress or IRQ disable command already proceeded: calls
290  * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
291  * and calls vfio_ap_free_aqic_resources() to free the resources associated
292  * with the AP interrupt handling.
293  *
294  * In the case the AP is busy, or a reset is in progress,
295  * retries after 20ms, up to 5 times.
296  *
297  * Returns if ap_aqic function failed with invalid, deconfigured or
298  * checkstopped AP.
299  *
300  * Return: &struct ap_queue_status
301  */
302 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
303 {
304 	union ap_qirq_ctrl aqic_gisa = { .value = 0 };
305 	struct ap_queue_status status;
306 	int retries = 5;
307 
308 	do {
309 		status = ap_aqic(q->apqn, aqic_gisa, 0);
310 		switch (status.response_code) {
311 		case AP_RESPONSE_OTHERWISE_CHANGED:
312 		case AP_RESPONSE_NORMAL:
313 			vfio_ap_wait_for_irqclear(q->apqn);
314 			goto end_free;
315 		case AP_RESPONSE_RESET_IN_PROGRESS:
316 		case AP_RESPONSE_BUSY:
317 			msleep(20);
318 			break;
319 		case AP_RESPONSE_Q_NOT_AVAIL:
320 		case AP_RESPONSE_DECONFIGURED:
321 		case AP_RESPONSE_CHECKSTOPPED:
322 		case AP_RESPONSE_INVALID_ADDRESS:
323 		default:
324 			/* All cases in default means AP not operational */
325 			WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
326 				  status.response_code);
327 			goto end_free;
328 		}
329 	} while (retries--);
330 
331 	WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
332 		  status.response_code);
333 end_free:
334 	vfio_ap_free_aqic_resources(q);
335 	return status;
336 }
337 
338 /**
339  * vfio_ap_validate_nib - validate a notification indicator byte (nib) address.
340  *
341  * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction.
342  * @nib: the location for storing the nib address.
343  *
344  * When the PQAP(AQIC) instruction is executed, general register 2 contains the
345  * address of the notification indicator byte (nib) used for IRQ notification.
346  * This function parses and validates the nib from gr2.
347  *
348  * Return: returns zero if the nib address is a valid; otherwise, returns
349  *	   -EINVAL.
350  */
351 static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, dma_addr_t *nib)
352 {
353 	*nib = vcpu->run->s.regs.gprs[2];
354 
355 	if (!*nib)
356 		return -EINVAL;
357 	if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *nib >> PAGE_SHIFT)))
358 		return -EINVAL;
359 
360 	return 0;
361 }
362 
363 static int ensure_nib_shared(unsigned long addr, struct gmap *gmap)
364 {
365 	int ret;
366 
367 	/*
368 	 * The nib has to be located in shared storage since guest and
369 	 * host access it. vfio_pin_pages() will do a pin shared and
370 	 * if that fails (possibly because it's not a shared page) it
371 	 * calls export. We try to do a second pin shared here so that
372 	 * the UV gives us an error code if we try to pin a non-shared
373 	 * page.
374 	 *
375 	 * If the page is already pinned shared the UV will return a success.
376 	 */
377 	ret = uv_pin_shared(addr);
378 	if (ret) {
379 		/* vfio_pin_pages() likely exported the page so let's re-import */
380 		gmap_convert_to_secure(gmap, addr);
381 	}
382 	return ret;
383 }
384 
385 /**
386  * vfio_ap_irq_enable - Enable Interruption for a APQN
387  *
388  * @q:	 the vfio_ap_queue holding AQIC parameters
389  * @isc: the guest ISC to register with the GIB interface
390  * @vcpu: the vcpu object containing the registers specifying the parameters
391  *	  passed to the PQAP(AQIC) instruction.
392  *
393  * Pin the NIB saved in *q
394  * Register the guest ISC to GIB interface and retrieve the
395  * host ISC to issue the host side PQAP/AQIC
396  *
397  * status.response_code may be set to AP_RESPONSE_INVALID_ADDRESS in case the
398  * vfio_pin_pages or kvm_s390_gisc_register failed.
399  *
400  * Otherwise return the ap_queue_status returned by the ap_aqic(),
401  * all retry handling will be done by the guest.
402  *
403  * Return: &struct ap_queue_status
404  */
405 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
406 						 int isc,
407 						 struct kvm_vcpu *vcpu)
408 {
409 	union ap_qirq_ctrl aqic_gisa = { .value = 0 };
410 	struct ap_queue_status status = {};
411 	struct kvm_s390_gisa *gisa;
412 	struct page *h_page;
413 	int nisc;
414 	struct kvm *kvm;
415 	phys_addr_t h_nib;
416 	dma_addr_t nib;
417 	int ret;
418 
419 	/* Verify that the notification indicator byte address is valid */
420 	if (vfio_ap_validate_nib(vcpu, &nib)) {
421 		VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%pad, apqn=%#04x\n",
422 				 __func__, &nib, q->apqn);
423 
424 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
425 		return status;
426 	}
427 
428 	ret = vfio_pin_pages(&q->matrix_mdev->vdev, nib, 1,
429 			     IOMMU_READ | IOMMU_WRITE, &h_page);
430 	switch (ret) {
431 	case 1:
432 		break;
433 	default:
434 		VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d,"
435 				 "nib=%pad, apqn=%#04x\n",
436 				 __func__, ret, &nib, q->apqn);
437 
438 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
439 		return status;
440 	}
441 
442 	kvm = q->matrix_mdev->kvm;
443 	gisa = kvm->arch.gisa_int.origin;
444 
445 	h_nib = page_to_phys(h_page) | (nib & ~PAGE_MASK);
446 	aqic_gisa.gisc = isc;
447 
448 	/* NIB in non-shared storage is a rc 6 for PV guests */
449 	if (kvm_s390_pv_cpu_is_protected(vcpu) &&
450 	    ensure_nib_shared(h_nib & PAGE_MASK, kvm->arch.gmap)) {
451 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
452 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
453 		return status;
454 	}
455 
456 	nisc = kvm_s390_gisc_register(kvm, isc);
457 	if (nisc < 0) {
458 		VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n",
459 				 __func__, nisc, isc, q->apqn);
460 
461 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
462 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
463 		return status;
464 	}
465 
466 	aqic_gisa.isc = nisc;
467 	aqic_gisa.ir = 1;
468 	aqic_gisa.gisa = virt_to_phys(gisa) >> 4;
469 
470 	status = ap_aqic(q->apqn, aqic_gisa, h_nib);
471 	switch (status.response_code) {
472 	case AP_RESPONSE_NORMAL:
473 		/* See if we did clear older IRQ configuration */
474 		vfio_ap_free_aqic_resources(q);
475 		q->saved_iova = nib;
476 		q->saved_isc = isc;
477 		break;
478 	case AP_RESPONSE_OTHERWISE_CHANGED:
479 		/* We could not modify IRQ settings: clear new configuration */
480 		ret = kvm_s390_gisc_unregister(kvm, isc);
481 		if (ret)
482 			VFIO_AP_DBF_WARN("%s: kvm_s390_gisc_unregister: rc=%d isc=%d, apqn=%#04x\n",
483 					 __func__, ret, isc, q->apqn);
484 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
485 		break;
486 	default:
487 		pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
488 			status.response_code);
489 		vfio_ap_irq_disable(q);
490 		break;
491 	}
492 
493 	if (status.response_code != AP_RESPONSE_NORMAL) {
494 		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: "
495 				 "zone=%#x, ir=%#x, gisc=%#x, f=%#x,"
496 				 "gisa=%#x, isc=%#x, apqn=%#04x\n",
497 				 __func__, status.response_code,
498 				 aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc,
499 				 aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc,
500 				 q->apqn);
501 	}
502 
503 	return status;
504 }
505 
506 /**
507  * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array
508  *				of big endian elements that can be passed by
509  *				value to an s390dbf sprintf event function to
510  *				format a UUID string.
511  *
512  * @guid: the object containing the little endian guid
513  * @uuid: a six-element array of long values that can be passed by value as
514  *	  arguments for a formatting string specifying a UUID.
515  *
516  * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf
517  * event functions if the memory for the passed string is available as long as
518  * the debug feature exists. Since a mediated device can be removed at any
519  * time, it's name can not be used because %s passes the reference to the string
520  * in memory and the reference will go stale once the device is removed .
521  *
522  * The s390dbf string formatting function allows a maximum of 9 arguments for a
523  * message to be displayed in the 'sprintf' view. In order to use the bytes
524  * comprising the mediated device's UUID to display the mediated device name,
525  * they will have to be converted into an array whose elements can be passed by
526  * value to sprintf. For example:
527  *
528  * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 }
529  * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804
530  * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 }
531  * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx"
532  */
533 static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid)
534 {
535 	/*
536 	 * The input guid is ordered in little endian, so it needs to be
537 	 * reordered for displaying a UUID as a string. This specifies the
538 	 * guid indices in proper order.
539 	 */
540 	uuid[0] = le32_to_cpup((__le32 *)guid);
541 	uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]);
542 	uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]);
543 	uuid[3] = *((__u16 *)&guid->b[8]);
544 	uuid[4] = *((__u16 *)&guid->b[10]);
545 	uuid[5] = *((__u32 *)&guid->b[12]);
546 }
547 
548 /**
549  * handle_pqap - PQAP instruction callback
550  *
551  * @vcpu: The vcpu on which we received the PQAP instruction
552  *
553  * Get the general register contents to initialize internal variables.
554  * REG[0]: APQN
555  * REG[1]: IR and ISC
556  * REG[2]: NIB
557  *
558  * Response.status may be set to following Response Code:
559  * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
560  * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
561  * - AP_RESPONSE_NORMAL (0) : in case of success
562  *   Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
563  * We take the matrix_dev lock to ensure serialization on queues and
564  * mediated device access.
565  *
566  * Return: 0 if we could handle the request inside KVM.
567  * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
568  */
569 static int handle_pqap(struct kvm_vcpu *vcpu)
570 {
571 	uint64_t status;
572 	uint16_t apqn;
573 	unsigned long uuid[6];
574 	struct vfio_ap_queue *q;
575 	struct ap_queue_status qstatus = {
576 			       .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
577 	struct ap_matrix_mdev *matrix_mdev;
578 
579 	apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
580 
581 	/* If we do not use the AIV facility just go to userland */
582 	if (!(vcpu->arch.sie_block->eca & ECA_AIV)) {
583 		VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n",
584 				 __func__, apqn, vcpu->arch.sie_block->eca);
585 
586 		return -EOPNOTSUPP;
587 	}
588 
589 	mutex_lock(&matrix_dev->mdevs_lock);
590 
591 	if (!vcpu->kvm->arch.crypto.pqap_hook) {
592 		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n",
593 				 __func__, apqn);
594 
595 		goto out_unlock;
596 	}
597 
598 	matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
599 				   struct ap_matrix_mdev, pqap_hook);
600 
601 	/* If the there is no guest using the mdev, there is nothing to do */
602 	if (!matrix_mdev->kvm) {
603 		vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid);
604 		VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n",
605 				 __func__, uuid[0],  uuid[1], uuid[2],
606 				 uuid[3], uuid[4], uuid[5], apqn);
607 		goto out_unlock;
608 	}
609 
610 	q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
611 	if (!q) {
612 		VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n",
613 				 __func__, AP_QID_CARD(apqn),
614 				 AP_QID_QUEUE(apqn));
615 		goto out_unlock;
616 	}
617 
618 	status = vcpu->run->s.regs.gprs[1];
619 
620 	/* If IR bit(16) is set we enable the interrupt */
621 	if ((status >> (63 - 16)) & 0x01)
622 		qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu);
623 	else
624 		qstatus = vfio_ap_irq_disable(q);
625 
626 out_unlock:
627 	memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
628 	vcpu->run->s.regs.gprs[1] >>= 32;
629 	mutex_unlock(&matrix_dev->mdevs_lock);
630 	return 0;
631 }
632 
633 static void vfio_ap_matrix_init(struct ap_config_info *info,
634 				struct ap_matrix *matrix)
635 {
636 	matrix->apm_max = info->apxa ? info->na : 63;
637 	matrix->aqm_max = info->apxa ? info->nd : 15;
638 	matrix->adm_max = info->apxa ? info->nd : 15;
639 }
640 
641 static void vfio_ap_mdev_update_guest_apcb(struct ap_matrix_mdev *matrix_mdev)
642 {
643 	if (matrix_mdev->kvm)
644 		kvm_arch_crypto_set_masks(matrix_mdev->kvm,
645 					  matrix_mdev->shadow_apcb.apm,
646 					  matrix_mdev->shadow_apcb.aqm,
647 					  matrix_mdev->shadow_apcb.adm);
648 }
649 
650 static bool vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev *matrix_mdev)
651 {
652 	DECLARE_BITMAP(prev_shadow_adm, AP_DOMAINS);
653 
654 	bitmap_copy(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, AP_DOMAINS);
655 	bitmap_and(matrix_mdev->shadow_apcb.adm, matrix_mdev->matrix.adm,
656 		   (unsigned long *)matrix_dev->info.adm, AP_DOMAINS);
657 
658 	return !bitmap_equal(prev_shadow_adm, matrix_mdev->shadow_apcb.adm,
659 			     AP_DOMAINS);
660 }
661 
662 static bool _queue_passable(struct vfio_ap_queue *q)
663 {
664 	if (!q)
665 		return false;
666 
667 	switch (q->reset_status.response_code) {
668 	case AP_RESPONSE_NORMAL:
669 	case AP_RESPONSE_DECONFIGURED:
670 	case AP_RESPONSE_CHECKSTOPPED:
671 		return true;
672 	default:
673 		return false;
674 	}
675 }
676 
677 /*
678  * vfio_ap_mdev_filter_matrix - filter the APQNs assigned to the matrix mdev
679  *				to ensure no queue devices are passed through to
680  *				the guest that are not bound to the vfio_ap
681  *				device driver.
682  *
683  * @matrix_mdev: the matrix mdev whose matrix is to be filtered.
684  * @apm_filtered: a 256-bit bitmap for storing the APIDs filtered from the
685  *		  guest's AP configuration that are still in the host's AP
686  *		  configuration.
687  *
688  * Note: If an APQN referencing a queue device that is not bound to the vfio_ap
689  *	 driver, its APID will be filtered from the guest's APCB. The matrix
690  *	 structure precludes filtering an individual APQN, so its APID will be
691  *	 filtered. Consequently, all queues associated with the adapter that
692  *	 are in the host's AP configuration must be reset. If queues are
693  *	 subsequently made available again to the guest, they should re-appear
694  *	 in a reset state
695  *
696  * Return: a boolean value indicating whether the KVM guest's APCB was changed
697  *	   by the filtering or not.
698  */
699 static bool vfio_ap_mdev_filter_matrix(struct ap_matrix_mdev *matrix_mdev,
700 				       unsigned long *apm_filtered)
701 {
702 	unsigned long apid, apqi, apqn;
703 	DECLARE_BITMAP(prev_shadow_apm, AP_DEVICES);
704 	DECLARE_BITMAP(prev_shadow_aqm, AP_DOMAINS);
705 
706 	bitmap_copy(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, AP_DEVICES);
707 	bitmap_copy(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS);
708 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
709 	bitmap_clear(apm_filtered, 0, AP_DEVICES);
710 
711 	/*
712 	 * Copy the adapters, domains and control domains to the shadow_apcb
713 	 * from the matrix mdev, but only those that are assigned to the host's
714 	 * AP configuration.
715 	 */
716 	bitmap_and(matrix_mdev->shadow_apcb.apm, matrix_mdev->matrix.apm,
717 		   (unsigned long *)matrix_dev->info.apm, AP_DEVICES);
718 	bitmap_and(matrix_mdev->shadow_apcb.aqm, matrix_mdev->matrix.aqm,
719 		   (unsigned long *)matrix_dev->info.aqm, AP_DOMAINS);
720 
721 	for_each_set_bit_inv(apid, matrix_mdev->shadow_apcb.apm, AP_DEVICES) {
722 		for_each_set_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm,
723 				     AP_DOMAINS) {
724 			/*
725 			 * If the APQN is not bound to the vfio_ap device
726 			 * driver, then we can't assign it to the guest's
727 			 * AP configuration. The AP architecture won't
728 			 * allow filtering of a single APQN, so let's filter
729 			 * the APID since an adapter represents a physical
730 			 * hardware device.
731 			 */
732 			apqn = AP_MKQID(apid, apqi);
733 			if (!_queue_passable(vfio_ap_mdev_get_queue(matrix_mdev, apqn))) {
734 				clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
735 
736 				/*
737 				 * If the adapter was previously plugged into
738 				 * the guest, let's let the caller know that
739 				 * the APID was filtered.
740 				 */
741 				if (test_bit_inv(apid, prev_shadow_apm))
742 					set_bit_inv(apid, apm_filtered);
743 
744 				break;
745 			}
746 		}
747 	}
748 
749 	return !bitmap_equal(prev_shadow_apm, matrix_mdev->shadow_apcb.apm,
750 			     AP_DEVICES) ||
751 	       !bitmap_equal(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm,
752 			     AP_DOMAINS);
753 }
754 
755 static int vfio_ap_mdev_init_dev(struct vfio_device *vdev)
756 {
757 	struct ap_matrix_mdev *matrix_mdev =
758 		container_of(vdev, struct ap_matrix_mdev, vdev);
759 
760 	matrix_mdev->mdev = to_mdev_device(vdev->dev);
761 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
762 	matrix_mdev->pqap_hook = handle_pqap;
763 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
764 	hash_init(matrix_mdev->qtable.queues);
765 
766 	return 0;
767 }
768 
769 static int vfio_ap_mdev_probe(struct mdev_device *mdev)
770 {
771 	struct ap_matrix_mdev *matrix_mdev;
772 	int ret;
773 
774 	matrix_mdev = vfio_alloc_device(ap_matrix_mdev, vdev, &mdev->dev,
775 					&vfio_ap_matrix_dev_ops);
776 	if (IS_ERR(matrix_mdev))
777 		return PTR_ERR(matrix_mdev);
778 
779 	ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev);
780 	if (ret)
781 		goto err_put_vdev;
782 	matrix_mdev->req_trigger = NULL;
783 	dev_set_drvdata(&mdev->dev, matrix_mdev);
784 	mutex_lock(&matrix_dev->mdevs_lock);
785 	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
786 	mutex_unlock(&matrix_dev->mdevs_lock);
787 	return 0;
788 
789 err_put_vdev:
790 	vfio_put_device(&matrix_mdev->vdev);
791 	return ret;
792 }
793 
794 static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev,
795 				    struct vfio_ap_queue *q)
796 {
797 	if (q) {
798 		q->matrix_mdev = matrix_mdev;
799 		hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn);
800 	}
801 }
802 
803 static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn)
804 {
805 	struct vfio_ap_queue *q;
806 
807 	q = vfio_ap_find_queue(apqn);
808 	vfio_ap_mdev_link_queue(matrix_mdev, q);
809 }
810 
811 static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q)
812 {
813 	hash_del(&q->mdev_qnode);
814 }
815 
816 static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q)
817 {
818 	q->matrix_mdev = NULL;
819 }
820 
821 static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev)
822 {
823 	struct vfio_ap_queue *q;
824 	unsigned long apid, apqi;
825 
826 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
827 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
828 				     AP_DOMAINS) {
829 			q = vfio_ap_mdev_get_queue(matrix_mdev,
830 						   AP_MKQID(apid, apqi));
831 			if (q)
832 				q->matrix_mdev = NULL;
833 		}
834 	}
835 }
836 
837 static void vfio_ap_mdev_remove(struct mdev_device *mdev)
838 {
839 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev);
840 
841 	vfio_unregister_group_dev(&matrix_mdev->vdev);
842 
843 	mutex_lock(&matrix_dev->guests_lock);
844 	mutex_lock(&matrix_dev->mdevs_lock);
845 	vfio_ap_mdev_reset_queues(matrix_mdev);
846 	vfio_ap_mdev_unlink_fr_queues(matrix_mdev);
847 	list_del(&matrix_mdev->node);
848 	mutex_unlock(&matrix_dev->mdevs_lock);
849 	mutex_unlock(&matrix_dev->guests_lock);
850 	vfio_put_device(&matrix_mdev->vdev);
851 }
852 
853 #define MDEV_SHARING_ERR "Userspace may not re-assign queue %02lx.%04lx " \
854 			 "already assigned to %s"
855 
856 static void vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev *matrix_mdev,
857 					 unsigned long *apm,
858 					 unsigned long *aqm)
859 {
860 	unsigned long apid, apqi;
861 	const struct device *dev = mdev_dev(matrix_mdev->mdev);
862 	const char *mdev_name = dev_name(dev);
863 
864 	for_each_set_bit_inv(apid, apm, AP_DEVICES)
865 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS)
866 			dev_warn(dev, MDEV_SHARING_ERR, apid, apqi, mdev_name);
867 }
868 
869 /**
870  * vfio_ap_mdev_verify_no_sharing - verify APQNs are not shared by matrix mdevs
871  *
872  * @mdev_apm: mask indicating the APIDs of the APQNs to be verified
873  * @mdev_aqm: mask indicating the APQIs of the APQNs to be verified
874  *
875  * Verifies that each APQN derived from the Cartesian product of a bitmap of
876  * AP adapter IDs and AP queue indexes is not configured for any matrix
877  * mediated device. AP queue sharing is not allowed.
878  *
879  * Return: 0 if the APQNs are not shared; otherwise return -EADDRINUSE.
880  */
881 static int vfio_ap_mdev_verify_no_sharing(unsigned long *mdev_apm,
882 					  unsigned long *mdev_aqm)
883 {
884 	struct ap_matrix_mdev *matrix_mdev;
885 	DECLARE_BITMAP(apm, AP_DEVICES);
886 	DECLARE_BITMAP(aqm, AP_DOMAINS);
887 
888 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
889 		/*
890 		 * If the input apm and aqm are fields of the matrix_mdev
891 		 * object, then move on to the next matrix_mdev.
892 		 */
893 		if (mdev_apm == matrix_mdev->matrix.apm &&
894 		    mdev_aqm == matrix_mdev->matrix.aqm)
895 			continue;
896 
897 		memset(apm, 0, sizeof(apm));
898 		memset(aqm, 0, sizeof(aqm));
899 
900 		/*
901 		 * We work on full longs, as we can only exclude the leftover
902 		 * bits in non-inverse order. The leftover is all zeros.
903 		 */
904 		if (!bitmap_and(apm, mdev_apm, matrix_mdev->matrix.apm,
905 				AP_DEVICES))
906 			continue;
907 
908 		if (!bitmap_and(aqm, mdev_aqm, matrix_mdev->matrix.aqm,
909 				AP_DOMAINS))
910 			continue;
911 
912 		vfio_ap_mdev_log_sharing_err(matrix_mdev, apm, aqm);
913 
914 		return -EADDRINUSE;
915 	}
916 
917 	return 0;
918 }
919 
920 /**
921  * vfio_ap_mdev_validate_masks - verify that the APQNs assigned to the mdev are
922  *				 not reserved for the default zcrypt driver and
923  *				 are not assigned to another mdev.
924  *
925  * @matrix_mdev: the mdev to which the APQNs being validated are assigned.
926  *
927  * Return: One of the following values:
928  * o the error returned from the ap_apqn_in_matrix_owned_by_def_drv() function,
929  *   most likely -EBUSY indicating the ap_perms_mutex lock is already held.
930  * o EADDRNOTAVAIL if an APQN assigned to @matrix_mdev is reserved for the
931  *		   zcrypt default driver.
932  * o EADDRINUSE if an APQN assigned to @matrix_mdev is assigned to another mdev
933  * o A zero indicating validation succeeded.
934  */
935 static int vfio_ap_mdev_validate_masks(struct ap_matrix_mdev *matrix_mdev)
936 {
937 	if (ap_apqn_in_matrix_owned_by_def_drv(matrix_mdev->matrix.apm,
938 					       matrix_mdev->matrix.aqm))
939 		return -EADDRNOTAVAIL;
940 
941 	return vfio_ap_mdev_verify_no_sharing(matrix_mdev->matrix.apm,
942 					      matrix_mdev->matrix.aqm);
943 }
944 
945 static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev,
946 				      unsigned long apid)
947 {
948 	unsigned long apqi;
949 
950 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS)
951 		vfio_ap_mdev_link_apqn(matrix_mdev,
952 				       AP_MKQID(apid, apqi));
953 }
954 
955 static void collect_queues_to_reset(struct ap_matrix_mdev *matrix_mdev,
956 				    unsigned long apid,
957 				    struct list_head *qlist)
958 {
959 	struct vfio_ap_queue *q;
960 	unsigned long  apqi;
961 
962 	for_each_set_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS) {
963 		q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));
964 		if (q)
965 			list_add_tail(&q->reset_qnode, qlist);
966 	}
967 }
968 
969 static void reset_queues_for_apid(struct ap_matrix_mdev *matrix_mdev,
970 				  unsigned long apid)
971 {
972 	struct list_head qlist;
973 
974 	INIT_LIST_HEAD(&qlist);
975 	collect_queues_to_reset(matrix_mdev, apid, &qlist);
976 	vfio_ap_mdev_reset_qlist(&qlist);
977 }
978 
979 static int reset_queues_for_apids(struct ap_matrix_mdev *matrix_mdev,
980 				  unsigned long *apm_reset)
981 {
982 	struct list_head qlist;
983 	unsigned long apid;
984 
985 	if (bitmap_empty(apm_reset, AP_DEVICES))
986 		return 0;
987 
988 	INIT_LIST_HEAD(&qlist);
989 
990 	for_each_set_bit_inv(apid, apm_reset, AP_DEVICES)
991 		collect_queues_to_reset(matrix_mdev, apid, &qlist);
992 
993 	return vfio_ap_mdev_reset_qlist(&qlist);
994 }
995 
996 /**
997  * assign_adapter_store - parses the APID from @buf and sets the
998  * corresponding bit in the mediated matrix device's APM
999  *
1000  * @dev:	the matrix device
1001  * @attr:	the mediated matrix device's assign_adapter attribute
1002  * @buf:	a buffer containing the AP adapter number (APID) to
1003  *		be assigned
1004  * @count:	the number of bytes in @buf
1005  *
1006  * Return: the number of bytes processed if the APID is valid; otherwise,
1007  * returns one of the following errors:
1008  *
1009  *	1. -EINVAL
1010  *	   The APID is not a valid number
1011  *
1012  *	2. -ENODEV
1013  *	   The APID exceeds the maximum value configured for the system
1014  *
1015  *	3. -EADDRNOTAVAIL
1016  *	   An APQN derived from the cross product of the APID being assigned
1017  *	   and the APQIs previously assigned is not bound to the vfio_ap device
1018  *	   driver; or, if no APQIs have yet been assigned, the APID is not
1019  *	   contained in an APQN bound to the vfio_ap device driver.
1020  *
1021  *	4. -EADDRINUSE
1022  *	   An APQN derived from the cross product of the APID being assigned
1023  *	   and the APQIs previously assigned is being used by another mediated
1024  *	   matrix device
1025  *
1026  *	5. -EAGAIN
1027  *	   A lock required to validate the mdev's AP configuration could not
1028  *	   be obtained.
1029  */
1030 static ssize_t assign_adapter_store(struct device *dev,
1031 				    struct device_attribute *attr,
1032 				    const char *buf, size_t count)
1033 {
1034 	int ret;
1035 	unsigned long apid;
1036 	DECLARE_BITMAP(apm_filtered, AP_DEVICES);
1037 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1038 
1039 	mutex_lock(&ap_perms_mutex);
1040 	get_update_locks_for_mdev(matrix_mdev);
1041 
1042 	ret = kstrtoul(buf, 0, &apid);
1043 	if (ret)
1044 		goto done;
1045 
1046 	if (apid > matrix_mdev->matrix.apm_max) {
1047 		ret = -ENODEV;
1048 		goto done;
1049 	}
1050 
1051 	if (test_bit_inv(apid, matrix_mdev->matrix.apm)) {
1052 		ret = count;
1053 		goto done;
1054 	}
1055 
1056 	set_bit_inv(apid, matrix_mdev->matrix.apm);
1057 
1058 	ret = vfio_ap_mdev_validate_masks(matrix_mdev);
1059 	if (ret) {
1060 		clear_bit_inv(apid, matrix_mdev->matrix.apm);
1061 		goto done;
1062 	}
1063 
1064 	vfio_ap_mdev_link_adapter(matrix_mdev, apid);
1065 
1066 	if (vfio_ap_mdev_filter_matrix(matrix_mdev, apm_filtered)) {
1067 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1068 		reset_queues_for_apids(matrix_mdev, apm_filtered);
1069 	}
1070 
1071 	ret = count;
1072 done:
1073 	release_update_locks_for_mdev(matrix_mdev);
1074 	mutex_unlock(&ap_perms_mutex);
1075 
1076 	return ret;
1077 }
1078 static DEVICE_ATTR_WO(assign_adapter);
1079 
1080 static struct vfio_ap_queue
1081 *vfio_ap_unlink_apqn_fr_mdev(struct ap_matrix_mdev *matrix_mdev,
1082 			     unsigned long apid, unsigned long apqi)
1083 {
1084 	struct vfio_ap_queue *q = NULL;
1085 
1086 	q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));
1087 	/* If the queue is assigned to the matrix mdev, unlink it. */
1088 	if (q)
1089 		vfio_ap_unlink_queue_fr_mdev(q);
1090 
1091 	return q;
1092 }
1093 
1094 /**
1095  * vfio_ap_mdev_unlink_adapter - unlink all queues associated with unassigned
1096  *				 adapter from the matrix mdev to which the
1097  *				 adapter was assigned.
1098  * @matrix_mdev: the matrix mediated device to which the adapter was assigned.
1099  * @apid: the APID of the unassigned adapter.
1100  * @qlist: list for storing queues associated with unassigned adapter that
1101  *	   need to be reset.
1102  */
1103 static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev,
1104 					unsigned long apid,
1105 					struct list_head *qlist)
1106 {
1107 	unsigned long apqi;
1108 	struct vfio_ap_queue *q;
1109 
1110 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) {
1111 		q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1112 
1113 		if (q && qlist) {
1114 			if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1115 			    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1116 				list_add_tail(&q->reset_qnode, qlist);
1117 		}
1118 	}
1119 }
1120 
1121 static void vfio_ap_mdev_hot_unplug_adapter(struct ap_matrix_mdev *matrix_mdev,
1122 					    unsigned long apid)
1123 {
1124 	struct vfio_ap_queue *q, *tmpq;
1125 	struct list_head qlist;
1126 
1127 	INIT_LIST_HEAD(&qlist);
1128 	vfio_ap_mdev_unlink_adapter(matrix_mdev, apid, &qlist);
1129 
1130 	if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm)) {
1131 		clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
1132 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1133 	}
1134 
1135 	vfio_ap_mdev_reset_qlist(&qlist);
1136 
1137 	list_for_each_entry_safe(q, tmpq, &qlist, reset_qnode) {
1138 		vfio_ap_unlink_mdev_fr_queue(q);
1139 		list_del(&q->reset_qnode);
1140 	}
1141 }
1142 
1143 /**
1144  * unassign_adapter_store - parses the APID from @buf and clears the
1145  * corresponding bit in the mediated matrix device's APM
1146  *
1147  * @dev:	the matrix device
1148  * @attr:	the mediated matrix device's unassign_adapter attribute
1149  * @buf:	a buffer containing the adapter number (APID) to be unassigned
1150  * @count:	the number of bytes in @buf
1151  *
1152  * Return: the number of bytes processed if the APID is valid; otherwise,
1153  * returns one of the following errors:
1154  *	-EINVAL if the APID is not a number
1155  *	-ENODEV if the APID it exceeds the maximum value configured for the
1156  *		system
1157  */
1158 static ssize_t unassign_adapter_store(struct device *dev,
1159 				      struct device_attribute *attr,
1160 				      const char *buf, size_t count)
1161 {
1162 	int ret;
1163 	unsigned long apid;
1164 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1165 
1166 	get_update_locks_for_mdev(matrix_mdev);
1167 
1168 	ret = kstrtoul(buf, 0, &apid);
1169 	if (ret)
1170 		goto done;
1171 
1172 	if (apid > matrix_mdev->matrix.apm_max) {
1173 		ret = -ENODEV;
1174 		goto done;
1175 	}
1176 
1177 	if (!test_bit_inv(apid, matrix_mdev->matrix.apm)) {
1178 		ret = count;
1179 		goto done;
1180 	}
1181 
1182 	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
1183 	vfio_ap_mdev_hot_unplug_adapter(matrix_mdev, apid);
1184 	ret = count;
1185 done:
1186 	release_update_locks_for_mdev(matrix_mdev);
1187 	return ret;
1188 }
1189 static DEVICE_ATTR_WO(unassign_adapter);
1190 
1191 static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev,
1192 				     unsigned long apqi)
1193 {
1194 	unsigned long apid;
1195 
1196 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES)
1197 		vfio_ap_mdev_link_apqn(matrix_mdev,
1198 				       AP_MKQID(apid, apqi));
1199 }
1200 
1201 /**
1202  * assign_domain_store - parses the APQI from @buf and sets the
1203  * corresponding bit in the mediated matrix device's AQM
1204  *
1205  * @dev:	the matrix device
1206  * @attr:	the mediated matrix device's assign_domain attribute
1207  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
1208  *		be assigned
1209  * @count:	the number of bytes in @buf
1210  *
1211  * Return: the number of bytes processed if the APQI is valid; otherwise returns
1212  * one of the following errors:
1213  *
1214  *	1. -EINVAL
1215  *	   The APQI is not a valid number
1216  *
1217  *	2. -ENODEV
1218  *	   The APQI exceeds the maximum value configured for the system
1219  *
1220  *	3. -EADDRNOTAVAIL
1221  *	   An APQN derived from the cross product of the APQI being assigned
1222  *	   and the APIDs previously assigned is not bound to the vfio_ap device
1223  *	   driver; or, if no APIDs have yet been assigned, the APQI is not
1224  *	   contained in an APQN bound to the vfio_ap device driver.
1225  *
1226  *	4. -EADDRINUSE
1227  *	   An APQN derived from the cross product of the APQI being assigned
1228  *	   and the APIDs previously assigned is being used by another mediated
1229  *	   matrix device
1230  *
1231  *	5. -EAGAIN
1232  *	   The lock required to validate the mdev's AP configuration could not
1233  *	   be obtained.
1234  */
1235 static ssize_t assign_domain_store(struct device *dev,
1236 				   struct device_attribute *attr,
1237 				   const char *buf, size_t count)
1238 {
1239 	int ret;
1240 	unsigned long apqi;
1241 	DECLARE_BITMAP(apm_filtered, AP_DEVICES);
1242 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1243 
1244 	mutex_lock(&ap_perms_mutex);
1245 	get_update_locks_for_mdev(matrix_mdev);
1246 
1247 	ret = kstrtoul(buf, 0, &apqi);
1248 	if (ret)
1249 		goto done;
1250 
1251 	if (apqi > matrix_mdev->matrix.aqm_max) {
1252 		ret = -ENODEV;
1253 		goto done;
1254 	}
1255 
1256 	if (test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1257 		ret = count;
1258 		goto done;
1259 	}
1260 
1261 	set_bit_inv(apqi, matrix_mdev->matrix.aqm);
1262 
1263 	ret = vfio_ap_mdev_validate_masks(matrix_mdev);
1264 	if (ret) {
1265 		clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
1266 		goto done;
1267 	}
1268 
1269 	vfio_ap_mdev_link_domain(matrix_mdev, apqi);
1270 
1271 	if (vfio_ap_mdev_filter_matrix(matrix_mdev, apm_filtered)) {
1272 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1273 		reset_queues_for_apids(matrix_mdev, apm_filtered);
1274 	}
1275 
1276 	ret = count;
1277 done:
1278 	release_update_locks_for_mdev(matrix_mdev);
1279 	mutex_unlock(&ap_perms_mutex);
1280 
1281 	return ret;
1282 }
1283 static DEVICE_ATTR_WO(assign_domain);
1284 
1285 static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev,
1286 				       unsigned long apqi,
1287 				       struct list_head *qlist)
1288 {
1289 	unsigned long apid;
1290 	struct vfio_ap_queue *q;
1291 
1292 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
1293 		q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1294 
1295 		if (q && qlist) {
1296 			if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1297 			    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1298 				list_add_tail(&q->reset_qnode, qlist);
1299 		}
1300 	}
1301 }
1302 
1303 static void vfio_ap_mdev_hot_unplug_domain(struct ap_matrix_mdev *matrix_mdev,
1304 					   unsigned long apqi)
1305 {
1306 	struct vfio_ap_queue *q, *tmpq;
1307 	struct list_head qlist;
1308 
1309 	INIT_LIST_HEAD(&qlist);
1310 	vfio_ap_mdev_unlink_domain(matrix_mdev, apqi, &qlist);
1311 
1312 	if (test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
1313 		clear_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm);
1314 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1315 	}
1316 
1317 	vfio_ap_mdev_reset_qlist(&qlist);
1318 
1319 	list_for_each_entry_safe(q, tmpq, &qlist, reset_qnode) {
1320 		vfio_ap_unlink_mdev_fr_queue(q);
1321 		list_del(&q->reset_qnode);
1322 	}
1323 }
1324 
1325 /**
1326  * unassign_domain_store - parses the APQI from @buf and clears the
1327  * corresponding bit in the mediated matrix device's AQM
1328  *
1329  * @dev:	the matrix device
1330  * @attr:	the mediated matrix device's unassign_domain attribute
1331  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
1332  *		be unassigned
1333  * @count:	the number of bytes in @buf
1334  *
1335  * Return: the number of bytes processed if the APQI is valid; otherwise,
1336  * returns one of the following errors:
1337  *	-EINVAL if the APQI is not a number
1338  *	-ENODEV if the APQI exceeds the maximum value configured for the system
1339  */
1340 static ssize_t unassign_domain_store(struct device *dev,
1341 				     struct device_attribute *attr,
1342 				     const char *buf, size_t count)
1343 {
1344 	int ret;
1345 	unsigned long apqi;
1346 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1347 
1348 	get_update_locks_for_mdev(matrix_mdev);
1349 
1350 	ret = kstrtoul(buf, 0, &apqi);
1351 	if (ret)
1352 		goto done;
1353 
1354 	if (apqi > matrix_mdev->matrix.aqm_max) {
1355 		ret = -ENODEV;
1356 		goto done;
1357 	}
1358 
1359 	if (!test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1360 		ret = count;
1361 		goto done;
1362 	}
1363 
1364 	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
1365 	vfio_ap_mdev_hot_unplug_domain(matrix_mdev, apqi);
1366 	ret = count;
1367 
1368 done:
1369 	release_update_locks_for_mdev(matrix_mdev);
1370 	return ret;
1371 }
1372 static DEVICE_ATTR_WO(unassign_domain);
1373 
1374 /**
1375  * assign_control_domain_store - parses the domain ID from @buf and sets
1376  * the corresponding bit in the mediated matrix device's ADM
1377  *
1378  * @dev:	the matrix device
1379  * @attr:	the mediated matrix device's assign_control_domain attribute
1380  * @buf:	a buffer containing the domain ID to be assigned
1381  * @count:	the number of bytes in @buf
1382  *
1383  * Return: the number of bytes processed if the domain ID is valid; otherwise,
1384  * returns one of the following errors:
1385  *	-EINVAL if the ID is not a number
1386  *	-ENODEV if the ID exceeds the maximum value configured for the system
1387  */
1388 static ssize_t assign_control_domain_store(struct device *dev,
1389 					   struct device_attribute *attr,
1390 					   const char *buf, size_t count)
1391 {
1392 	int ret;
1393 	unsigned long id;
1394 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1395 
1396 	get_update_locks_for_mdev(matrix_mdev);
1397 
1398 	ret = kstrtoul(buf, 0, &id);
1399 	if (ret)
1400 		goto done;
1401 
1402 	if (id > matrix_mdev->matrix.adm_max) {
1403 		ret = -ENODEV;
1404 		goto done;
1405 	}
1406 
1407 	if (test_bit_inv(id, matrix_mdev->matrix.adm)) {
1408 		ret = count;
1409 		goto done;
1410 	}
1411 
1412 	/* Set the bit in the ADM (bitmask) corresponding to the AP control
1413 	 * domain number (id). The bits in the mask, from most significant to
1414 	 * least significant, correspond to IDs 0 up to the one less than the
1415 	 * number of control domains that can be assigned.
1416 	 */
1417 	set_bit_inv(id, matrix_mdev->matrix.adm);
1418 	if (vfio_ap_mdev_filter_cdoms(matrix_mdev))
1419 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1420 
1421 	ret = count;
1422 done:
1423 	release_update_locks_for_mdev(matrix_mdev);
1424 	return ret;
1425 }
1426 static DEVICE_ATTR_WO(assign_control_domain);
1427 
1428 /**
1429  * unassign_control_domain_store - parses the domain ID from @buf and
1430  * clears the corresponding bit in the mediated matrix device's ADM
1431  *
1432  * @dev:	the matrix device
1433  * @attr:	the mediated matrix device's unassign_control_domain attribute
1434  * @buf:	a buffer containing the domain ID to be unassigned
1435  * @count:	the number of bytes in @buf
1436  *
1437  * Return: the number of bytes processed if the domain ID is valid; otherwise,
1438  * returns one of the following errors:
1439  *	-EINVAL if the ID is not a number
1440  *	-ENODEV if the ID exceeds the maximum value configured for the system
1441  */
1442 static ssize_t unassign_control_domain_store(struct device *dev,
1443 					     struct device_attribute *attr,
1444 					     const char *buf, size_t count)
1445 {
1446 	int ret;
1447 	unsigned long domid;
1448 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1449 
1450 	get_update_locks_for_mdev(matrix_mdev);
1451 
1452 	ret = kstrtoul(buf, 0, &domid);
1453 	if (ret)
1454 		goto done;
1455 
1456 	if (domid > matrix_mdev->matrix.adm_max) {
1457 		ret = -ENODEV;
1458 		goto done;
1459 	}
1460 
1461 	if (!test_bit_inv(domid, matrix_mdev->matrix.adm)) {
1462 		ret = count;
1463 		goto done;
1464 	}
1465 
1466 	clear_bit_inv(domid, matrix_mdev->matrix.adm);
1467 
1468 	if (test_bit_inv(domid, matrix_mdev->shadow_apcb.adm)) {
1469 		clear_bit_inv(domid, matrix_mdev->shadow_apcb.adm);
1470 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1471 	}
1472 
1473 	ret = count;
1474 done:
1475 	release_update_locks_for_mdev(matrix_mdev);
1476 	return ret;
1477 }
1478 static DEVICE_ATTR_WO(unassign_control_domain);
1479 
1480 static ssize_t control_domains_show(struct device *dev,
1481 				    struct device_attribute *dev_attr,
1482 				    char *buf)
1483 {
1484 	unsigned long id;
1485 	int nchars = 0;
1486 	int n;
1487 	char *bufpos = buf;
1488 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1489 	unsigned long max_domid = matrix_mdev->matrix.adm_max;
1490 
1491 	mutex_lock(&matrix_dev->mdevs_lock);
1492 	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
1493 		n = sprintf(bufpos, "%04lx\n", id);
1494 		bufpos += n;
1495 		nchars += n;
1496 	}
1497 	mutex_unlock(&matrix_dev->mdevs_lock);
1498 
1499 	return nchars;
1500 }
1501 static DEVICE_ATTR_RO(control_domains);
1502 
1503 static ssize_t vfio_ap_mdev_matrix_show(struct ap_matrix *matrix, char *buf)
1504 {
1505 	char *bufpos = buf;
1506 	unsigned long apid;
1507 	unsigned long apqi;
1508 	unsigned long apid1;
1509 	unsigned long apqi1;
1510 	unsigned long napm_bits = matrix->apm_max + 1;
1511 	unsigned long naqm_bits = matrix->aqm_max + 1;
1512 	int nchars = 0;
1513 	int n;
1514 
1515 	apid1 = find_first_bit_inv(matrix->apm, napm_bits);
1516 	apqi1 = find_first_bit_inv(matrix->aqm, naqm_bits);
1517 
1518 	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
1519 		for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1520 			for_each_set_bit_inv(apqi, matrix->aqm,
1521 					     naqm_bits) {
1522 				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
1523 					    apqi);
1524 				bufpos += n;
1525 				nchars += n;
1526 			}
1527 		}
1528 	} else if (apid1 < napm_bits) {
1529 		for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1530 			n = sprintf(bufpos, "%02lx.\n", apid);
1531 			bufpos += n;
1532 			nchars += n;
1533 		}
1534 	} else if (apqi1 < naqm_bits) {
1535 		for_each_set_bit_inv(apqi, matrix->aqm, naqm_bits) {
1536 			n = sprintf(bufpos, ".%04lx\n", apqi);
1537 			bufpos += n;
1538 			nchars += n;
1539 		}
1540 	}
1541 
1542 	return nchars;
1543 }
1544 
1545 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
1546 			   char *buf)
1547 {
1548 	ssize_t nchars;
1549 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1550 
1551 	mutex_lock(&matrix_dev->mdevs_lock);
1552 	nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->matrix, buf);
1553 	mutex_unlock(&matrix_dev->mdevs_lock);
1554 
1555 	return nchars;
1556 }
1557 static DEVICE_ATTR_RO(matrix);
1558 
1559 static ssize_t guest_matrix_show(struct device *dev,
1560 				 struct device_attribute *attr, char *buf)
1561 {
1562 	ssize_t nchars;
1563 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1564 
1565 	mutex_lock(&matrix_dev->mdevs_lock);
1566 	nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->shadow_apcb, buf);
1567 	mutex_unlock(&matrix_dev->mdevs_lock);
1568 
1569 	return nchars;
1570 }
1571 static DEVICE_ATTR_RO(guest_matrix);
1572 
1573 static struct attribute *vfio_ap_mdev_attrs[] = {
1574 	&dev_attr_assign_adapter.attr,
1575 	&dev_attr_unassign_adapter.attr,
1576 	&dev_attr_assign_domain.attr,
1577 	&dev_attr_unassign_domain.attr,
1578 	&dev_attr_assign_control_domain.attr,
1579 	&dev_attr_unassign_control_domain.attr,
1580 	&dev_attr_control_domains.attr,
1581 	&dev_attr_matrix.attr,
1582 	&dev_attr_guest_matrix.attr,
1583 	NULL,
1584 };
1585 
1586 static struct attribute_group vfio_ap_mdev_attr_group = {
1587 	.attrs = vfio_ap_mdev_attrs
1588 };
1589 
1590 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1591 	&vfio_ap_mdev_attr_group,
1592 	NULL
1593 };
1594 
1595 /**
1596  * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed
1597  * to manage AP resources for the guest whose state is represented by @kvm
1598  *
1599  * @matrix_mdev: a mediated matrix device
1600  * @kvm: reference to KVM instance
1601  *
1602  * Return: 0 if no other mediated matrix device has a reference to @kvm;
1603  * otherwise, returns an -EPERM.
1604  */
1605 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1606 				struct kvm *kvm)
1607 {
1608 	struct ap_matrix_mdev *m;
1609 
1610 	if (kvm->arch.crypto.crycbd) {
1611 		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1612 		kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1613 		up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1614 
1615 		get_update_locks_for_kvm(kvm);
1616 
1617 		list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1618 			if (m != matrix_mdev && m->kvm == kvm) {
1619 				release_update_locks_for_kvm(kvm);
1620 				return -EPERM;
1621 			}
1622 		}
1623 
1624 		kvm_get_kvm(kvm);
1625 		matrix_mdev->kvm = kvm;
1626 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1627 
1628 		release_update_locks_for_kvm(kvm);
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 static void unmap_iova(struct ap_matrix_mdev *matrix_mdev, u64 iova, u64 length)
1635 {
1636 	struct ap_queue_table *qtable = &matrix_mdev->qtable;
1637 	struct vfio_ap_queue *q;
1638 	int loop_cursor;
1639 
1640 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1641 		if (q->saved_iova >= iova && q->saved_iova < iova + length)
1642 			vfio_ap_irq_disable(q);
1643 	}
1644 }
1645 
1646 static void vfio_ap_mdev_dma_unmap(struct vfio_device *vdev, u64 iova,
1647 				   u64 length)
1648 {
1649 	struct ap_matrix_mdev *matrix_mdev =
1650 		container_of(vdev, struct ap_matrix_mdev, vdev);
1651 
1652 	mutex_lock(&matrix_dev->mdevs_lock);
1653 
1654 	unmap_iova(matrix_mdev, iova, length);
1655 
1656 	mutex_unlock(&matrix_dev->mdevs_lock);
1657 }
1658 
1659 /**
1660  * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed
1661  * by @matrix_mdev.
1662  *
1663  * @matrix_mdev: a matrix mediated device
1664  */
1665 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1666 {
1667 	struct kvm *kvm = matrix_mdev->kvm;
1668 
1669 	if (kvm && kvm->arch.crypto.crycbd) {
1670 		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1671 		kvm->arch.crypto.pqap_hook = NULL;
1672 		up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1673 
1674 		get_update_locks_for_kvm(kvm);
1675 
1676 		kvm_arch_crypto_clear_masks(kvm);
1677 		vfio_ap_mdev_reset_queues(matrix_mdev);
1678 		kvm_put_kvm(kvm);
1679 		matrix_mdev->kvm = NULL;
1680 
1681 		release_update_locks_for_kvm(kvm);
1682 	}
1683 }
1684 
1685 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1686 {
1687 	struct ap_queue *queue;
1688 	struct vfio_ap_queue *q = NULL;
1689 
1690 	queue = ap_get_qdev(apqn);
1691 	if (!queue)
1692 		return NULL;
1693 
1694 	if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver)
1695 		q = dev_get_drvdata(&queue->ap_dev.device);
1696 
1697 	put_device(&queue->ap_dev.device);
1698 
1699 	return q;
1700 }
1701 
1702 static int apq_status_check(int apqn, struct ap_queue_status *status)
1703 {
1704 	switch (status->response_code) {
1705 	case AP_RESPONSE_NORMAL:
1706 	case AP_RESPONSE_DECONFIGURED:
1707 	case AP_RESPONSE_CHECKSTOPPED:
1708 		return 0;
1709 	case AP_RESPONSE_RESET_IN_PROGRESS:
1710 	case AP_RESPONSE_BUSY:
1711 		return -EBUSY;
1712 	case AP_RESPONSE_ASSOC_SECRET_NOT_UNIQUE:
1713 	case AP_RESPONSE_ASSOC_FAILED:
1714 		/*
1715 		 * These asynchronous response codes indicate a PQAP(AAPQ)
1716 		 * instruction to associate a secret with the guest failed. All
1717 		 * subsequent AP instructions will end with the asynchronous
1718 		 * response code until the AP queue is reset; so, let's return
1719 		 * a value indicating a reset needs to be performed again.
1720 		 */
1721 		return -EAGAIN;
1722 	default:
1723 		WARN(true,
1724 		     "failed to verify reset of queue %02x.%04x: TAPQ rc=%u\n",
1725 		     AP_QID_CARD(apqn), AP_QID_QUEUE(apqn),
1726 		     status->response_code);
1727 		return -EIO;
1728 	}
1729 }
1730 
1731 #define WAIT_MSG "Waited %dms for reset of queue %02x.%04x (%u, %u, %u)"
1732 
1733 static void apq_reset_check(struct work_struct *reset_work)
1734 {
1735 	int ret = -EBUSY, elapsed = 0;
1736 	struct ap_queue_status status;
1737 	struct vfio_ap_queue *q;
1738 
1739 	q = container_of(reset_work, struct vfio_ap_queue, reset_work);
1740 	memcpy(&status, &q->reset_status, sizeof(status));
1741 	while (true) {
1742 		msleep(AP_RESET_INTERVAL);
1743 		elapsed += AP_RESET_INTERVAL;
1744 		status = ap_tapq(q->apqn, NULL);
1745 		ret = apq_status_check(q->apqn, &status);
1746 		if (ret == -EIO)
1747 			return;
1748 		if (ret == -EBUSY) {
1749 			pr_notice_ratelimited(WAIT_MSG, elapsed,
1750 					      AP_QID_CARD(q->apqn),
1751 					      AP_QID_QUEUE(q->apqn),
1752 					      status.response_code,
1753 					      status.queue_empty,
1754 					      status.irq_enabled);
1755 		} else {
1756 			if (q->reset_status.response_code == AP_RESPONSE_RESET_IN_PROGRESS ||
1757 			    q->reset_status.response_code == AP_RESPONSE_BUSY ||
1758 			    q->reset_status.response_code == AP_RESPONSE_STATE_CHANGE_IN_PROGRESS ||
1759 			    ret == -EAGAIN) {
1760 				status = ap_zapq(q->apqn, 0);
1761 				memcpy(&q->reset_status, &status, sizeof(status));
1762 				continue;
1763 			}
1764 			if (q->saved_isc != VFIO_AP_ISC_INVALID)
1765 				vfio_ap_free_aqic_resources(q);
1766 			break;
1767 		}
1768 	}
1769 }
1770 
1771 static void vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q)
1772 {
1773 	struct ap_queue_status status;
1774 
1775 	if (!q)
1776 		return;
1777 	status = ap_zapq(q->apqn, 0);
1778 	memcpy(&q->reset_status, &status, sizeof(status));
1779 	switch (status.response_code) {
1780 	case AP_RESPONSE_NORMAL:
1781 	case AP_RESPONSE_RESET_IN_PROGRESS:
1782 	case AP_RESPONSE_BUSY:
1783 	case AP_RESPONSE_STATE_CHANGE_IN_PROGRESS:
1784 		/*
1785 		 * Let's verify whether the ZAPQ completed successfully on a work queue.
1786 		 */
1787 		queue_work(system_long_wq, &q->reset_work);
1788 		break;
1789 	case AP_RESPONSE_DECONFIGURED:
1790 	case AP_RESPONSE_CHECKSTOPPED:
1791 		vfio_ap_free_aqic_resources(q);
1792 		break;
1793 	default:
1794 		WARN(true,
1795 		     "PQAP/ZAPQ for %02x.%04x failed with invalid rc=%u\n",
1796 		     AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn),
1797 		     status.response_code);
1798 	}
1799 }
1800 
1801 static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev)
1802 {
1803 	int ret = 0, loop_cursor;
1804 	struct vfio_ap_queue *q;
1805 
1806 	hash_for_each(matrix_mdev->qtable.queues, loop_cursor, q, mdev_qnode)
1807 		vfio_ap_mdev_reset_queue(q);
1808 
1809 	hash_for_each(matrix_mdev->qtable.queues, loop_cursor, q, mdev_qnode) {
1810 		flush_work(&q->reset_work);
1811 
1812 		if (q->reset_status.response_code)
1813 			ret = -EIO;
1814 	}
1815 
1816 	return ret;
1817 }
1818 
1819 static int vfio_ap_mdev_reset_qlist(struct list_head *qlist)
1820 {
1821 	int ret = 0;
1822 	struct vfio_ap_queue *q;
1823 
1824 	list_for_each_entry(q, qlist, reset_qnode)
1825 		vfio_ap_mdev_reset_queue(q);
1826 
1827 	list_for_each_entry(q, qlist, reset_qnode) {
1828 		flush_work(&q->reset_work);
1829 
1830 		if (q->reset_status.response_code)
1831 			ret = -EIO;
1832 	}
1833 
1834 	return ret;
1835 }
1836 
1837 static int vfio_ap_mdev_open_device(struct vfio_device *vdev)
1838 {
1839 	struct ap_matrix_mdev *matrix_mdev =
1840 		container_of(vdev, struct ap_matrix_mdev, vdev);
1841 
1842 	if (!vdev->kvm)
1843 		return -EINVAL;
1844 
1845 	return vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm);
1846 }
1847 
1848 static void vfio_ap_mdev_close_device(struct vfio_device *vdev)
1849 {
1850 	struct ap_matrix_mdev *matrix_mdev =
1851 		container_of(vdev, struct ap_matrix_mdev, vdev);
1852 
1853 	vfio_ap_mdev_unset_kvm(matrix_mdev);
1854 }
1855 
1856 static void vfio_ap_mdev_request(struct vfio_device *vdev, unsigned int count)
1857 {
1858 	struct device *dev = vdev->dev;
1859 	struct ap_matrix_mdev *matrix_mdev;
1860 
1861 	matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev);
1862 
1863 	if (matrix_mdev->req_trigger) {
1864 		if (!(count % 10))
1865 			dev_notice_ratelimited(dev,
1866 					       "Relaying device request to user (#%u)\n",
1867 					       count);
1868 
1869 		eventfd_signal(matrix_mdev->req_trigger);
1870 	} else if (count == 0) {
1871 		dev_notice(dev,
1872 			   "No device request registered, blocked until released by user\n");
1873 	}
1874 }
1875 
1876 static int vfio_ap_mdev_get_device_info(unsigned long arg)
1877 {
1878 	unsigned long minsz;
1879 	struct vfio_device_info info;
1880 
1881 	minsz = offsetofend(struct vfio_device_info, num_irqs);
1882 
1883 	if (copy_from_user(&info, (void __user *)arg, minsz))
1884 		return -EFAULT;
1885 
1886 	if (info.argsz < minsz)
1887 		return -EINVAL;
1888 
1889 	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1890 	info.num_regions = 0;
1891 	info.num_irqs = VFIO_AP_NUM_IRQS;
1892 
1893 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1894 }
1895 
1896 static ssize_t vfio_ap_get_irq_info(unsigned long arg)
1897 {
1898 	unsigned long minsz;
1899 	struct vfio_irq_info info;
1900 
1901 	minsz = offsetofend(struct vfio_irq_info, count);
1902 
1903 	if (copy_from_user(&info, (void __user *)arg, minsz))
1904 		return -EFAULT;
1905 
1906 	if (info.argsz < minsz || info.index >= VFIO_AP_NUM_IRQS)
1907 		return -EINVAL;
1908 
1909 	switch (info.index) {
1910 	case VFIO_AP_REQ_IRQ_INDEX:
1911 		info.count = 1;
1912 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1913 		break;
1914 	default:
1915 		return -EINVAL;
1916 	}
1917 
1918 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1919 }
1920 
1921 static int vfio_ap_irq_set_init(struct vfio_irq_set *irq_set, unsigned long arg)
1922 {
1923 	int ret;
1924 	size_t data_size;
1925 	unsigned long minsz;
1926 
1927 	minsz = offsetofend(struct vfio_irq_set, count);
1928 
1929 	if (copy_from_user(irq_set, (void __user *)arg, minsz))
1930 		return -EFAULT;
1931 
1932 	ret = vfio_set_irqs_validate_and_prepare(irq_set, 1, VFIO_AP_NUM_IRQS,
1933 						 &data_size);
1934 	if (ret)
1935 		return ret;
1936 
1937 	if (!(irq_set->flags & VFIO_IRQ_SET_ACTION_TRIGGER))
1938 		return -EINVAL;
1939 
1940 	return 0;
1941 }
1942 
1943 static int vfio_ap_set_request_irq(struct ap_matrix_mdev *matrix_mdev,
1944 				   unsigned long arg)
1945 {
1946 	s32 fd;
1947 	void __user *data;
1948 	unsigned long minsz;
1949 	struct eventfd_ctx *req_trigger;
1950 
1951 	minsz = offsetofend(struct vfio_irq_set, count);
1952 	data = (void __user *)(arg + minsz);
1953 
1954 	if (get_user(fd, (s32 __user *)data))
1955 		return -EFAULT;
1956 
1957 	if (fd == -1) {
1958 		if (matrix_mdev->req_trigger)
1959 			eventfd_ctx_put(matrix_mdev->req_trigger);
1960 		matrix_mdev->req_trigger = NULL;
1961 	} else if (fd >= 0) {
1962 		req_trigger = eventfd_ctx_fdget(fd);
1963 		if (IS_ERR(req_trigger))
1964 			return PTR_ERR(req_trigger);
1965 
1966 		if (matrix_mdev->req_trigger)
1967 			eventfd_ctx_put(matrix_mdev->req_trigger);
1968 
1969 		matrix_mdev->req_trigger = req_trigger;
1970 	} else {
1971 		return -EINVAL;
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 static int vfio_ap_set_irqs(struct ap_matrix_mdev *matrix_mdev,
1978 			    unsigned long arg)
1979 {
1980 	int ret;
1981 	struct vfio_irq_set irq_set;
1982 
1983 	ret = vfio_ap_irq_set_init(&irq_set, arg);
1984 	if (ret)
1985 		return ret;
1986 
1987 	switch (irq_set.flags & VFIO_IRQ_SET_DATA_TYPE_MASK) {
1988 	case VFIO_IRQ_SET_DATA_EVENTFD:
1989 		switch (irq_set.index) {
1990 		case VFIO_AP_REQ_IRQ_INDEX:
1991 			return vfio_ap_set_request_irq(matrix_mdev, arg);
1992 		default:
1993 			return -EINVAL;
1994 		}
1995 	default:
1996 		return -EINVAL;
1997 	}
1998 }
1999 
2000 static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev,
2001 				    unsigned int cmd, unsigned long arg)
2002 {
2003 	struct ap_matrix_mdev *matrix_mdev =
2004 		container_of(vdev, struct ap_matrix_mdev, vdev);
2005 	int ret;
2006 
2007 	mutex_lock(&matrix_dev->mdevs_lock);
2008 	switch (cmd) {
2009 	case VFIO_DEVICE_GET_INFO:
2010 		ret = vfio_ap_mdev_get_device_info(arg);
2011 		break;
2012 	case VFIO_DEVICE_RESET:
2013 		ret = vfio_ap_mdev_reset_queues(matrix_mdev);
2014 		break;
2015 	case VFIO_DEVICE_GET_IRQ_INFO:
2016 			ret = vfio_ap_get_irq_info(arg);
2017 			break;
2018 	case VFIO_DEVICE_SET_IRQS:
2019 		ret = vfio_ap_set_irqs(matrix_mdev, arg);
2020 		break;
2021 	default:
2022 		ret = -EOPNOTSUPP;
2023 		break;
2024 	}
2025 	mutex_unlock(&matrix_dev->mdevs_lock);
2026 
2027 	return ret;
2028 }
2029 
2030 static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q)
2031 {
2032 	struct ap_matrix_mdev *matrix_mdev;
2033 	unsigned long apid = AP_QID_CARD(q->apqn);
2034 	unsigned long apqi = AP_QID_QUEUE(q->apqn);
2035 
2036 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2037 		if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
2038 		    test_bit_inv(apqi, matrix_mdev->matrix.aqm))
2039 			return matrix_mdev;
2040 	}
2041 
2042 	return NULL;
2043 }
2044 
2045 static ssize_t status_show(struct device *dev,
2046 			   struct device_attribute *attr,
2047 			   char *buf)
2048 {
2049 	ssize_t nchars = 0;
2050 	struct vfio_ap_queue *q;
2051 	unsigned long apid, apqi;
2052 	struct ap_matrix_mdev *matrix_mdev;
2053 	struct ap_device *apdev = to_ap_dev(dev);
2054 
2055 	mutex_lock(&matrix_dev->mdevs_lock);
2056 	q = dev_get_drvdata(&apdev->device);
2057 	matrix_mdev = vfio_ap_mdev_for_queue(q);
2058 
2059 	/* If the queue is assigned to the matrix mediated device, then
2060 	 * determine whether it is passed through to a guest; otherwise,
2061 	 * indicate that it is unassigned.
2062 	 */
2063 	if (matrix_mdev) {
2064 		apid = AP_QID_CARD(q->apqn);
2065 		apqi = AP_QID_QUEUE(q->apqn);
2066 		/*
2067 		 * If the queue is passed through to the guest, then indicate
2068 		 * that it is in use; otherwise, indicate that it is
2069 		 * merely assigned to a matrix mediated device.
2070 		 */
2071 		if (matrix_mdev->kvm &&
2072 		    test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
2073 		    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
2074 			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
2075 					   AP_QUEUE_IN_USE);
2076 		else
2077 			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
2078 					   AP_QUEUE_ASSIGNED);
2079 	} else {
2080 		nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
2081 				   AP_QUEUE_UNASSIGNED);
2082 	}
2083 
2084 	mutex_unlock(&matrix_dev->mdevs_lock);
2085 
2086 	return nchars;
2087 }
2088 
2089 static DEVICE_ATTR_RO(status);
2090 
2091 static struct attribute *vfio_queue_attrs[] = {
2092 	&dev_attr_status.attr,
2093 	NULL,
2094 };
2095 
2096 static const struct attribute_group vfio_queue_attr_group = {
2097 	.attrs = vfio_queue_attrs,
2098 };
2099 
2100 static const struct vfio_device_ops vfio_ap_matrix_dev_ops = {
2101 	.init = vfio_ap_mdev_init_dev,
2102 	.open_device = vfio_ap_mdev_open_device,
2103 	.close_device = vfio_ap_mdev_close_device,
2104 	.ioctl = vfio_ap_mdev_ioctl,
2105 	.dma_unmap = vfio_ap_mdev_dma_unmap,
2106 	.bind_iommufd = vfio_iommufd_emulated_bind,
2107 	.unbind_iommufd = vfio_iommufd_emulated_unbind,
2108 	.attach_ioas = vfio_iommufd_emulated_attach_ioas,
2109 	.detach_ioas = vfio_iommufd_emulated_detach_ioas,
2110 	.request = vfio_ap_mdev_request
2111 };
2112 
2113 static struct mdev_driver vfio_ap_matrix_driver = {
2114 	.device_api = VFIO_DEVICE_API_AP_STRING,
2115 	.max_instances = MAX_ZDEV_ENTRIES_EXT,
2116 	.driver = {
2117 		.name = "vfio_ap_mdev",
2118 		.owner = THIS_MODULE,
2119 		.mod_name = KBUILD_MODNAME,
2120 		.dev_groups = vfio_ap_mdev_attr_groups,
2121 	},
2122 	.probe = vfio_ap_mdev_probe,
2123 	.remove = vfio_ap_mdev_remove,
2124 };
2125 
2126 int vfio_ap_mdev_register(void)
2127 {
2128 	int ret;
2129 
2130 	ret = mdev_register_driver(&vfio_ap_matrix_driver);
2131 	if (ret)
2132 		return ret;
2133 
2134 	matrix_dev->mdev_type.sysfs_name = VFIO_AP_MDEV_TYPE_HWVIRT;
2135 	matrix_dev->mdev_type.pretty_name = VFIO_AP_MDEV_NAME_HWVIRT;
2136 	matrix_dev->mdev_types[0] = &matrix_dev->mdev_type;
2137 	ret = mdev_register_parent(&matrix_dev->parent, &matrix_dev->device,
2138 				   &vfio_ap_matrix_driver,
2139 				   matrix_dev->mdev_types, 1);
2140 	if (ret)
2141 		goto err_driver;
2142 	return 0;
2143 
2144 err_driver:
2145 	mdev_unregister_driver(&vfio_ap_matrix_driver);
2146 	return ret;
2147 }
2148 
2149 void vfio_ap_mdev_unregister(void)
2150 {
2151 	mdev_unregister_parent(&matrix_dev->parent);
2152 	mdev_unregister_driver(&vfio_ap_matrix_driver);
2153 }
2154 
2155 int vfio_ap_mdev_probe_queue(struct ap_device *apdev)
2156 {
2157 	int ret;
2158 	struct vfio_ap_queue *q;
2159 	DECLARE_BITMAP(apm_filtered, AP_DEVICES);
2160 	struct ap_matrix_mdev *matrix_mdev;
2161 
2162 	ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group);
2163 	if (ret)
2164 		return ret;
2165 
2166 	q = kzalloc(sizeof(*q), GFP_KERNEL);
2167 	if (!q) {
2168 		ret = -ENOMEM;
2169 		goto err_remove_group;
2170 	}
2171 
2172 	q->apqn = to_ap_queue(&apdev->device)->qid;
2173 	q->saved_isc = VFIO_AP_ISC_INVALID;
2174 	memset(&q->reset_status, 0, sizeof(q->reset_status));
2175 	INIT_WORK(&q->reset_work, apq_reset_check);
2176 	matrix_mdev = get_update_locks_by_apqn(q->apqn);
2177 
2178 	if (matrix_mdev) {
2179 		vfio_ap_mdev_link_queue(matrix_mdev, q);
2180 
2181 		/*
2182 		 * If we're in the process of handling the adding of adapters or
2183 		 * domains to the host's AP configuration, then let the
2184 		 * vfio_ap device driver's on_scan_complete callback filter the
2185 		 * matrix and update the guest's AP configuration after all of
2186 		 * the new queue devices are probed.
2187 		 */
2188 		if (!bitmap_empty(matrix_mdev->apm_add, AP_DEVICES) ||
2189 		    !bitmap_empty(matrix_mdev->aqm_add, AP_DOMAINS))
2190 			goto done;
2191 
2192 		if (vfio_ap_mdev_filter_matrix(matrix_mdev, apm_filtered)) {
2193 			vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2194 			reset_queues_for_apids(matrix_mdev, apm_filtered);
2195 		}
2196 	}
2197 
2198 done:
2199 	dev_set_drvdata(&apdev->device, q);
2200 	release_update_locks_for_mdev(matrix_mdev);
2201 
2202 	return ret;
2203 
2204 err_remove_group:
2205 	sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
2206 	return ret;
2207 }
2208 
2209 void vfio_ap_mdev_remove_queue(struct ap_device *apdev)
2210 {
2211 	unsigned long apid, apqi;
2212 	struct vfio_ap_queue *q;
2213 	struct ap_matrix_mdev *matrix_mdev;
2214 
2215 	sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
2216 	q = dev_get_drvdata(&apdev->device);
2217 	get_update_locks_for_queue(q);
2218 	matrix_mdev = q->matrix_mdev;
2219 	apid = AP_QID_CARD(q->apqn);
2220 	apqi = AP_QID_QUEUE(q->apqn);
2221 
2222 	if (matrix_mdev) {
2223 		/* If the queue is assigned to the guest's AP configuration */
2224 		if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
2225 		    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
2226 			/*
2227 			 * Since the queues are defined via a matrix of adapters
2228 			 * and domains, it is not possible to hot unplug a
2229 			 * single queue; so, let's unplug the adapter.
2230 			 */
2231 			clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
2232 			vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2233 			reset_queues_for_apid(matrix_mdev, apid);
2234 			goto done;
2235 		}
2236 	}
2237 
2238 	/*
2239 	 * If the queue is not in the host's AP configuration, then resetting
2240 	 * it will fail with response code 01, (APQN not valid); so, let's make
2241 	 * sure it is in the host's config.
2242 	 */
2243 	if (test_bit_inv(apid, (unsigned long *)matrix_dev->info.apm) &&
2244 	    test_bit_inv(apqi, (unsigned long *)matrix_dev->info.aqm)) {
2245 		vfio_ap_mdev_reset_queue(q);
2246 		flush_work(&q->reset_work);
2247 	}
2248 
2249 done:
2250 	if (matrix_mdev)
2251 		vfio_ap_unlink_queue_fr_mdev(q);
2252 
2253 	dev_set_drvdata(&apdev->device, NULL);
2254 	kfree(q);
2255 	release_update_locks_for_mdev(matrix_mdev);
2256 }
2257 
2258 /**
2259  * vfio_ap_mdev_resource_in_use: check whether any of a set of APQNs is
2260  *				 assigned to a mediated device under the control
2261  *				 of the vfio_ap device driver.
2262  *
2263  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check.
2264  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check.
2265  *
2266  * Return:
2267  *	* -EADDRINUSE if one or more of the APQNs specified via @apm/@aqm are
2268  *	  assigned to a mediated device under the control of the vfio_ap
2269  *	  device driver.
2270  *	* Otherwise, return 0.
2271  */
2272 int vfio_ap_mdev_resource_in_use(unsigned long *apm, unsigned long *aqm)
2273 {
2274 	int ret;
2275 
2276 	mutex_lock(&matrix_dev->guests_lock);
2277 	mutex_lock(&matrix_dev->mdevs_lock);
2278 	ret = vfio_ap_mdev_verify_no_sharing(apm, aqm);
2279 	mutex_unlock(&matrix_dev->mdevs_lock);
2280 	mutex_unlock(&matrix_dev->guests_lock);
2281 
2282 	return ret;
2283 }
2284 
2285 /**
2286  * vfio_ap_mdev_hot_unplug_cfg - hot unplug the adapters, domains and control
2287  *				 domains that have been removed from the host's
2288  *				 AP configuration from a guest.
2289  *
2290  * @matrix_mdev: an ap_matrix_mdev object attached to a KVM guest.
2291  * @aprem: the adapters that have been removed from the host's AP configuration
2292  * @aqrem: the domains that have been removed from the host's AP configuration
2293  * @cdrem: the control domains that have been removed from the host's AP
2294  *	   configuration.
2295  */
2296 static void vfio_ap_mdev_hot_unplug_cfg(struct ap_matrix_mdev *matrix_mdev,
2297 					unsigned long *aprem,
2298 					unsigned long *aqrem,
2299 					unsigned long *cdrem)
2300 {
2301 	int do_hotplug = 0;
2302 
2303 	if (!bitmap_empty(aprem, AP_DEVICES)) {
2304 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.apm,
2305 					    matrix_mdev->shadow_apcb.apm,
2306 					    aprem, AP_DEVICES);
2307 	}
2308 
2309 	if (!bitmap_empty(aqrem, AP_DOMAINS)) {
2310 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.aqm,
2311 					    matrix_mdev->shadow_apcb.aqm,
2312 					    aqrem, AP_DEVICES);
2313 	}
2314 
2315 	if (!bitmap_empty(cdrem, AP_DOMAINS))
2316 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.adm,
2317 					    matrix_mdev->shadow_apcb.adm,
2318 					    cdrem, AP_DOMAINS);
2319 
2320 	if (do_hotplug)
2321 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2322 }
2323 
2324 /**
2325  * vfio_ap_mdev_cfg_remove - determines which guests are using the adapters,
2326  *			     domains and control domains that have been removed
2327  *			     from the host AP configuration and unplugs them
2328  *			     from those guests.
2329  *
2330  * @ap_remove:	bitmap specifying which adapters have been removed from the host
2331  *		config.
2332  * @aq_remove:	bitmap specifying which domains have been removed from the host
2333  *		config.
2334  * @cd_remove:	bitmap specifying which control domains have been removed from
2335  *		the host config.
2336  */
2337 static void vfio_ap_mdev_cfg_remove(unsigned long *ap_remove,
2338 				    unsigned long *aq_remove,
2339 				    unsigned long *cd_remove)
2340 {
2341 	struct ap_matrix_mdev *matrix_mdev;
2342 	DECLARE_BITMAP(aprem, AP_DEVICES);
2343 	DECLARE_BITMAP(aqrem, AP_DOMAINS);
2344 	DECLARE_BITMAP(cdrem, AP_DOMAINS);
2345 	int do_remove = 0;
2346 
2347 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2348 		mutex_lock(&matrix_mdev->kvm->lock);
2349 		mutex_lock(&matrix_dev->mdevs_lock);
2350 
2351 		do_remove |= bitmap_and(aprem, ap_remove,
2352 					  matrix_mdev->matrix.apm,
2353 					  AP_DEVICES);
2354 		do_remove |= bitmap_and(aqrem, aq_remove,
2355 					  matrix_mdev->matrix.aqm,
2356 					  AP_DOMAINS);
2357 		do_remove |= bitmap_andnot(cdrem, cd_remove,
2358 					     matrix_mdev->matrix.adm,
2359 					     AP_DOMAINS);
2360 
2361 		if (do_remove)
2362 			vfio_ap_mdev_hot_unplug_cfg(matrix_mdev, aprem, aqrem,
2363 						    cdrem);
2364 
2365 		mutex_unlock(&matrix_dev->mdevs_lock);
2366 		mutex_unlock(&matrix_mdev->kvm->lock);
2367 	}
2368 }
2369 
2370 /**
2371  * vfio_ap_mdev_on_cfg_remove - responds to the removal of adapters, domains and
2372  *				control domains from the host AP configuration
2373  *				by unplugging them from the guests that are
2374  *				using them.
2375  * @cur_config_info: the current host AP configuration information
2376  * @prev_config_info: the previous host AP configuration information
2377  */
2378 static void vfio_ap_mdev_on_cfg_remove(struct ap_config_info *cur_config_info,
2379 				       struct ap_config_info *prev_config_info)
2380 {
2381 	int do_remove;
2382 	DECLARE_BITMAP(aprem, AP_DEVICES);
2383 	DECLARE_BITMAP(aqrem, AP_DOMAINS);
2384 	DECLARE_BITMAP(cdrem, AP_DOMAINS);
2385 
2386 	do_remove = bitmap_andnot(aprem,
2387 				  (unsigned long *)prev_config_info->apm,
2388 				  (unsigned long *)cur_config_info->apm,
2389 				  AP_DEVICES);
2390 	do_remove |= bitmap_andnot(aqrem,
2391 				   (unsigned long *)prev_config_info->aqm,
2392 				   (unsigned long *)cur_config_info->aqm,
2393 				   AP_DEVICES);
2394 	do_remove |= bitmap_andnot(cdrem,
2395 				   (unsigned long *)prev_config_info->adm,
2396 				   (unsigned long *)cur_config_info->adm,
2397 				   AP_DEVICES);
2398 
2399 	if (do_remove)
2400 		vfio_ap_mdev_cfg_remove(aprem, aqrem, cdrem);
2401 }
2402 
2403 /**
2404  * vfio_ap_filter_apid_by_qtype: filter APIDs from an AP mask for adapters that
2405  *				 are older than AP type 10 (CEX4).
2406  * @apm: a bitmap of the APIDs to examine
2407  * @aqm: a bitmap of the APQIs of the queues to query for the AP type.
2408  */
2409 static void vfio_ap_filter_apid_by_qtype(unsigned long *apm, unsigned long *aqm)
2410 {
2411 	bool apid_cleared;
2412 	struct ap_queue_status status;
2413 	unsigned long apid, apqi;
2414 	struct ap_tapq_hwinfo info;
2415 
2416 	for_each_set_bit_inv(apid, apm, AP_DEVICES) {
2417 		apid_cleared = false;
2418 
2419 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
2420 			status = ap_test_queue(AP_MKQID(apid, apqi), 1, &info);
2421 			switch (status.response_code) {
2422 			/*
2423 			 * According to the architecture in each case
2424 			 * below, the queue's info should be filled.
2425 			 */
2426 			case AP_RESPONSE_NORMAL:
2427 			case AP_RESPONSE_RESET_IN_PROGRESS:
2428 			case AP_RESPONSE_DECONFIGURED:
2429 			case AP_RESPONSE_CHECKSTOPPED:
2430 			case AP_RESPONSE_BUSY:
2431 				/*
2432 				 * The vfio_ap device driver only
2433 				 * supports CEX4 and newer adapters, so
2434 				 * remove the APID if the adapter is
2435 				 * older than a CEX4.
2436 				 */
2437 				if (info.at < AP_DEVICE_TYPE_CEX4) {
2438 					clear_bit_inv(apid, apm);
2439 					apid_cleared = true;
2440 				}
2441 
2442 				break;
2443 
2444 			default:
2445 				/*
2446 				 * If we don't know the adapter type,
2447 				 * clear its APID since it can't be
2448 				 * determined whether the vfio_ap
2449 				 * device driver supports it.
2450 				 */
2451 				clear_bit_inv(apid, apm);
2452 				apid_cleared = true;
2453 				break;
2454 			}
2455 
2456 			/*
2457 			 * If we've already cleared the APID from the apm, there
2458 			 * is no need to continue examining the remainin AP
2459 			 * queues to determine the type of the adapter.
2460 			 */
2461 			if (apid_cleared)
2462 				continue;
2463 		}
2464 	}
2465 }
2466 
2467 /**
2468  * vfio_ap_mdev_cfg_add - store bitmaps specifying the adapters, domains and
2469  *			  control domains that have been added to the host's
2470  *			  AP configuration for each matrix mdev to which they
2471  *			  are assigned.
2472  *
2473  * @apm_add: a bitmap specifying the adapters that have been added to the AP
2474  *	     configuration.
2475  * @aqm_add: a bitmap specifying the domains that have been added to the AP
2476  *	     configuration.
2477  * @adm_add: a bitmap specifying the control domains that have been added to the
2478  *	     AP configuration.
2479  */
2480 static void vfio_ap_mdev_cfg_add(unsigned long *apm_add, unsigned long *aqm_add,
2481 				 unsigned long *adm_add)
2482 {
2483 	struct ap_matrix_mdev *matrix_mdev;
2484 
2485 	if (list_empty(&matrix_dev->mdev_list))
2486 		return;
2487 
2488 	vfio_ap_filter_apid_by_qtype(apm_add, aqm_add);
2489 
2490 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2491 		bitmap_and(matrix_mdev->apm_add,
2492 			   matrix_mdev->matrix.apm, apm_add, AP_DEVICES);
2493 		bitmap_and(matrix_mdev->aqm_add,
2494 			   matrix_mdev->matrix.aqm, aqm_add, AP_DOMAINS);
2495 		bitmap_and(matrix_mdev->adm_add,
2496 			   matrix_mdev->matrix.adm, adm_add, AP_DEVICES);
2497 	}
2498 }
2499 
2500 /**
2501  * vfio_ap_mdev_on_cfg_add - responds to the addition of adapters, domains and
2502  *			     control domains to the host AP configuration
2503  *			     by updating the bitmaps that specify what adapters,
2504  *			     domains and control domains have been added so they
2505  *			     can be hot plugged into the guest when the AP bus
2506  *			     scan completes (see vfio_ap_on_scan_complete
2507  *			     function).
2508  * @cur_config_info: the current AP configuration information
2509  * @prev_config_info: the previous AP configuration information
2510  */
2511 static void vfio_ap_mdev_on_cfg_add(struct ap_config_info *cur_config_info,
2512 				    struct ap_config_info *prev_config_info)
2513 {
2514 	bool do_add;
2515 	DECLARE_BITMAP(apm_add, AP_DEVICES);
2516 	DECLARE_BITMAP(aqm_add, AP_DOMAINS);
2517 	DECLARE_BITMAP(adm_add, AP_DOMAINS);
2518 
2519 	do_add = bitmap_andnot(apm_add,
2520 			       (unsigned long *)cur_config_info->apm,
2521 			       (unsigned long *)prev_config_info->apm,
2522 			       AP_DEVICES);
2523 	do_add |= bitmap_andnot(aqm_add,
2524 				(unsigned long *)cur_config_info->aqm,
2525 				(unsigned long *)prev_config_info->aqm,
2526 				AP_DOMAINS);
2527 	do_add |= bitmap_andnot(adm_add,
2528 				(unsigned long *)cur_config_info->adm,
2529 				(unsigned long *)prev_config_info->adm,
2530 				AP_DOMAINS);
2531 
2532 	if (do_add)
2533 		vfio_ap_mdev_cfg_add(apm_add, aqm_add, adm_add);
2534 }
2535 
2536 /**
2537  * vfio_ap_on_cfg_changed - handles notification of changes to the host AP
2538  *			    configuration.
2539  *
2540  * @cur_cfg_info: the current host AP configuration
2541  * @prev_cfg_info: the previous host AP configuration
2542  */
2543 void vfio_ap_on_cfg_changed(struct ap_config_info *cur_cfg_info,
2544 			    struct ap_config_info *prev_cfg_info)
2545 {
2546 	if (!cur_cfg_info || !prev_cfg_info)
2547 		return;
2548 
2549 	mutex_lock(&matrix_dev->guests_lock);
2550 
2551 	vfio_ap_mdev_on_cfg_remove(cur_cfg_info, prev_cfg_info);
2552 	vfio_ap_mdev_on_cfg_add(cur_cfg_info, prev_cfg_info);
2553 	memcpy(&matrix_dev->info, cur_cfg_info, sizeof(*cur_cfg_info));
2554 
2555 	mutex_unlock(&matrix_dev->guests_lock);
2556 }
2557 
2558 static void vfio_ap_mdev_hot_plug_cfg(struct ap_matrix_mdev *matrix_mdev)
2559 {
2560 	DECLARE_BITMAP(apm_filtered, AP_DEVICES);
2561 	bool filter_domains, filter_adapters, filter_cdoms, do_hotplug = false;
2562 
2563 	mutex_lock(&matrix_mdev->kvm->lock);
2564 	mutex_lock(&matrix_dev->mdevs_lock);
2565 
2566 	filter_adapters = bitmap_intersects(matrix_mdev->matrix.apm,
2567 					    matrix_mdev->apm_add, AP_DEVICES);
2568 	filter_domains = bitmap_intersects(matrix_mdev->matrix.aqm,
2569 					   matrix_mdev->aqm_add, AP_DOMAINS);
2570 	filter_cdoms = bitmap_intersects(matrix_mdev->matrix.adm,
2571 					 matrix_mdev->adm_add, AP_DOMAINS);
2572 
2573 	if (filter_adapters || filter_domains)
2574 		do_hotplug = vfio_ap_mdev_filter_matrix(matrix_mdev, apm_filtered);
2575 
2576 	if (filter_cdoms)
2577 		do_hotplug |= vfio_ap_mdev_filter_cdoms(matrix_mdev);
2578 
2579 	if (do_hotplug)
2580 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2581 
2582 	reset_queues_for_apids(matrix_mdev, apm_filtered);
2583 
2584 	mutex_unlock(&matrix_dev->mdevs_lock);
2585 	mutex_unlock(&matrix_mdev->kvm->lock);
2586 }
2587 
2588 void vfio_ap_on_scan_complete(struct ap_config_info *new_config_info,
2589 			      struct ap_config_info *old_config_info)
2590 {
2591 	struct ap_matrix_mdev *matrix_mdev;
2592 
2593 	mutex_lock(&matrix_dev->guests_lock);
2594 
2595 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2596 		if (bitmap_empty(matrix_mdev->apm_add, AP_DEVICES) &&
2597 		    bitmap_empty(matrix_mdev->aqm_add, AP_DOMAINS) &&
2598 		    bitmap_empty(matrix_mdev->adm_add, AP_DOMAINS))
2599 			continue;
2600 
2601 		vfio_ap_mdev_hot_plug_cfg(matrix_mdev);
2602 		bitmap_clear(matrix_mdev->apm_add, 0, AP_DEVICES);
2603 		bitmap_clear(matrix_mdev->aqm_add, 0, AP_DOMAINS);
2604 		bitmap_clear(matrix_mdev->adm_add, 0, AP_DOMAINS);
2605 	}
2606 
2607 	mutex_unlock(&matrix_dev->guests_lock);
2608 }
2609