xref: /linux/drivers/rtc/rtc-amlogic-a4.c (revision 6a34dfa15d6edf7e78b8118d862d2db0889cf669)
1 // SPDX-License-Identifier: (GPL-2.0-only OR MIT)
2 /*
3  * Copyright (C) 2024 Amlogic, Inc. All rights reserved
4  * Author: Yiting Deng <yiting.deng@amlogic.com>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/clk-provider.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include <linux/rtc.h>
15 #include <linux/time64.h>
16 
17 /* rtc oscillator rate */
18 #define OSC_32K			32768
19 #define OSC_24M			24000000
20 
21 #define RTC_CTRL		(0x0 << 2)		/* Control RTC */
22 #define RTC_ALRM0_EN		BIT(0)
23 #define RTC_OSC_SEL		BIT(8)
24 #define RTC_ENABLE		BIT(12)
25 
26 #define RTC_COUNTER_REG		(0x1 << 2)		/* Program RTC counter initial value */
27 
28 #define RTC_ALARM0_REG		(0x2 << 2)		/* Program RTC alarm0 value */
29 
30 #define RTC_SEC_ADJUST_REG	(0x6 << 2)		/* Control second-based timing adjustment */
31 #define RTC_MATCH_COUNTER	GENMASK(18, 0)
32 #define RTC_SEC_ADJUST_CTRL	GENMASK(20, 19)
33 #define RTC_ADJ_VALID		BIT(23)
34 
35 #define RTC_INT_MASK		(0x8 << 2)		/* RTC interrupt mask */
36 #define RTC_ALRM0_IRQ_MSK	BIT(0)
37 
38 #define RTC_INT_CLR		(0x9 << 2)		/* Clear RTC interrupt */
39 #define RTC_ALRM0_IRQ_CLR	BIT(0)
40 
41 #define RTC_OSCIN_CTRL0		(0xa << 2)		/* Control RTC clk from 24M */
42 #define RTC_OSCIN_CTRL1		(0xb << 2)		/* Control RTC clk from 24M */
43 #define RTC_OSCIN_IN_EN		BIT(31)
44 #define RTC_OSCIN_OUT_CFG	GENMASK(29, 28)
45 #define RTC_OSCIN_OUT_N0M0	GENMASK(11, 0)
46 #define RTC_OSCIN_OUT_N1M1	GENMASK(23, 12)
47 
48 #define RTC_INT_STATUS		(0xc << 2)		/* RTC interrupt status */
49 #define RTC_ALRM0_IRQ_STATUS	BIT(0)
50 
51 #define RTC_REAL_TIME		(0xd << 2)		/* RTC time value */
52 
53 #define RTC_OSCIN_OUT_32K_N0	0x2dc
54 #define RTC_OSCIN_OUT_32K_N1	0x2db
55 #define RTC_OSCIN_OUT_32K_M0	0x1
56 #define RTC_OSCIN_OUT_32K_M1	0x2
57 
58 #define RTC_SWALLOW_SECOND	0x2
59 #define RTC_INSERT_SECOND	0x3
60 
61 struct aml_rtc_config {
62 	bool gray_stored;
63 };
64 
65 struct aml_rtc_data {
66 	struct regmap *map;
67 	struct rtc_device *rtc_dev;
68 	int irq;
69 	struct clk *rtc_clk;
70 	struct clk *sys_clk;
71 	int rtc_enabled;
72 	const struct aml_rtc_config *config;
73 };
74 
75 static const struct regmap_config aml_rtc_regmap_config = {
76 	.reg_bits = 32,
77 	.val_bits = 32,
78 	.reg_stride = 4,
79 	.max_register = RTC_REAL_TIME,
80 };
81 
82 static inline u32 gray_to_binary(u32 gray)
83 {
84 	u32 bcd = gray;
85 	int size = sizeof(bcd) * 8;
86 	int i;
87 
88 	for (i = 0; (1 << i) < size; i++)
89 		bcd ^= bcd >> (1 << i);
90 
91 	return bcd;
92 }
93 
94 static inline u32 binary_to_gray(u32 bcd)
95 {
96 	return bcd ^ (bcd >> 1);
97 }
98 
99 static int aml_rtc_read_time(struct device *dev, struct rtc_time *tm)
100 {
101 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
102 	u32 time_sec;
103 
104 	/* if RTC disabled, read time failed */
105 	if (!rtc->rtc_enabled)
106 		return -EINVAL;
107 
108 	regmap_read(rtc->map, RTC_REAL_TIME, &time_sec);
109 	if (rtc->config->gray_stored)
110 		time_sec = gray_to_binary(time_sec);
111 	rtc_time64_to_tm(time_sec, tm);
112 	dev_dbg(dev, "%s: read time = %us\n", __func__, time_sec);
113 
114 	return 0;
115 }
116 
117 static int aml_rtc_set_time(struct device *dev, struct rtc_time *tm)
118 {
119 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
120 	u32 time_sec;
121 
122 	/* if RTC disabled, first enable it */
123 	if (!rtc->rtc_enabled) {
124 		regmap_write_bits(rtc->map, RTC_CTRL, RTC_ENABLE, RTC_ENABLE);
125 		usleep_range(100, 200);
126 		rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
127 		if (!rtc->rtc_enabled)
128 			return -EINVAL;
129 	}
130 
131 	time_sec = rtc_tm_to_time64(tm);
132 	if (rtc->config->gray_stored)
133 		time_sec = binary_to_gray(time_sec);
134 	regmap_write(rtc->map, RTC_COUNTER_REG, time_sec);
135 	dev_dbg(dev, "%s: set time = %us\n", __func__, time_sec);
136 
137 	return 0;
138 }
139 
140 static int aml_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
141 {
142 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
143 	time64_t alarm_sec;
144 
145 	/* if RTC disabled, set alarm failed */
146 	if (!rtc->rtc_enabled)
147 		return -EINVAL;
148 
149 	regmap_update_bits(rtc->map, RTC_CTRL,
150 			   RTC_ALRM0_EN, RTC_ALRM0_EN);
151 	regmap_update_bits(rtc->map, RTC_INT_MASK,
152 			   RTC_ALRM0_IRQ_MSK, 0);
153 
154 	alarm_sec = rtc_tm_to_time64(&alarm->time);
155 	if (rtc->config->gray_stored)
156 		alarm_sec = binary_to_gray(alarm_sec);
157 	regmap_write(rtc->map, RTC_ALARM0_REG, alarm_sec);
158 
159 	dev_dbg(dev, "%s: alarm->enabled=%d alarm_set=%llds\n", __func__,
160 		alarm->enabled, alarm_sec);
161 
162 	return 0;
163 }
164 
165 static int aml_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
166 {
167 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
168 	u32 alarm_sec;
169 	int alarm_enable;
170 	int alarm_mask;
171 
172 	/* if RTC disabled, read alarm failed */
173 	if (!rtc->rtc_enabled)
174 		return -EINVAL;
175 
176 	regmap_read(rtc->map, RTC_ALARM0_REG, &alarm_sec);
177 	if (rtc->config->gray_stored)
178 		alarm_sec = gray_to_binary(alarm_sec);
179 	rtc_time64_to_tm(alarm_sec, &alarm->time);
180 
181 	alarm_enable = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN);
182 	alarm_mask = regmap_test_bits(rtc->map, RTC_INT_MASK, RTC_ALRM0_IRQ_MSK);
183 	alarm->enabled = (alarm_enable && !alarm_mask) ? 1 : 0;
184 	dev_dbg(dev, "%s: alarm->enabled=%d alarm=%us\n", __func__,
185 		alarm->enabled, alarm_sec);
186 
187 	return 0;
188 }
189 
190 static int aml_rtc_read_offset(struct device *dev, long *offset)
191 {
192 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
193 	u32 reg_val;
194 	long val;
195 	int sign, match_counter, enable;
196 
197 	/* if RTC disabled, read offset failed */
198 	if (!rtc->rtc_enabled)
199 		return -EINVAL;
200 
201 	regmap_read(rtc->map, RTC_SEC_ADJUST_REG, &reg_val);
202 	enable = FIELD_GET(RTC_ADJ_VALID, reg_val);
203 	if (!enable) {
204 		val = 0;
205 	} else {
206 		sign = FIELD_GET(RTC_SEC_ADJUST_CTRL, reg_val);
207 		match_counter = FIELD_GET(RTC_MATCH_COUNTER, reg_val);
208 		val = 1000000000 / (match_counter + 1);
209 		if (sign == RTC_SWALLOW_SECOND)
210 			val = -val;
211 	}
212 	*offset = val;
213 
214 	return 0;
215 }
216 
217 static int aml_rtc_set_offset(struct device *dev, long offset)
218 {
219 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
220 	int sign = 0;
221 	int match_counter = 0;
222 	int enable = 0;
223 	u32 reg_val;
224 
225 	/* if RTC disabled, set offset failed */
226 	if (!rtc->rtc_enabled)
227 		return -EINVAL;
228 
229 	if (offset) {
230 		enable = 1;
231 		sign = offset < 0 ? RTC_SWALLOW_SECOND : RTC_INSERT_SECOND;
232 		match_counter = 1000000000 / abs(offset) - 1;
233 		if (match_counter < 0 || match_counter > RTC_MATCH_COUNTER)
234 			return -EINVAL;
235 	}
236 
237 	reg_val = FIELD_PREP(RTC_ADJ_VALID, enable) |
238 		  FIELD_PREP(RTC_SEC_ADJUST_CTRL, sign) |
239 		  FIELD_PREP(RTC_MATCH_COUNTER, match_counter);
240 	regmap_write(rtc->map, RTC_SEC_ADJUST_REG, reg_val);
241 
242 	return 0;
243 }
244 
245 static int aml_rtc_alarm_enable(struct device *dev, unsigned int enabled)
246 {
247 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
248 
249 	if (enabled) {
250 		regmap_update_bits(rtc->map, RTC_CTRL,
251 				   RTC_ALRM0_EN, RTC_ALRM0_EN);
252 		regmap_update_bits(rtc->map, RTC_INT_MASK,
253 				   RTC_ALRM0_IRQ_MSK, 0);
254 	} else {
255 		regmap_update_bits(rtc->map, RTC_INT_MASK,
256 				   RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
257 		regmap_update_bits(rtc->map, RTC_CTRL,
258 				   RTC_ALRM0_EN, 0);
259 	}
260 
261 	return 0;
262 }
263 
264 static const struct rtc_class_ops aml_rtc_ops = {
265 	.read_time = aml_rtc_read_time,
266 	.set_time = aml_rtc_set_time,
267 	.read_alarm = aml_rtc_read_alarm,
268 	.set_alarm = aml_rtc_set_alarm,
269 	.alarm_irq_enable = aml_rtc_alarm_enable,
270 	.read_offset = aml_rtc_read_offset,
271 	.set_offset = aml_rtc_set_offset,
272 };
273 
274 static irqreturn_t aml_rtc_handler(int irq, void *data)
275 {
276 	struct aml_rtc_data *rtc = (struct aml_rtc_data *)data;
277 
278 	regmap_write(rtc->map, RTC_ALARM0_REG, 0);
279 	regmap_write(rtc->map, RTC_INT_CLR, RTC_ALRM0_IRQ_STATUS);
280 
281 	rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
282 
283 	return IRQ_HANDLED;
284 }
285 
286 static void aml_rtc_init(struct aml_rtc_data *rtc)
287 {
288 	u32 reg_val = 0;
289 
290 	rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
291 	if (!rtc->rtc_enabled) {
292 		if (clk_get_rate(rtc->rtc_clk) == OSC_24M) {
293 			/* select 24M oscillator */
294 			regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, RTC_OSC_SEL);
295 
296 			/*
297 			 * Set RTC oscillator to freq_out to freq_in/((N0*M0+N1*M1)/(M0+M1))
298 			 * Enable clock_in gate of oscillator 24MHz
299 			 * Set N0 to 733, N1 to 732
300 			 */
301 			reg_val = FIELD_PREP(RTC_OSCIN_IN_EN, 1)
302 				  | FIELD_PREP(RTC_OSCIN_OUT_CFG, 1)
303 				  | FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_N0)
304 				  | FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_N1);
305 			regmap_write_bits(rtc->map, RTC_OSCIN_CTRL0, RTC_OSCIN_IN_EN
306 					  | RTC_OSCIN_OUT_CFG | RTC_OSCIN_OUT_N0M0
307 					  | RTC_OSCIN_OUT_N1M1, reg_val);
308 
309 			/* Set M0 to 2, M1 to 3, so freq_out = 32768 Hz*/
310 			reg_val = FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_M0)
311 				  | FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_M1);
312 			regmap_write_bits(rtc->map, RTC_OSCIN_CTRL1, RTC_OSCIN_OUT_N0M0
313 					  | RTC_OSCIN_OUT_N1M1, reg_val);
314 		} else {
315 			/* select 32K oscillator */
316 			regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, 0);
317 		}
318 	}
319 	regmap_write_bits(rtc->map, RTC_INT_MASK,
320 			  RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
321 	regmap_write_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN, 0);
322 }
323 
324 static int aml_rtc_probe(struct platform_device *pdev)
325 {
326 	struct device *dev = &pdev->dev;
327 	struct aml_rtc_data *rtc;
328 	void __iomem *base;
329 	int ret = 0;
330 
331 	rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
332 	if (!rtc)
333 		return -ENOMEM;
334 
335 	rtc->config = of_device_get_match_data(dev);
336 	if (!rtc->config)
337 		return -ENODEV;
338 
339 	base = devm_platform_ioremap_resource(pdev, 0);
340 	if (IS_ERR(base))
341 		return dev_err_probe(dev, PTR_ERR(base), "resource ioremap failed\n");
342 
343 	rtc->map = devm_regmap_init_mmio(dev, base, &aml_rtc_regmap_config);
344 	if (IS_ERR(rtc->map))
345 		return dev_err_probe(dev, PTR_ERR(rtc->map), "regmap init failed\n");
346 
347 	rtc->irq = platform_get_irq(pdev, 0);
348 	if (rtc->irq < 0)
349 		return rtc->irq;
350 
351 	rtc->rtc_clk = devm_clk_get(dev, "osc");
352 	if (IS_ERR(rtc->rtc_clk))
353 		return dev_err_probe(dev, PTR_ERR(rtc->rtc_clk),
354 				     "failed to find rtc clock\n");
355 	if (clk_get_rate(rtc->rtc_clk) != OSC_32K && clk_get_rate(rtc->rtc_clk) != OSC_24M)
356 		return dev_err_probe(dev, -EINVAL, "Invalid clock configuration\n");
357 
358 	rtc->sys_clk = devm_clk_get_enabled(dev, "sys");
359 	if (IS_ERR(rtc->sys_clk))
360 		return dev_err_probe(dev, PTR_ERR(rtc->sys_clk),
361 				     "failed to get_enable rtc sys clk\n");
362 	aml_rtc_init(rtc);
363 
364 	device_init_wakeup(dev, 1);
365 	platform_set_drvdata(pdev, rtc);
366 
367 	rtc->rtc_dev = devm_rtc_allocate_device(dev);
368 	if (IS_ERR(rtc->rtc_dev)) {
369 		ret = PTR_ERR(rtc->rtc_dev);
370 		goto err_clk;
371 	}
372 
373 	ret = devm_request_irq(dev, rtc->irq, aml_rtc_handler,
374 			       IRQF_ONESHOT, "aml-rtc alarm", rtc);
375 	if (ret) {
376 		dev_err_probe(dev, ret, "IRQ%d request failed, ret = %d\n",
377 			      rtc->irq, ret);
378 		goto err_clk;
379 	}
380 
381 	rtc->rtc_dev->ops = &aml_rtc_ops;
382 	rtc->rtc_dev->range_min = 0;
383 	rtc->rtc_dev->range_max = U32_MAX;
384 
385 	ret = devm_rtc_register_device(rtc->rtc_dev);
386 	if (ret) {
387 		dev_err_probe(&pdev->dev, ret, "Failed to register RTC device: %d\n", ret);
388 		goto err_clk;
389 	}
390 
391 	return 0;
392 err_clk:
393 	clk_disable_unprepare(rtc->sys_clk);
394 	device_init_wakeup(dev, 0);
395 
396 	return ret;
397 }
398 
399 #ifdef CONFIG_PM_SLEEP
400 static int aml_rtc_suspend(struct device *dev)
401 {
402 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
403 
404 	if (device_may_wakeup(dev))
405 		enable_irq_wake(rtc->irq);
406 
407 	return 0;
408 }
409 
410 static int aml_rtc_resume(struct device *dev)
411 {
412 	struct aml_rtc_data *rtc = dev_get_drvdata(dev);
413 
414 	if (device_may_wakeup(dev))
415 		disable_irq_wake(rtc->irq);
416 
417 	return 0;
418 }
419 #endif
420 
421 static SIMPLE_DEV_PM_OPS(aml_rtc_pm_ops,
422 			 aml_rtc_suspend, aml_rtc_resume);
423 
424 static void aml_rtc_remove(struct platform_device *pdev)
425 {
426 	struct aml_rtc_data *rtc = dev_get_drvdata(&pdev->dev);
427 
428 	clk_disable_unprepare(rtc->sys_clk);
429 	device_init_wakeup(&pdev->dev, 0);
430 }
431 
432 static const struct aml_rtc_config a5_rtc_config = {
433 };
434 
435 static const struct aml_rtc_config a4_rtc_config = {
436 	.gray_stored = true,
437 };
438 
439 static const struct of_device_id aml_rtc_device_id[] = {
440 	{
441 		.compatible = "amlogic,a4-rtc",
442 		.data = &a4_rtc_config,
443 	},
444 	{
445 		.compatible = "amlogic,a5-rtc",
446 		.data = &a5_rtc_config,
447 	},
448 	{ }
449 };
450 MODULE_DEVICE_TABLE(of, aml_rtc_device_id);
451 
452 static struct platform_driver aml_rtc_driver = {
453 	.probe = aml_rtc_probe,
454 	.remove = aml_rtc_remove,
455 	.driver = {
456 		.name = "aml-rtc",
457 		.pm = &aml_rtc_pm_ops,
458 		.of_match_table = aml_rtc_device_id,
459 	},
460 };
461 
462 module_platform_driver(aml_rtc_driver);
463 MODULE_DESCRIPTION("Amlogic RTC driver");
464 MODULE_AUTHOR("Yiting Deng <yiting.deng@amlogic.com>");
465 MODULE_LICENSE("GPL");
466