1 // SPDX-License-Identifier: (GPL-2.0-only OR MIT)
2 /*
3 * Copyright (C) 2024 Amlogic, Inc. All rights reserved
4 * Author: Yiting Deng <yiting.deng@amlogic.com>
5 */
6
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/clk-provider.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include <linux/rtc.h>
15 #include <linux/time64.h>
16
17 /* rtc oscillator rate */
18 #define OSC_32K 32768
19 #define OSC_24M 24000000
20
21 #define RTC_CTRL (0x0 << 2) /* Control RTC */
22 #define RTC_ALRM0_EN BIT(0)
23 #define RTC_OSC_SEL BIT(8)
24 #define RTC_ENABLE BIT(12)
25
26 #define RTC_COUNTER_REG (0x1 << 2) /* Program RTC counter initial value */
27
28 #define RTC_ALARM0_REG (0x2 << 2) /* Program RTC alarm0 value */
29
30 #define RTC_SEC_ADJUST_REG (0x6 << 2) /* Control second-based timing adjustment */
31 #define RTC_MATCH_COUNTER GENMASK(18, 0)
32 #define RTC_SEC_ADJUST_CTRL GENMASK(20, 19)
33 #define RTC_ADJ_VALID BIT(23)
34
35 #define RTC_INT_MASK (0x8 << 2) /* RTC interrupt mask */
36 #define RTC_ALRM0_IRQ_MSK BIT(0)
37
38 #define RTC_INT_CLR (0x9 << 2) /* Clear RTC interrupt */
39 #define RTC_ALRM0_IRQ_CLR BIT(0)
40
41 #define RTC_OSCIN_CTRL0 (0xa << 2) /* Control RTC clk from 24M */
42 #define RTC_OSCIN_CTRL1 (0xb << 2) /* Control RTC clk from 24M */
43 #define RTC_OSCIN_IN_EN BIT(31)
44 #define RTC_OSCIN_OUT_CFG GENMASK(29, 28)
45 #define RTC_OSCIN_OUT_N0M0 GENMASK(11, 0)
46 #define RTC_OSCIN_OUT_N1M1 GENMASK(23, 12)
47
48 #define RTC_INT_STATUS (0xc << 2) /* RTC interrupt status */
49 #define RTC_ALRM0_IRQ_STATUS BIT(0)
50
51 #define RTC_REAL_TIME (0xd << 2) /* RTC time value */
52
53 #define RTC_OSCIN_OUT_32K_N0 0x2dc
54 #define RTC_OSCIN_OUT_32K_N1 0x2db
55 #define RTC_OSCIN_OUT_32K_M0 0x1
56 #define RTC_OSCIN_OUT_32K_M1 0x2
57
58 #define RTC_SWALLOW_SECOND 0x2
59 #define RTC_INSERT_SECOND 0x3
60
61 struct aml_rtc_config {
62 bool gray_stored;
63 };
64
65 struct aml_rtc_data {
66 struct regmap *map;
67 struct rtc_device *rtc_dev;
68 int irq;
69 struct clk *rtc_clk;
70 struct clk *sys_clk;
71 int rtc_enabled;
72 const struct aml_rtc_config *config;
73 };
74
75 static const struct regmap_config aml_rtc_regmap_config = {
76 .reg_bits = 32,
77 .val_bits = 32,
78 .reg_stride = 4,
79 .max_register = RTC_REAL_TIME,
80 };
81
gray_to_binary(u32 gray)82 static inline u32 gray_to_binary(u32 gray)
83 {
84 u32 bcd = gray;
85 int size = sizeof(bcd) * 8;
86 int i;
87
88 for (i = 0; (1 << i) < size; i++)
89 bcd ^= bcd >> (1 << i);
90
91 return bcd;
92 }
93
binary_to_gray(u32 bcd)94 static inline u32 binary_to_gray(u32 bcd)
95 {
96 return bcd ^ (bcd >> 1);
97 }
98
aml_rtc_read_time(struct device * dev,struct rtc_time * tm)99 static int aml_rtc_read_time(struct device *dev, struct rtc_time *tm)
100 {
101 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
102 u32 time_sec;
103
104 /* if RTC disabled, read time failed */
105 if (!rtc->rtc_enabled)
106 return -EINVAL;
107
108 regmap_read(rtc->map, RTC_REAL_TIME, &time_sec);
109 if (rtc->config->gray_stored)
110 time_sec = gray_to_binary(time_sec);
111 rtc_time64_to_tm(time_sec, tm);
112 dev_dbg(dev, "%s: read time = %us\n", __func__, time_sec);
113
114 return 0;
115 }
116
aml_rtc_set_time(struct device * dev,struct rtc_time * tm)117 static int aml_rtc_set_time(struct device *dev, struct rtc_time *tm)
118 {
119 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
120 u32 time_sec;
121
122 /* if RTC disabled, first enable it */
123 if (!rtc->rtc_enabled) {
124 regmap_write_bits(rtc->map, RTC_CTRL, RTC_ENABLE, RTC_ENABLE);
125 usleep_range(100, 200);
126 rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
127 if (!rtc->rtc_enabled)
128 return -EINVAL;
129 }
130
131 time_sec = rtc_tm_to_time64(tm);
132 if (rtc->config->gray_stored)
133 time_sec = binary_to_gray(time_sec);
134 regmap_write(rtc->map, RTC_COUNTER_REG, time_sec);
135 dev_dbg(dev, "%s: set time = %us\n", __func__, time_sec);
136
137 return 0;
138 }
139
aml_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alarm)140 static int aml_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
141 {
142 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
143 time64_t alarm_sec;
144
145 /* if RTC disabled, set alarm failed */
146 if (!rtc->rtc_enabled)
147 return -EINVAL;
148
149 regmap_update_bits(rtc->map, RTC_CTRL,
150 RTC_ALRM0_EN, RTC_ALRM0_EN);
151 regmap_update_bits(rtc->map, RTC_INT_MASK,
152 RTC_ALRM0_IRQ_MSK, 0);
153
154 alarm_sec = rtc_tm_to_time64(&alarm->time);
155 if (rtc->config->gray_stored)
156 alarm_sec = binary_to_gray(alarm_sec);
157 regmap_write(rtc->map, RTC_ALARM0_REG, alarm_sec);
158
159 dev_dbg(dev, "%s: alarm->enabled=%d alarm_set=%llds\n", __func__,
160 alarm->enabled, alarm_sec);
161
162 return 0;
163 }
164
aml_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alarm)165 static int aml_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
166 {
167 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
168 u32 alarm_sec;
169 int alarm_enable;
170 int alarm_mask;
171
172 /* if RTC disabled, read alarm failed */
173 if (!rtc->rtc_enabled)
174 return -EINVAL;
175
176 regmap_read(rtc->map, RTC_ALARM0_REG, &alarm_sec);
177 if (rtc->config->gray_stored)
178 alarm_sec = gray_to_binary(alarm_sec);
179 rtc_time64_to_tm(alarm_sec, &alarm->time);
180
181 alarm_enable = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN);
182 alarm_mask = regmap_test_bits(rtc->map, RTC_INT_MASK, RTC_ALRM0_IRQ_MSK);
183 alarm->enabled = (alarm_enable && !alarm_mask) ? 1 : 0;
184 dev_dbg(dev, "%s: alarm->enabled=%d alarm=%us\n", __func__,
185 alarm->enabled, alarm_sec);
186
187 return 0;
188 }
189
aml_rtc_read_offset(struct device * dev,long * offset)190 static int aml_rtc_read_offset(struct device *dev, long *offset)
191 {
192 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
193 u32 reg_val;
194 long val;
195 int sign, match_counter, enable;
196
197 /* if RTC disabled, read offset failed */
198 if (!rtc->rtc_enabled)
199 return -EINVAL;
200
201 regmap_read(rtc->map, RTC_SEC_ADJUST_REG, ®_val);
202 enable = FIELD_GET(RTC_ADJ_VALID, reg_val);
203 if (!enable) {
204 val = 0;
205 } else {
206 sign = FIELD_GET(RTC_SEC_ADJUST_CTRL, reg_val);
207 match_counter = FIELD_GET(RTC_MATCH_COUNTER, reg_val);
208 val = 1000000000 / (match_counter + 1);
209 if (sign == RTC_SWALLOW_SECOND)
210 val = -val;
211 }
212 *offset = val;
213
214 return 0;
215 }
216
aml_rtc_set_offset(struct device * dev,long offset)217 static int aml_rtc_set_offset(struct device *dev, long offset)
218 {
219 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
220 int sign = 0;
221 int match_counter = 0;
222 int enable = 0;
223 u32 reg_val;
224
225 /* if RTC disabled, set offset failed */
226 if (!rtc->rtc_enabled)
227 return -EINVAL;
228
229 if (offset) {
230 enable = 1;
231 sign = offset < 0 ? RTC_SWALLOW_SECOND : RTC_INSERT_SECOND;
232 match_counter = 1000000000 / abs(offset) - 1;
233 if (match_counter < 0 || match_counter > RTC_MATCH_COUNTER)
234 return -EINVAL;
235 }
236
237 reg_val = FIELD_PREP(RTC_ADJ_VALID, enable) |
238 FIELD_PREP(RTC_SEC_ADJUST_CTRL, sign) |
239 FIELD_PREP(RTC_MATCH_COUNTER, match_counter);
240 regmap_write(rtc->map, RTC_SEC_ADJUST_REG, reg_val);
241
242 return 0;
243 }
244
aml_rtc_alarm_enable(struct device * dev,unsigned int enabled)245 static int aml_rtc_alarm_enable(struct device *dev, unsigned int enabled)
246 {
247 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
248
249 if (enabled) {
250 regmap_update_bits(rtc->map, RTC_CTRL,
251 RTC_ALRM0_EN, RTC_ALRM0_EN);
252 regmap_update_bits(rtc->map, RTC_INT_MASK,
253 RTC_ALRM0_IRQ_MSK, 0);
254 } else {
255 regmap_update_bits(rtc->map, RTC_INT_MASK,
256 RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
257 regmap_update_bits(rtc->map, RTC_CTRL,
258 RTC_ALRM0_EN, 0);
259 }
260
261 return 0;
262 }
263
264 static const struct rtc_class_ops aml_rtc_ops = {
265 .read_time = aml_rtc_read_time,
266 .set_time = aml_rtc_set_time,
267 .read_alarm = aml_rtc_read_alarm,
268 .set_alarm = aml_rtc_set_alarm,
269 .alarm_irq_enable = aml_rtc_alarm_enable,
270 .read_offset = aml_rtc_read_offset,
271 .set_offset = aml_rtc_set_offset,
272 };
273
aml_rtc_handler(int irq,void * data)274 static irqreturn_t aml_rtc_handler(int irq, void *data)
275 {
276 struct aml_rtc_data *rtc = (struct aml_rtc_data *)data;
277
278 regmap_write(rtc->map, RTC_ALARM0_REG, 0);
279 regmap_write(rtc->map, RTC_INT_CLR, RTC_ALRM0_IRQ_STATUS);
280
281 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
282
283 return IRQ_HANDLED;
284 }
285
aml_rtc_init(struct aml_rtc_data * rtc)286 static void aml_rtc_init(struct aml_rtc_data *rtc)
287 {
288 u32 reg_val = 0;
289
290 rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
291 if (!rtc->rtc_enabled) {
292 if (clk_get_rate(rtc->rtc_clk) == OSC_24M) {
293 /* select 24M oscillator */
294 regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, RTC_OSC_SEL);
295
296 /*
297 * Set RTC oscillator to freq_out to freq_in/((N0*M0+N1*M1)/(M0+M1))
298 * Enable clock_in gate of oscillator 24MHz
299 * Set N0 to 733, N1 to 732
300 */
301 reg_val = FIELD_PREP(RTC_OSCIN_IN_EN, 1)
302 | FIELD_PREP(RTC_OSCIN_OUT_CFG, 1)
303 | FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_N0)
304 | FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_N1);
305 regmap_write_bits(rtc->map, RTC_OSCIN_CTRL0, RTC_OSCIN_IN_EN
306 | RTC_OSCIN_OUT_CFG | RTC_OSCIN_OUT_N0M0
307 | RTC_OSCIN_OUT_N1M1, reg_val);
308
309 /* Set M0 to 2, M1 to 3, so freq_out = 32768 Hz*/
310 reg_val = FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_M0)
311 | FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_M1);
312 regmap_write_bits(rtc->map, RTC_OSCIN_CTRL1, RTC_OSCIN_OUT_N0M0
313 | RTC_OSCIN_OUT_N1M1, reg_val);
314 } else {
315 /* select 32K oscillator */
316 regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, 0);
317 }
318 }
319 regmap_write_bits(rtc->map, RTC_INT_MASK,
320 RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
321 regmap_write_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN, 0);
322 }
323
aml_rtc_probe(struct platform_device * pdev)324 static int aml_rtc_probe(struct platform_device *pdev)
325 {
326 struct device *dev = &pdev->dev;
327 struct aml_rtc_data *rtc;
328 void __iomem *base;
329 int ret = 0;
330
331 rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
332 if (!rtc)
333 return -ENOMEM;
334
335 rtc->config = of_device_get_match_data(dev);
336 if (!rtc->config)
337 return -ENODEV;
338
339 base = devm_platform_ioremap_resource(pdev, 0);
340 if (IS_ERR(base))
341 return dev_err_probe(dev, PTR_ERR(base), "resource ioremap failed\n");
342
343 rtc->map = devm_regmap_init_mmio(dev, base, &aml_rtc_regmap_config);
344 if (IS_ERR(rtc->map))
345 return dev_err_probe(dev, PTR_ERR(rtc->map), "regmap init failed\n");
346
347 rtc->irq = platform_get_irq(pdev, 0);
348 if (rtc->irq < 0)
349 return rtc->irq;
350
351 rtc->rtc_clk = devm_clk_get(dev, "osc");
352 if (IS_ERR(rtc->rtc_clk))
353 return dev_err_probe(dev, PTR_ERR(rtc->rtc_clk),
354 "failed to find rtc clock\n");
355 if (clk_get_rate(rtc->rtc_clk) != OSC_32K && clk_get_rate(rtc->rtc_clk) != OSC_24M)
356 return dev_err_probe(dev, -EINVAL, "Invalid clock configuration\n");
357
358 rtc->sys_clk = devm_clk_get_enabled(dev, "sys");
359 if (IS_ERR(rtc->sys_clk))
360 return dev_err_probe(dev, PTR_ERR(rtc->sys_clk),
361 "failed to get_enable rtc sys clk\n");
362 aml_rtc_init(rtc);
363
364 device_init_wakeup(dev, 1);
365 platform_set_drvdata(pdev, rtc);
366
367 rtc->rtc_dev = devm_rtc_allocate_device(dev);
368 if (IS_ERR(rtc->rtc_dev)) {
369 ret = PTR_ERR(rtc->rtc_dev);
370 goto err_clk;
371 }
372
373 ret = devm_request_irq(dev, rtc->irq, aml_rtc_handler,
374 IRQF_ONESHOT, "aml-rtc alarm", rtc);
375 if (ret) {
376 dev_err_probe(dev, ret, "IRQ%d request failed, ret = %d\n",
377 rtc->irq, ret);
378 goto err_clk;
379 }
380
381 rtc->rtc_dev->ops = &aml_rtc_ops;
382 rtc->rtc_dev->range_min = 0;
383 rtc->rtc_dev->range_max = U32_MAX;
384
385 ret = devm_rtc_register_device(rtc->rtc_dev);
386 if (ret) {
387 dev_err_probe(&pdev->dev, ret, "Failed to register RTC device: %d\n", ret);
388 goto err_clk;
389 }
390
391 return 0;
392 err_clk:
393 clk_disable_unprepare(rtc->sys_clk);
394 device_init_wakeup(dev, 0);
395
396 return ret;
397 }
398
399 #ifdef CONFIG_PM_SLEEP
aml_rtc_suspend(struct device * dev)400 static int aml_rtc_suspend(struct device *dev)
401 {
402 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
403
404 if (device_may_wakeup(dev))
405 enable_irq_wake(rtc->irq);
406
407 return 0;
408 }
409
aml_rtc_resume(struct device * dev)410 static int aml_rtc_resume(struct device *dev)
411 {
412 struct aml_rtc_data *rtc = dev_get_drvdata(dev);
413
414 if (device_may_wakeup(dev))
415 disable_irq_wake(rtc->irq);
416
417 return 0;
418 }
419 #endif
420
421 static SIMPLE_DEV_PM_OPS(aml_rtc_pm_ops,
422 aml_rtc_suspend, aml_rtc_resume);
423
aml_rtc_remove(struct platform_device * pdev)424 static void aml_rtc_remove(struct platform_device *pdev)
425 {
426 struct aml_rtc_data *rtc = dev_get_drvdata(&pdev->dev);
427
428 clk_disable_unprepare(rtc->sys_clk);
429 device_init_wakeup(&pdev->dev, 0);
430 }
431
432 static const struct aml_rtc_config a5_rtc_config = {
433 };
434
435 static const struct aml_rtc_config a4_rtc_config = {
436 .gray_stored = true,
437 };
438
439 static const struct of_device_id aml_rtc_device_id[] = {
440 {
441 .compatible = "amlogic,a4-rtc",
442 .data = &a4_rtc_config,
443 },
444 {
445 .compatible = "amlogic,a5-rtc",
446 .data = &a5_rtc_config,
447 },
448 { }
449 };
450 MODULE_DEVICE_TABLE(of, aml_rtc_device_id);
451
452 static struct platform_driver aml_rtc_driver = {
453 .probe = aml_rtc_probe,
454 .remove = aml_rtc_remove,
455 .driver = {
456 .name = "aml-rtc",
457 .pm = &aml_rtc_pm_ops,
458 .of_match_table = aml_rtc_device_id,
459 },
460 };
461
462 module_platform_driver(aml_rtc_driver);
463 MODULE_DESCRIPTION("Amlogic RTC driver");
464 MODULE_AUTHOR("Yiting Deng <yiting.deng@amlogic.com>");
465 MODULE_LICENSE("GPL");
466