xref: /linux/drivers/remoteproc/omap_remoteproc.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP Remote Processor driver
4  *
5  * Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Mark Grosen <mgrosen@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Hari Kanigeri <h-kanigeri2@ti.com>
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/clk.h>
19 #include <linux/clk/ti.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_reserved_mem.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/interrupt.h>
29 #include <linux/remoteproc.h>
30 #include <linux/mailbox_client.h>
31 #include <linux/omap-iommu.h>
32 #include <linux/omap-mailbox.h>
33 #include <linux/regmap.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/reset.h>
36 #include <clocksource/timer-ti-dm.h>
37 
38 #include <linux/platform_data/dmtimer-omap.h>
39 
40 #include "omap_remoteproc.h"
41 #include "remoteproc_internal.h"
42 
43 /* default auto-suspend delay (ms) */
44 #define DEFAULT_AUTOSUSPEND_DELAY		10000
45 
46 /**
47  * struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs
48  * @syscon: regmap handle for the system control configuration module
49  * @boot_reg: boot register offset within the @syscon regmap
50  * @boot_reg_shift: bit-field shift required for the boot address value in
51  *		    @boot_reg
52  */
53 struct omap_rproc_boot_data {
54 	struct regmap *syscon;
55 	unsigned int boot_reg;
56 	unsigned int boot_reg_shift;
57 };
58 
59 /**
60  * struct omap_rproc_mem - internal memory structure
61  * @cpu_addr: MPU virtual address of the memory region
62  * @bus_addr: bus address used to access the memory region
63  * @dev_addr: device address of the memory region from DSP view
64  * @size: size of the memory region
65  */
66 struct omap_rproc_mem {
67 	void __iomem *cpu_addr;
68 	phys_addr_t bus_addr;
69 	u32 dev_addr;
70 	size_t size;
71 };
72 
73 /**
74  * struct omap_rproc_timer - data structure for a timer used by a omap rproc
75  * @odt: timer pointer
76  * @timer_ops: OMAP dmtimer ops for @odt timer
77  * @irq: timer irq
78  */
79 struct omap_rproc_timer {
80 	struct omap_dm_timer *odt;
81 	const struct omap_dm_timer_ops *timer_ops;
82 	int irq;
83 };
84 
85 /**
86  * struct omap_rproc - omap remote processor state
87  * @mbox: mailbox channel handle
88  * @client: mailbox client to request the mailbox channel
89  * @boot_data: boot data structure for setting processor boot address
90  * @mem: internal memory regions data
91  * @num_mems: number of internal memory regions
92  * @num_timers: number of rproc timer(s)
93  * @num_wd_timers: number of rproc watchdog timers
94  * @timers: timer(s) info used by rproc
95  * @autosuspend_delay: auto-suspend delay value to be used for runtime pm
96  * @need_resume: if true a resume is needed in the system resume callback
97  * @rproc: rproc handle
98  * @reset: reset handle
99  * @pm_comp: completion primitive to sync for suspend response
100  * @fck: functional clock for the remoteproc
101  * @suspend_acked: state machine flag to store the suspend request ack
102  */
103 struct omap_rproc {
104 	struct mbox_chan *mbox;
105 	struct mbox_client client;
106 	struct omap_rproc_boot_data *boot_data;
107 	struct omap_rproc_mem *mem;
108 	int num_mems;
109 	int num_timers;
110 	int num_wd_timers;
111 	struct omap_rproc_timer *timers;
112 	int autosuspend_delay;
113 	bool need_resume;
114 	struct rproc *rproc;
115 	struct reset_control *reset;
116 	struct completion pm_comp;
117 	struct clk *fck;
118 	bool suspend_acked;
119 };
120 
121 /**
122  * struct omap_rproc_mem_data - memory definitions for an omap remote processor
123  * @name: name for this memory entry
124  * @dev_addr: device address for the memory entry
125  */
126 struct omap_rproc_mem_data {
127 	const char *name;
128 	const u32 dev_addr;
129 };
130 
131 /**
132  * struct omap_rproc_dev_data - device data for the omap remote processor
133  * @device_name: device name of the remote processor
134  * @mems: memory definitions for this remote processor
135  */
136 struct omap_rproc_dev_data {
137 	const char *device_name;
138 	const struct omap_rproc_mem_data *mems;
139 };
140 
141 /**
142  * omap_rproc_request_timer() - request a timer for a remoteproc
143  * @dev: device requesting the timer
144  * @np: device node pointer to the desired timer
145  * @timer: handle to a struct omap_rproc_timer to return the timer handle
146  *
147  * This helper function is used primarily to request a timer associated with
148  * a remoteproc. The returned handle is stored in the .odt field of the
149  * @timer structure passed in, and is used to invoke other timer specific
150  * ops (like starting a timer either during device initialization or during
151  * a resume operation, or for stopping/freeing a timer).
152  *
153  * Return: 0 on success, otherwise an appropriate failure
154  */
155 static int omap_rproc_request_timer(struct device *dev, struct device_node *np,
156 				    struct omap_rproc_timer *timer)
157 {
158 	int ret;
159 
160 	timer->odt = timer->timer_ops->request_by_node(np);
161 	if (!timer->odt) {
162 		dev_err(dev, "request for timer node %p failed\n", np);
163 		return -EBUSY;
164 	}
165 
166 	ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK);
167 	if (ret) {
168 		dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n",
169 			np);
170 		timer->timer_ops->free(timer->odt);
171 		return ret;
172 	}
173 
174 	/* clean counter, remoteproc code will set the value */
175 	timer->timer_ops->set_load(timer->odt, 0);
176 
177 	return 0;
178 }
179 
180 /**
181  * omap_rproc_start_timer() - start a timer for a remoteproc
182  * @timer: handle to a OMAP rproc timer
183  *
184  * This helper function is used to start a timer associated with a remoteproc,
185  * obtained using the request_timer ops. The helper function needs to be
186  * invoked by the driver to start the timer (during device initialization)
187  * or to just resume the timer.
188  *
189  * Return: 0 on success, otherwise a failure as returned by DMTimer ops
190  */
191 static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer)
192 {
193 	return timer->timer_ops->start(timer->odt);
194 }
195 
196 /**
197  * omap_rproc_stop_timer() - stop a timer for a remoteproc
198  * @timer: handle to a OMAP rproc timer
199  *
200  * This helper function is used to disable a timer associated with a
201  * remoteproc, and needs to be called either during a device shutdown
202  * or suspend operation. The separate helper function allows the driver
203  * to just stop a timer without having to release the timer during a
204  * suspend operation.
205  *
206  * Return: 0 on success, otherwise a failure as returned by DMTimer ops
207  */
208 static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer)
209 {
210 	return timer->timer_ops->stop(timer->odt);
211 }
212 
213 /**
214  * omap_rproc_release_timer() - release a timer for a remoteproc
215  * @timer: handle to a OMAP rproc timer
216  *
217  * This helper function is used primarily to release a timer associated
218  * with a remoteproc. The dmtimer will be available for other clients to
219  * use once released.
220  *
221  * Return: 0 on success, otherwise a failure as returned by DMTimer ops
222  */
223 static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer)
224 {
225 	return timer->timer_ops->free(timer->odt);
226 }
227 
228 /**
229  * omap_rproc_get_timer_irq() - get the irq for a timer
230  * @timer: handle to a OMAP rproc timer
231  *
232  * This function is used to get the irq associated with a watchdog timer. The
233  * function is called by the OMAP remoteproc driver to register a interrupt
234  * handler to handle watchdog events on the remote processor.
235  *
236  * Return: irq id on success, otherwise a failure as returned by DMTimer ops
237  */
238 static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer)
239 {
240 	return timer->timer_ops->get_irq(timer->odt);
241 }
242 
243 /**
244  * omap_rproc_ack_timer_irq() - acknowledge a timer irq
245  * @timer: handle to a OMAP rproc timer
246  *
247  * This function is used to clear the irq associated with a watchdog timer.
248  * The function is called by the OMAP remoteproc upon a watchdog event on the
249  * remote processor to clear the interrupt status of the watchdog timer.
250  */
251 static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer)
252 {
253 	timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW);
254 }
255 
256 /**
257  * omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device
258  * @irq: IRQ number associated with a watchdog timer
259  * @data: IRQ handler data
260  *
261  * This ISR routine executes the required necessary low-level code to
262  * acknowledge a watchdog timer interrupt. There can be multiple watchdog
263  * timers associated with a rproc (like IPUs which have 2 watchdog timers,
264  * one per Cortex M3/M4 core), so a lookup has to be performed to identify
265  * the timer to acknowledge its interrupt.
266  *
267  * The function also invokes rproc_report_crash to report the watchdog event
268  * to the remoteproc driver core, to trigger a recovery.
269  *
270  * Return: IRQ_HANDLED on success, otherwise IRQ_NONE
271  */
272 static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data)
273 {
274 	struct rproc *rproc = data;
275 	struct omap_rproc *oproc = rproc->priv;
276 	struct device *dev = rproc->dev.parent;
277 	struct omap_rproc_timer *timers = oproc->timers;
278 	struct omap_rproc_timer *wd_timer = NULL;
279 	int num_timers = oproc->num_timers + oproc->num_wd_timers;
280 	int i;
281 
282 	for (i = oproc->num_timers; i < num_timers; i++) {
283 		if (timers[i].irq > 0 && irq == timers[i].irq) {
284 			wd_timer = &timers[i];
285 			break;
286 		}
287 	}
288 
289 	if (!wd_timer) {
290 		dev_err(dev, "invalid timer\n");
291 		return IRQ_NONE;
292 	}
293 
294 	omap_rproc_ack_timer_irq(wd_timer);
295 
296 	rproc_report_crash(rproc, RPROC_WATCHDOG);
297 
298 	return IRQ_HANDLED;
299 }
300 
301 /**
302  * omap_rproc_enable_timers() - enable the timers for a remoteproc
303  * @rproc: handle of a remote processor
304  * @configure: boolean flag used to acquire and configure the timer handle
305  *
306  * This function is used primarily to enable the timers associated with
307  * a remoteproc. The configure flag is provided to allow the driver
308  * to either acquire and start a timer (during device initialization) or
309  * to just start a timer (during a resume operation).
310  *
311  * Return: 0 on success, otherwise an appropriate failure
312  */
313 static int omap_rproc_enable_timers(struct rproc *rproc, bool configure)
314 {
315 	int i;
316 	int ret = 0;
317 	struct platform_device *tpdev;
318 	struct dmtimer_platform_data *tpdata;
319 	const struct omap_dm_timer_ops *timer_ops;
320 	struct omap_rproc *oproc = rproc->priv;
321 	struct omap_rproc_timer *timers = oproc->timers;
322 	struct device *dev = rproc->dev.parent;
323 	struct device_node *np = NULL;
324 	int num_timers = oproc->num_timers + oproc->num_wd_timers;
325 
326 	if (!num_timers)
327 		return 0;
328 
329 	if (!configure)
330 		goto start_timers;
331 
332 	for (i = 0; i < num_timers; i++) {
333 		if (i < oproc->num_timers)
334 			np = of_parse_phandle(dev->of_node, "ti,timers", i);
335 		else
336 			np = of_parse_phandle(dev->of_node,
337 					      "ti,watchdog-timers",
338 					      (i - oproc->num_timers));
339 		if (!np) {
340 			ret = -ENXIO;
341 			dev_err(dev, "device node lookup for timer at index %d failed: %d\n",
342 				i < oproc->num_timers ? i :
343 				i - oproc->num_timers, ret);
344 			goto free_timers;
345 		}
346 
347 		tpdev = of_find_device_by_node(np);
348 		if (!tpdev) {
349 			ret = -ENODEV;
350 			dev_err(dev, "could not get timer platform device\n");
351 			goto put_node;
352 		}
353 
354 		tpdata = dev_get_platdata(&tpdev->dev);
355 		put_device(&tpdev->dev);
356 		if (!tpdata) {
357 			ret = -EINVAL;
358 			dev_err(dev, "dmtimer pdata structure NULL\n");
359 			goto put_node;
360 		}
361 
362 		timer_ops = tpdata->timer_ops;
363 		if (!timer_ops || !timer_ops->request_by_node ||
364 		    !timer_ops->set_source || !timer_ops->set_load ||
365 		    !timer_ops->free || !timer_ops->start ||
366 		    !timer_ops->stop || !timer_ops->get_irq ||
367 		    !timer_ops->write_status) {
368 			ret = -EINVAL;
369 			dev_err(dev, "device does not have required timer ops\n");
370 			goto put_node;
371 		}
372 
373 		timers[i].irq = -1;
374 		timers[i].timer_ops = timer_ops;
375 		ret = omap_rproc_request_timer(dev, np, &timers[i]);
376 		if (ret) {
377 			dev_err(dev, "request for timer %p failed: %d\n", np,
378 				ret);
379 			goto put_node;
380 		}
381 		of_node_put(np);
382 
383 		if (i >= oproc->num_timers) {
384 			timers[i].irq = omap_rproc_get_timer_irq(&timers[i]);
385 			if (timers[i].irq < 0) {
386 				dev_err(dev, "get_irq for timer %p failed: %d\n",
387 					np, timers[i].irq);
388 				ret = -EBUSY;
389 				goto free_timers;
390 			}
391 
392 			ret = request_irq(timers[i].irq,
393 					  omap_rproc_watchdog_isr, IRQF_SHARED,
394 					  "rproc-wdt", rproc);
395 			if (ret) {
396 				dev_err(dev, "error requesting irq for timer %p\n",
397 					np);
398 				omap_rproc_release_timer(&timers[i]);
399 				timers[i].odt = NULL;
400 				timers[i].timer_ops = NULL;
401 				timers[i].irq = -1;
402 				goto free_timers;
403 			}
404 		}
405 	}
406 
407 start_timers:
408 	for (i = 0; i < num_timers; i++) {
409 		ret = omap_rproc_start_timer(&timers[i]);
410 		if (ret) {
411 			dev_err(dev, "start timer %p failed failed: %d\n", np,
412 				ret);
413 			break;
414 		}
415 	}
416 	if (ret) {
417 		while (i >= 0) {
418 			omap_rproc_stop_timer(&timers[i]);
419 			i--;
420 		}
421 		goto put_node;
422 	}
423 	return 0;
424 
425 put_node:
426 	if (configure)
427 		of_node_put(np);
428 free_timers:
429 	while (i--) {
430 		if (i >= oproc->num_timers)
431 			free_irq(timers[i].irq, rproc);
432 		omap_rproc_release_timer(&timers[i]);
433 		timers[i].odt = NULL;
434 		timers[i].timer_ops = NULL;
435 		timers[i].irq = -1;
436 	}
437 
438 	return ret;
439 }
440 
441 /**
442  * omap_rproc_disable_timers() - disable the timers for a remoteproc
443  * @rproc: handle of a remote processor
444  * @configure: boolean flag used to release the timer handle
445  *
446  * This function is used primarily to disable the timers associated with
447  * a remoteproc. The configure flag is provided to allow the driver
448  * to either stop and release a timer (during device shutdown) or to just
449  * stop a timer (during a suspend operation).
450  *
451  * Return: 0 on success or no timers
452  */
453 static int omap_rproc_disable_timers(struct rproc *rproc, bool configure)
454 {
455 	int i;
456 	struct omap_rproc *oproc = rproc->priv;
457 	struct omap_rproc_timer *timers = oproc->timers;
458 	int num_timers = oproc->num_timers + oproc->num_wd_timers;
459 
460 	if (!num_timers)
461 		return 0;
462 
463 	for (i = 0; i < num_timers; i++) {
464 		omap_rproc_stop_timer(&timers[i]);
465 		if (configure) {
466 			if (i >= oproc->num_timers)
467 				free_irq(timers[i].irq, rproc);
468 			omap_rproc_release_timer(&timers[i]);
469 			timers[i].odt = NULL;
470 			timers[i].timer_ops = NULL;
471 			timers[i].irq = -1;
472 		}
473 	}
474 
475 	return 0;
476 }
477 
478 /**
479  * omap_rproc_mbox_callback() - inbound mailbox message handler
480  * @client: mailbox client pointer used for requesting the mailbox channel
481  * @data: mailbox payload
482  *
483  * This handler is invoked by omap's mailbox driver whenever a mailbox
484  * message is received. Usually, the mailbox payload simply contains
485  * the index of the virtqueue that is kicked by the remote processor,
486  * and we let remoteproc core handle it.
487  *
488  * In addition to virtqueue indices, we also have some out-of-band values
489  * that indicates different events. Those values are deliberately very
490  * big so they don't coincide with virtqueue indices.
491  */
492 static void omap_rproc_mbox_callback(struct mbox_client *client, void *data)
493 {
494 	struct omap_rproc *oproc = container_of(client, struct omap_rproc,
495 						client);
496 	struct device *dev = oproc->rproc->dev.parent;
497 	const char *name = oproc->rproc->name;
498 	u32 msg = (u32)data;
499 
500 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
501 
502 	switch (msg) {
503 	case RP_MBOX_CRASH:
504 		/*
505 		 * remoteproc detected an exception, notify the rproc core.
506 		 * The remoteproc core will handle the recovery.
507 		 */
508 		dev_err(dev, "omap rproc %s crashed\n", name);
509 		rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR);
510 		break;
511 	case RP_MBOX_ECHO_REPLY:
512 		dev_info(dev, "received echo reply from %s\n", name);
513 		break;
514 	case RP_MBOX_SUSPEND_ACK:
515 	case RP_MBOX_SUSPEND_CANCEL:
516 		oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK;
517 		complete(&oproc->pm_comp);
518 		break;
519 	default:
520 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
521 			return;
522 		if (msg > oproc->rproc->max_notifyid) {
523 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
524 			return;
525 		}
526 		/* msg contains the index of the triggered vring */
527 		if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE)
528 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
529 	}
530 }
531 
532 /* kick a virtqueue */
533 static void omap_rproc_kick(struct rproc *rproc, int vqid)
534 {
535 	struct omap_rproc *oproc = rproc->priv;
536 	struct device *dev = rproc->dev.parent;
537 	int ret;
538 
539 	/* wake up the rproc before kicking it */
540 	ret = pm_runtime_get_sync(dev);
541 	if (WARN_ON(ret < 0)) {
542 		dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n",
543 			ret);
544 		pm_runtime_put_noidle(dev);
545 		return;
546 	}
547 
548 	/* send the index of the triggered virtqueue in the mailbox payload */
549 	ret = mbox_send_message(oproc->mbox, (void *)vqid);
550 	if (ret < 0)
551 		dev_err(dev, "failed to send mailbox message, status = %d\n",
552 			ret);
553 
554 	pm_runtime_mark_last_busy(dev);
555 	pm_runtime_put_autosuspend(dev);
556 }
557 
558 /**
559  * omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor
560  * @rproc: handle of a remote processor
561  *
562  * Set boot address for a supported DSP remote processor.
563  *
564  * Return: 0 on success, or -EINVAL if boot address is not aligned properly
565  */
566 static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc)
567 {
568 	struct device *dev = rproc->dev.parent;
569 	struct omap_rproc *oproc = rproc->priv;
570 	struct omap_rproc_boot_data *bdata = oproc->boot_data;
571 	u32 offset = bdata->boot_reg;
572 	u32 value;
573 	u32 mask;
574 
575 	if (rproc->bootaddr & (SZ_1K - 1)) {
576 		dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n",
577 			rproc->bootaddr);
578 		return -EINVAL;
579 	}
580 
581 	value = rproc->bootaddr >> bdata->boot_reg_shift;
582 	mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift;
583 
584 	return regmap_update_bits(bdata->syscon, offset, mask, value);
585 }
586 
587 /*
588  * Power up the remote processor.
589  *
590  * This function will be invoked only after the firmware for this rproc
591  * was loaded, parsed successfully, and all of its resource requirements
592  * were met.
593  */
594 static int omap_rproc_start(struct rproc *rproc)
595 {
596 	struct omap_rproc *oproc = rproc->priv;
597 	struct device *dev = rproc->dev.parent;
598 	int ret;
599 	struct mbox_client *client = &oproc->client;
600 
601 	if (oproc->boot_data) {
602 		ret = omap_rproc_write_dsp_boot_addr(rproc);
603 		if (ret)
604 			return ret;
605 	}
606 
607 	client->dev = dev;
608 	client->tx_done = NULL;
609 	client->rx_callback = omap_rproc_mbox_callback;
610 	client->tx_block = false;
611 	client->knows_txdone = false;
612 
613 	oproc->mbox = mbox_request_channel(client, 0);
614 	if (IS_ERR(oproc->mbox)) {
615 		ret = -EBUSY;
616 		dev_err(dev, "mbox_request_channel failed: %ld\n",
617 			PTR_ERR(oproc->mbox));
618 		return ret;
619 	}
620 
621 	/*
622 	 * Ping the remote processor. this is only for sanity-sake;
623 	 * there is no functional effect whatsoever.
624 	 *
625 	 * Note that the reply will _not_ arrive immediately: this message
626 	 * will wait in the mailbox fifo until the remote processor is booted.
627 	 */
628 	ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
629 	if (ret < 0) {
630 		dev_err(dev, "mbox_send_message failed: %d\n", ret);
631 		goto put_mbox;
632 	}
633 
634 	ret = omap_rproc_enable_timers(rproc, true);
635 	if (ret) {
636 		dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret);
637 		goto put_mbox;
638 	}
639 
640 	ret = reset_control_deassert(oproc->reset);
641 	if (ret) {
642 		dev_err(dev, "reset control deassert failed: %d\n", ret);
643 		goto disable_timers;
644 	}
645 
646 	/*
647 	 * remote processor is up, so update the runtime pm status and
648 	 * enable the auto-suspend. The device usage count is incremented
649 	 * manually for balancing it for auto-suspend
650 	 */
651 	pm_runtime_set_active(dev);
652 	pm_runtime_use_autosuspend(dev);
653 	pm_runtime_get_noresume(dev);
654 	pm_runtime_enable(dev);
655 	pm_runtime_mark_last_busy(dev);
656 	pm_runtime_put_autosuspend(dev);
657 
658 	return 0;
659 
660 disable_timers:
661 	omap_rproc_disable_timers(rproc, true);
662 put_mbox:
663 	mbox_free_channel(oproc->mbox);
664 	return ret;
665 }
666 
667 /* power off the remote processor */
668 static int omap_rproc_stop(struct rproc *rproc)
669 {
670 	struct device *dev = rproc->dev.parent;
671 	struct omap_rproc *oproc = rproc->priv;
672 	int ret;
673 
674 	/*
675 	 * cancel any possible scheduled runtime suspend by incrementing
676 	 * the device usage count, and resuming the device. The remoteproc
677 	 * also needs to be woken up if suspended, to avoid the remoteproc
678 	 * OS to continue to remember any context that it has saved, and
679 	 * avoid potential issues in misindentifying a subsequent device
680 	 * reboot as a power restore boot
681 	 */
682 	ret = pm_runtime_get_sync(dev);
683 	if (ret < 0) {
684 		pm_runtime_put_noidle(dev);
685 		return ret;
686 	}
687 
688 	ret = reset_control_assert(oproc->reset);
689 	if (ret)
690 		goto out;
691 
692 	ret = omap_rproc_disable_timers(rproc, true);
693 	if (ret)
694 		goto enable_device;
695 
696 	mbox_free_channel(oproc->mbox);
697 
698 	/*
699 	 * update the runtime pm states and status now that the remoteproc
700 	 * has stopped
701 	 */
702 	pm_runtime_disable(dev);
703 	pm_runtime_dont_use_autosuspend(dev);
704 	pm_runtime_put_noidle(dev);
705 	pm_runtime_set_suspended(dev);
706 
707 	return 0;
708 
709 enable_device:
710 	reset_control_deassert(oproc->reset);
711 out:
712 	/* schedule the next auto-suspend */
713 	pm_runtime_mark_last_busy(dev);
714 	pm_runtime_put_autosuspend(dev);
715 	return ret;
716 }
717 
718 /**
719  * omap_rproc_da_to_va() - internal memory translation helper
720  * @rproc: remote processor to apply the address translation for
721  * @da: device address to translate
722  * @len: length of the memory buffer
723  *
724  * Custom function implementing the rproc .da_to_va ops to provide address
725  * translation (device address to kernel virtual address) for internal RAMs
726  * present in a DSP or IPU device). The translated addresses can be used
727  * either by the remoteproc core for loading, or by any rpmsg bus drivers.
728  *
729  * Return: translated virtual address in kernel memory space on success,
730  *         or NULL on failure.
731  */
732 static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
733 {
734 	struct omap_rproc *oproc = rproc->priv;
735 	int i;
736 	u32 offset;
737 
738 	if (len <= 0)
739 		return NULL;
740 
741 	if (!oproc->num_mems)
742 		return NULL;
743 
744 	for (i = 0; i < oproc->num_mems; i++) {
745 		if (da >= oproc->mem[i].dev_addr && da + len <=
746 		    oproc->mem[i].dev_addr + oproc->mem[i].size) {
747 			offset = da - oproc->mem[i].dev_addr;
748 			/* __force to make sparse happy with type conversion */
749 			return (__force void *)(oproc->mem[i].cpu_addr +
750 						offset);
751 		}
752 	}
753 
754 	return NULL;
755 }
756 
757 static const struct rproc_ops omap_rproc_ops = {
758 	.start		= omap_rproc_start,
759 	.stop		= omap_rproc_stop,
760 	.kick		= omap_rproc_kick,
761 	.da_to_va	= omap_rproc_da_to_va,
762 };
763 
764 #ifdef CONFIG_PM
765 static bool _is_rproc_in_standby(struct omap_rproc *oproc)
766 {
767 	return ti_clk_is_in_standby(oproc->fck);
768 }
769 
770 /* 1 sec is long enough time to let the remoteproc side suspend the device */
771 #define DEF_SUSPEND_TIMEOUT 1000
772 static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend)
773 {
774 	struct device *dev = rproc->dev.parent;
775 	struct omap_rproc *oproc = rproc->priv;
776 	unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT);
777 	unsigned long ta = jiffies + to;
778 	u32 suspend_msg = auto_suspend ?
779 				RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM;
780 	int ret;
781 
782 	reinit_completion(&oproc->pm_comp);
783 	oproc->suspend_acked = false;
784 	ret = mbox_send_message(oproc->mbox, (void *)suspend_msg);
785 	if (ret < 0) {
786 		dev_err(dev, "PM mbox_send_message failed: %d\n", ret);
787 		return ret;
788 	}
789 
790 	ret = wait_for_completion_timeout(&oproc->pm_comp, to);
791 	if (!oproc->suspend_acked)
792 		return -EBUSY;
793 
794 	/*
795 	 * The remoteproc side is returning the ACK message before saving the
796 	 * context, because the context saving is performed within a SYS/BIOS
797 	 * function, and it cannot have any inter-dependencies against the IPC
798 	 * layer. Also, as the SYS/BIOS needs to preserve properly the processor
799 	 * register set, sending this ACK or signalling the completion of the
800 	 * context save through a shared memory variable can never be the
801 	 * absolute last thing to be executed on the remoteproc side, and the
802 	 * MPU cannot use the ACK message as a sync point to put the remoteproc
803 	 * into reset. The only way to ensure that the remote processor has
804 	 * completed saving the context is to check that the module has reached
805 	 * STANDBY state (after saving the context, the SYS/BIOS executes the
806 	 * appropriate target-specific WFI instruction causing the module to
807 	 * enter STANDBY).
808 	 */
809 	while (!_is_rproc_in_standby(oproc)) {
810 		if (time_after(jiffies, ta))
811 			return -ETIME;
812 		schedule();
813 	}
814 
815 	ret = reset_control_assert(oproc->reset);
816 	if (ret) {
817 		dev_err(dev, "reset assert during suspend failed %d\n", ret);
818 		return ret;
819 	}
820 
821 	ret = omap_rproc_disable_timers(rproc, false);
822 	if (ret) {
823 		dev_err(dev, "disabling timers during suspend failed %d\n",
824 			ret);
825 		goto enable_device;
826 	}
827 
828 	/*
829 	 * IOMMUs would have to be disabled specifically for runtime suspend.
830 	 * They are handled automatically through System PM callbacks for
831 	 * regular system suspend
832 	 */
833 	if (auto_suspend) {
834 		ret = omap_iommu_domain_deactivate(rproc->domain);
835 		if (ret) {
836 			dev_err(dev, "iommu domain deactivate failed %d\n",
837 				ret);
838 			goto enable_timers;
839 		}
840 	}
841 
842 	return 0;
843 
844 enable_timers:
845 	/* ignore errors on re-enabling code */
846 	omap_rproc_enable_timers(rproc, false);
847 enable_device:
848 	reset_control_deassert(oproc->reset);
849 	return ret;
850 }
851 
852 static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend)
853 {
854 	struct device *dev = rproc->dev.parent;
855 	struct omap_rproc *oproc = rproc->priv;
856 	int ret;
857 
858 	/*
859 	 * IOMMUs would have to be enabled specifically for runtime resume.
860 	 * They would have been already enabled automatically through System
861 	 * PM callbacks for regular system resume
862 	 */
863 	if (auto_suspend) {
864 		ret = omap_iommu_domain_activate(rproc->domain);
865 		if (ret) {
866 			dev_err(dev, "omap_iommu activate failed %d\n", ret);
867 			goto out;
868 		}
869 	}
870 
871 	/* boot address could be lost after suspend, so restore it */
872 	if (oproc->boot_data) {
873 		ret = omap_rproc_write_dsp_boot_addr(rproc);
874 		if (ret) {
875 			dev_err(dev, "boot address restore failed %d\n", ret);
876 			goto suspend_iommu;
877 		}
878 	}
879 
880 	ret = omap_rproc_enable_timers(rproc, false);
881 	if (ret) {
882 		dev_err(dev, "enabling timers during resume failed %d\n", ret);
883 		goto suspend_iommu;
884 	}
885 
886 	ret = reset_control_deassert(oproc->reset);
887 	if (ret) {
888 		dev_err(dev, "reset deassert during resume failed %d\n", ret);
889 		goto disable_timers;
890 	}
891 
892 	return 0;
893 
894 disable_timers:
895 	omap_rproc_disable_timers(rproc, false);
896 suspend_iommu:
897 	if (auto_suspend)
898 		omap_iommu_domain_deactivate(rproc->domain);
899 out:
900 	return ret;
901 }
902 
903 static int __maybe_unused omap_rproc_suspend(struct device *dev)
904 {
905 	struct rproc *rproc = dev_get_drvdata(dev);
906 	struct omap_rproc *oproc = rproc->priv;
907 	int ret = 0;
908 
909 	mutex_lock(&rproc->lock);
910 	if (rproc->state == RPROC_OFFLINE)
911 		goto out;
912 
913 	if (rproc->state == RPROC_SUSPENDED)
914 		goto out;
915 
916 	if (rproc->state != RPROC_RUNNING) {
917 		ret = -EBUSY;
918 		goto out;
919 	}
920 
921 	ret = _omap_rproc_suspend(rproc, false);
922 	if (ret) {
923 		dev_err(dev, "suspend failed %d\n", ret);
924 		goto out;
925 	}
926 
927 	/*
928 	 * remoteproc is running at the time of system suspend, so remember
929 	 * it so as to wake it up during system resume
930 	 */
931 	oproc->need_resume = true;
932 	rproc->state = RPROC_SUSPENDED;
933 
934 out:
935 	mutex_unlock(&rproc->lock);
936 	return ret;
937 }
938 
939 static int __maybe_unused omap_rproc_resume(struct device *dev)
940 {
941 	struct rproc *rproc = dev_get_drvdata(dev);
942 	struct omap_rproc *oproc = rproc->priv;
943 	int ret = 0;
944 
945 	mutex_lock(&rproc->lock);
946 	if (rproc->state == RPROC_OFFLINE)
947 		goto out;
948 
949 	if (rproc->state != RPROC_SUSPENDED) {
950 		ret = -EBUSY;
951 		goto out;
952 	}
953 
954 	/*
955 	 * remoteproc was auto-suspended at the time of system suspend,
956 	 * so no need to wake-up the processor (leave it in suspended
957 	 * state, will be woken up during a subsequent runtime_resume)
958 	 */
959 	if (!oproc->need_resume)
960 		goto out;
961 
962 	ret = _omap_rproc_resume(rproc, false);
963 	if (ret) {
964 		dev_err(dev, "resume failed %d\n", ret);
965 		goto out;
966 	}
967 
968 	oproc->need_resume = false;
969 	rproc->state = RPROC_RUNNING;
970 
971 	pm_runtime_mark_last_busy(dev);
972 out:
973 	mutex_unlock(&rproc->lock);
974 	return ret;
975 }
976 
977 static int omap_rproc_runtime_suspend(struct device *dev)
978 {
979 	struct rproc *rproc = dev_get_drvdata(dev);
980 	struct omap_rproc *oproc = rproc->priv;
981 	int ret;
982 
983 	mutex_lock(&rproc->lock);
984 	if (rproc->state == RPROC_CRASHED) {
985 		dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n");
986 		ret = -EBUSY;
987 		goto out;
988 	}
989 
990 	if (WARN_ON(rproc->state != RPROC_RUNNING)) {
991 		dev_err(dev, "rproc cannot be runtime suspended when not running!\n");
992 		ret = -EBUSY;
993 		goto out;
994 	}
995 
996 	/*
997 	 * do not even attempt suspend if the remote processor is not
998 	 * idled for runtime auto-suspend
999 	 */
1000 	if (!_is_rproc_in_standby(oproc)) {
1001 		ret = -EBUSY;
1002 		goto abort;
1003 	}
1004 
1005 	ret = _omap_rproc_suspend(rproc, true);
1006 	if (ret)
1007 		goto abort;
1008 
1009 	rproc->state = RPROC_SUSPENDED;
1010 	mutex_unlock(&rproc->lock);
1011 	return 0;
1012 
1013 abort:
1014 	pm_runtime_mark_last_busy(dev);
1015 out:
1016 	mutex_unlock(&rproc->lock);
1017 	return ret;
1018 }
1019 
1020 static int omap_rproc_runtime_resume(struct device *dev)
1021 {
1022 	struct rproc *rproc = dev_get_drvdata(dev);
1023 	int ret;
1024 
1025 	mutex_lock(&rproc->lock);
1026 	if (WARN_ON(rproc->state != RPROC_SUSPENDED)) {
1027 		dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n",
1028 			rproc->state);
1029 		ret = -EBUSY;
1030 		goto out;
1031 	}
1032 
1033 	ret = _omap_rproc_resume(rproc, true);
1034 	if (ret) {
1035 		dev_err(dev, "runtime resume failed %d\n", ret);
1036 		goto out;
1037 	}
1038 
1039 	rproc->state = RPROC_RUNNING;
1040 out:
1041 	mutex_unlock(&rproc->lock);
1042 	return ret;
1043 }
1044 #endif /* CONFIG_PM */
1045 
1046 static const struct omap_rproc_mem_data ipu_mems[] = {
1047 	{ .name = "l2ram", .dev_addr = 0x20000000 },
1048 	{ },
1049 };
1050 
1051 static const struct omap_rproc_mem_data dra7_dsp_mems[] = {
1052 	{ .name = "l2ram", .dev_addr = 0x800000 },
1053 	{ .name = "l1pram", .dev_addr = 0xe00000 },
1054 	{ .name = "l1dram", .dev_addr = 0xf00000 },
1055 	{ },
1056 };
1057 
1058 static const struct omap_rproc_dev_data omap4_dsp_dev_data = {
1059 	.device_name	= "dsp",
1060 };
1061 
1062 static const struct omap_rproc_dev_data omap4_ipu_dev_data = {
1063 	.device_name	= "ipu",
1064 	.mems		= ipu_mems,
1065 };
1066 
1067 static const struct omap_rproc_dev_data omap5_dsp_dev_data = {
1068 	.device_name	= "dsp",
1069 };
1070 
1071 static const struct omap_rproc_dev_data omap5_ipu_dev_data = {
1072 	.device_name	= "ipu",
1073 	.mems		= ipu_mems,
1074 };
1075 
1076 static const struct omap_rproc_dev_data dra7_dsp_dev_data = {
1077 	.device_name	= "dsp",
1078 	.mems		= dra7_dsp_mems,
1079 };
1080 
1081 static const struct omap_rproc_dev_data dra7_ipu_dev_data = {
1082 	.device_name	= "ipu",
1083 	.mems		= ipu_mems,
1084 };
1085 
1086 static const struct of_device_id omap_rproc_of_match[] = {
1087 	{
1088 		.compatible     = "ti,omap4-dsp",
1089 		.data           = &omap4_dsp_dev_data,
1090 	},
1091 	{
1092 		.compatible     = "ti,omap4-ipu",
1093 		.data           = &omap4_ipu_dev_data,
1094 	},
1095 	{
1096 		.compatible     = "ti,omap5-dsp",
1097 		.data           = &omap5_dsp_dev_data,
1098 	},
1099 	{
1100 		.compatible     = "ti,omap5-ipu",
1101 		.data           = &omap5_ipu_dev_data,
1102 	},
1103 	{
1104 		.compatible     = "ti,dra7-dsp",
1105 		.data           = &dra7_dsp_dev_data,
1106 	},
1107 	{
1108 		.compatible     = "ti,dra7-ipu",
1109 		.data           = &dra7_ipu_dev_data,
1110 	},
1111 	{
1112 		/* end */
1113 	},
1114 };
1115 MODULE_DEVICE_TABLE(of, omap_rproc_of_match);
1116 
1117 static const char *omap_rproc_get_firmware(struct platform_device *pdev)
1118 {
1119 	const char *fw_name;
1120 	int ret;
1121 
1122 	ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
1123 				      &fw_name);
1124 	if (ret)
1125 		return ERR_PTR(ret);
1126 
1127 	return fw_name;
1128 }
1129 
1130 static int omap_rproc_get_boot_data(struct platform_device *pdev,
1131 				    struct rproc *rproc)
1132 {
1133 	struct device_node *np = pdev->dev.of_node;
1134 	struct omap_rproc *oproc = rproc->priv;
1135 	const struct omap_rproc_dev_data *data;
1136 	int ret;
1137 
1138 	data = of_device_get_match_data(&pdev->dev);
1139 	if (!data)
1140 		return -ENODEV;
1141 
1142 	if (!of_property_read_bool(np, "ti,bootreg"))
1143 		return 0;
1144 
1145 	oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data),
1146 					GFP_KERNEL);
1147 	if (!oproc->boot_data)
1148 		return -ENOMEM;
1149 
1150 	oproc->boot_data->syscon =
1151 			syscon_regmap_lookup_by_phandle(np, "ti,bootreg");
1152 	if (IS_ERR(oproc->boot_data->syscon)) {
1153 		ret = PTR_ERR(oproc->boot_data->syscon);
1154 		return ret;
1155 	}
1156 
1157 	if (of_property_read_u32_index(np, "ti,bootreg", 1,
1158 				       &oproc->boot_data->boot_reg)) {
1159 		dev_err(&pdev->dev, "couldn't get the boot register\n");
1160 		return -EINVAL;
1161 	}
1162 
1163 	of_property_read_u32_index(np, "ti,bootreg", 2,
1164 				   &oproc->boot_data->boot_reg_shift);
1165 
1166 	return 0;
1167 }
1168 
1169 static int omap_rproc_of_get_internal_memories(struct platform_device *pdev,
1170 					       struct rproc *rproc)
1171 {
1172 	struct omap_rproc *oproc = rproc->priv;
1173 	struct device *dev = &pdev->dev;
1174 	const struct omap_rproc_dev_data *data;
1175 	struct resource *res;
1176 	int num_mems;
1177 	int i;
1178 
1179 	data = of_device_get_match_data(dev);
1180 	if (!data)
1181 		return -ENODEV;
1182 
1183 	if (!data->mems)
1184 		return 0;
1185 
1186 	num_mems = of_property_count_elems_of_size(dev->of_node, "reg",
1187 						   sizeof(u32)) / 2;
1188 
1189 	oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem),
1190 				  GFP_KERNEL);
1191 	if (!oproc->mem)
1192 		return -ENOMEM;
1193 
1194 	for (i = 0; data->mems[i].name; i++) {
1195 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1196 						   data->mems[i].name);
1197 		if (!res) {
1198 			dev_err(dev, "no memory defined for %s\n",
1199 				data->mems[i].name);
1200 			return -ENOMEM;
1201 		}
1202 		oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
1203 		if (IS_ERR(oproc->mem[i].cpu_addr)) {
1204 			dev_err(dev, "failed to parse and map %s memory\n",
1205 				data->mems[i].name);
1206 			return PTR_ERR(oproc->mem[i].cpu_addr);
1207 		}
1208 		oproc->mem[i].bus_addr = res->start;
1209 		oproc->mem[i].dev_addr = data->mems[i].dev_addr;
1210 		oproc->mem[i].size = resource_size(res);
1211 
1212 		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n",
1213 			data->mems[i].name, &oproc->mem[i].bus_addr,
1214 			oproc->mem[i].size, oproc->mem[i].cpu_addr,
1215 			oproc->mem[i].dev_addr);
1216 	}
1217 	oproc->num_mems = num_mems;
1218 
1219 	return 0;
1220 }
1221 
1222 #ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG
1223 static int omap_rproc_count_wdog_timers(struct device *dev)
1224 {
1225 	struct device_node *np = dev->of_node;
1226 	int ret;
1227 
1228 	ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL);
1229 	if (ret <= 0) {
1230 		dev_dbg(dev, "device does not have watchdog timers, status = %d\n",
1231 			ret);
1232 		ret = 0;
1233 	}
1234 
1235 	return ret;
1236 }
1237 #else
1238 static int omap_rproc_count_wdog_timers(struct device *dev)
1239 {
1240 	return 0;
1241 }
1242 #endif
1243 
1244 static int omap_rproc_of_get_timers(struct platform_device *pdev,
1245 				    struct rproc *rproc)
1246 {
1247 	struct device_node *np = pdev->dev.of_node;
1248 	struct omap_rproc *oproc = rproc->priv;
1249 	struct device *dev = &pdev->dev;
1250 	int num_timers;
1251 
1252 	/*
1253 	 * Timer nodes are directly used in client nodes as phandles, so
1254 	 * retrieve the count using appropriate size
1255 	 */
1256 	oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL);
1257 	if (oproc->num_timers <= 0) {
1258 		dev_dbg(dev, "device does not have timers, status = %d\n",
1259 			oproc->num_timers);
1260 		oproc->num_timers = 0;
1261 	}
1262 
1263 	oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev);
1264 
1265 	num_timers = oproc->num_timers + oproc->num_wd_timers;
1266 	if (num_timers) {
1267 		oproc->timers = devm_kcalloc(dev, num_timers,
1268 					     sizeof(*oproc->timers),
1269 					     GFP_KERNEL);
1270 		if (!oproc->timers)
1271 			return -ENOMEM;
1272 
1273 		dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n",
1274 			oproc->num_timers, oproc->num_wd_timers);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static void omap_rproc_mem_release(void *data)
1281 {
1282 	struct device *dev = data;
1283 
1284 	of_reserved_mem_device_release(dev);
1285 }
1286 
1287 static int omap_rproc_probe(struct platform_device *pdev)
1288 {
1289 	struct device_node *np = pdev->dev.of_node;
1290 	struct omap_rproc *oproc;
1291 	struct rproc *rproc;
1292 	const char *firmware;
1293 	int ret;
1294 	struct reset_control *reset;
1295 
1296 	if (!np) {
1297 		dev_err(&pdev->dev, "only DT-based devices are supported\n");
1298 		return -ENODEV;
1299 	}
1300 
1301 	reset = devm_reset_control_array_get_exclusive(&pdev->dev);
1302 	if (IS_ERR(reset))
1303 		return PTR_ERR(reset);
1304 
1305 	firmware = omap_rproc_get_firmware(pdev);
1306 	if (IS_ERR(firmware))
1307 		return PTR_ERR(firmware);
1308 
1309 	ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1310 	if (ret) {
1311 		dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret);
1312 		return ret;
1313 	}
1314 
1315 	rproc = devm_rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops,
1316 				 firmware, sizeof(*oproc));
1317 	if (!rproc)
1318 		return -ENOMEM;
1319 
1320 	oproc = rproc->priv;
1321 	oproc->rproc = rproc;
1322 	oproc->reset = reset;
1323 	/* All existing OMAP IPU and DSP processors have an MMU */
1324 	rproc->has_iommu = true;
1325 
1326 	ret = omap_rproc_of_get_internal_memories(pdev, rproc);
1327 	if (ret)
1328 		return ret;
1329 
1330 	ret = omap_rproc_get_boot_data(pdev, rproc);
1331 	if (ret)
1332 		return ret;
1333 
1334 	ret = omap_rproc_of_get_timers(pdev, rproc);
1335 	if (ret)
1336 		return ret;
1337 
1338 	init_completion(&oproc->pm_comp);
1339 	oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY;
1340 
1341 	of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms",
1342 			     &oproc->autosuspend_delay);
1343 
1344 	pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay);
1345 
1346 	oproc->fck = devm_clk_get(&pdev->dev, 0);
1347 	if (IS_ERR(oproc->fck))
1348 		return PTR_ERR(oproc->fck);
1349 
1350 	ret = of_reserved_mem_device_init(&pdev->dev);
1351 	if (ret) {
1352 		dev_warn(&pdev->dev, "device does not have specific CMA pool.\n");
1353 		dev_warn(&pdev->dev, "Typically this should be provided,\n");
1354 		dev_warn(&pdev->dev, "only omit if you know what you are doing.\n");
1355 	}
1356 	ret = devm_add_action_or_reset(&pdev->dev, omap_rproc_mem_release, &pdev->dev);
1357 	if (ret)
1358 		return ret;
1359 
1360 	platform_set_drvdata(pdev, rproc);
1361 
1362 	ret = devm_rproc_add(&pdev->dev, rproc);
1363 	if (ret)
1364 		return ret;
1365 
1366 	return 0;
1367 }
1368 
1369 static const struct dev_pm_ops omap_rproc_pm_ops = {
1370 	SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume)
1371 	SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend,
1372 			   omap_rproc_runtime_resume, NULL)
1373 };
1374 
1375 static struct platform_driver omap_rproc_driver = {
1376 	.probe = omap_rproc_probe,
1377 	.driver = {
1378 		.name = "omap-rproc",
1379 		.pm = &omap_rproc_pm_ops,
1380 		.of_match_table = omap_rproc_of_match,
1381 	},
1382 };
1383 
1384 module_platform_driver(omap_rproc_driver);
1385 
1386 MODULE_LICENSE("GPL v2");
1387 MODULE_DESCRIPTION("OMAP Remote Processor control driver");
1388