1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * OMAP Remote Processor driver
4 *
5 * Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Mark Grosen <mgrosen@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Hari Kanigeri <h-kanigeri2@ti.com>
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/clk.h>
19 #include <linux/clk/ti.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_reserved_mem.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/interrupt.h>
29 #include <linux/remoteproc.h>
30 #include <linux/mailbox_client.h>
31 #include <linux/omap-iommu.h>
32 #include <linux/omap-mailbox.h>
33 #include <linux/regmap.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/reset.h>
36 #include <clocksource/timer-ti-dm.h>
37
38 #include <linux/platform_data/dmtimer-omap.h>
39
40 #include "omap_remoteproc.h"
41 #include "remoteproc_internal.h"
42
43 /* default auto-suspend delay (ms) */
44 #define DEFAULT_AUTOSUSPEND_DELAY 10000
45
46 /**
47 * struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs
48 * @syscon: regmap handle for the system control configuration module
49 * @boot_reg: boot register offset within the @syscon regmap
50 * @boot_reg_shift: bit-field shift required for the boot address value in
51 * @boot_reg
52 */
53 struct omap_rproc_boot_data {
54 struct regmap *syscon;
55 unsigned int boot_reg;
56 unsigned int boot_reg_shift;
57 };
58
59 /**
60 * struct omap_rproc_mem - internal memory structure
61 * @cpu_addr: MPU virtual address of the memory region
62 * @bus_addr: bus address used to access the memory region
63 * @dev_addr: device address of the memory region from DSP view
64 * @size: size of the memory region
65 */
66 struct omap_rproc_mem {
67 void __iomem *cpu_addr;
68 phys_addr_t bus_addr;
69 u32 dev_addr;
70 size_t size;
71 };
72
73 /**
74 * struct omap_rproc_timer - data structure for a timer used by a omap rproc
75 * @odt: timer pointer
76 * @timer_ops: OMAP dmtimer ops for @odt timer
77 * @irq: timer irq
78 */
79 struct omap_rproc_timer {
80 struct omap_dm_timer *odt;
81 const struct omap_dm_timer_ops *timer_ops;
82 int irq;
83 };
84
85 /**
86 * struct omap_rproc - omap remote processor state
87 * @mbox: mailbox channel handle
88 * @client: mailbox client to request the mailbox channel
89 * @boot_data: boot data structure for setting processor boot address
90 * @mem: internal memory regions data
91 * @num_mems: number of internal memory regions
92 * @num_timers: number of rproc timer(s)
93 * @num_wd_timers: number of rproc watchdog timers
94 * @timers: timer(s) info used by rproc
95 * @autosuspend_delay: auto-suspend delay value to be used for runtime pm
96 * @need_resume: if true a resume is needed in the system resume callback
97 * @rproc: rproc handle
98 * @reset: reset handle
99 * @pm_comp: completion primitive to sync for suspend response
100 * @fck: functional clock for the remoteproc
101 * @suspend_acked: state machine flag to store the suspend request ack
102 */
103 struct omap_rproc {
104 struct mbox_chan *mbox;
105 struct mbox_client client;
106 struct omap_rproc_boot_data *boot_data;
107 struct omap_rproc_mem *mem;
108 int num_mems;
109 int num_timers;
110 int num_wd_timers;
111 struct omap_rproc_timer *timers;
112 int autosuspend_delay;
113 bool need_resume;
114 struct rproc *rproc;
115 struct reset_control *reset;
116 struct completion pm_comp;
117 struct clk *fck;
118 bool suspend_acked;
119 };
120
121 /**
122 * struct omap_rproc_mem_data - memory definitions for an omap remote processor
123 * @name: name for this memory entry
124 * @dev_addr: device address for the memory entry
125 */
126 struct omap_rproc_mem_data {
127 const char *name;
128 const u32 dev_addr;
129 };
130
131 /**
132 * struct omap_rproc_dev_data - device data for the omap remote processor
133 * @device_name: device name of the remote processor
134 * @mems: memory definitions for this remote processor
135 */
136 struct omap_rproc_dev_data {
137 const char *device_name;
138 const struct omap_rproc_mem_data *mems;
139 };
140
141 /**
142 * omap_rproc_request_timer() - request a timer for a remoteproc
143 * @dev: device requesting the timer
144 * @np: device node pointer to the desired timer
145 * @timer: handle to a struct omap_rproc_timer to return the timer handle
146 *
147 * This helper function is used primarily to request a timer associated with
148 * a remoteproc. The returned handle is stored in the .odt field of the
149 * @timer structure passed in, and is used to invoke other timer specific
150 * ops (like starting a timer either during device initialization or during
151 * a resume operation, or for stopping/freeing a timer).
152 *
153 * Return: 0 on success, otherwise an appropriate failure
154 */
omap_rproc_request_timer(struct device * dev,struct device_node * np,struct omap_rproc_timer * timer)155 static int omap_rproc_request_timer(struct device *dev, struct device_node *np,
156 struct omap_rproc_timer *timer)
157 {
158 int ret;
159
160 timer->odt = timer->timer_ops->request_by_node(np);
161 if (!timer->odt) {
162 dev_err(dev, "request for timer node %p failed\n", np);
163 return -EBUSY;
164 }
165
166 ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK);
167 if (ret) {
168 dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n",
169 np);
170 timer->timer_ops->free(timer->odt);
171 return ret;
172 }
173
174 /* clean counter, remoteproc code will set the value */
175 timer->timer_ops->set_load(timer->odt, 0);
176
177 return 0;
178 }
179
180 /**
181 * omap_rproc_start_timer() - start a timer for a remoteproc
182 * @timer: handle to a OMAP rproc timer
183 *
184 * This helper function is used to start a timer associated with a remoteproc,
185 * obtained using the request_timer ops. The helper function needs to be
186 * invoked by the driver to start the timer (during device initialization)
187 * or to just resume the timer.
188 *
189 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
190 */
omap_rproc_start_timer(struct omap_rproc_timer * timer)191 static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer)
192 {
193 return timer->timer_ops->start(timer->odt);
194 }
195
196 /**
197 * omap_rproc_stop_timer() - stop a timer for a remoteproc
198 * @timer: handle to a OMAP rproc timer
199 *
200 * This helper function is used to disable a timer associated with a
201 * remoteproc, and needs to be called either during a device shutdown
202 * or suspend operation. The separate helper function allows the driver
203 * to just stop a timer without having to release the timer during a
204 * suspend operation.
205 *
206 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
207 */
omap_rproc_stop_timer(struct omap_rproc_timer * timer)208 static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer)
209 {
210 return timer->timer_ops->stop(timer->odt);
211 }
212
213 /**
214 * omap_rproc_release_timer() - release a timer for a remoteproc
215 * @timer: handle to a OMAP rproc timer
216 *
217 * This helper function is used primarily to release a timer associated
218 * with a remoteproc. The dmtimer will be available for other clients to
219 * use once released.
220 *
221 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
222 */
omap_rproc_release_timer(struct omap_rproc_timer * timer)223 static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer)
224 {
225 return timer->timer_ops->free(timer->odt);
226 }
227
228 /**
229 * omap_rproc_get_timer_irq() - get the irq for a timer
230 * @timer: handle to a OMAP rproc timer
231 *
232 * This function is used to get the irq associated with a watchdog timer. The
233 * function is called by the OMAP remoteproc driver to register a interrupt
234 * handler to handle watchdog events on the remote processor.
235 *
236 * Return: irq id on success, otherwise a failure as returned by DMTimer ops
237 */
omap_rproc_get_timer_irq(struct omap_rproc_timer * timer)238 static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer)
239 {
240 return timer->timer_ops->get_irq(timer->odt);
241 }
242
243 /**
244 * omap_rproc_ack_timer_irq() - acknowledge a timer irq
245 * @timer: handle to a OMAP rproc timer
246 *
247 * This function is used to clear the irq associated with a watchdog timer.
248 * The function is called by the OMAP remoteproc upon a watchdog event on the
249 * remote processor to clear the interrupt status of the watchdog timer.
250 */
omap_rproc_ack_timer_irq(struct omap_rproc_timer * timer)251 static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer)
252 {
253 timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW);
254 }
255
256 /**
257 * omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device
258 * @irq: IRQ number associated with a watchdog timer
259 * @data: IRQ handler data
260 *
261 * This ISR routine executes the required necessary low-level code to
262 * acknowledge a watchdog timer interrupt. There can be multiple watchdog
263 * timers associated with a rproc (like IPUs which have 2 watchdog timers,
264 * one per Cortex M3/M4 core), so a lookup has to be performed to identify
265 * the timer to acknowledge its interrupt.
266 *
267 * The function also invokes rproc_report_crash to report the watchdog event
268 * to the remoteproc driver core, to trigger a recovery.
269 *
270 * Return: IRQ_HANDLED on success, otherwise IRQ_NONE
271 */
omap_rproc_watchdog_isr(int irq,void * data)272 static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data)
273 {
274 struct rproc *rproc = data;
275 struct omap_rproc *oproc = rproc->priv;
276 struct device *dev = rproc->dev.parent;
277 struct omap_rproc_timer *timers = oproc->timers;
278 struct omap_rproc_timer *wd_timer = NULL;
279 int num_timers = oproc->num_timers + oproc->num_wd_timers;
280 int i;
281
282 for (i = oproc->num_timers; i < num_timers; i++) {
283 if (timers[i].irq > 0 && irq == timers[i].irq) {
284 wd_timer = &timers[i];
285 break;
286 }
287 }
288
289 if (!wd_timer) {
290 dev_err(dev, "invalid timer\n");
291 return IRQ_NONE;
292 }
293
294 omap_rproc_ack_timer_irq(wd_timer);
295
296 rproc_report_crash(rproc, RPROC_WATCHDOG);
297
298 return IRQ_HANDLED;
299 }
300
301 /**
302 * omap_rproc_enable_timers() - enable the timers for a remoteproc
303 * @rproc: handle of a remote processor
304 * @configure: boolean flag used to acquire and configure the timer handle
305 *
306 * This function is used primarily to enable the timers associated with
307 * a remoteproc. The configure flag is provided to allow the driver
308 * to either acquire and start a timer (during device initialization) or
309 * to just start a timer (during a resume operation).
310 *
311 * Return: 0 on success, otherwise an appropriate failure
312 */
omap_rproc_enable_timers(struct rproc * rproc,bool configure)313 static int omap_rproc_enable_timers(struct rproc *rproc, bool configure)
314 {
315 int i;
316 int ret = 0;
317 struct platform_device *tpdev;
318 struct dmtimer_platform_data *tpdata;
319 const struct omap_dm_timer_ops *timer_ops;
320 struct omap_rproc *oproc = rproc->priv;
321 struct omap_rproc_timer *timers = oproc->timers;
322 struct device *dev = rproc->dev.parent;
323 struct device_node *np = NULL;
324 int num_timers = oproc->num_timers + oproc->num_wd_timers;
325
326 if (!num_timers)
327 return 0;
328
329 if (!configure)
330 goto start_timers;
331
332 for (i = 0; i < num_timers; i++) {
333 if (i < oproc->num_timers)
334 np = of_parse_phandle(dev->of_node, "ti,timers", i);
335 else
336 np = of_parse_phandle(dev->of_node,
337 "ti,watchdog-timers",
338 (i - oproc->num_timers));
339 if (!np) {
340 ret = -ENXIO;
341 dev_err(dev, "device node lookup for timer at index %d failed: %d\n",
342 i < oproc->num_timers ? i :
343 i - oproc->num_timers, ret);
344 goto free_timers;
345 }
346
347 tpdev = of_find_device_by_node(np);
348 if (!tpdev) {
349 ret = -ENODEV;
350 dev_err(dev, "could not get timer platform device\n");
351 goto put_node;
352 }
353
354 tpdata = dev_get_platdata(&tpdev->dev);
355 put_device(&tpdev->dev);
356 if (!tpdata) {
357 ret = -EINVAL;
358 dev_err(dev, "dmtimer pdata structure NULL\n");
359 goto put_node;
360 }
361
362 timer_ops = tpdata->timer_ops;
363 if (!timer_ops || !timer_ops->request_by_node ||
364 !timer_ops->set_source || !timer_ops->set_load ||
365 !timer_ops->free || !timer_ops->start ||
366 !timer_ops->stop || !timer_ops->get_irq ||
367 !timer_ops->write_status) {
368 ret = -EINVAL;
369 dev_err(dev, "device does not have required timer ops\n");
370 goto put_node;
371 }
372
373 timers[i].irq = -1;
374 timers[i].timer_ops = timer_ops;
375 ret = omap_rproc_request_timer(dev, np, &timers[i]);
376 if (ret) {
377 dev_err(dev, "request for timer %p failed: %d\n", np,
378 ret);
379 goto put_node;
380 }
381 of_node_put(np);
382
383 if (i >= oproc->num_timers) {
384 timers[i].irq = omap_rproc_get_timer_irq(&timers[i]);
385 if (timers[i].irq < 0) {
386 dev_err(dev, "get_irq for timer %p failed: %d\n",
387 np, timers[i].irq);
388 ret = -EBUSY;
389 goto free_timers;
390 }
391
392 ret = request_irq(timers[i].irq,
393 omap_rproc_watchdog_isr, IRQF_SHARED,
394 "rproc-wdt", rproc);
395 if (ret) {
396 dev_err(dev, "error requesting irq for timer %p\n",
397 np);
398 omap_rproc_release_timer(&timers[i]);
399 timers[i].odt = NULL;
400 timers[i].timer_ops = NULL;
401 timers[i].irq = -1;
402 goto free_timers;
403 }
404 }
405 }
406
407 start_timers:
408 for (i = 0; i < num_timers; i++) {
409 ret = omap_rproc_start_timer(&timers[i]);
410 if (ret) {
411 dev_err(dev, "start timer %p failed failed: %d\n", np,
412 ret);
413 break;
414 }
415 }
416 if (ret) {
417 while (i >= 0) {
418 omap_rproc_stop_timer(&timers[i]);
419 i--;
420 }
421 goto put_node;
422 }
423 return 0;
424
425 put_node:
426 if (configure)
427 of_node_put(np);
428 free_timers:
429 while (i--) {
430 if (i >= oproc->num_timers)
431 free_irq(timers[i].irq, rproc);
432 omap_rproc_release_timer(&timers[i]);
433 timers[i].odt = NULL;
434 timers[i].timer_ops = NULL;
435 timers[i].irq = -1;
436 }
437
438 return ret;
439 }
440
441 /**
442 * omap_rproc_disable_timers() - disable the timers for a remoteproc
443 * @rproc: handle of a remote processor
444 * @configure: boolean flag used to release the timer handle
445 *
446 * This function is used primarily to disable the timers associated with
447 * a remoteproc. The configure flag is provided to allow the driver
448 * to either stop and release a timer (during device shutdown) or to just
449 * stop a timer (during a suspend operation).
450 *
451 * Return: 0 on success or no timers
452 */
omap_rproc_disable_timers(struct rproc * rproc,bool configure)453 static int omap_rproc_disable_timers(struct rproc *rproc, bool configure)
454 {
455 int i;
456 struct omap_rproc *oproc = rproc->priv;
457 struct omap_rproc_timer *timers = oproc->timers;
458 int num_timers = oproc->num_timers + oproc->num_wd_timers;
459
460 if (!num_timers)
461 return 0;
462
463 for (i = 0; i < num_timers; i++) {
464 omap_rproc_stop_timer(&timers[i]);
465 if (configure) {
466 if (i >= oproc->num_timers)
467 free_irq(timers[i].irq, rproc);
468 omap_rproc_release_timer(&timers[i]);
469 timers[i].odt = NULL;
470 timers[i].timer_ops = NULL;
471 timers[i].irq = -1;
472 }
473 }
474
475 return 0;
476 }
477
478 /**
479 * omap_rproc_mbox_callback() - inbound mailbox message handler
480 * @client: mailbox client pointer used for requesting the mailbox channel
481 * @data: mailbox payload
482 *
483 * This handler is invoked by omap's mailbox driver whenever a mailbox
484 * message is received. Usually, the mailbox payload simply contains
485 * the index of the virtqueue that is kicked by the remote processor,
486 * and we let remoteproc core handle it.
487 *
488 * In addition to virtqueue indices, we also have some out-of-band values
489 * that indicates different events. Those values are deliberately very
490 * big so they don't coincide with virtqueue indices.
491 */
omap_rproc_mbox_callback(struct mbox_client * client,void * data)492 static void omap_rproc_mbox_callback(struct mbox_client *client, void *data)
493 {
494 struct omap_rproc *oproc = container_of(client, struct omap_rproc,
495 client);
496 struct device *dev = oproc->rproc->dev.parent;
497 const char *name = oproc->rproc->name;
498 u32 msg = (u32)data;
499
500 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
501
502 switch (msg) {
503 case RP_MBOX_CRASH:
504 /*
505 * remoteproc detected an exception, notify the rproc core.
506 * The remoteproc core will handle the recovery.
507 */
508 dev_err(dev, "omap rproc %s crashed\n", name);
509 rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR);
510 break;
511 case RP_MBOX_ECHO_REPLY:
512 dev_info(dev, "received echo reply from %s\n", name);
513 break;
514 case RP_MBOX_SUSPEND_ACK:
515 case RP_MBOX_SUSPEND_CANCEL:
516 oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK;
517 complete(&oproc->pm_comp);
518 break;
519 default:
520 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
521 return;
522 if (msg > oproc->rproc->max_notifyid) {
523 dev_dbg(dev, "dropping unknown message 0x%x", msg);
524 return;
525 }
526 /* msg contains the index of the triggered vring */
527 if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE)
528 dev_dbg(dev, "no message was found in vqid %d\n", msg);
529 }
530 }
531
532 /* kick a virtqueue */
omap_rproc_kick(struct rproc * rproc,int vqid)533 static void omap_rproc_kick(struct rproc *rproc, int vqid)
534 {
535 struct omap_rproc *oproc = rproc->priv;
536 struct device *dev = rproc->dev.parent;
537 int ret;
538
539 /* wake up the rproc before kicking it */
540 ret = pm_runtime_get_sync(dev);
541 if (WARN_ON(ret < 0)) {
542 dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n",
543 ret);
544 pm_runtime_put_noidle(dev);
545 return;
546 }
547
548 /* send the index of the triggered virtqueue in the mailbox payload */
549 ret = mbox_send_message(oproc->mbox, (void *)vqid);
550 if (ret < 0)
551 dev_err(dev, "failed to send mailbox message, status = %d\n",
552 ret);
553
554 pm_runtime_mark_last_busy(dev);
555 pm_runtime_put_autosuspend(dev);
556 }
557
558 /**
559 * omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor
560 * @rproc: handle of a remote processor
561 *
562 * Set boot address for a supported DSP remote processor.
563 *
564 * Return: 0 on success, or -EINVAL if boot address is not aligned properly
565 */
omap_rproc_write_dsp_boot_addr(struct rproc * rproc)566 static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc)
567 {
568 struct device *dev = rproc->dev.parent;
569 struct omap_rproc *oproc = rproc->priv;
570 struct omap_rproc_boot_data *bdata = oproc->boot_data;
571 u32 offset = bdata->boot_reg;
572 u32 value;
573 u32 mask;
574
575 if (rproc->bootaddr & (SZ_1K - 1)) {
576 dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n",
577 rproc->bootaddr);
578 return -EINVAL;
579 }
580
581 value = rproc->bootaddr >> bdata->boot_reg_shift;
582 mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift;
583
584 return regmap_update_bits(bdata->syscon, offset, mask, value);
585 }
586
587 /*
588 * Power up the remote processor.
589 *
590 * This function will be invoked only after the firmware for this rproc
591 * was loaded, parsed successfully, and all of its resource requirements
592 * were met.
593 */
omap_rproc_start(struct rproc * rproc)594 static int omap_rproc_start(struct rproc *rproc)
595 {
596 struct omap_rproc *oproc = rproc->priv;
597 struct device *dev = rproc->dev.parent;
598 int ret;
599 struct mbox_client *client = &oproc->client;
600
601 if (oproc->boot_data) {
602 ret = omap_rproc_write_dsp_boot_addr(rproc);
603 if (ret)
604 return ret;
605 }
606
607 client->dev = dev;
608 client->tx_done = NULL;
609 client->rx_callback = omap_rproc_mbox_callback;
610 client->tx_block = false;
611 client->knows_txdone = false;
612
613 oproc->mbox = mbox_request_channel(client, 0);
614 if (IS_ERR(oproc->mbox)) {
615 ret = -EBUSY;
616 dev_err(dev, "mbox_request_channel failed: %ld\n",
617 PTR_ERR(oproc->mbox));
618 return ret;
619 }
620
621 /*
622 * Ping the remote processor. this is only for sanity-sake;
623 * there is no functional effect whatsoever.
624 *
625 * Note that the reply will _not_ arrive immediately: this message
626 * will wait in the mailbox fifo until the remote processor is booted.
627 */
628 ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
629 if (ret < 0) {
630 dev_err(dev, "mbox_send_message failed: %d\n", ret);
631 goto put_mbox;
632 }
633
634 ret = omap_rproc_enable_timers(rproc, true);
635 if (ret) {
636 dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret);
637 goto put_mbox;
638 }
639
640 ret = reset_control_deassert(oproc->reset);
641 if (ret) {
642 dev_err(dev, "reset control deassert failed: %d\n", ret);
643 goto disable_timers;
644 }
645
646 /*
647 * remote processor is up, so update the runtime pm status and
648 * enable the auto-suspend. The device usage count is incremented
649 * manually for balancing it for auto-suspend
650 */
651 pm_runtime_set_active(dev);
652 pm_runtime_use_autosuspend(dev);
653 pm_runtime_get_noresume(dev);
654 pm_runtime_enable(dev);
655 pm_runtime_mark_last_busy(dev);
656 pm_runtime_put_autosuspend(dev);
657
658 return 0;
659
660 disable_timers:
661 omap_rproc_disable_timers(rproc, true);
662 put_mbox:
663 mbox_free_channel(oproc->mbox);
664 return ret;
665 }
666
667 /* power off the remote processor */
omap_rproc_stop(struct rproc * rproc)668 static int omap_rproc_stop(struct rproc *rproc)
669 {
670 struct device *dev = rproc->dev.parent;
671 struct omap_rproc *oproc = rproc->priv;
672 int ret;
673
674 /*
675 * cancel any possible scheduled runtime suspend by incrementing
676 * the device usage count, and resuming the device. The remoteproc
677 * also needs to be woken up if suspended, to avoid the remoteproc
678 * OS to continue to remember any context that it has saved, and
679 * avoid potential issues in misindentifying a subsequent device
680 * reboot as a power restore boot
681 */
682 ret = pm_runtime_get_sync(dev);
683 if (ret < 0) {
684 pm_runtime_put_noidle(dev);
685 return ret;
686 }
687
688 ret = reset_control_assert(oproc->reset);
689 if (ret)
690 goto out;
691
692 ret = omap_rproc_disable_timers(rproc, true);
693 if (ret)
694 goto enable_device;
695
696 mbox_free_channel(oproc->mbox);
697
698 /*
699 * update the runtime pm states and status now that the remoteproc
700 * has stopped
701 */
702 pm_runtime_disable(dev);
703 pm_runtime_dont_use_autosuspend(dev);
704 pm_runtime_put_noidle(dev);
705 pm_runtime_set_suspended(dev);
706
707 return 0;
708
709 enable_device:
710 reset_control_deassert(oproc->reset);
711 out:
712 /* schedule the next auto-suspend */
713 pm_runtime_mark_last_busy(dev);
714 pm_runtime_put_autosuspend(dev);
715 return ret;
716 }
717
718 /**
719 * omap_rproc_da_to_va() - internal memory translation helper
720 * @rproc: remote processor to apply the address translation for
721 * @da: device address to translate
722 * @len: length of the memory buffer
723 *
724 * Custom function implementing the rproc .da_to_va ops to provide address
725 * translation (device address to kernel virtual address) for internal RAMs
726 * present in a DSP or IPU device). The translated addresses can be used
727 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
728 *
729 * Return: translated virtual address in kernel memory space on success,
730 * or NULL on failure.
731 */
omap_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)732 static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
733 {
734 struct omap_rproc *oproc = rproc->priv;
735 int i;
736 u32 offset;
737
738 if (len <= 0)
739 return NULL;
740
741 if (!oproc->num_mems)
742 return NULL;
743
744 for (i = 0; i < oproc->num_mems; i++) {
745 if (da >= oproc->mem[i].dev_addr && da + len <=
746 oproc->mem[i].dev_addr + oproc->mem[i].size) {
747 offset = da - oproc->mem[i].dev_addr;
748 /* __force to make sparse happy with type conversion */
749 return (__force void *)(oproc->mem[i].cpu_addr +
750 offset);
751 }
752 }
753
754 return NULL;
755 }
756
757 static const struct rproc_ops omap_rproc_ops = {
758 .start = omap_rproc_start,
759 .stop = omap_rproc_stop,
760 .kick = omap_rproc_kick,
761 .da_to_va = omap_rproc_da_to_va,
762 };
763
764 #ifdef CONFIG_PM
_is_rproc_in_standby(struct omap_rproc * oproc)765 static bool _is_rproc_in_standby(struct omap_rproc *oproc)
766 {
767 return ti_clk_is_in_standby(oproc->fck);
768 }
769
770 /* 1 sec is long enough time to let the remoteproc side suspend the device */
771 #define DEF_SUSPEND_TIMEOUT 1000
_omap_rproc_suspend(struct rproc * rproc,bool auto_suspend)772 static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend)
773 {
774 struct device *dev = rproc->dev.parent;
775 struct omap_rproc *oproc = rproc->priv;
776 unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT);
777 unsigned long ta = jiffies + to;
778 u32 suspend_msg = auto_suspend ?
779 RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM;
780 int ret;
781
782 reinit_completion(&oproc->pm_comp);
783 oproc->suspend_acked = false;
784 ret = mbox_send_message(oproc->mbox, (void *)suspend_msg);
785 if (ret < 0) {
786 dev_err(dev, "PM mbox_send_message failed: %d\n", ret);
787 return ret;
788 }
789
790 ret = wait_for_completion_timeout(&oproc->pm_comp, to);
791 if (!oproc->suspend_acked)
792 return -EBUSY;
793
794 /*
795 * The remoteproc side is returning the ACK message before saving the
796 * context, because the context saving is performed within a SYS/BIOS
797 * function, and it cannot have any inter-dependencies against the IPC
798 * layer. Also, as the SYS/BIOS needs to preserve properly the processor
799 * register set, sending this ACK or signalling the completion of the
800 * context save through a shared memory variable can never be the
801 * absolute last thing to be executed on the remoteproc side, and the
802 * MPU cannot use the ACK message as a sync point to put the remoteproc
803 * into reset. The only way to ensure that the remote processor has
804 * completed saving the context is to check that the module has reached
805 * STANDBY state (after saving the context, the SYS/BIOS executes the
806 * appropriate target-specific WFI instruction causing the module to
807 * enter STANDBY).
808 */
809 while (!_is_rproc_in_standby(oproc)) {
810 if (time_after(jiffies, ta))
811 return -ETIME;
812 schedule();
813 }
814
815 ret = reset_control_assert(oproc->reset);
816 if (ret) {
817 dev_err(dev, "reset assert during suspend failed %d\n", ret);
818 return ret;
819 }
820
821 ret = omap_rproc_disable_timers(rproc, false);
822 if (ret) {
823 dev_err(dev, "disabling timers during suspend failed %d\n",
824 ret);
825 goto enable_device;
826 }
827
828 /*
829 * IOMMUs would have to be disabled specifically for runtime suspend.
830 * They are handled automatically through System PM callbacks for
831 * regular system suspend
832 */
833 if (auto_suspend) {
834 ret = omap_iommu_domain_deactivate(rproc->domain);
835 if (ret) {
836 dev_err(dev, "iommu domain deactivate failed %d\n",
837 ret);
838 goto enable_timers;
839 }
840 }
841
842 return 0;
843
844 enable_timers:
845 /* ignore errors on re-enabling code */
846 omap_rproc_enable_timers(rproc, false);
847 enable_device:
848 reset_control_deassert(oproc->reset);
849 return ret;
850 }
851
_omap_rproc_resume(struct rproc * rproc,bool auto_suspend)852 static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend)
853 {
854 struct device *dev = rproc->dev.parent;
855 struct omap_rproc *oproc = rproc->priv;
856 int ret;
857
858 /*
859 * IOMMUs would have to be enabled specifically for runtime resume.
860 * They would have been already enabled automatically through System
861 * PM callbacks for regular system resume
862 */
863 if (auto_suspend) {
864 ret = omap_iommu_domain_activate(rproc->domain);
865 if (ret) {
866 dev_err(dev, "omap_iommu activate failed %d\n", ret);
867 goto out;
868 }
869 }
870
871 /* boot address could be lost after suspend, so restore it */
872 if (oproc->boot_data) {
873 ret = omap_rproc_write_dsp_boot_addr(rproc);
874 if (ret) {
875 dev_err(dev, "boot address restore failed %d\n", ret);
876 goto suspend_iommu;
877 }
878 }
879
880 ret = omap_rproc_enable_timers(rproc, false);
881 if (ret) {
882 dev_err(dev, "enabling timers during resume failed %d\n", ret);
883 goto suspend_iommu;
884 }
885
886 ret = reset_control_deassert(oproc->reset);
887 if (ret) {
888 dev_err(dev, "reset deassert during resume failed %d\n", ret);
889 goto disable_timers;
890 }
891
892 return 0;
893
894 disable_timers:
895 omap_rproc_disable_timers(rproc, false);
896 suspend_iommu:
897 if (auto_suspend)
898 omap_iommu_domain_deactivate(rproc->domain);
899 out:
900 return ret;
901 }
902
omap_rproc_suspend(struct device * dev)903 static int __maybe_unused omap_rproc_suspend(struct device *dev)
904 {
905 struct rproc *rproc = dev_get_drvdata(dev);
906 struct omap_rproc *oproc = rproc->priv;
907 int ret = 0;
908
909 mutex_lock(&rproc->lock);
910 if (rproc->state == RPROC_OFFLINE)
911 goto out;
912
913 if (rproc->state == RPROC_SUSPENDED)
914 goto out;
915
916 if (rproc->state != RPROC_RUNNING) {
917 ret = -EBUSY;
918 goto out;
919 }
920
921 ret = _omap_rproc_suspend(rproc, false);
922 if (ret) {
923 dev_err(dev, "suspend failed %d\n", ret);
924 goto out;
925 }
926
927 /*
928 * remoteproc is running at the time of system suspend, so remember
929 * it so as to wake it up during system resume
930 */
931 oproc->need_resume = true;
932 rproc->state = RPROC_SUSPENDED;
933
934 out:
935 mutex_unlock(&rproc->lock);
936 return ret;
937 }
938
omap_rproc_resume(struct device * dev)939 static int __maybe_unused omap_rproc_resume(struct device *dev)
940 {
941 struct rproc *rproc = dev_get_drvdata(dev);
942 struct omap_rproc *oproc = rproc->priv;
943 int ret = 0;
944
945 mutex_lock(&rproc->lock);
946 if (rproc->state == RPROC_OFFLINE)
947 goto out;
948
949 if (rproc->state != RPROC_SUSPENDED) {
950 ret = -EBUSY;
951 goto out;
952 }
953
954 /*
955 * remoteproc was auto-suspended at the time of system suspend,
956 * so no need to wake-up the processor (leave it in suspended
957 * state, will be woken up during a subsequent runtime_resume)
958 */
959 if (!oproc->need_resume)
960 goto out;
961
962 ret = _omap_rproc_resume(rproc, false);
963 if (ret) {
964 dev_err(dev, "resume failed %d\n", ret);
965 goto out;
966 }
967
968 oproc->need_resume = false;
969 rproc->state = RPROC_RUNNING;
970
971 pm_runtime_mark_last_busy(dev);
972 out:
973 mutex_unlock(&rproc->lock);
974 return ret;
975 }
976
omap_rproc_runtime_suspend(struct device * dev)977 static int omap_rproc_runtime_suspend(struct device *dev)
978 {
979 struct rproc *rproc = dev_get_drvdata(dev);
980 struct omap_rproc *oproc = rproc->priv;
981 int ret;
982
983 mutex_lock(&rproc->lock);
984 if (rproc->state == RPROC_CRASHED) {
985 dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n");
986 ret = -EBUSY;
987 goto out;
988 }
989
990 if (WARN_ON(rproc->state != RPROC_RUNNING)) {
991 dev_err(dev, "rproc cannot be runtime suspended when not running!\n");
992 ret = -EBUSY;
993 goto out;
994 }
995
996 /*
997 * do not even attempt suspend if the remote processor is not
998 * idled for runtime auto-suspend
999 */
1000 if (!_is_rproc_in_standby(oproc)) {
1001 ret = -EBUSY;
1002 goto abort;
1003 }
1004
1005 ret = _omap_rproc_suspend(rproc, true);
1006 if (ret)
1007 goto abort;
1008
1009 rproc->state = RPROC_SUSPENDED;
1010 mutex_unlock(&rproc->lock);
1011 return 0;
1012
1013 abort:
1014 pm_runtime_mark_last_busy(dev);
1015 out:
1016 mutex_unlock(&rproc->lock);
1017 return ret;
1018 }
1019
omap_rproc_runtime_resume(struct device * dev)1020 static int omap_rproc_runtime_resume(struct device *dev)
1021 {
1022 struct rproc *rproc = dev_get_drvdata(dev);
1023 int ret;
1024
1025 mutex_lock(&rproc->lock);
1026 if (WARN_ON(rproc->state != RPROC_SUSPENDED)) {
1027 dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n",
1028 rproc->state);
1029 ret = -EBUSY;
1030 goto out;
1031 }
1032
1033 ret = _omap_rproc_resume(rproc, true);
1034 if (ret) {
1035 dev_err(dev, "runtime resume failed %d\n", ret);
1036 goto out;
1037 }
1038
1039 rproc->state = RPROC_RUNNING;
1040 out:
1041 mutex_unlock(&rproc->lock);
1042 return ret;
1043 }
1044 #endif /* CONFIG_PM */
1045
1046 static const struct omap_rproc_mem_data ipu_mems[] = {
1047 { .name = "l2ram", .dev_addr = 0x20000000 },
1048 { },
1049 };
1050
1051 static const struct omap_rproc_mem_data dra7_dsp_mems[] = {
1052 { .name = "l2ram", .dev_addr = 0x800000 },
1053 { .name = "l1pram", .dev_addr = 0xe00000 },
1054 { .name = "l1dram", .dev_addr = 0xf00000 },
1055 { },
1056 };
1057
1058 static const struct omap_rproc_dev_data omap4_dsp_dev_data = {
1059 .device_name = "dsp",
1060 };
1061
1062 static const struct omap_rproc_dev_data omap4_ipu_dev_data = {
1063 .device_name = "ipu",
1064 .mems = ipu_mems,
1065 };
1066
1067 static const struct omap_rproc_dev_data omap5_dsp_dev_data = {
1068 .device_name = "dsp",
1069 };
1070
1071 static const struct omap_rproc_dev_data omap5_ipu_dev_data = {
1072 .device_name = "ipu",
1073 .mems = ipu_mems,
1074 };
1075
1076 static const struct omap_rproc_dev_data dra7_dsp_dev_data = {
1077 .device_name = "dsp",
1078 .mems = dra7_dsp_mems,
1079 };
1080
1081 static const struct omap_rproc_dev_data dra7_ipu_dev_data = {
1082 .device_name = "ipu",
1083 .mems = ipu_mems,
1084 };
1085
1086 static const struct of_device_id omap_rproc_of_match[] = {
1087 {
1088 .compatible = "ti,omap4-dsp",
1089 .data = &omap4_dsp_dev_data,
1090 },
1091 {
1092 .compatible = "ti,omap4-ipu",
1093 .data = &omap4_ipu_dev_data,
1094 },
1095 {
1096 .compatible = "ti,omap5-dsp",
1097 .data = &omap5_dsp_dev_data,
1098 },
1099 {
1100 .compatible = "ti,omap5-ipu",
1101 .data = &omap5_ipu_dev_data,
1102 },
1103 {
1104 .compatible = "ti,dra7-dsp",
1105 .data = &dra7_dsp_dev_data,
1106 },
1107 {
1108 .compatible = "ti,dra7-ipu",
1109 .data = &dra7_ipu_dev_data,
1110 },
1111 {
1112 /* end */
1113 },
1114 };
1115 MODULE_DEVICE_TABLE(of, omap_rproc_of_match);
1116
omap_rproc_get_firmware(struct platform_device * pdev)1117 static const char *omap_rproc_get_firmware(struct platform_device *pdev)
1118 {
1119 const char *fw_name;
1120 int ret;
1121
1122 ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
1123 &fw_name);
1124 if (ret)
1125 return ERR_PTR(ret);
1126
1127 return fw_name;
1128 }
1129
omap_rproc_get_boot_data(struct platform_device * pdev,struct rproc * rproc)1130 static int omap_rproc_get_boot_data(struct platform_device *pdev,
1131 struct rproc *rproc)
1132 {
1133 struct device_node *np = pdev->dev.of_node;
1134 struct omap_rproc *oproc = rproc->priv;
1135 const struct omap_rproc_dev_data *data;
1136 int ret;
1137
1138 data = of_device_get_match_data(&pdev->dev);
1139 if (!data)
1140 return -ENODEV;
1141
1142 if (!of_property_read_bool(np, "ti,bootreg"))
1143 return 0;
1144
1145 oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data),
1146 GFP_KERNEL);
1147 if (!oproc->boot_data)
1148 return -ENOMEM;
1149
1150 oproc->boot_data->syscon =
1151 syscon_regmap_lookup_by_phandle(np, "ti,bootreg");
1152 if (IS_ERR(oproc->boot_data->syscon)) {
1153 ret = PTR_ERR(oproc->boot_data->syscon);
1154 return ret;
1155 }
1156
1157 if (of_property_read_u32_index(np, "ti,bootreg", 1,
1158 &oproc->boot_data->boot_reg)) {
1159 dev_err(&pdev->dev, "couldn't get the boot register\n");
1160 return -EINVAL;
1161 }
1162
1163 of_property_read_u32_index(np, "ti,bootreg", 2,
1164 &oproc->boot_data->boot_reg_shift);
1165
1166 return 0;
1167 }
1168
omap_rproc_of_get_internal_memories(struct platform_device * pdev,struct rproc * rproc)1169 static int omap_rproc_of_get_internal_memories(struct platform_device *pdev,
1170 struct rproc *rproc)
1171 {
1172 struct omap_rproc *oproc = rproc->priv;
1173 struct device *dev = &pdev->dev;
1174 const struct omap_rproc_dev_data *data;
1175 struct resource *res;
1176 int num_mems;
1177 int i;
1178
1179 data = of_device_get_match_data(dev);
1180 if (!data)
1181 return -ENODEV;
1182
1183 if (!data->mems)
1184 return 0;
1185
1186 num_mems = of_property_count_elems_of_size(dev->of_node, "reg",
1187 sizeof(u32)) / 2;
1188
1189 oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem),
1190 GFP_KERNEL);
1191 if (!oproc->mem)
1192 return -ENOMEM;
1193
1194 for (i = 0; data->mems[i].name; i++) {
1195 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1196 data->mems[i].name);
1197 if (!res) {
1198 dev_err(dev, "no memory defined for %s\n",
1199 data->mems[i].name);
1200 return -ENOMEM;
1201 }
1202 oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
1203 if (IS_ERR(oproc->mem[i].cpu_addr)) {
1204 dev_err(dev, "failed to parse and map %s memory\n",
1205 data->mems[i].name);
1206 return PTR_ERR(oproc->mem[i].cpu_addr);
1207 }
1208 oproc->mem[i].bus_addr = res->start;
1209 oproc->mem[i].dev_addr = data->mems[i].dev_addr;
1210 oproc->mem[i].size = resource_size(res);
1211
1212 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n",
1213 data->mems[i].name, &oproc->mem[i].bus_addr,
1214 oproc->mem[i].size, oproc->mem[i].cpu_addr,
1215 oproc->mem[i].dev_addr);
1216 }
1217 oproc->num_mems = num_mems;
1218
1219 return 0;
1220 }
1221
1222 #ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG
omap_rproc_count_wdog_timers(struct device * dev)1223 static int omap_rproc_count_wdog_timers(struct device *dev)
1224 {
1225 struct device_node *np = dev->of_node;
1226 int ret;
1227
1228 ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL);
1229 if (ret <= 0) {
1230 dev_dbg(dev, "device does not have watchdog timers, status = %d\n",
1231 ret);
1232 ret = 0;
1233 }
1234
1235 return ret;
1236 }
1237 #else
omap_rproc_count_wdog_timers(struct device * dev)1238 static int omap_rproc_count_wdog_timers(struct device *dev)
1239 {
1240 return 0;
1241 }
1242 #endif
1243
omap_rproc_of_get_timers(struct platform_device * pdev,struct rproc * rproc)1244 static int omap_rproc_of_get_timers(struct platform_device *pdev,
1245 struct rproc *rproc)
1246 {
1247 struct device_node *np = pdev->dev.of_node;
1248 struct omap_rproc *oproc = rproc->priv;
1249 struct device *dev = &pdev->dev;
1250 int num_timers;
1251
1252 /*
1253 * Timer nodes are directly used in client nodes as phandles, so
1254 * retrieve the count using appropriate size
1255 */
1256 oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL);
1257 if (oproc->num_timers <= 0) {
1258 dev_dbg(dev, "device does not have timers, status = %d\n",
1259 oproc->num_timers);
1260 oproc->num_timers = 0;
1261 }
1262
1263 oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev);
1264
1265 num_timers = oproc->num_timers + oproc->num_wd_timers;
1266 if (num_timers) {
1267 oproc->timers = devm_kcalloc(dev, num_timers,
1268 sizeof(*oproc->timers),
1269 GFP_KERNEL);
1270 if (!oproc->timers)
1271 return -ENOMEM;
1272
1273 dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n",
1274 oproc->num_timers, oproc->num_wd_timers);
1275 }
1276
1277 return 0;
1278 }
1279
omap_rproc_mem_release(void * data)1280 static void omap_rproc_mem_release(void *data)
1281 {
1282 struct device *dev = data;
1283
1284 of_reserved_mem_device_release(dev);
1285 }
1286
omap_rproc_probe(struct platform_device * pdev)1287 static int omap_rproc_probe(struct platform_device *pdev)
1288 {
1289 struct device_node *np = pdev->dev.of_node;
1290 struct omap_rproc *oproc;
1291 struct rproc *rproc;
1292 const char *firmware;
1293 int ret;
1294 struct reset_control *reset;
1295
1296 if (!np) {
1297 dev_err(&pdev->dev, "only DT-based devices are supported\n");
1298 return -ENODEV;
1299 }
1300
1301 reset = devm_reset_control_array_get_exclusive(&pdev->dev);
1302 if (IS_ERR(reset))
1303 return PTR_ERR(reset);
1304
1305 firmware = omap_rproc_get_firmware(pdev);
1306 if (IS_ERR(firmware))
1307 return PTR_ERR(firmware);
1308
1309 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1310 if (ret) {
1311 dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret);
1312 return ret;
1313 }
1314
1315 rproc = devm_rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops,
1316 firmware, sizeof(*oproc));
1317 if (!rproc)
1318 return -ENOMEM;
1319
1320 oproc = rproc->priv;
1321 oproc->rproc = rproc;
1322 oproc->reset = reset;
1323 /* All existing OMAP IPU and DSP processors have an MMU */
1324 rproc->has_iommu = true;
1325
1326 ret = omap_rproc_of_get_internal_memories(pdev, rproc);
1327 if (ret)
1328 return ret;
1329
1330 ret = omap_rproc_get_boot_data(pdev, rproc);
1331 if (ret)
1332 return ret;
1333
1334 ret = omap_rproc_of_get_timers(pdev, rproc);
1335 if (ret)
1336 return ret;
1337
1338 init_completion(&oproc->pm_comp);
1339 oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY;
1340
1341 of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms",
1342 &oproc->autosuspend_delay);
1343
1344 pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay);
1345
1346 oproc->fck = devm_clk_get(&pdev->dev, 0);
1347 if (IS_ERR(oproc->fck))
1348 return PTR_ERR(oproc->fck);
1349
1350 ret = of_reserved_mem_device_init(&pdev->dev);
1351 if (ret) {
1352 dev_warn(&pdev->dev, "device does not have specific CMA pool.\n");
1353 dev_warn(&pdev->dev, "Typically this should be provided,\n");
1354 dev_warn(&pdev->dev, "only omit if you know what you are doing.\n");
1355 }
1356 ret = devm_add_action_or_reset(&pdev->dev, omap_rproc_mem_release, &pdev->dev);
1357 if (ret)
1358 return ret;
1359
1360 platform_set_drvdata(pdev, rproc);
1361
1362 ret = devm_rproc_add(&pdev->dev, rproc);
1363 if (ret)
1364 return ret;
1365
1366 return 0;
1367 }
1368
1369 static const struct dev_pm_ops omap_rproc_pm_ops = {
1370 SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume)
1371 SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend,
1372 omap_rproc_runtime_resume, NULL)
1373 };
1374
1375 static struct platform_driver omap_rproc_driver = {
1376 .probe = omap_rproc_probe,
1377 .driver = {
1378 .name = "omap-rproc",
1379 .pm = &omap_rproc_pm_ops,
1380 .of_match_table = omap_rproc_of_match,
1381 },
1382 };
1383
1384 module_platform_driver(omap_rproc_driver);
1385
1386 MODULE_LICENSE("GPL v2");
1387 MODULE_DESCRIPTION("OMAP Remote Processor control driver");
1388