xref: /linux/drivers/pwm/pwm-mc33xs2410.c (revision 11147c16a6e0649cc95f8bb90302e4a99ece30bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH
4  *
5  * Reference Manual : https://www.nxp.com/docs/en/data-sheet/MC33XS2410.pdf
6  *
7  * Limitations:
8  * - Supports frequencies between 0.5Hz and 2048Hz with following steps:
9  *   - 0.5 Hz steps from 0.5 Hz to 32 Hz
10  *   - 2 Hz steps from 2 Hz to 128 Hz
11  *   - 8 Hz steps from 8 Hz to 512 Hz
12  *   - 32 Hz steps from 32 Hz to 2048 Hz
13  * - Cannot generate a 0 % duty cycle.
14  * - Always produces low output if disabled.
15  * - Configuration isn't atomic. When changing polarity, duty cycle or period
16  *   the data is taken immediately, counters not being affected, resulting in a
17  *   behavior of the output pin that is neither the old nor the new state,
18  *   rather something in between.
19  */
20 
21 #include <linux/bitfield.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/math64.h>
25 #include <linux/minmax.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/pwm.h>
29 
30 #include <linux/spi/spi.h>
31 
32 #define MC33XS2410_GLB_CTRL			0x00
33 #define MC33XS2410_GLB_CTRL_MODE		GENMASK(7, 6)
34 #define MC33XS2410_GLB_CTRL_MODE_NORMAL		FIELD_PREP(MC33XS2410_GLB_CTRL_MODE, 1)
35 
36 #define MC33XS2410_PWM_CTRL1			0x05
37 /* chan in { 1 ... 4 } */
38 #define MC33XS2410_PWM_CTRL1_POL_INV(chan)	BIT((chan) + 1)
39 
40 #define MC33XS2410_PWM_CTRL3			0x07
41 /* chan in { 1 ... 4 } */
42 #define MC33XS2410_PWM_CTRL3_EN(chan)		BIT(4 + (chan) - 1)
43 
44 /* chan in { 1 ... 4 } */
45 #define MC33XS2410_PWM_FREQ(chan)		(0x08 + (chan) - 1)
46 #define MC33XS2410_PWM_FREQ_STEP		GENMASK(7, 6)
47 #define MC33XS2410_PWM_FREQ_COUNT		GENMASK(5, 0)
48 
49 /* chan in { 1 ... 4 } */
50 #define MC33XS2410_PWM_DC(chan)			(0x0c + (chan) - 1)
51 
52 #define MC33XS2410_WDT				0x14
53 
54 #define MC33XS2410_PWM_MIN_PERIOD		488282
55 /* step in { 0 ... 3 } */
56 #define MC33XS2410_PWM_MAX_PERIOD(step)		(2000000000 >> (2 * (step)))
57 
58 #define MC33XS2410_FRAME_IN_ADDR		GENMASK(15, 8)
59 #define MC33XS2410_FRAME_IN_DATA		GENMASK(7, 0)
60 #define MC33XS2410_FRAME_IN_ADDR_WR		BIT(7)
61 #define MC33XS2410_FRAME_IN_DATA_RD		BIT(7)
62 #define MC33XS2410_FRAME_OUT_DATA		GENMASK(13, 0)
63 
64 #define MC33XS2410_MAX_TRANSFERS		5
65 
mc33xs2410_write_regs(struct spi_device * spi,u8 * reg,u8 * val,unsigned int len)66 static int mc33xs2410_write_regs(struct spi_device *spi, u8 *reg, u8 *val,
67 				 unsigned int len)
68 {
69 	u16 tx[MC33XS2410_MAX_TRANSFERS];
70 	int i;
71 
72 	if (len > MC33XS2410_MAX_TRANSFERS)
73 		return -EINVAL;
74 
75 	for (i = 0; i < len; i++)
76 		tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, val[i]) |
77 			FIELD_PREP(MC33XS2410_FRAME_IN_ADDR,
78 				   MC33XS2410_FRAME_IN_ADDR_WR | reg[i]);
79 
80 	return spi_write(spi, tx, len * 2);
81 }
82 
mc33xs2410_read_regs(struct spi_device * spi,u8 * reg,u8 flag,u16 * val,unsigned int len)83 static int mc33xs2410_read_regs(struct spi_device *spi, u8 *reg, u8 flag,
84 				u16 *val, unsigned int len)
85 {
86 	u16 tx[MC33XS2410_MAX_TRANSFERS];
87 	u16 rx[MC33XS2410_MAX_TRANSFERS];
88 	struct spi_transfer t = {
89 		.tx_buf = tx,
90 		.rx_buf = rx,
91 	};
92 	int i, ret;
93 
94 	len++;
95 	if (len > MC33XS2410_MAX_TRANSFERS)
96 		return -EINVAL;
97 
98 	t.len = len * 2;
99 	for (i = 0; i < len - 1; i++)
100 		tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, flag) |
101 			FIELD_PREP(MC33XS2410_FRAME_IN_ADDR, reg[i]);
102 
103 	ret = spi_sync_transfer(spi, &t, 1);
104 	if (ret < 0)
105 		return ret;
106 
107 	for (i = 1; i < len; i++)
108 		val[i - 1] = FIELD_GET(MC33XS2410_FRAME_OUT_DATA, rx[i]);
109 
110 	return 0;
111 }
112 
mc33xs2410_write_reg(struct spi_device * spi,u8 reg,u8 val)113 static int mc33xs2410_write_reg(struct spi_device *spi, u8 reg, u8 val)
114 {
115 	return mc33xs2410_write_regs(spi, &reg, &val, 1);
116 }
117 
mc33xs2410_read_reg(struct spi_device * spi,u8 reg,u16 * val,u8 flag)118 static int mc33xs2410_read_reg(struct spi_device *spi, u8 reg, u16 *val, u8 flag)
119 {
120 	return mc33xs2410_read_regs(spi, &reg, flag, val, 1);
121 }
122 
mc33xs2410_read_reg_ctrl(struct spi_device * spi,u8 reg,u16 * val)123 static int mc33xs2410_read_reg_ctrl(struct spi_device *spi, u8 reg, u16 *val)
124 {
125 	return mc33xs2410_read_reg(spi, reg, val, MC33XS2410_FRAME_IN_DATA_RD);
126 }
127 
mc33xs2410_modify_reg(struct spi_device * spi,u8 reg,u8 mask,u8 val)128 static int mc33xs2410_modify_reg(struct spi_device *spi, u8 reg, u8 mask, u8 val)
129 {
130 	u16 tmp;
131 	int ret;
132 
133 	ret = mc33xs2410_read_reg_ctrl(spi, reg, &tmp);
134 	if (ret < 0)
135 		return ret;
136 
137 	tmp &= ~mask;
138 	tmp |= val & mask;
139 
140 	return mc33xs2410_write_reg(spi, reg, tmp);
141 }
142 
mc33xs2410_pwm_get_freq(u64 period)143 static u8 mc33xs2410_pwm_get_freq(u64 period)
144 {
145 	u8 step, count;
146 
147 	/*
148 	 * Check which step [0 .. 3] is appropriate for the given period. The
149 	 * period ranges for the different step values overlap. Prefer big step
150 	 * values as these allow more finegrained period and duty cycle
151 	 * selection.
152 	 */
153 
154 	switch (period) {
155 	case MC33XS2410_PWM_MIN_PERIOD ... MC33XS2410_PWM_MAX_PERIOD(3):
156 		step = 3;
157 		break;
158 	case MC33XS2410_PWM_MAX_PERIOD(3) + 1 ... MC33XS2410_PWM_MAX_PERIOD(2):
159 		step = 2;
160 		break;
161 	case MC33XS2410_PWM_MAX_PERIOD(2) + 1 ... MC33XS2410_PWM_MAX_PERIOD(1):
162 		step = 1;
163 		break;
164 	case MC33XS2410_PWM_MAX_PERIOD(1) + 1 ... MC33XS2410_PWM_MAX_PERIOD(0):
165 		step = 0;
166 		break;
167 	}
168 
169 	/*
170 	 * Round up here because a higher count results in a higher frequency
171 	 * and so a smaller period.
172 	 */
173 	count = DIV_ROUND_UP((u32)MC33XS2410_PWM_MAX_PERIOD(step), (u32)period);
174 	return FIELD_PREP(MC33XS2410_PWM_FREQ_STEP, step) |
175 	       FIELD_PREP(MC33XS2410_PWM_FREQ_COUNT, count - 1);
176 }
177 
mc33xs2410_pwm_get_period(u8 reg)178 static u64 mc33xs2410_pwm_get_period(u8 reg)
179 {
180 	u32 doubled_freq, code, doubled_steps;
181 
182 	/*
183 	 * steps:
184 	 *   - 0 = 0.5Hz
185 	 *   - 1 = 2Hz
186 	 *   - 2 = 8Hz
187 	 *   - 3 = 32Hz
188 	 * frequency = (code + 1) x steps.
189 	 *
190 	 * To avoid losing precision in case steps value is zero, scale the
191 	 * steps value for now by two and keep it in mind when calculating the
192 	 * period that the frequency had been doubled.
193 	 */
194 	doubled_steps = 1 << (FIELD_GET(MC33XS2410_PWM_FREQ_STEP, reg) * 2);
195 	code = FIELD_GET(MC33XS2410_PWM_FREQ_COUNT, reg);
196 	doubled_freq = (code + 1) * doubled_steps;
197 
198 	/* Convert frequency to period, considering the doubled frequency. */
199 	return DIV_ROUND_UP(2 * NSEC_PER_SEC, doubled_freq);
200 }
201 
202 /*
203  * The hardware cannot generate a 0% relative duty cycle for normal and inversed
204  * polarity. For normal polarity, the channel must be disabled, the device then
205  * emits a constant low signal.
206  * For inverted polarity, the channel must be enabled, the polarity must be set
207  * to normal and the relative duty cylce must be set to 100%. The device then
208  * emits a constant high signal.
209  */
mc33xs2410_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)210 static int mc33xs2410_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
211 				const struct pwm_state *state)
212 {
213 	struct spi_device *spi = pwmchip_get_drvdata(chip);
214 	u8 reg[4] = {
215 			MC33XS2410_PWM_FREQ(pwm->hwpwm + 1),
216 			MC33XS2410_PWM_DC(pwm->hwpwm + 1),
217 			MC33XS2410_PWM_CTRL1,
218 			MC33XS2410_PWM_CTRL3
219 		    };
220 	u64 period, duty_cycle;
221 	int ret, rel_dc;
222 	u16 rd_val[2];
223 	u8 wr_val[4];
224 	u8 mask;
225 
226 	period = min(state->period, MC33XS2410_PWM_MAX_PERIOD(0));
227 	if (period < MC33XS2410_PWM_MIN_PERIOD)
228 		return -EINVAL;
229 
230 	ret = mc33xs2410_read_regs(spi, &reg[2], MC33XS2410_FRAME_IN_DATA_RD, rd_val, 2);
231 	if (ret < 0)
232 		return ret;
233 
234 	/* Frequency */
235 	wr_val[0] = mc33xs2410_pwm_get_freq(period);
236 	/* Continue calculations with the possibly truncated period */
237 	period = mc33xs2410_pwm_get_period(wr_val[0]);
238 
239 	/* Duty cycle */
240 	duty_cycle = min(period, state->duty_cycle);
241 	rel_dc = div64_u64(duty_cycle * 256, period) - 1;
242 	if (rel_dc >= 0)
243 		wr_val[1] = rel_dc;
244 	else if (state->polarity == PWM_POLARITY_NORMAL)
245 		wr_val[1] = 0;
246 	else
247 		wr_val[1] = 255;
248 
249 	/* Polarity */
250 	mask = MC33XS2410_PWM_CTRL1_POL_INV(pwm->hwpwm + 1);
251 	if (state->polarity == PWM_POLARITY_INVERSED && rel_dc >= 0)
252 		wr_val[2] = rd_val[0] | mask;
253 	else
254 		wr_val[2] = rd_val[0] & ~mask;
255 
256 	/* Enable */
257 	mask = MC33XS2410_PWM_CTRL3_EN(pwm->hwpwm + 1);
258 	if (state->enabled &&
259 	    !(state->polarity == PWM_POLARITY_NORMAL && rel_dc < 0))
260 		wr_val[3] = rd_val[1] | mask;
261 	else
262 		wr_val[3] = rd_val[1] & ~mask;
263 
264 	return mc33xs2410_write_regs(spi, reg, wr_val, 4);
265 }
266 
mc33xs2410_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)267 static int mc33xs2410_pwm_get_state(struct pwm_chip *chip,
268 				    struct pwm_device *pwm,
269 				    struct pwm_state *state)
270 {
271 	struct spi_device *spi = pwmchip_get_drvdata(chip);
272 	u8 reg[4] = {
273 			MC33XS2410_PWM_FREQ(pwm->hwpwm + 1),
274 			MC33XS2410_PWM_DC(pwm->hwpwm + 1),
275 			MC33XS2410_PWM_CTRL1,
276 			MC33XS2410_PWM_CTRL3,
277 		    };
278 	u16 val[4];
279 	int ret;
280 
281 	ret = mc33xs2410_read_regs(spi, reg, MC33XS2410_FRAME_IN_DATA_RD, val,
282 				   ARRAY_SIZE(reg));
283 	if (ret < 0)
284 		return ret;
285 
286 	state->period = mc33xs2410_pwm_get_period(val[0]);
287 	state->polarity = (val[2] & MC33XS2410_PWM_CTRL1_POL_INV(pwm->hwpwm + 1)) ?
288 			  PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
289 	state->enabled = !!(val[3] & MC33XS2410_PWM_CTRL3_EN(pwm->hwpwm + 1));
290 	state->duty_cycle = DIV_ROUND_UP_ULL((val[1] + 1) * state->period, 256);
291 
292 	return 0;
293 }
294 
295 static const struct pwm_ops mc33xs2410_pwm_ops = {
296 	.apply = mc33xs2410_pwm_apply,
297 	.get_state = mc33xs2410_pwm_get_state,
298 };
299 
mc33xs2410_reset(struct device * dev)300 static int mc33xs2410_reset(struct device *dev)
301 {
302 	struct gpio_desc *reset_gpio;
303 
304 	reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
305 	if (IS_ERR_OR_NULL(reset_gpio))
306 		return PTR_ERR_OR_ZERO(reset_gpio);
307 
308 	/* Wake-up time */
309 	fsleep(10000);
310 
311 	return 0;
312 }
313 
mc33xs2410_probe(struct spi_device * spi)314 static int mc33xs2410_probe(struct spi_device *spi)
315 {
316 	struct device *dev = &spi->dev;
317 	struct pwm_chip *chip;
318 	int ret;
319 
320 	chip = devm_pwmchip_alloc(dev, 4, 0);
321 	if (IS_ERR(chip))
322 		return PTR_ERR(chip);
323 
324 	spi->bits_per_word = 16;
325 	spi->mode |= SPI_CS_WORD;
326 	ret = spi_setup(spi);
327 	if (ret < 0)
328 		return ret;
329 
330 	pwmchip_set_drvdata(chip, spi);
331 	chip->ops = &mc33xs2410_pwm_ops;
332 
333 	/*
334 	 * Deasserts the reset of the device. Shouldn't change the output signal
335 	 * if the device was setup prior to probing.
336 	 */
337 	ret = mc33xs2410_reset(dev);
338 	if (ret)
339 		return ret;
340 
341 	/*
342 	 * Disable watchdog and keep in mind that the watchdog won't trigger a
343 	 * reset of the machine when running into an timeout, instead the
344 	 * control over the outputs is handed over to the INx input logic
345 	 * signals of the device. Disabling it here just deactivates this
346 	 * feature until a proper solution is found.
347 	 */
348 	ret = mc33xs2410_write_reg(spi, MC33XS2410_WDT, 0x0);
349 	if (ret < 0)
350 		return dev_err_probe(dev, ret, "Failed to disable watchdog\n");
351 
352 	/* Transition to normal mode */
353 	ret = mc33xs2410_modify_reg(spi, MC33XS2410_GLB_CTRL,
354 				    MC33XS2410_GLB_CTRL_MODE,
355 				    MC33XS2410_GLB_CTRL_MODE_NORMAL);
356 	if (ret < 0)
357 		return dev_err_probe(dev, ret,
358 				     "Failed to transition to normal mode\n");
359 
360 	ret = devm_pwmchip_add(dev, chip);
361 	if (ret < 0)
362 		return dev_err_probe(dev, ret, "Failed to add pwm chip\n");
363 
364 	return 0;
365 }
366 
367 static const struct spi_device_id mc33xs2410_spi_id[] = {
368 	{ "mc33xs2410" },
369 	{ }
370 };
371 MODULE_DEVICE_TABLE(spi, mc33xs2410_spi_id);
372 
373 static const struct of_device_id mc33xs2410_of_match[] = {
374 	{ .compatible = "nxp,mc33xs2410" },
375 	{ }
376 };
377 MODULE_DEVICE_TABLE(of, mc33xs2410_of_match);
378 
379 static struct spi_driver mc33xs2410_driver = {
380 	.driver = {
381 		.name = "mc33xs2410-pwm",
382 		.of_match_table = mc33xs2410_of_match,
383 	},
384 	.probe = mc33xs2410_probe,
385 	.id_table = mc33xs2410_spi_id,
386 };
387 module_spi_driver(mc33xs2410_driver);
388 
389 MODULE_DESCRIPTION("NXP MC33XS2410 high-side switch driver");
390 MODULE_AUTHOR("Dimitri Fedrau <dimitri.fedrau@liebherr.com>");
391 MODULE_LICENSE("GPL");
392