1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ROHM BD99954 charger driver
4 *
5 * Copyright (C) 2020 Rohm Semiconductors
6 * Originally written by:
7 * Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
8 * Markus Laine <markus.laine@fi.rohmeurope.com>
9 * Bugs added by:
10 * Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
11 */
12
13 /*
14 * The battery charging profile of BD99954.
15 *
16 * Curve (1) represents charging current.
17 * Curve (2) represents battery voltage.
18 *
19 * The BD99954 data sheet divides charging to three phases.
20 * a) Trickle-charge with constant current (8).
21 * b) pre-charge with constant current (6)
22 * c) fast-charge, first with constant current (5) phase. After
23 * the battery voltage has reached target level (4) we have constant
24 * voltage phase until charging current has dropped to termination
25 * level (7)
26 *
27 * V ^ ^ I
28 * . .
29 * . .
30 *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
31 * . :/ .
32 * . o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
33 * . + :: + .
34 * . + /- -- .
35 * . +`/- + .
36 * . o/- -: .
37 * . .s. +` .
38 * . .--+ `/ .
39 * . ..`` + .: .
40 * . -` + -- .
41 * . (2) ...`` + :- .
42 * . ...`` + -: .
43 *(3)` `.`."" ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
44 * . + `:. .
45 * . + -: .
46 * . + -:. .
47 * . + .--. .
48 * . (1) + `.+` ` ` `.` ` (7)
49 * -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
50 * . + -
51 * -------------------------------------------------+++++++++-->
52 * | trickle | pre | fast |
53 *
54 * Details of DT properties for different limits can be found from BD99954
55 * device tree binding documentation.
56 */
57
58 #include <linux/delay.h>
59 #include <linux/gpio/consumer.h>
60 #include <linux/interrupt.h>
61 #include <linux/i2c.h>
62 #include <linux/kernel.h>
63 #include <linux/linear_range.h>
64 #include <linux/module.h>
65 #include <linux/mod_devicetable.h>
66 #include <linux/power_supply.h>
67 #include <linux/property.h>
68 #include <linux/regmap.h>
69 #include <linux/types.h>
70
71 #include "bd99954-charger.h"
72
73 /* Initial field values, converted to initial register values */
74 struct bd9995x_init_data {
75 u16 vsysreg_set; /* VSYS Regulation Setting */
76 u16 ibus_lim_set; /* VBUS input current limitation */
77 u16 icc_lim_set; /* VCC/VACP Input Current Limit Setting */
78 u16 itrich_set; /* Trickle-charge Current Setting */
79 u16 iprech_set; /* Pre-Charge Current Setting */
80 u16 ichg_set; /* Fast-Charge constant current */
81 u16 vfastchg_reg_set1; /* Fast Charging Regulation Voltage */
82 u16 vprechg_th_set; /* Pre-charge Voltage Threshold Setting */
83 u16 vrechg_set; /* Re-charge Battery Voltage Setting */
84 u16 vbatovp_set; /* Battery Over Voltage Threshold Setting */
85 u16 iterm_set; /* Charging termination current */
86 };
87
88 struct bd9995x_state {
89 u8 online;
90 u16 chgstm_status;
91 u16 vbat_vsys_status;
92 u16 vbus_vcc_status;
93 };
94
95 struct bd9995x_device {
96 struct i2c_client *client;
97 struct device *dev;
98 struct power_supply *charger;
99
100 struct regmap *rmap;
101 struct regmap_field *rmap_fields[F_MAX_FIELDS];
102
103 int chip_id;
104 int chip_rev;
105 struct bd9995x_init_data init_data;
106 struct bd9995x_state state;
107
108 struct mutex lock; /* Protect state data */
109 };
110
111 static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
112 regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
113 regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
114 regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
115 regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
116 regmap_reg_range(CHIP_ID, CHIP_REV),
117 regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
118 regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
119 regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
120 };
121
122 static const struct regmap_access_table bd9995x_writeable_regs = {
123 .no_ranges = bd9995x_readonly_reg_ranges,
124 .n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
125 };
126
127 static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
128 regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
129 regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
130 regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
131 regmap_reg_range(INT0_STATUS, INT7_STATUS),
132 regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
133 regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
134 };
135
136 static const struct regmap_access_table bd9995x_volatile_regs = {
137 .yes_ranges = bd9995x_volatile_reg_ranges,
138 .n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
139 };
140
141 static const struct regmap_range_cfg regmap_range_cfg[] = {
142 {
143 .selector_reg = MAP_SET,
144 .selector_mask = 0xFFFF,
145 .selector_shift = 0,
146 .window_start = 0,
147 .window_len = 0x100,
148 .range_min = 0 * 0x100,
149 .range_max = 3 * 0x100,
150 },
151 };
152
153 static const struct regmap_config bd9995x_regmap_config = {
154 .reg_bits = 8,
155 .val_bits = 16,
156 .reg_stride = 1,
157
158 .max_register = 3 * 0x100,
159 .cache_type = REGCACHE_RBTREE,
160
161 .ranges = regmap_range_cfg,
162 .num_ranges = ARRAY_SIZE(regmap_range_cfg),
163 .val_format_endian = REGMAP_ENDIAN_LITTLE,
164 .wr_table = &bd9995x_writeable_regs,
165 .volatile_table = &bd9995x_volatile_regs,
166 };
167
168 enum bd9995x_chrg_fault {
169 CHRG_FAULT_NORMAL,
170 CHRG_FAULT_INPUT,
171 CHRG_FAULT_THERMAL_SHUTDOWN,
172 CHRG_FAULT_TIMER_EXPIRED,
173 };
174
bd9995x_get_prop_batt_health(struct bd9995x_device * bd)175 static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
176 {
177 int ret, tmp;
178
179 ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
180 if (ret)
181 return POWER_SUPPLY_HEALTH_UNKNOWN;
182
183 /* TODO: Check these against datasheet page 34 */
184
185 switch (tmp) {
186 case ROOM:
187 return POWER_SUPPLY_HEALTH_GOOD;
188 case HOT1:
189 case HOT2:
190 case HOT3:
191 return POWER_SUPPLY_HEALTH_OVERHEAT;
192 case COLD1:
193 case COLD2:
194 return POWER_SUPPLY_HEALTH_COLD;
195 case TEMP_DIS:
196 case BATT_OPEN:
197 default:
198 return POWER_SUPPLY_HEALTH_UNKNOWN;
199 }
200 }
201
bd9995x_get_prop_charge_type(struct bd9995x_device * bd)202 static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
203 {
204 int ret, tmp;
205
206 ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
207 if (ret)
208 return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
209
210 switch (tmp) {
211 case CHGSTM_TRICKLE_CHARGE:
212 case CHGSTM_PRE_CHARGE:
213 return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
214 case CHGSTM_FAST_CHARGE:
215 return POWER_SUPPLY_CHARGE_TYPE_FAST;
216 case CHGSTM_TOP_OFF:
217 case CHGSTM_DONE:
218 case CHGSTM_SUSPEND:
219 return POWER_SUPPLY_CHARGE_TYPE_NONE;
220 default: /* Rest of the states are error related, no charging */
221 return POWER_SUPPLY_CHARGE_TYPE_NONE;
222 }
223 }
224
bd9995x_get_prop_batt_present(struct bd9995x_device * bd)225 static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
226 {
227 int ret, tmp;
228
229 ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
230 if (ret)
231 return false;
232
233 return tmp != BATT_OPEN;
234 }
235
bd9995x_get_prop_batt_voltage(struct bd9995x_device * bd)236 static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
237 {
238 int ret, tmp;
239
240 ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
241 if (ret)
242 return 0;
243
244 tmp = min(tmp, 19200);
245
246 return tmp * 1000;
247 }
248
bd9995x_get_prop_batt_current(struct bd9995x_device * bd)249 static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
250 {
251 int ret, tmp;
252
253 ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
254 if (ret)
255 return 0;
256
257 return tmp * 1000;
258 }
259
260 #define DEFAULT_BATTERY_TEMPERATURE 250
261
bd9995x_get_prop_batt_temp(struct bd9995x_device * bd)262 static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
263 {
264 int ret, tmp;
265
266 ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
267 if (ret)
268 return DEFAULT_BATTERY_TEMPERATURE;
269
270 return (200 - tmp) * 10;
271 }
272
bd9995x_power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)273 static int bd9995x_power_supply_get_property(struct power_supply *psy,
274 enum power_supply_property psp,
275 union power_supply_propval *val)
276 {
277 int ret, tmp;
278 struct bd9995x_device *bd = power_supply_get_drvdata(psy);
279 struct bd9995x_state state;
280
281 mutex_lock(&bd->lock);
282 state = bd->state;
283 mutex_unlock(&bd->lock);
284
285 switch (psp) {
286 case POWER_SUPPLY_PROP_STATUS:
287 switch (state.chgstm_status) {
288 case CHGSTM_TRICKLE_CHARGE:
289 case CHGSTM_PRE_CHARGE:
290 case CHGSTM_FAST_CHARGE:
291 case CHGSTM_TOP_OFF:
292 val->intval = POWER_SUPPLY_STATUS_CHARGING;
293 break;
294
295 case CHGSTM_DONE:
296 val->intval = POWER_SUPPLY_STATUS_FULL;
297 break;
298
299 case CHGSTM_SUSPEND:
300 case CHGSTM_TEMPERATURE_ERROR_1:
301 case CHGSTM_TEMPERATURE_ERROR_2:
302 case CHGSTM_TEMPERATURE_ERROR_3:
303 case CHGSTM_TEMPERATURE_ERROR_4:
304 case CHGSTM_TEMPERATURE_ERROR_5:
305 case CHGSTM_TEMPERATURE_ERROR_6:
306 case CHGSTM_TEMPERATURE_ERROR_7:
307 case CHGSTM_THERMAL_SHUT_DOWN_1:
308 case CHGSTM_THERMAL_SHUT_DOWN_2:
309 case CHGSTM_THERMAL_SHUT_DOWN_3:
310 case CHGSTM_THERMAL_SHUT_DOWN_4:
311 case CHGSTM_THERMAL_SHUT_DOWN_5:
312 case CHGSTM_THERMAL_SHUT_DOWN_6:
313 case CHGSTM_THERMAL_SHUT_DOWN_7:
314 case CHGSTM_BATTERY_ERROR:
315 val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
316 break;
317
318 default:
319 val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
320 break;
321 }
322 break;
323
324 case POWER_SUPPLY_PROP_MANUFACTURER:
325 val->strval = BD9995X_MANUFACTURER;
326 break;
327
328 case POWER_SUPPLY_PROP_ONLINE:
329 val->intval = state.online;
330 break;
331
332 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
333 ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
334 if (ret)
335 return ret;
336 val->intval = tmp * 1000;
337 break;
338
339 case POWER_SUPPLY_PROP_CHARGE_AVG:
340 ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
341 if (ret)
342 return ret;
343 val->intval = tmp * 1000;
344 break;
345
346 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
347 /*
348 * Currently the DT uses this property to give the
349 * target current for fast-charging constant current phase.
350 * I think it is correct in a sense.
351 *
352 * Yet, this prop we read and return here is the programmed
353 * safety limit for combined input currents. This feels
354 * also correct in a sense.
355 *
356 * However, this results a mismatch to DT value and value
357 * read from sysfs.
358 */
359 ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
360 if (ret)
361 return ret;
362 val->intval = tmp * 1000;
363 break;
364
365 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
366 if (!state.online) {
367 val->intval = 0;
368 break;
369 }
370
371 ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
372 &tmp);
373 if (ret)
374 return ret;
375
376 /*
377 * The actual range : 2560 to 19200 mV. No matter what the
378 * register says
379 */
380 val->intval = clamp_val(tmp << 4, 2560, 19200);
381 val->intval *= 1000;
382 break;
383
384 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
385 ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
386 if (ret)
387 return ret;
388 /* Start step is 64 mA */
389 val->intval = tmp << 6;
390 /* Maximum is 1024 mA - no matter what register says */
391 val->intval = min(val->intval, 1024);
392 val->intval *= 1000;
393 break;
394
395 /* Battery properties which we access through charger */
396 case POWER_SUPPLY_PROP_PRESENT:
397 val->intval = bd9995x_get_prop_batt_present(bd);
398 break;
399
400 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
401 val->intval = bd9995x_get_prop_batt_voltage(bd);
402 break;
403
404 case POWER_SUPPLY_PROP_CURRENT_NOW:
405 val->intval = bd9995x_get_prop_batt_current(bd);
406 break;
407
408 case POWER_SUPPLY_PROP_CHARGE_TYPE:
409 val->intval = bd9995x_get_prop_charge_type(bd);
410 break;
411
412 case POWER_SUPPLY_PROP_HEALTH:
413 val->intval = bd9995x_get_prop_batt_health(bd);
414 break;
415
416 case POWER_SUPPLY_PROP_TEMP:
417 val->intval = bd9995x_get_prop_batt_temp(bd);
418 break;
419
420 case POWER_SUPPLY_PROP_TECHNOLOGY:
421 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
422 break;
423
424 case POWER_SUPPLY_PROP_MODEL_NAME:
425 val->strval = "bd99954";
426 break;
427
428 default:
429 return -EINVAL;
430
431 }
432
433 return 0;
434 }
435
bd9995x_get_chip_state(struct bd9995x_device * bd,struct bd9995x_state * state)436 static int bd9995x_get_chip_state(struct bd9995x_device *bd,
437 struct bd9995x_state *state)
438 {
439 int i, ret, tmp;
440 struct {
441 struct regmap_field *id;
442 u16 *data;
443 } state_fields[] = {
444 {
445 bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
446 }, {
447 bd->rmap_fields[F_VBAT_VSYS_STATUS],
448 &state->vbat_vsys_status,
449 }, {
450 bd->rmap_fields[F_VBUS_VCC_STATUS],
451 &state->vbus_vcc_status,
452 },
453 };
454
455
456 for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
457 ret = regmap_field_read(state_fields[i].id, &tmp);
458 if (ret)
459 return ret;
460
461 *state_fields[i].data = tmp;
462 }
463
464 if (state->vbus_vcc_status & STATUS_VCC_DET ||
465 state->vbus_vcc_status & STATUS_VBUS_DET)
466 state->online = 1;
467 else
468 state->online = 0;
469
470 return 0;
471 }
472
bd9995x_irq_handler_thread(int irq,void * private)473 static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
474 {
475 struct bd9995x_device *bd = private;
476 int ret, status, mask, i;
477 unsigned long tmp;
478 struct bd9995x_state state;
479
480 /*
481 * The bd9995x does not seem to generate big amount of interrupts.
482 * The logic regarding which interrupts can cause relevant
483 * status changes seem to be pretty complex.
484 *
485 * So lets implement really simple and hopefully bullet-proof handler:
486 * It does not really matter which IRQ we handle, we just go and
487 * re-read all interesting statuses + give the framework a nudge.
488 *
489 * Other option would be building a _complex_ and error prone logic
490 * trying to decide what could have been changed (resulting this IRQ
491 * we are now handling). During the normal operation the BD99954 does
492 * not seem to be generating much of interrupts so benefit from such
493 * logic would probably be minimal.
494 */
495
496 ret = regmap_read(bd->rmap, INT0_STATUS, &status);
497 if (ret) {
498 dev_err(bd->dev, "Failed to read IRQ status\n");
499 return IRQ_NONE;
500 }
501
502 ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
503 if (ret) {
504 dev_err(bd->dev, "Failed to read IRQ mask\n");
505 return IRQ_NONE;
506 }
507
508 /* Handle only IRQs that are not masked */
509 status &= mask;
510 tmp = status;
511
512 /* Lowest bit does not represent any sub-registers */
513 tmp >>= 1;
514
515 /*
516 * Mask and ack IRQs we will handle (+ the idiot bit)
517 */
518 ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
519 if (ret) {
520 dev_err(bd->dev, "Failed to mask F_INT0\n");
521 return IRQ_NONE;
522 }
523
524 ret = regmap_write(bd->rmap, INT0_STATUS, status);
525 if (ret) {
526 dev_err(bd->dev, "Failed to ack F_INT0\n");
527 goto err_umask;
528 }
529
530 for_each_set_bit(i, &tmp, 7) {
531 int sub_status, sub_mask;
532 static const int sub_status_reg[] = {
533 INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
534 INT5_STATUS, INT6_STATUS, INT7_STATUS,
535 };
536 struct regmap_field *sub_mask_f[] = {
537 bd->rmap_fields[F_INT1_SET],
538 bd->rmap_fields[F_INT2_SET],
539 bd->rmap_fields[F_INT3_SET],
540 bd->rmap_fields[F_INT4_SET],
541 bd->rmap_fields[F_INT5_SET],
542 bd->rmap_fields[F_INT6_SET],
543 bd->rmap_fields[F_INT7_SET],
544 };
545
546 /* Clear sub IRQs */
547 ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
548 if (ret) {
549 dev_err(bd->dev, "Failed to read IRQ sub-status\n");
550 goto err_umask;
551 }
552
553 ret = regmap_field_read(sub_mask_f[i], &sub_mask);
554 if (ret) {
555 dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
556 goto err_umask;
557 }
558
559 /* Ack active sub-statuses */
560 sub_status &= sub_mask;
561
562 ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
563 if (ret) {
564 dev_err(bd->dev, "Failed to ack sub-IRQ\n");
565 goto err_umask;
566 }
567 }
568
569 ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
570 if (ret)
571 /* May as well retry once */
572 goto err_umask;
573
574 /* Read whole chip state */
575 ret = bd9995x_get_chip_state(bd, &state);
576 if (ret < 0) {
577 dev_err(bd->dev, "Failed to read chip state\n");
578 } else {
579 mutex_lock(&bd->lock);
580 bd->state = state;
581 mutex_unlock(&bd->lock);
582
583 power_supply_changed(bd->charger);
584 }
585
586 return IRQ_HANDLED;
587
588 err_umask:
589 ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
590 if (ret)
591 dev_err(bd->dev,
592 "Failed to un-mask F_INT0 - IRQ permanently disabled\n");
593
594 return IRQ_NONE;
595 }
596
__bd9995x_chip_reset(struct bd9995x_device * bd)597 static int __bd9995x_chip_reset(struct bd9995x_device *bd)
598 {
599 int ret, state;
600 int rst_check_counter = 10;
601 u16 tmp = ALLRST | OTPLD;
602
603 ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
604 if (ret < 0)
605 return ret;
606
607 do {
608 ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
609 if (ret)
610 return ret;
611
612 msleep(10);
613 } while (state == 0 && --rst_check_counter);
614
615 if (!rst_check_counter) {
616 dev_err(bd->dev, "chip reset not completed\n");
617 return -ETIMEDOUT;
618 }
619
620 tmp = 0;
621 ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
622
623 return ret;
624 }
625
bd9995x_hw_init(struct bd9995x_device * bd)626 static int bd9995x_hw_init(struct bd9995x_device *bd)
627 {
628 int ret;
629 int i;
630 struct bd9995x_state state;
631 struct bd9995x_init_data *id = &bd->init_data;
632
633 const struct {
634 enum bd9995x_fields id;
635 u16 value;
636 } init_data[] = {
637 /* Enable the charging trigger after SDP charger attached */
638 {F_SDP_CHG_TRIG_EN, 1},
639 /* Enable charging trigger after SDP charger attached */
640 {F_SDP_CHG_TRIG, 1},
641 /* Disable charging trigger by BC1.2 detection */
642 {F_VBUS_BC_DISEN, 1},
643 /* Disable charging trigger by BC1.2 detection */
644 {F_VCC_BC_DISEN, 1},
645 /* Disable automatic limitation of the input current */
646 {F_ILIM_AUTO_DISEN, 1},
647 /* Select current limitation when SDP charger attached*/
648 {F_SDP_500_SEL, 1},
649 /* Select current limitation when DCP charger attached */
650 {F_DCP_2500_SEL, 1},
651 {F_VSYSREG_SET, id->vsysreg_set},
652 /* Activate USB charging and DC/DC converter */
653 {F_USB_SUS, 0},
654 /* DCDC clock: 1200 kHz*/
655 {F_DCDC_CLK_SEL, 3},
656 /* Enable charging */
657 {F_CHG_EN, 1},
658 /* Disable Input current Limit setting voltage measurement */
659 {F_EXTIADPEN, 0},
660 /* Disable input current limiting */
661 {F_VSYS_PRIORITY, 1},
662 {F_IBUS_LIM_SET, id->ibus_lim_set},
663 {F_ICC_LIM_SET, id->icc_lim_set},
664 /* Charge Termination Current Setting to 0*/
665 {F_ITERM_SET, id->iterm_set},
666 /* Trickle-charge Current Setting */
667 {F_ITRICH_SET, id->itrich_set},
668 /* Pre-charge Current setting */
669 {F_IPRECH_SET, id->iprech_set},
670 /* Fast Charge Current for constant current phase */
671 {F_ICHG_SET, id->ichg_set},
672 /* Fast Charge Voltage Regulation Setting */
673 {F_VFASTCHG_REG_SET1, id->vfastchg_reg_set1},
674 /* Set Pre-charge Voltage Threshold for trickle charging. */
675 {F_VPRECHG_TH_SET, id->vprechg_th_set},
676 {F_VRECHG_SET, id->vrechg_set},
677 {F_VBATOVP_SET, id->vbatovp_set},
678 /* Reverse buck boost voltage Setting */
679 {F_VRBOOST_SET, 0},
680 /* Disable fast-charging watchdog */
681 {F_WDT_FST, 0},
682 /* Disable pre-charging watchdog */
683 {F_WDT_PRE, 0},
684 /* Power save off */
685 {F_POWER_SAVE_MODE, 0},
686 {F_INT1_SET, INT1_ALL},
687 {F_INT2_SET, INT2_ALL},
688 {F_INT3_SET, INT3_ALL},
689 {F_INT4_SET, INT4_ALL},
690 {F_INT5_SET, INT5_ALL},
691 {F_INT6_SET, INT6_ALL},
692 {F_INT7_SET, INT7_ALL},
693 };
694
695 /*
696 * Currently we initialize charger to a known state at startup.
697 * If we want to allow for example the boot code to initialize
698 * charger we should get rid of this.
699 */
700 ret = __bd9995x_chip_reset(bd);
701 if (ret < 0)
702 return ret;
703
704 /* Initialize currents/voltages and other parameters */
705 for (i = 0; i < ARRAY_SIZE(init_data); i++) {
706 ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
707 init_data[i].value);
708 if (ret) {
709 dev_err(bd->dev, "failed to initialize charger (%d)\n",
710 ret);
711 return ret;
712 }
713 }
714
715 ret = bd9995x_get_chip_state(bd, &state);
716 if (ret < 0)
717 return ret;
718
719 mutex_lock(&bd->lock);
720 bd->state = state;
721 mutex_unlock(&bd->lock);
722
723 return 0;
724 }
725
726 static enum power_supply_property bd9995x_power_supply_props[] = {
727 POWER_SUPPLY_PROP_MANUFACTURER,
728 POWER_SUPPLY_PROP_STATUS,
729 POWER_SUPPLY_PROP_ONLINE,
730 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
731 POWER_SUPPLY_PROP_CHARGE_AVG,
732 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
733 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
734 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
735 /* Battery props we access through charger */
736 POWER_SUPPLY_PROP_PRESENT,
737 POWER_SUPPLY_PROP_VOLTAGE_NOW,
738 POWER_SUPPLY_PROP_CURRENT_NOW,
739 POWER_SUPPLY_PROP_CHARGE_TYPE,
740 POWER_SUPPLY_PROP_HEALTH,
741 POWER_SUPPLY_PROP_TEMP,
742 POWER_SUPPLY_PROP_TECHNOLOGY,
743 POWER_SUPPLY_PROP_MODEL_NAME,
744 };
745
746 static const struct power_supply_desc bd9995x_power_supply_desc = {
747 .name = "bd9995x-charger",
748 .type = POWER_SUPPLY_TYPE_USB,
749 .properties = bd9995x_power_supply_props,
750 .num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
751 .get_property = bd9995x_power_supply_get_property,
752 };
753
754 /*
755 * Limit configurations for vbus-input-current and vcc-vacp-input-current
756 * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
757 * configured by writing a register so that each increment in register
758 * value equals to 32000 uA limit increment.
759 *
760 * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
761 * Describe the setting in linear_range table.
762 */
763 static const struct linear_range input_current_limit_ranges[] = {
764 LINEAR_RANGE(0, 0x0, 0x1ff, 32000),
765 };
766
767 /* Possible trickle, pre-charging and termination current values */
768 static const struct linear_range charging_current_ranges[] = {
769 LINEAR_RANGE(0, 0x0, 0x10, 64000),
770 LINEAR_RANGE(1024000, 0x11, 0x1f, 0),
771 };
772
773 /*
774 * Fast charging voltage regulation, starting re-charging limit
775 * and battery over voltage protection have same possible values
776 */
777 static const struct linear_range charge_voltage_regulation_ranges[] = {
778 LINEAR_RANGE(2560000, 0, 0xA0, 0),
779 LINEAR_RANGE(2560000, 0xA0, 0x4B0, 16000),
780 LINEAR_RANGE(19200000, 0x4B0, 0x7FF, 0),
781 };
782
783 /* Possible VSYS voltage regulation values */
784 static const struct linear_range vsys_voltage_regulation_ranges[] = {
785 LINEAR_RANGE(2560000, 0, 0x28, 0),
786 LINEAR_RANGE(2560000, 0x28, 0x12C, 64000),
787 LINEAR_RANGE(19200000, 0x12C, 0x1FF, 0),
788 };
789
790 /* Possible settings for switching from trickle to pre-charging limits */
791 static const struct linear_range trickle_to_pre_threshold_ranges[] = {
792 LINEAR_RANGE(2048000, 0, 0x20, 0),
793 LINEAR_RANGE(2048000, 0x20, 0x12C, 64000),
794 LINEAR_RANGE(19200000, 0x12C, 0x1FF, 0),
795 };
796
797 /* Possible current values for fast-charging constant current phase */
798 static const struct linear_range fast_charge_current_ranges[] = {
799 LINEAR_RANGE(0, 0, 0xFF, 64000),
800 };
801
802 struct battery_init {
803 const char *name;
804 int *info_data;
805 const struct linear_range *range;
806 int ranges;
807 u16 *data;
808 };
809
810 struct dt_init {
811 char *prop;
812 const struct linear_range *range;
813 int ranges;
814 u16 *data;
815 };
816
bd9995x_fw_probe(struct bd9995x_device * bd)817 static int bd9995x_fw_probe(struct bd9995x_device *bd)
818 {
819 int ret;
820 struct power_supply_battery_info *info;
821 u32 property;
822 int i;
823 int regval;
824 bool found;
825 struct bd9995x_init_data *init = &bd->init_data;
826 struct battery_init battery_inits[] = {
827 {
828 .name = "trickle-charging current",
829 .range = &charging_current_ranges[0],
830 .ranges = 2,
831 .data = &init->itrich_set,
832 }, {
833 .name = "pre-charging current",
834 .range = &charging_current_ranges[0],
835 .ranges = 2,
836 .data = &init->iprech_set,
837 }, {
838 .name = "pre-to-trickle charge voltage threshold",
839 .range = &trickle_to_pre_threshold_ranges[0],
840 .ranges = 2,
841 .data = &init->vprechg_th_set,
842 }, {
843 .name = "charging termination current",
844 .range = &charging_current_ranges[0],
845 .ranges = 2,
846 .data = &init->iterm_set,
847 }, {
848 .name = "charging re-start voltage",
849 .range = &charge_voltage_regulation_ranges[0],
850 .ranges = 2,
851 .data = &init->vrechg_set,
852 }, {
853 .name = "battery overvoltage limit",
854 .range = &charge_voltage_regulation_ranges[0],
855 .ranges = 2,
856 .data = &init->vbatovp_set,
857 }, {
858 .name = "fast-charging max current",
859 .range = &fast_charge_current_ranges[0],
860 .ranges = 1,
861 .data = &init->ichg_set,
862 }, {
863 .name = "fast-charging voltage",
864 .range = &charge_voltage_regulation_ranges[0],
865 .ranges = 2,
866 .data = &init->vfastchg_reg_set1,
867 },
868 };
869 struct dt_init props[] = {
870 {
871 .prop = "rohm,vsys-regulation-microvolt",
872 .range = &vsys_voltage_regulation_ranges[0],
873 .ranges = 2,
874 .data = &init->vsysreg_set,
875 }, {
876 .prop = "rohm,vbus-input-current-limit-microamp",
877 .range = &input_current_limit_ranges[0],
878 .ranges = 1,
879 .data = &init->ibus_lim_set,
880 }, {
881 .prop = "rohm,vcc-input-current-limit-microamp",
882 .range = &input_current_limit_ranges[0],
883 .ranges = 1,
884 .data = &init->icc_lim_set,
885 },
886 };
887
888 /*
889 * The power_supply_get_battery_info() does not support getting values
890 * from ACPI. Let's fix it if ACPI is required here.
891 */
892 ret = power_supply_get_battery_info(bd->charger, &info);
893 if (ret < 0)
894 return ret;
895
896 /* Put pointers to the generic battery info */
897 battery_inits[0].info_data = &info->tricklecharge_current_ua;
898 battery_inits[1].info_data = &info->precharge_current_ua;
899 battery_inits[2].info_data = &info->precharge_voltage_max_uv;
900 battery_inits[3].info_data = &info->charge_term_current_ua;
901 battery_inits[4].info_data = &info->charge_restart_voltage_uv;
902 battery_inits[5].info_data = &info->overvoltage_limit_uv;
903 battery_inits[6].info_data = &info->constant_charge_current_max_ua;
904 battery_inits[7].info_data = &info->constant_charge_voltage_max_uv;
905
906 for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
907 int val = *battery_inits[i].info_data;
908 const struct linear_range *range = battery_inits[i].range;
909 int ranges = battery_inits[i].ranges;
910
911 if (val == -EINVAL)
912 continue;
913
914 ret = linear_range_get_selector_low_array(range, ranges, val,
915 ®val, &found);
916 if (ret) {
917 dev_err(bd->dev, "Unsupported value for %s\n",
918 battery_inits[i].name);
919
920 power_supply_put_battery_info(bd->charger, info);
921 return -EINVAL;
922 }
923 if (!found) {
924 dev_warn(bd->dev,
925 "Unsupported value for %s - using smaller\n",
926 battery_inits[i].name);
927 }
928 *(battery_inits[i].data) = regval;
929 }
930
931 power_supply_put_battery_info(bd->charger, info);
932
933 for (i = 0; i < ARRAY_SIZE(props); i++) {
934 ret = device_property_read_u32(bd->dev, props[i].prop,
935 &property);
936 if (ret < 0) {
937 dev_err(bd->dev, "failed to read %s", props[i].prop);
938
939 return ret;
940 }
941
942 ret = linear_range_get_selector_low_array(props[i].range,
943 props[i].ranges,
944 property, ®val,
945 &found);
946 if (ret) {
947 dev_err(bd->dev, "Unsupported value for '%s'\n",
948 props[i].prop);
949
950 return -EINVAL;
951 }
952
953 if (!found) {
954 dev_warn(bd->dev,
955 "Unsupported value for '%s' - using smaller\n",
956 props[i].prop);
957 }
958
959 *(props[i].data) = regval;
960 }
961
962 return 0;
963 }
964
bd9995x_chip_reset(void * bd)965 static void bd9995x_chip_reset(void *bd)
966 {
967 __bd9995x_chip_reset(bd);
968 }
969
bd9995x_probe(struct i2c_client * client)970 static int bd9995x_probe(struct i2c_client *client)
971 {
972 struct device *dev = &client->dev;
973 struct bd9995x_device *bd;
974 struct power_supply_config psy_cfg = {};
975 int ret;
976 int i;
977
978 bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
979 if (!bd)
980 return -ENOMEM;
981
982 bd->client = client;
983 bd->dev = dev;
984 psy_cfg.drv_data = bd;
985 psy_cfg.of_node = dev->of_node;
986
987 mutex_init(&bd->lock);
988
989 bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
990 if (IS_ERR(bd->rmap)) {
991 dev_err(dev, "Failed to setup register access via i2c\n");
992 return PTR_ERR(bd->rmap);
993 }
994
995 for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
996 const struct reg_field *reg_fields = bd9995x_reg_fields;
997
998 bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
999 reg_fields[i]);
1000 if (IS_ERR(bd->rmap_fields[i])) {
1001 dev_err(dev, "cannot allocate regmap field\n");
1002 return PTR_ERR(bd->rmap_fields[i]);
1003 }
1004 }
1005
1006 i2c_set_clientdata(client, bd);
1007
1008 ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
1009 if (ret) {
1010 dev_err(dev, "Cannot read chip ID.\n");
1011 return ret;
1012 }
1013
1014 if (bd->chip_id != BD99954_ID) {
1015 dev_err(dev, "Chip with ID=0x%x, not supported!\n",
1016 bd->chip_id);
1017 return -ENODEV;
1018 }
1019
1020 ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
1021 if (ret) {
1022 dev_err(dev, "Cannot read revision.\n");
1023 return ret;
1024 }
1025
1026 dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
1027
1028 /*
1029 * We need to init the psy before we can call
1030 * power_supply_get_battery_info() for it
1031 */
1032 bd->charger = devm_power_supply_register(bd->dev,
1033 &bd9995x_power_supply_desc,
1034 &psy_cfg);
1035 if (IS_ERR(bd->charger)) {
1036 dev_err(dev, "Failed to register power supply\n");
1037 return PTR_ERR(bd->charger);
1038 }
1039
1040 ret = bd9995x_fw_probe(bd);
1041 if (ret < 0) {
1042 dev_err(dev, "Cannot read device properties.\n");
1043 return ret;
1044 }
1045
1046 ret = bd9995x_hw_init(bd);
1047 if (ret < 0) {
1048 dev_err(dev, "Cannot initialize the chip.\n");
1049 return ret;
1050 }
1051
1052 ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
1053 if (ret)
1054 return ret;
1055
1056 return devm_request_threaded_irq(dev, client->irq, NULL,
1057 bd9995x_irq_handler_thread,
1058 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1059 BD9995X_IRQ_PIN, bd);
1060 }
1061
1062 static const struct of_device_id bd9995x_of_match[] = {
1063 { .compatible = "rohm,bd99954", },
1064 { }
1065 };
1066 MODULE_DEVICE_TABLE(of, bd9995x_of_match);
1067
1068 static struct i2c_driver bd9995x_driver = {
1069 .driver = {
1070 .name = "bd9995x-charger",
1071 .of_match_table = bd9995x_of_match,
1072 },
1073 .probe = bd9995x_probe,
1074 };
1075 module_i2c_driver(bd9995x_driver);
1076
1077 MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
1078 MODULE_DESCRIPTION("ROHM BD99954 charger driver");
1079 MODULE_LICENSE("GPL");
1080