1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */ 25 static LIST_HEAD(lazy_opp_tables); 26 27 /* 28 * Returns opp descriptor node for a device node, caller must 29 * do of_node_put(). 30 */ 31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 32 int index) 33 { 34 /* "operating-points-v2" can be an array for power domain providers */ 35 return of_parse_phandle(np, "operating-points-v2", index); 36 } 37 38 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 40 { 41 return _opp_of_get_opp_desc_node(dev->of_node, 0); 42 } 43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 44 45 struct opp_table *_managed_opp(struct device *dev, int index) 46 { 47 struct opp_table *opp_table, *managed_table = NULL; 48 struct device_node *np; 49 50 np = _opp_of_get_opp_desc_node(dev->of_node, index); 51 if (!np) 52 return NULL; 53 54 list_for_each_entry(opp_table, &opp_tables, node) { 55 if (opp_table->np == np) { 56 /* 57 * Multiple devices can point to the same OPP table and 58 * so will have same node-pointer, np. 59 * 60 * But the OPPs will be considered as shared only if the 61 * OPP table contains a "opp-shared" property. 62 */ 63 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { 64 _get_opp_table_kref(opp_table); 65 managed_table = opp_table; 66 } 67 68 break; 69 } 70 } 71 72 of_node_put(np); 73 74 return managed_table; 75 } 76 77 /* The caller must call dev_pm_opp_put() after the OPP is used */ 78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 79 struct device_node *opp_np) 80 { 81 struct dev_pm_opp *opp; 82 83 mutex_lock(&opp_table->lock); 84 85 list_for_each_entry(opp, &opp_table->opp_list, node) { 86 if (opp->np == opp_np) { 87 dev_pm_opp_get(opp); 88 mutex_unlock(&opp_table->lock); 89 return opp; 90 } 91 } 92 93 mutex_unlock(&opp_table->lock); 94 95 return NULL; 96 } 97 98 static struct device_node *of_parse_required_opp(struct device_node *np, 99 int index) 100 { 101 return of_parse_phandle(np, "required-opps", index); 102 } 103 104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 106 { 107 struct opp_table *opp_table; 108 struct device_node *opp_table_np; 109 110 opp_table_np = of_get_parent(opp_np); 111 if (!opp_table_np) 112 goto err; 113 114 /* It is safe to put the node now as all we need now is its address */ 115 of_node_put(opp_table_np); 116 117 mutex_lock(&opp_table_lock); 118 list_for_each_entry(opp_table, &opp_tables, node) { 119 if (opp_table_np == opp_table->np) { 120 _get_opp_table_kref(opp_table); 121 mutex_unlock(&opp_table_lock); 122 return opp_table; 123 } 124 } 125 mutex_unlock(&opp_table_lock); 126 127 err: 128 return ERR_PTR(-ENODEV); 129 } 130 131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 132 static void _opp_table_free_required_tables(struct opp_table *opp_table) 133 { 134 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 135 int i; 136 137 if (!required_opp_tables) 138 return; 139 140 for (i = 0; i < opp_table->required_opp_count; i++) { 141 if (IS_ERR_OR_NULL(required_opp_tables[i])) 142 continue; 143 144 dev_pm_opp_put_opp_table(required_opp_tables[i]); 145 } 146 147 kfree(required_opp_tables); 148 149 opp_table->required_opp_count = 0; 150 opp_table->required_opp_tables = NULL; 151 152 mutex_lock(&opp_table_lock); 153 list_del(&opp_table->lazy); 154 mutex_unlock(&opp_table_lock); 155 } 156 157 /* 158 * Populate all devices and opp tables which are part of "required-opps" list. 159 * Checking only the first OPP node should be enough. 160 */ 161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 162 struct device *dev, 163 struct device_node *opp_np) 164 { 165 struct opp_table **required_opp_tables; 166 struct device_node *required_np, *np; 167 bool lazy = false; 168 int count, i; 169 170 /* Traversing the first OPP node is all we need */ 171 np = of_get_next_available_child(opp_np, NULL); 172 if (!np) { 173 dev_warn(dev, "Empty OPP table\n"); 174 175 return; 176 } 177 178 count = of_count_phandle_with_args(np, "required-opps", NULL); 179 if (count <= 0) 180 goto put_np; 181 182 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables), 183 GFP_KERNEL); 184 if (!required_opp_tables) 185 goto put_np; 186 187 opp_table->required_opp_tables = required_opp_tables; 188 opp_table->required_opp_count = count; 189 190 for (i = 0; i < count; i++) { 191 required_np = of_parse_required_opp(np, i); 192 if (!required_np) 193 goto free_required_tables; 194 195 required_opp_tables[i] = _find_table_of_opp_np(required_np); 196 of_node_put(required_np); 197 198 if (IS_ERR(required_opp_tables[i])) 199 lazy = true; 200 } 201 202 /* Let's do the linking later on */ 203 if (lazy) { 204 /* 205 * The OPP table is not held while allocating the table, take it 206 * now to avoid corruption to the lazy_opp_tables list. 207 */ 208 mutex_lock(&opp_table_lock); 209 list_add(&opp_table->lazy, &lazy_opp_tables); 210 mutex_unlock(&opp_table_lock); 211 } 212 else 213 _update_set_required_opps(opp_table); 214 215 goto put_np; 216 217 free_required_tables: 218 _opp_table_free_required_tables(opp_table); 219 put_np: 220 of_node_put(np); 221 } 222 223 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 224 int index) 225 { 226 struct device_node *np, *opp_np; 227 u32 val; 228 229 /* 230 * Only required for backward compatibility with v1 bindings, but isn't 231 * harmful for other cases. And so we do it unconditionally. 232 */ 233 np = of_node_get(dev->of_node); 234 if (!np) 235 return; 236 237 if (!of_property_read_u32(np, "clock-latency", &val)) 238 opp_table->clock_latency_ns_max = val; 239 of_property_read_u32(np, "voltage-tolerance", 240 &opp_table->voltage_tolerance_v1); 241 242 if (of_property_present(np, "#power-domain-cells")) 243 opp_table->is_genpd = true; 244 245 /* Get OPP table node */ 246 opp_np = _opp_of_get_opp_desc_node(np, index); 247 of_node_put(np); 248 249 if (!opp_np) 250 return; 251 252 if (of_property_read_bool(opp_np, "opp-shared")) 253 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 254 else 255 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 256 257 opp_table->np = opp_np; 258 259 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 260 } 261 262 void _of_clear_opp_table(struct opp_table *opp_table) 263 { 264 _opp_table_free_required_tables(opp_table); 265 of_node_put(opp_table->np); 266 } 267 268 /* 269 * Release all resources previously acquired with a call to 270 * _of_opp_alloc_required_opps(). 271 */ 272 static void _of_opp_free_required_opps(struct opp_table *opp_table, 273 struct dev_pm_opp *opp) 274 { 275 struct dev_pm_opp **required_opps = opp->required_opps; 276 int i; 277 278 if (!required_opps) 279 return; 280 281 for (i = 0; i < opp_table->required_opp_count; i++) { 282 if (!required_opps[i]) 283 continue; 284 285 /* Put the reference back */ 286 dev_pm_opp_put(required_opps[i]); 287 } 288 289 opp->required_opps = NULL; 290 kfree(required_opps); 291 } 292 293 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp) 294 { 295 _of_opp_free_required_opps(opp_table, opp); 296 of_node_put(opp->np); 297 } 298 299 /* Populate all required OPPs which are part of "required-opps" list */ 300 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 301 struct dev_pm_opp *opp) 302 { 303 struct dev_pm_opp **required_opps; 304 struct opp_table *required_table; 305 struct device_node *np; 306 int i, ret, count = opp_table->required_opp_count; 307 308 if (!count) 309 return 0; 310 311 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL); 312 if (!required_opps) 313 return -ENOMEM; 314 315 opp->required_opps = required_opps; 316 317 for (i = 0; i < count; i++) { 318 required_table = opp_table->required_opp_tables[i]; 319 320 /* Required table not added yet, we will link later */ 321 if (IS_ERR_OR_NULL(required_table)) 322 continue; 323 324 np = of_parse_required_opp(opp->np, i); 325 if (unlikely(!np)) { 326 ret = -ENODEV; 327 goto free_required_opps; 328 } 329 330 required_opps[i] = _find_opp_of_np(required_table, np); 331 of_node_put(np); 332 333 if (!required_opps[i]) { 334 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 335 __func__, opp->np, i); 336 ret = -ENODEV; 337 goto free_required_opps; 338 } 339 } 340 341 return 0; 342 343 free_required_opps: 344 _of_opp_free_required_opps(opp_table, opp); 345 346 return ret; 347 } 348 349 /* Link required OPPs for an individual OPP */ 350 static int lazy_link_required_opps(struct opp_table *opp_table, 351 struct opp_table *new_table, int index) 352 { 353 struct device_node *required_np; 354 struct dev_pm_opp *opp; 355 356 list_for_each_entry(opp, &opp_table->opp_list, node) { 357 required_np = of_parse_required_opp(opp->np, index); 358 if (unlikely(!required_np)) 359 return -ENODEV; 360 361 opp->required_opps[index] = _find_opp_of_np(new_table, required_np); 362 of_node_put(required_np); 363 364 if (!opp->required_opps[index]) { 365 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 366 __func__, opp->np, index); 367 return -ENODEV; 368 } 369 } 370 371 return 0; 372 } 373 374 /* Link required OPPs for all OPPs of the newly added OPP table */ 375 static void lazy_link_required_opp_table(struct opp_table *new_table) 376 { 377 struct opp_table *opp_table, *temp, **required_opp_tables; 378 struct device_node *required_np, *opp_np, *required_table_np; 379 struct dev_pm_opp *opp; 380 int i, ret; 381 382 mutex_lock(&opp_table_lock); 383 384 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 385 bool lazy = false; 386 387 /* opp_np can't be invalid here */ 388 opp_np = of_get_next_available_child(opp_table->np, NULL); 389 390 for (i = 0; i < opp_table->required_opp_count; i++) { 391 required_opp_tables = opp_table->required_opp_tables; 392 393 /* Required opp-table is already parsed */ 394 if (!IS_ERR(required_opp_tables[i])) 395 continue; 396 397 /* required_np can't be invalid here */ 398 required_np = of_parse_required_opp(opp_np, i); 399 required_table_np = of_get_parent(required_np); 400 401 of_node_put(required_table_np); 402 of_node_put(required_np); 403 404 /* 405 * Newly added table isn't the required opp-table for 406 * opp_table. 407 */ 408 if (required_table_np != new_table->np) { 409 lazy = true; 410 continue; 411 } 412 413 required_opp_tables[i] = new_table; 414 _get_opp_table_kref(new_table); 415 416 /* Link OPPs now */ 417 ret = lazy_link_required_opps(opp_table, new_table, i); 418 if (ret) { 419 /* The OPPs will be marked unusable */ 420 lazy = false; 421 break; 422 } 423 } 424 425 of_node_put(opp_np); 426 427 /* All required opp-tables found, remove from lazy list */ 428 if (!lazy) { 429 _update_set_required_opps(opp_table); 430 list_del_init(&opp_table->lazy); 431 432 list_for_each_entry(opp, &opp_table->opp_list, node) 433 _required_opps_available(opp, opp_table->required_opp_count); 434 } 435 } 436 437 mutex_unlock(&opp_table_lock); 438 } 439 440 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 441 { 442 struct device_node *np, *opp_np; 443 struct property *prop; 444 445 if (!opp_table) { 446 np = of_node_get(dev->of_node); 447 if (!np) 448 return -ENODEV; 449 450 opp_np = _opp_of_get_opp_desc_node(np, 0); 451 of_node_put(np); 452 } else { 453 opp_np = of_node_get(opp_table->np); 454 } 455 456 /* Lets not fail in case we are parsing opp-v1 bindings */ 457 if (!opp_np) 458 return 0; 459 460 /* Checking only first OPP is sufficient */ 461 np = of_get_next_available_child(opp_np, NULL); 462 of_node_put(opp_np); 463 if (!np) { 464 dev_err(dev, "OPP table empty\n"); 465 return -EINVAL; 466 } 467 468 prop = of_find_property(np, "opp-peak-kBps", NULL); 469 of_node_put(np); 470 471 if (!prop || !prop->length) 472 return 0; 473 474 return 1; 475 } 476 477 int dev_pm_opp_of_find_icc_paths(struct device *dev, 478 struct opp_table *opp_table) 479 { 480 struct device_node *np; 481 int ret, i, count, num_paths; 482 struct icc_path **paths; 483 484 ret = _bandwidth_supported(dev, opp_table); 485 if (ret == -EINVAL) 486 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 487 else if (ret <= 0) 488 return ret; 489 490 ret = 0; 491 492 np = of_node_get(dev->of_node); 493 if (!np) 494 return 0; 495 496 count = of_count_phandle_with_args(np, "interconnects", 497 "#interconnect-cells"); 498 of_node_put(np); 499 if (count < 0) 500 return 0; 501 502 /* two phandles when #interconnect-cells = <1> */ 503 if (count % 2) { 504 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 505 return -EINVAL; 506 } 507 508 num_paths = count / 2; 509 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 510 if (!paths) 511 return -ENOMEM; 512 513 for (i = 0; i < num_paths; i++) { 514 paths[i] = of_icc_get_by_index(dev, i); 515 if (IS_ERR(paths[i])) { 516 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i); 517 goto err; 518 } 519 } 520 521 if (opp_table) { 522 opp_table->paths = paths; 523 opp_table->path_count = num_paths; 524 return 0; 525 } 526 527 err: 528 while (i--) 529 icc_put(paths[i]); 530 531 kfree(paths); 532 533 return ret; 534 } 535 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 536 537 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 538 struct device_node *np) 539 { 540 unsigned int levels = opp_table->supported_hw_count; 541 int count, versions, ret, i, j; 542 u32 val; 543 544 if (!opp_table->supported_hw) { 545 /* 546 * In the case that no supported_hw has been set by the 547 * platform but there is an opp-supported-hw value set for 548 * an OPP then the OPP should not be enabled as there is 549 * no way to see if the hardware supports it. 550 */ 551 if (of_property_present(np, "opp-supported-hw")) 552 return false; 553 else 554 return true; 555 } 556 557 count = of_property_count_u32_elems(np, "opp-supported-hw"); 558 if (count <= 0 || count % levels) { 559 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 560 __func__, count); 561 return false; 562 } 563 564 versions = count / levels; 565 566 /* All levels in at least one of the versions should match */ 567 for (i = 0; i < versions; i++) { 568 bool supported = true; 569 570 for (j = 0; j < levels; j++) { 571 ret = of_property_read_u32_index(np, "opp-supported-hw", 572 i * levels + j, &val); 573 if (ret) { 574 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 575 __func__, i * levels + j, ret); 576 return false; 577 } 578 579 /* Check if the level is supported */ 580 if (!(val & opp_table->supported_hw[j])) { 581 supported = false; 582 break; 583 } 584 } 585 586 if (supported) 587 return true; 588 } 589 590 return false; 591 } 592 593 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev, 594 struct opp_table *opp_table, 595 const char *prop_type, bool *triplet) 596 { 597 struct property *prop = NULL; 598 char name[NAME_MAX]; 599 int count, ret; 600 u32 *out; 601 602 /* Search for "opp-<prop_type>-<name>" */ 603 if (opp_table->prop_name) { 604 snprintf(name, sizeof(name), "opp-%s-%s", prop_type, 605 opp_table->prop_name); 606 prop = of_find_property(opp->np, name, NULL); 607 } 608 609 if (!prop) { 610 /* Search for "opp-<prop_type>" */ 611 snprintf(name, sizeof(name), "opp-%s", prop_type); 612 prop = of_find_property(opp->np, name, NULL); 613 if (!prop) 614 return NULL; 615 } 616 617 count = of_property_count_u32_elems(opp->np, name); 618 if (count < 0) { 619 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name, 620 count); 621 return ERR_PTR(count); 622 } 623 624 /* 625 * Initialize regulator_count, if regulator information isn't provided 626 * by the platform. Now that one of the properties is available, fix the 627 * regulator_count to 1. 628 */ 629 if (unlikely(opp_table->regulator_count == -1)) 630 opp_table->regulator_count = 1; 631 632 if (count != opp_table->regulator_count && 633 (!triplet || count != opp_table->regulator_count * 3)) { 634 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n", 635 __func__, prop_type, count, opp_table->regulator_count); 636 return ERR_PTR(-EINVAL); 637 } 638 639 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL); 640 if (!out) 641 return ERR_PTR(-EINVAL); 642 643 ret = of_property_read_u32_array(opp->np, name, out, count); 644 if (ret) { 645 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 646 kfree(out); 647 return ERR_PTR(-EINVAL); 648 } 649 650 if (triplet) 651 *triplet = count != opp_table->regulator_count; 652 653 return out; 654 } 655 656 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev, 657 struct opp_table *opp_table, bool *triplet) 658 { 659 u32 *microvolt; 660 661 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet); 662 if (IS_ERR(microvolt)) 663 return microvolt; 664 665 if (!microvolt) { 666 /* 667 * Missing property isn't a problem, but an invalid 668 * entry is. This property isn't optional if regulator 669 * information is provided. Check only for the first OPP, as 670 * regulator_count may get initialized after that to a valid 671 * value. 672 */ 673 if (list_empty(&opp_table->opp_list) && 674 opp_table->regulator_count > 0) { 675 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 676 __func__); 677 return ERR_PTR(-EINVAL); 678 } 679 } 680 681 return microvolt; 682 } 683 684 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 685 struct opp_table *opp_table) 686 { 687 u32 *microvolt, *microamp, *microwatt; 688 int ret = 0, i, j; 689 bool triplet; 690 691 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet); 692 if (IS_ERR(microvolt)) 693 return PTR_ERR(microvolt); 694 695 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL); 696 if (IS_ERR(microamp)) { 697 ret = PTR_ERR(microamp); 698 goto free_microvolt; 699 } 700 701 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL); 702 if (IS_ERR(microwatt)) { 703 ret = PTR_ERR(microwatt); 704 goto free_microamp; 705 } 706 707 /* 708 * Initialize regulator_count if it is uninitialized and no properties 709 * are found. 710 */ 711 if (unlikely(opp_table->regulator_count == -1)) { 712 opp_table->regulator_count = 0; 713 return 0; 714 } 715 716 for (i = 0, j = 0; i < opp_table->regulator_count; i++) { 717 if (microvolt) { 718 opp->supplies[i].u_volt = microvolt[j++]; 719 720 if (triplet) { 721 opp->supplies[i].u_volt_min = microvolt[j++]; 722 opp->supplies[i].u_volt_max = microvolt[j++]; 723 } else { 724 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 725 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 726 } 727 } 728 729 if (microamp) 730 opp->supplies[i].u_amp = microamp[i]; 731 732 if (microwatt) 733 opp->supplies[i].u_watt = microwatt[i]; 734 } 735 736 kfree(microwatt); 737 free_microamp: 738 kfree(microamp); 739 free_microvolt: 740 kfree(microvolt); 741 742 return ret; 743 } 744 745 /** 746 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 747 * entries 748 * @dev: device pointer used to lookup OPP table. 749 * 750 * Free OPPs created using static entries present in DT. 751 */ 752 void dev_pm_opp_of_remove_table(struct device *dev) 753 { 754 dev_pm_opp_remove_table(dev); 755 } 756 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 757 758 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 759 struct device_node *np) 760 { 761 struct property *prop; 762 int i, count, ret; 763 u64 *rates; 764 765 prop = of_find_property(np, "opp-hz", NULL); 766 if (!prop) 767 return -ENODEV; 768 769 count = prop->length / sizeof(u64); 770 if (opp_table->clk_count != count) { 771 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n", 772 __func__, count, opp_table->clk_count); 773 return -EINVAL; 774 } 775 776 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL); 777 if (!rates) 778 return -ENOMEM; 779 780 ret = of_property_read_u64_array(np, "opp-hz", rates, count); 781 if (ret) { 782 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret); 783 } else { 784 /* 785 * Rate is defined as an unsigned long in clk API, and so 786 * casting explicitly to its type. Must be fixed once rate is 64 787 * bit guaranteed in clk API. 788 */ 789 for (i = 0; i < count; i++) { 790 new_opp->rates[i] = (unsigned long)rates[i]; 791 792 /* This will happen for frequencies > 4.29 GHz */ 793 WARN_ON(new_opp->rates[i] != rates[i]); 794 } 795 } 796 797 kfree(rates); 798 799 return ret; 800 } 801 802 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 803 struct device_node *np, bool peak) 804 { 805 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 806 struct property *prop; 807 int i, count, ret; 808 u32 *bw; 809 810 prop = of_find_property(np, name, NULL); 811 if (!prop) 812 return -ENODEV; 813 814 count = prop->length / sizeof(u32); 815 if (opp_table->path_count != count) { 816 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 817 __func__, name, count, opp_table->path_count); 818 return -EINVAL; 819 } 820 821 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 822 if (!bw) 823 return -ENOMEM; 824 825 ret = of_property_read_u32_array(np, name, bw, count); 826 if (ret) { 827 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 828 goto out; 829 } 830 831 for (i = 0; i < count; i++) { 832 if (peak) 833 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 834 else 835 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 836 } 837 838 out: 839 kfree(bw); 840 return ret; 841 } 842 843 static int _read_opp_key(struct dev_pm_opp *new_opp, 844 struct opp_table *opp_table, struct device_node *np) 845 { 846 bool found = false; 847 int ret; 848 849 ret = _read_rate(new_opp, opp_table, np); 850 if (!ret) 851 found = true; 852 else if (ret != -ENODEV) 853 return ret; 854 855 /* 856 * Bandwidth consists of peak and average (optional) values: 857 * opp-peak-kBps = <path1_value path2_value>; 858 * opp-avg-kBps = <path1_value path2_value>; 859 */ 860 ret = _read_bw(new_opp, opp_table, np, true); 861 if (!ret) { 862 found = true; 863 ret = _read_bw(new_opp, opp_table, np, false); 864 } 865 866 /* The properties were found but we failed to parse them */ 867 if (ret && ret != -ENODEV) 868 return ret; 869 870 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 871 found = true; 872 873 if (found) 874 return 0; 875 876 return ret; 877 } 878 879 /** 880 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 881 * @opp_table: OPP table 882 * @dev: device for which we do this operation 883 * @np: device node 884 * 885 * This function adds an opp definition to the opp table and returns status. The 886 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 887 * removed by dev_pm_opp_remove. 888 * 889 * Return: 890 * Valid OPP pointer: 891 * On success 892 * NULL: 893 * Duplicate OPPs (both freq and volt are same) and opp->available 894 * OR if the OPP is not supported by hardware. 895 * ERR_PTR(-EEXIST): 896 * Freq are same and volt are different OR 897 * Duplicate OPPs (both freq and volt are same) and !opp->available 898 * ERR_PTR(-ENOMEM): 899 * Memory allocation failure 900 * ERR_PTR(-EINVAL): 901 * Failed parsing the OPP node 902 */ 903 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 904 struct device *dev, struct device_node *np) 905 { 906 struct dev_pm_opp *new_opp; 907 u32 val; 908 int ret; 909 910 new_opp = _opp_allocate(opp_table); 911 if (!new_opp) 912 return ERR_PTR(-ENOMEM); 913 914 ret = _read_opp_key(new_opp, opp_table, np); 915 if (ret < 0) { 916 dev_err(dev, "%s: opp key field not found\n", __func__); 917 goto free_opp; 918 } 919 920 /* Check if the OPP supports hardware's hierarchy of versions or not */ 921 if (!_opp_is_supported(dev, opp_table, np)) { 922 dev_dbg(dev, "OPP not supported by hardware: %s\n", 923 of_node_full_name(np)); 924 goto free_opp; 925 } 926 927 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 928 929 new_opp->np = of_node_get(np); 930 new_opp->dynamic = false; 931 new_opp->available = true; 932 933 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 934 if (ret) 935 goto free_opp; 936 937 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 938 new_opp->clock_latency_ns = val; 939 940 ret = opp_parse_supplies(new_opp, dev, opp_table); 941 if (ret) 942 goto free_required_opps; 943 944 ret = _opp_add(dev, new_opp, opp_table); 945 if (ret) { 946 /* Don't return error for duplicate OPPs */ 947 if (ret == -EBUSY) 948 ret = 0; 949 goto free_required_opps; 950 } 951 952 /* OPP to select on device suspend */ 953 if (of_property_read_bool(np, "opp-suspend")) { 954 if (opp_table->suspend_opp) { 955 /* Pick the OPP with higher rate/bw/level as suspend OPP */ 956 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) { 957 opp_table->suspend_opp->suspend = false; 958 new_opp->suspend = true; 959 opp_table->suspend_opp = new_opp; 960 } 961 } else { 962 new_opp->suspend = true; 963 opp_table->suspend_opp = new_opp; 964 } 965 } 966 967 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 968 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 969 970 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 971 __func__, new_opp->turbo, new_opp->rates[0], 972 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 973 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 974 new_opp->level); 975 976 /* 977 * Notify the changes in the availability of the operable 978 * frequency/voltage list. 979 */ 980 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 981 return new_opp; 982 983 free_required_opps: 984 _of_opp_free_required_opps(opp_table, new_opp); 985 free_opp: 986 _opp_free(new_opp); 987 988 return ret ? ERR_PTR(ret) : NULL; 989 } 990 991 /* Initializes OPP tables based on new bindings */ 992 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 993 { 994 struct device_node *np; 995 int ret, count = 0; 996 struct dev_pm_opp *opp; 997 998 /* OPP table is already initialized for the device */ 999 mutex_lock(&opp_table->lock); 1000 if (opp_table->parsed_static_opps) { 1001 opp_table->parsed_static_opps++; 1002 mutex_unlock(&opp_table->lock); 1003 return 0; 1004 } 1005 1006 opp_table->parsed_static_opps = 1; 1007 mutex_unlock(&opp_table->lock); 1008 1009 /* We have opp-table node now, iterate over it and add OPPs */ 1010 for_each_available_child_of_node(opp_table->np, np) { 1011 opp = _opp_add_static_v2(opp_table, dev, np); 1012 if (IS_ERR(opp)) { 1013 ret = PTR_ERR(opp); 1014 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 1015 ret); 1016 of_node_put(np); 1017 goto remove_static_opp; 1018 } else if (opp) { 1019 count++; 1020 } 1021 } 1022 1023 /* There should be one or more OPPs defined */ 1024 if (!count) { 1025 dev_err(dev, "%s: no supported OPPs", __func__); 1026 ret = -ENOENT; 1027 goto remove_static_opp; 1028 } 1029 1030 lazy_link_required_opp_table(opp_table); 1031 1032 return 0; 1033 1034 remove_static_opp: 1035 _opp_remove_all_static(opp_table); 1036 1037 return ret; 1038 } 1039 1040 /* Initializes OPP tables based on old-deprecated bindings */ 1041 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 1042 { 1043 const struct property *prop; 1044 const __be32 *val; 1045 int nr, ret = 0; 1046 1047 mutex_lock(&opp_table->lock); 1048 if (opp_table->parsed_static_opps) { 1049 opp_table->parsed_static_opps++; 1050 mutex_unlock(&opp_table->lock); 1051 return 0; 1052 } 1053 1054 opp_table->parsed_static_opps = 1; 1055 mutex_unlock(&opp_table->lock); 1056 1057 prop = of_find_property(dev->of_node, "operating-points", NULL); 1058 if (!prop) { 1059 ret = -ENODEV; 1060 goto remove_static_opp; 1061 } 1062 if (!prop->value) { 1063 ret = -ENODATA; 1064 goto remove_static_opp; 1065 } 1066 1067 /* 1068 * Each OPP is a set of tuples consisting of frequency and 1069 * voltage like <freq-kHz vol-uV>. 1070 */ 1071 nr = prop->length / sizeof(u32); 1072 if (nr % 2) { 1073 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1074 ret = -EINVAL; 1075 goto remove_static_opp; 1076 } 1077 1078 val = prop->value; 1079 while (nr) { 1080 unsigned long freq = be32_to_cpup(val++) * 1000; 1081 unsigned long volt = be32_to_cpup(val++); 1082 1083 ret = _opp_add_v1(opp_table, dev, freq, volt, false); 1084 if (ret) { 1085 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1086 __func__, freq, ret); 1087 goto remove_static_opp; 1088 } 1089 nr -= 2; 1090 } 1091 1092 return 0; 1093 1094 remove_static_opp: 1095 _opp_remove_all_static(opp_table); 1096 1097 return ret; 1098 } 1099 1100 static int _of_add_table_indexed(struct device *dev, int index) 1101 { 1102 struct opp_table *opp_table; 1103 int ret, count; 1104 1105 if (index) { 1106 /* 1107 * If only one phandle is present, then the same OPP table 1108 * applies for all index requests. 1109 */ 1110 count = of_count_phandle_with_args(dev->of_node, 1111 "operating-points-v2", NULL); 1112 if (count == 1) 1113 index = 0; 1114 } 1115 1116 opp_table = _add_opp_table_indexed(dev, index, true); 1117 if (IS_ERR(opp_table)) 1118 return PTR_ERR(opp_table); 1119 1120 /* 1121 * OPPs have two version of bindings now. Also try the old (v1) 1122 * bindings for backward compatibility with older dtbs. 1123 */ 1124 if (opp_table->np) 1125 ret = _of_add_opp_table_v2(dev, opp_table); 1126 else 1127 ret = _of_add_opp_table_v1(dev, opp_table); 1128 1129 if (ret) 1130 dev_pm_opp_put_opp_table(opp_table); 1131 1132 return ret; 1133 } 1134 1135 static void devm_pm_opp_of_table_release(void *data) 1136 { 1137 dev_pm_opp_of_remove_table(data); 1138 } 1139 1140 static int _devm_of_add_table_indexed(struct device *dev, int index) 1141 { 1142 int ret; 1143 1144 ret = _of_add_table_indexed(dev, index); 1145 if (ret) 1146 return ret; 1147 1148 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); 1149 } 1150 1151 /** 1152 * devm_pm_opp_of_add_table() - Initialize opp table from device tree 1153 * @dev: device pointer used to lookup OPP table. 1154 * 1155 * Register the initial OPP table with the OPP library for given device. 1156 * 1157 * The opp_table structure will be freed after the device is destroyed. 1158 * 1159 * Return: 1160 * 0 On success OR 1161 * Duplicate OPPs (both freq and volt are same) and opp->available 1162 * -EEXIST Freq are same and volt are different OR 1163 * Duplicate OPPs (both freq and volt are same) and !opp->available 1164 * -ENOMEM Memory allocation failure 1165 * -ENODEV when 'operating-points' property is not found or is invalid data 1166 * in device node. 1167 * -ENODATA when empty 'operating-points' property is found 1168 * -EINVAL when invalid entries are found in opp-v2 table 1169 */ 1170 int devm_pm_opp_of_add_table(struct device *dev) 1171 { 1172 return _devm_of_add_table_indexed(dev, 0); 1173 } 1174 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); 1175 1176 /** 1177 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1178 * @dev: device pointer used to lookup OPP table. 1179 * 1180 * Register the initial OPP table with the OPP library for given device. 1181 * 1182 * Return: 1183 * 0 On success OR 1184 * Duplicate OPPs (both freq and volt are same) and opp->available 1185 * -EEXIST Freq are same and volt are different OR 1186 * Duplicate OPPs (both freq and volt are same) and !opp->available 1187 * -ENOMEM Memory allocation failure 1188 * -ENODEV when 'operating-points' property is not found or is invalid data 1189 * in device node. 1190 * -ENODATA when empty 'operating-points' property is found 1191 * -EINVAL when invalid entries are found in opp-v2 table 1192 */ 1193 int dev_pm_opp_of_add_table(struct device *dev) 1194 { 1195 return _of_add_table_indexed(dev, 0); 1196 } 1197 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1198 1199 /** 1200 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1201 * @dev: device pointer used to lookup OPP table. 1202 * @index: Index number. 1203 * 1204 * Register the initial OPP table with the OPP library for given device only 1205 * using the "operating-points-v2" property. 1206 * 1207 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1208 */ 1209 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1210 { 1211 return _of_add_table_indexed(dev, index); 1212 } 1213 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1214 1215 /** 1216 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1217 * @dev: device pointer used to lookup OPP table. 1218 * @index: Index number. 1219 * 1220 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). 1221 */ 1222 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) 1223 { 1224 return _devm_of_add_table_indexed(dev, index); 1225 } 1226 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); 1227 1228 /* CPU device specific helpers */ 1229 1230 /** 1231 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1232 * @cpumask: cpumask for which OPP table needs to be removed 1233 * 1234 * This removes the OPP tables for CPUs present in the @cpumask. 1235 * This should be used only to remove static entries created from DT. 1236 */ 1237 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1238 { 1239 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1240 } 1241 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1242 1243 /** 1244 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1245 * @cpumask: cpumask for which OPP table needs to be added. 1246 * 1247 * This adds the OPP tables for CPUs present in the @cpumask. 1248 */ 1249 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1250 { 1251 struct device *cpu_dev; 1252 int cpu, ret; 1253 1254 if (WARN_ON(cpumask_empty(cpumask))) 1255 return -ENODEV; 1256 1257 for_each_cpu(cpu, cpumask) { 1258 cpu_dev = get_cpu_device(cpu); 1259 if (!cpu_dev) { 1260 pr_err("%s: failed to get cpu%d device\n", __func__, 1261 cpu); 1262 ret = -ENODEV; 1263 goto remove_table; 1264 } 1265 1266 ret = dev_pm_opp_of_add_table(cpu_dev); 1267 if (ret) { 1268 /* 1269 * OPP may get registered dynamically, don't print error 1270 * message here. 1271 */ 1272 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1273 __func__, cpu, ret); 1274 1275 goto remove_table; 1276 } 1277 } 1278 1279 return 0; 1280 1281 remove_table: 1282 /* Free all other OPPs */ 1283 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1284 1285 return ret; 1286 } 1287 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1288 1289 /* 1290 * Works only for OPP v2 bindings. 1291 * 1292 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1293 */ 1294 /** 1295 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1296 * @cpu_dev using operating-points-v2 1297 * bindings. 1298 * 1299 * @cpu_dev: CPU device for which we do this operation 1300 * @cpumask: cpumask to update with information of sharing CPUs 1301 * 1302 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1303 * 1304 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1305 */ 1306 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1307 struct cpumask *cpumask) 1308 { 1309 struct device_node *np, *tmp_np, *cpu_np; 1310 int cpu, ret = 0; 1311 1312 /* Get OPP descriptor node */ 1313 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1314 if (!np) { 1315 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1316 return -ENOENT; 1317 } 1318 1319 cpumask_set_cpu(cpu_dev->id, cpumask); 1320 1321 /* OPPs are shared ? */ 1322 if (!of_property_read_bool(np, "opp-shared")) 1323 goto put_cpu_node; 1324 1325 for_each_possible_cpu(cpu) { 1326 if (cpu == cpu_dev->id) 1327 continue; 1328 1329 cpu_np = of_cpu_device_node_get(cpu); 1330 if (!cpu_np) { 1331 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1332 __func__, cpu); 1333 ret = -ENOENT; 1334 goto put_cpu_node; 1335 } 1336 1337 /* Get OPP descriptor node */ 1338 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); 1339 of_node_put(cpu_np); 1340 if (!tmp_np) { 1341 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1342 ret = -ENOENT; 1343 goto put_cpu_node; 1344 } 1345 1346 /* CPUs are sharing opp node */ 1347 if (np == tmp_np) 1348 cpumask_set_cpu(cpu, cpumask); 1349 1350 of_node_put(tmp_np); 1351 } 1352 1353 put_cpu_node: 1354 of_node_put(np); 1355 return ret; 1356 } 1357 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1358 1359 /** 1360 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1361 * @np: Node that contains the "required-opps" property. 1362 * @index: Index of the phandle to parse. 1363 * 1364 * Returns the performance state of the OPP pointed out by the "required-opps" 1365 * property at @index in @np. 1366 * 1367 * Return: Zero or positive performance state on success, otherwise negative 1368 * value on errors. 1369 */ 1370 int of_get_required_opp_performance_state(struct device_node *np, int index) 1371 { 1372 struct dev_pm_opp *opp; 1373 struct device_node *required_np; 1374 struct opp_table *opp_table; 1375 int pstate = -EINVAL; 1376 1377 required_np = of_parse_required_opp(np, index); 1378 if (!required_np) 1379 return -ENODEV; 1380 1381 opp_table = _find_table_of_opp_np(required_np); 1382 if (IS_ERR(opp_table)) { 1383 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1384 __func__, np, PTR_ERR(opp_table)); 1385 goto put_required_np; 1386 } 1387 1388 /* The OPP tables must belong to a genpd */ 1389 if (unlikely(!opp_table->is_genpd)) { 1390 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 1391 goto put_required_np; 1392 } 1393 1394 opp = _find_opp_of_np(opp_table, required_np); 1395 if (opp) { 1396 pstate = opp->level; 1397 dev_pm_opp_put(opp); 1398 } 1399 1400 dev_pm_opp_put_opp_table(opp_table); 1401 1402 put_required_np: 1403 of_node_put(required_np); 1404 1405 return pstate; 1406 } 1407 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1408 1409 /** 1410 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1411 * @opp: opp for which DT node has to be returned for 1412 * 1413 * Return: DT node corresponding to the opp, else 0 on success. 1414 * 1415 * The caller needs to put the node with of_node_put() after using it. 1416 */ 1417 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1418 { 1419 if (IS_ERR_OR_NULL(opp)) { 1420 pr_err("%s: Invalid parameters\n", __func__); 1421 return NULL; 1422 } 1423 1424 return of_node_get(opp->np); 1425 } 1426 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1427 1428 /* 1429 * Callback function provided to the Energy Model framework upon registration. 1430 * It provides the power used by @dev at @kHz if it is the frequency of an 1431 * existing OPP, or at the frequency of the first OPP above @kHz otherwise 1432 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1433 * frequency and @uW to the associated power. 1434 * 1435 * Returns 0 on success or a proper -EINVAL value in case of error. 1436 */ 1437 static int __maybe_unused 1438 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz) 1439 { 1440 struct dev_pm_opp *opp; 1441 unsigned long opp_freq, opp_power; 1442 1443 /* Find the right frequency and related OPP */ 1444 opp_freq = *kHz * 1000; 1445 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq); 1446 if (IS_ERR(opp)) 1447 return -EINVAL; 1448 1449 opp_power = dev_pm_opp_get_power(opp); 1450 dev_pm_opp_put(opp); 1451 if (!opp_power) 1452 return -EINVAL; 1453 1454 *kHz = opp_freq / 1000; 1455 *uW = opp_power; 1456 1457 return 0; 1458 } 1459 1460 /* 1461 * Callback function provided to the Energy Model framework upon registration. 1462 * This computes the power estimated by @dev at @kHz if it is the frequency 1463 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1464 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1465 * frequency and @uW to the associated power. The power is estimated as 1466 * P = C * V^2 * f with C being the device's capacitance and V and f 1467 * respectively the voltage and frequency of the OPP. 1468 * 1469 * Returns -EINVAL if the power calculation failed because of missing 1470 * parameters, 0 otherwise. 1471 */ 1472 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW, 1473 unsigned long *kHz) 1474 { 1475 struct dev_pm_opp *opp; 1476 struct device_node *np; 1477 unsigned long mV, Hz; 1478 u32 cap; 1479 u64 tmp; 1480 int ret; 1481 1482 np = of_node_get(dev->of_node); 1483 if (!np) 1484 return -EINVAL; 1485 1486 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1487 of_node_put(np); 1488 if (ret) 1489 return -EINVAL; 1490 1491 Hz = *kHz * 1000; 1492 opp = dev_pm_opp_find_freq_ceil(dev, &Hz); 1493 if (IS_ERR(opp)) 1494 return -EINVAL; 1495 1496 mV = dev_pm_opp_get_voltage(opp) / 1000; 1497 dev_pm_opp_put(opp); 1498 if (!mV) 1499 return -EINVAL; 1500 1501 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1502 /* Provide power in micro-Watts */ 1503 do_div(tmp, 1000000); 1504 1505 *uW = (unsigned long)tmp; 1506 *kHz = Hz / 1000; 1507 1508 return 0; 1509 } 1510 1511 static bool _of_has_opp_microwatt_property(struct device *dev) 1512 { 1513 unsigned long power, freq = 0; 1514 struct dev_pm_opp *opp; 1515 1516 /* Check if at least one OPP has needed property */ 1517 opp = dev_pm_opp_find_freq_ceil(dev, &freq); 1518 if (IS_ERR(opp)) 1519 return false; 1520 1521 power = dev_pm_opp_get_power(opp); 1522 dev_pm_opp_put(opp); 1523 if (!power) 1524 return false; 1525 1526 return true; 1527 } 1528 1529 /** 1530 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1531 * @dev : Device for which an Energy Model has to be registered 1532 * @cpus : CPUs for which an Energy Model has to be registered. For 1533 * other type of devices it should be set to NULL. 1534 * 1535 * This checks whether the "dynamic-power-coefficient" devicetree property has 1536 * been specified, and tries to register an Energy Model with it if it has. 1537 * Having this property means the voltages are known for OPPs and the EM 1538 * might be calculated. 1539 */ 1540 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1541 { 1542 struct em_data_callback em_cb; 1543 struct device_node *np; 1544 int ret, nr_opp; 1545 u32 cap; 1546 1547 if (IS_ERR_OR_NULL(dev)) { 1548 ret = -EINVAL; 1549 goto failed; 1550 } 1551 1552 nr_opp = dev_pm_opp_get_opp_count(dev); 1553 if (nr_opp <= 0) { 1554 ret = -EINVAL; 1555 goto failed; 1556 } 1557 1558 /* First, try to find more precised Energy Model in DT */ 1559 if (_of_has_opp_microwatt_property(dev)) { 1560 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); 1561 goto register_em; 1562 } 1563 1564 np = of_node_get(dev->of_node); 1565 if (!np) { 1566 ret = -EINVAL; 1567 goto failed; 1568 } 1569 1570 /* 1571 * Register an EM only if the 'dynamic-power-coefficient' property is 1572 * set in devicetree. It is assumed the voltage values are known if that 1573 * property is set since it is useless otherwise. If voltages are not 1574 * known, just let the EM registration fail with an error to alert the 1575 * user about the inconsistent configuration. 1576 */ 1577 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1578 of_node_put(np); 1579 if (ret || !cap) { 1580 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1581 ret = -EINVAL; 1582 goto failed; 1583 } 1584 1585 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power); 1586 1587 register_em: 1588 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1589 if (ret) 1590 goto failed; 1591 1592 return 0; 1593 1594 failed: 1595 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1596 return ret; 1597 } 1598 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1599