1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21
22 #include "opp.h"
23
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
26
27 /*
28 * Returns opp descriptor node for a device node, caller must
29 * do of_node_put().
30 */
_opp_of_get_opp_desc_node(struct device_node * np,int index)31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 int index)
33 {
34 /* "operating-points-v2" can be an array for power domain providers */
35 return of_parse_phandle(np, "operating-points-v2", index);
36 }
37
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
dev_pm_opp_of_get_opp_desc_node(struct device * dev)39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41 return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44
_managed_opp(struct device * dev,int index)45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47 struct opp_table *opp_table, *managed_table = NULL;
48 struct device_node *np;
49
50 np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 if (!np)
52 return NULL;
53
54 list_for_each_entry(opp_table, &opp_tables, node) {
55 if (opp_table->np == np) {
56 /*
57 * Multiple devices can point to the same OPP table and
58 * so will have same node-pointer, np.
59 *
60 * But the OPPs will be considered as shared only if the
61 * OPP table contains a "opp-shared" property.
62 */
63 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 _get_opp_table_kref(opp_table);
65 managed_table = opp_table;
66 }
67
68 break;
69 }
70 }
71
72 of_node_put(np);
73
74 return managed_table;
75 }
76
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
_find_opp_of_np(struct opp_table * opp_table,struct device_node * opp_np)78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 struct device_node *opp_np)
80 {
81 struct dev_pm_opp *opp;
82
83 mutex_lock(&opp_table->lock);
84
85 list_for_each_entry(opp, &opp_table->opp_list, node) {
86 if (opp->np == opp_np) {
87 dev_pm_opp_get(opp);
88 mutex_unlock(&opp_table->lock);
89 return opp;
90 }
91 }
92
93 mutex_unlock(&opp_table->lock);
94
95 return NULL;
96 }
97
of_parse_required_opp(struct device_node * np,int index)98 static struct device_node *of_parse_required_opp(struct device_node *np,
99 int index)
100 {
101 return of_parse_phandle(np, "required-opps", index);
102 }
103
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
_find_table_of_opp_np(struct device_node * opp_np)105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106 {
107 struct opp_table *opp_table;
108 struct device_node *opp_table_np;
109
110 opp_table_np = of_get_parent(opp_np);
111 if (!opp_table_np)
112 goto err;
113
114 /* It is safe to put the node now as all we need now is its address */
115 of_node_put(opp_table_np);
116
117 mutex_lock(&opp_table_lock);
118 list_for_each_entry(opp_table, &opp_tables, node) {
119 if (opp_table_np == opp_table->np) {
120 _get_opp_table_kref(opp_table);
121 mutex_unlock(&opp_table_lock);
122 return opp_table;
123 }
124 }
125 mutex_unlock(&opp_table_lock);
126
127 err:
128 return ERR_PTR(-ENODEV);
129 }
130
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
_opp_table_free_required_tables(struct opp_table * opp_table)132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
133 {
134 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 int i;
136
137 if (!required_opp_tables)
138 return;
139
140 for (i = 0; i < opp_table->required_opp_count; i++) {
141 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 continue;
143
144 dev_pm_opp_put_opp_table(required_opp_tables[i]);
145 }
146
147 kfree(required_opp_tables);
148
149 opp_table->required_opp_count = 0;
150 opp_table->required_opp_tables = NULL;
151
152 mutex_lock(&opp_table_lock);
153 list_del(&opp_table->lazy);
154 mutex_unlock(&opp_table_lock);
155 }
156
157 /*
158 * Populate all devices and opp tables which are part of "required-opps" list.
159 * Checking only the first OPP node should be enough.
160 */
_opp_table_alloc_required_tables(struct opp_table * opp_table,struct device * dev,struct device_node * opp_np)161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 struct device *dev,
163 struct device_node *opp_np)
164 {
165 struct opp_table **required_opp_tables;
166 struct device_node *required_np, *np;
167 bool lazy = false;
168 int count, i, size;
169
170 /* Traversing the first OPP node is all we need */
171 np = of_get_next_available_child(opp_np, NULL);
172 if (!np) {
173 dev_warn(dev, "Empty OPP table\n");
174
175 return;
176 }
177
178 count = of_count_phandle_with_args(np, "required-opps", NULL);
179 if (count <= 0)
180 goto put_np;
181
182 size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183 required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184 if (!required_opp_tables)
185 goto put_np;
186
187 opp_table->required_opp_tables = required_opp_tables;
188 opp_table->required_devs = (void *)(required_opp_tables + count);
189 opp_table->required_opp_count = count;
190
191 for (i = 0; i < count; i++) {
192 required_np = of_parse_required_opp(np, i);
193 if (!required_np)
194 goto free_required_tables;
195
196 required_opp_tables[i] = _find_table_of_opp_np(required_np);
197 of_node_put(required_np);
198
199 if (IS_ERR(required_opp_tables[i]))
200 lazy = true;
201 }
202
203 /* Let's do the linking later on */
204 if (lazy) {
205 /*
206 * The OPP table is not held while allocating the table, take it
207 * now to avoid corruption to the lazy_opp_tables list.
208 */
209 mutex_lock(&opp_table_lock);
210 list_add(&opp_table->lazy, &lazy_opp_tables);
211 mutex_unlock(&opp_table_lock);
212 }
213
214 goto put_np;
215
216 free_required_tables:
217 _opp_table_free_required_tables(opp_table);
218 put_np:
219 of_node_put(np);
220 }
221
_of_init_opp_table(struct opp_table * opp_table,struct device * dev,int index)222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223 int index)
224 {
225 struct device_node *np, *opp_np;
226 u32 val;
227
228 /*
229 * Only required for backward compatibility with v1 bindings, but isn't
230 * harmful for other cases. And so we do it unconditionally.
231 */
232 np = of_node_get(dev->of_node);
233 if (!np)
234 return;
235
236 if (!of_property_read_u32(np, "clock-latency", &val))
237 opp_table->clock_latency_ns_max = val;
238 of_property_read_u32(np, "voltage-tolerance",
239 &opp_table->voltage_tolerance_v1);
240
241 if (of_property_present(np, "#power-domain-cells"))
242 opp_table->is_genpd = true;
243
244 /* Get OPP table node */
245 opp_np = _opp_of_get_opp_desc_node(np, index);
246 of_node_put(np);
247
248 if (!opp_np)
249 return;
250
251 if (of_property_read_bool(opp_np, "opp-shared"))
252 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253 else
254 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
255
256 opp_table->np = opp_np;
257
258 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
259 }
260
_of_clear_opp_table(struct opp_table * opp_table)261 void _of_clear_opp_table(struct opp_table *opp_table)
262 {
263 _opp_table_free_required_tables(opp_table);
264 of_node_put(opp_table->np);
265 }
266
267 /*
268 * Release all resources previously acquired with a call to
269 * _of_opp_alloc_required_opps().
270 */
_of_opp_free_required_opps(struct opp_table * opp_table,struct dev_pm_opp * opp)271 static void _of_opp_free_required_opps(struct opp_table *opp_table,
272 struct dev_pm_opp *opp)
273 {
274 struct dev_pm_opp **required_opps = opp->required_opps;
275 int i;
276
277 if (!required_opps)
278 return;
279
280 for (i = 0; i < opp_table->required_opp_count; i++) {
281 if (!required_opps[i])
282 continue;
283
284 /* Put the reference back */
285 dev_pm_opp_put(required_opps[i]);
286 }
287
288 opp->required_opps = NULL;
289 kfree(required_opps);
290 }
291
_of_clear_opp(struct opp_table * opp_table,struct dev_pm_opp * opp)292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
293 {
294 _of_opp_free_required_opps(opp_table, opp);
295 of_node_put(opp->np);
296 }
297
_link_required_opps(struct dev_pm_opp * opp,struct opp_table * opp_table,struct opp_table * required_table,int index)298 static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table,
299 struct opp_table *required_table, int index)
300 {
301 struct device_node *np;
302
303 np = of_parse_required_opp(opp->np, index);
304 if (unlikely(!np))
305 return -ENODEV;
306
307 opp->required_opps[index] = _find_opp_of_np(required_table, np);
308 of_node_put(np);
309
310 if (!opp->required_opps[index]) {
311 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312 __func__, opp->np, index);
313 return -ENODEV;
314 }
315
316 /*
317 * There are two genpd (as required-opp) cases that we need to handle,
318 * devices with a single genpd and ones with multiple genpds.
319 *
320 * The single genpd case requires special handling as we need to use the
321 * same `dev` structure (instead of a virtual one provided by genpd
322 * core) for setting the performance state.
323 *
324 * It doesn't make sense for a device's DT entry to have both
325 * "opp-level" and single "required-opps" entry pointing to a genpd's
326 * OPP, as that would make the OPP core call
327 * dev_pm_domain_set_performance_state() for two different values for
328 * the same device structure. Lets treat single genpd configuration as a
329 * case where the OPP's level is directly available without required-opp
330 * link in the DT.
331 *
332 * Just update the `level` with the right value, which
333 * dev_pm_opp_set_opp() will take care of in the normal path itself.
334 *
335 * There is another case though, where a genpd's OPP table has
336 * required-opps set to a parent genpd. The OPP core expects the user to
337 * set the respective required `struct device` pointer via
338 * dev_pm_opp_set_config().
339 */
340 if (required_table->is_genpd && opp_table->required_opp_count == 1 &&
341 !opp_table->required_devs[0]) {
342 /* Genpd core takes care of propagation to parent genpd */
343 if (!opp_table->is_genpd) {
344 if (!WARN_ON(opp->level != OPP_LEVEL_UNSET))
345 opp->level = opp->required_opps[0]->level;
346 }
347 }
348
349 return 0;
350 }
351
352 /* Populate all required OPPs which are part of "required-opps" list */
_of_opp_alloc_required_opps(struct opp_table * opp_table,struct dev_pm_opp * opp)353 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
354 struct dev_pm_opp *opp)
355 {
356 struct opp_table *required_table;
357 int i, ret, count = opp_table->required_opp_count;
358
359 if (!count)
360 return 0;
361
362 opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
363 if (!opp->required_opps)
364 return -ENOMEM;
365
366 for (i = 0; i < count; i++) {
367 required_table = opp_table->required_opp_tables[i];
368
369 /* Required table not added yet, we will link later */
370 if (IS_ERR_OR_NULL(required_table))
371 continue;
372
373 ret = _link_required_opps(opp, opp_table, required_table, i);
374 if (ret)
375 goto free_required_opps;
376 }
377
378 return 0;
379
380 free_required_opps:
381 _of_opp_free_required_opps(opp_table, opp);
382
383 return ret;
384 }
385
386 /* Link required OPPs for an individual OPP */
lazy_link_required_opps(struct opp_table * opp_table,struct opp_table * new_table,int index)387 static int lazy_link_required_opps(struct opp_table *opp_table,
388 struct opp_table *new_table, int index)
389 {
390 struct dev_pm_opp *opp;
391 int ret;
392
393 list_for_each_entry(opp, &opp_table->opp_list, node) {
394 ret = _link_required_opps(opp, opp_table, new_table, index);
395 if (ret)
396 return ret;
397 }
398
399 return 0;
400 }
401
402 /* Link required OPPs for all OPPs of the newly added OPP table */
lazy_link_required_opp_table(struct opp_table * new_table)403 static void lazy_link_required_opp_table(struct opp_table *new_table)
404 {
405 struct opp_table *opp_table, *temp, **required_opp_tables;
406 struct device_node *required_np, *opp_np, *required_table_np;
407 struct dev_pm_opp *opp;
408 int i, ret;
409
410 mutex_lock(&opp_table_lock);
411
412 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
413 bool lazy = false;
414
415 /* opp_np can't be invalid here */
416 opp_np = of_get_next_available_child(opp_table->np, NULL);
417
418 for (i = 0; i < opp_table->required_opp_count; i++) {
419 required_opp_tables = opp_table->required_opp_tables;
420
421 /* Required opp-table is already parsed */
422 if (!IS_ERR(required_opp_tables[i]))
423 continue;
424
425 /* required_np can't be invalid here */
426 required_np = of_parse_required_opp(opp_np, i);
427 required_table_np = of_get_parent(required_np);
428
429 of_node_put(required_table_np);
430 of_node_put(required_np);
431
432 /*
433 * Newly added table isn't the required opp-table for
434 * opp_table.
435 */
436 if (required_table_np != new_table->np) {
437 lazy = true;
438 continue;
439 }
440
441 required_opp_tables[i] = new_table;
442 _get_opp_table_kref(new_table);
443
444 /* Link OPPs now */
445 ret = lazy_link_required_opps(opp_table, new_table, i);
446 if (ret) {
447 /* The OPPs will be marked unusable */
448 lazy = false;
449 break;
450 }
451 }
452
453 of_node_put(opp_np);
454
455 /* All required opp-tables found, remove from lazy list */
456 if (!lazy) {
457 list_del_init(&opp_table->lazy);
458
459 list_for_each_entry(opp, &opp_table->opp_list, node)
460 _required_opps_available(opp, opp_table->required_opp_count);
461 }
462 }
463
464 mutex_unlock(&opp_table_lock);
465 }
466
_bandwidth_supported(struct device * dev,struct opp_table * opp_table)467 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
468 {
469 struct device_node *np, *opp_np;
470 struct property *prop;
471
472 if (!opp_table) {
473 np = of_node_get(dev->of_node);
474 if (!np)
475 return -ENODEV;
476
477 opp_np = _opp_of_get_opp_desc_node(np, 0);
478 of_node_put(np);
479 } else {
480 opp_np = of_node_get(opp_table->np);
481 }
482
483 /* Lets not fail in case we are parsing opp-v1 bindings */
484 if (!opp_np)
485 return 0;
486
487 /* Checking only first OPP is sufficient */
488 np = of_get_next_available_child(opp_np, NULL);
489 of_node_put(opp_np);
490 if (!np) {
491 dev_err(dev, "OPP table empty\n");
492 return -EINVAL;
493 }
494
495 prop = of_find_property(np, "opp-peak-kBps", NULL);
496 of_node_put(np);
497
498 if (!prop || !prop->length)
499 return 0;
500
501 return 1;
502 }
503
dev_pm_opp_of_find_icc_paths(struct device * dev,struct opp_table * opp_table)504 int dev_pm_opp_of_find_icc_paths(struct device *dev,
505 struct opp_table *opp_table)
506 {
507 struct device_node *np;
508 int ret, i, count, num_paths;
509 struct icc_path **paths;
510
511 ret = _bandwidth_supported(dev, opp_table);
512 if (ret == -EINVAL)
513 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
514 else if (ret <= 0)
515 return ret;
516
517 ret = 0;
518
519 np = of_node_get(dev->of_node);
520 if (!np)
521 return 0;
522
523 count = of_count_phandle_with_args(np, "interconnects",
524 "#interconnect-cells");
525 of_node_put(np);
526 if (count < 0)
527 return 0;
528
529 /* two phandles when #interconnect-cells = <1> */
530 if (count % 2) {
531 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
532 return -EINVAL;
533 }
534
535 num_paths = count / 2;
536 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
537 if (!paths)
538 return -ENOMEM;
539
540 for (i = 0; i < num_paths; i++) {
541 paths[i] = of_icc_get_by_index(dev, i);
542 if (IS_ERR(paths[i])) {
543 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
544 goto err;
545 }
546 }
547
548 if (opp_table) {
549 opp_table->paths = paths;
550 opp_table->path_count = num_paths;
551 return 0;
552 }
553
554 err:
555 while (i--)
556 icc_put(paths[i]);
557
558 kfree(paths);
559
560 return ret;
561 }
562 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
563
_opp_is_supported(struct device * dev,struct opp_table * opp_table,struct device_node * np)564 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
565 struct device_node *np)
566 {
567 unsigned int levels = opp_table->supported_hw_count;
568 int count, versions, ret, i, j;
569 u32 val;
570
571 if (!opp_table->supported_hw) {
572 /*
573 * In the case that no supported_hw has been set by the
574 * platform but there is an opp-supported-hw value set for
575 * an OPP then the OPP should not be enabled as there is
576 * no way to see if the hardware supports it.
577 */
578 if (of_property_present(np, "opp-supported-hw"))
579 return false;
580 else
581 return true;
582 }
583
584 count = of_property_count_u32_elems(np, "opp-supported-hw");
585 if (count <= 0 || count % levels) {
586 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
587 __func__, count);
588 return false;
589 }
590
591 versions = count / levels;
592
593 /* All levels in at least one of the versions should match */
594 for (i = 0; i < versions; i++) {
595 bool supported = true;
596
597 for (j = 0; j < levels; j++) {
598 ret = of_property_read_u32_index(np, "opp-supported-hw",
599 i * levels + j, &val);
600 if (ret) {
601 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
602 __func__, i * levels + j, ret);
603 return false;
604 }
605
606 /* Check if the level is supported */
607 if (!(val & opp_table->supported_hw[j])) {
608 supported = false;
609 break;
610 }
611 }
612
613 if (supported)
614 return true;
615 }
616
617 return false;
618 }
619
_parse_named_prop(struct dev_pm_opp * opp,struct device * dev,struct opp_table * opp_table,const char * prop_type,bool * triplet)620 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
621 struct opp_table *opp_table,
622 const char *prop_type, bool *triplet)
623 {
624 struct property *prop = NULL;
625 char name[NAME_MAX];
626 int count, ret;
627 u32 *out;
628
629 /* Search for "opp-<prop_type>-<name>" */
630 if (opp_table->prop_name) {
631 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
632 opp_table->prop_name);
633 prop = of_find_property(opp->np, name, NULL);
634 }
635
636 if (!prop) {
637 /* Search for "opp-<prop_type>" */
638 snprintf(name, sizeof(name), "opp-%s", prop_type);
639 prop = of_find_property(opp->np, name, NULL);
640 if (!prop)
641 return NULL;
642 }
643
644 count = of_property_count_u32_elems(opp->np, name);
645 if (count < 0) {
646 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
647 count);
648 return ERR_PTR(count);
649 }
650
651 /*
652 * Initialize regulator_count, if regulator information isn't provided
653 * by the platform. Now that one of the properties is available, fix the
654 * regulator_count to 1.
655 */
656 if (unlikely(opp_table->regulator_count == -1))
657 opp_table->regulator_count = 1;
658
659 if (count != opp_table->regulator_count &&
660 (!triplet || count != opp_table->regulator_count * 3)) {
661 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
662 __func__, prop_type, count, opp_table->regulator_count);
663 return ERR_PTR(-EINVAL);
664 }
665
666 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
667 if (!out)
668 return ERR_PTR(-EINVAL);
669
670 ret = of_property_read_u32_array(opp->np, name, out, count);
671 if (ret) {
672 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
673 kfree(out);
674 return ERR_PTR(-EINVAL);
675 }
676
677 if (triplet)
678 *triplet = count != opp_table->regulator_count;
679
680 return out;
681 }
682
opp_parse_microvolt(struct dev_pm_opp * opp,struct device * dev,struct opp_table * opp_table,bool * triplet)683 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
684 struct opp_table *opp_table, bool *triplet)
685 {
686 u32 *microvolt;
687
688 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
689 if (IS_ERR(microvolt))
690 return microvolt;
691
692 if (!microvolt) {
693 /*
694 * Missing property isn't a problem, but an invalid
695 * entry is. This property isn't optional if regulator
696 * information is provided. Check only for the first OPP, as
697 * regulator_count may get initialized after that to a valid
698 * value.
699 */
700 if (list_empty(&opp_table->opp_list) &&
701 opp_table->regulator_count > 0) {
702 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
703 __func__);
704 return ERR_PTR(-EINVAL);
705 }
706 }
707
708 return microvolt;
709 }
710
opp_parse_supplies(struct dev_pm_opp * opp,struct device * dev,struct opp_table * opp_table)711 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
712 struct opp_table *opp_table)
713 {
714 u32 *microvolt, *microamp, *microwatt;
715 int ret = 0, i, j;
716 bool triplet;
717
718 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
719 if (IS_ERR(microvolt))
720 return PTR_ERR(microvolt);
721
722 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
723 if (IS_ERR(microamp)) {
724 ret = PTR_ERR(microamp);
725 goto free_microvolt;
726 }
727
728 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
729 if (IS_ERR(microwatt)) {
730 ret = PTR_ERR(microwatt);
731 goto free_microamp;
732 }
733
734 /*
735 * Initialize regulator_count if it is uninitialized and no properties
736 * are found.
737 */
738 if (unlikely(opp_table->regulator_count == -1)) {
739 opp_table->regulator_count = 0;
740 return 0;
741 }
742
743 for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
744 if (microvolt) {
745 opp->supplies[i].u_volt = microvolt[j++];
746
747 if (triplet) {
748 opp->supplies[i].u_volt_min = microvolt[j++];
749 opp->supplies[i].u_volt_max = microvolt[j++];
750 } else {
751 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
752 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
753 }
754 }
755
756 if (microamp)
757 opp->supplies[i].u_amp = microamp[i];
758
759 if (microwatt)
760 opp->supplies[i].u_watt = microwatt[i];
761 }
762
763 kfree(microwatt);
764 free_microamp:
765 kfree(microamp);
766 free_microvolt:
767 kfree(microvolt);
768
769 return ret;
770 }
771
772 /**
773 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
774 * entries
775 * @dev: device pointer used to lookup OPP table.
776 *
777 * Free OPPs created using static entries present in DT.
778 */
dev_pm_opp_of_remove_table(struct device * dev)779 void dev_pm_opp_of_remove_table(struct device *dev)
780 {
781 dev_pm_opp_remove_table(dev);
782 }
783 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
784
_read_rate(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np)785 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
786 struct device_node *np)
787 {
788 struct property *prop;
789 int i, count, ret;
790 u64 *rates;
791
792 prop = of_find_property(np, "opp-hz", NULL);
793 if (!prop)
794 return -ENODEV;
795
796 count = prop->length / sizeof(u64);
797 if (opp_table->clk_count != count) {
798 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
799 __func__, count, opp_table->clk_count);
800 return -EINVAL;
801 }
802
803 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
804 if (!rates)
805 return -ENOMEM;
806
807 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
808 if (ret) {
809 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
810 } else {
811 /*
812 * Rate is defined as an unsigned long in clk API, and so
813 * casting explicitly to its type. Must be fixed once rate is 64
814 * bit guaranteed in clk API.
815 */
816 for (i = 0; i < count; i++) {
817 new_opp->rates[i] = (unsigned long)rates[i];
818
819 /* This will happen for frequencies > 4.29 GHz */
820 WARN_ON(new_opp->rates[i] != rates[i]);
821 }
822 }
823
824 kfree(rates);
825
826 return ret;
827 }
828
_read_bw(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np,bool peak)829 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
830 struct device_node *np, bool peak)
831 {
832 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
833 struct property *prop;
834 int i, count, ret;
835 u32 *bw;
836
837 prop = of_find_property(np, name, NULL);
838 if (!prop)
839 return -ENODEV;
840
841 count = prop->length / sizeof(u32);
842 if (opp_table->path_count != count) {
843 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
844 __func__, name, count, opp_table->path_count);
845 return -EINVAL;
846 }
847
848 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
849 if (!bw)
850 return -ENOMEM;
851
852 ret = of_property_read_u32_array(np, name, bw, count);
853 if (ret) {
854 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
855 goto out;
856 }
857
858 for (i = 0; i < count; i++) {
859 if (peak)
860 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
861 else
862 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
863 }
864
865 out:
866 kfree(bw);
867 return ret;
868 }
869
_read_opp_key(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np)870 static int _read_opp_key(struct dev_pm_opp *new_opp,
871 struct opp_table *opp_table, struct device_node *np)
872 {
873 bool found = false;
874 int ret;
875
876 ret = _read_rate(new_opp, opp_table, np);
877 if (!ret)
878 found = true;
879 else if (ret != -ENODEV)
880 return ret;
881
882 /*
883 * Bandwidth consists of peak and average (optional) values:
884 * opp-peak-kBps = <path1_value path2_value>;
885 * opp-avg-kBps = <path1_value path2_value>;
886 */
887 ret = _read_bw(new_opp, opp_table, np, true);
888 if (!ret) {
889 found = true;
890 ret = _read_bw(new_opp, opp_table, np, false);
891 }
892
893 /* The properties were found but we failed to parse them */
894 if (ret && ret != -ENODEV)
895 return ret;
896
897 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
898 found = true;
899
900 if (found)
901 return 0;
902
903 return ret;
904 }
905
906 /**
907 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
908 * @opp_table: OPP table
909 * @dev: device for which we do this operation
910 * @np: device node
911 *
912 * This function adds an opp definition to the opp table and returns status. The
913 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
914 * removed by dev_pm_opp_remove.
915 *
916 * Return:
917 * Valid OPP pointer:
918 * On success
919 * NULL:
920 * Duplicate OPPs (both freq and volt are same) and opp->available
921 * OR if the OPP is not supported by hardware.
922 * ERR_PTR(-EEXIST):
923 * Freq are same and volt are different OR
924 * Duplicate OPPs (both freq and volt are same) and !opp->available
925 * ERR_PTR(-ENOMEM):
926 * Memory allocation failure
927 * ERR_PTR(-EINVAL):
928 * Failed parsing the OPP node
929 */
_opp_add_static_v2(struct opp_table * opp_table,struct device * dev,struct device_node * np)930 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
931 struct device *dev, struct device_node *np)
932 {
933 struct dev_pm_opp *new_opp;
934 u32 val;
935 int ret;
936
937 new_opp = _opp_allocate(opp_table);
938 if (!new_opp)
939 return ERR_PTR(-ENOMEM);
940
941 ret = _read_opp_key(new_opp, opp_table, np);
942 if (ret < 0) {
943 dev_err(dev, "%s: opp key field not found\n", __func__);
944 goto free_opp;
945 }
946
947 /* Check if the OPP supports hardware's hierarchy of versions or not */
948 if (!_opp_is_supported(dev, opp_table, np)) {
949 dev_dbg(dev, "OPP not supported by hardware: %s\n",
950 of_node_full_name(np));
951 goto free_opp;
952 }
953
954 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
955
956 new_opp->np = of_node_get(np);
957 new_opp->dynamic = false;
958 new_opp->available = true;
959
960 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
961 if (ret)
962 goto free_opp;
963
964 if (!of_property_read_u32(np, "clock-latency-ns", &val))
965 new_opp->clock_latency_ns = val;
966
967 ret = opp_parse_supplies(new_opp, dev, opp_table);
968 if (ret)
969 goto free_required_opps;
970
971 ret = _opp_add(dev, new_opp, opp_table);
972 if (ret) {
973 /* Don't return error for duplicate OPPs */
974 if (ret == -EBUSY)
975 ret = 0;
976 goto free_required_opps;
977 }
978
979 /* OPP to select on device suspend */
980 if (of_property_read_bool(np, "opp-suspend")) {
981 if (opp_table->suspend_opp) {
982 /* Pick the OPP with higher rate/bw/level as suspend OPP */
983 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
984 opp_table->suspend_opp->suspend = false;
985 new_opp->suspend = true;
986 opp_table->suspend_opp = new_opp;
987 }
988 } else {
989 new_opp->suspend = true;
990 opp_table->suspend_opp = new_opp;
991 }
992 }
993
994 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
995 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
996
997 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
998 __func__, new_opp->turbo, new_opp->rates[0],
999 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
1000 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
1001 new_opp->level);
1002
1003 /*
1004 * Notify the changes in the availability of the operable
1005 * frequency/voltage list.
1006 */
1007 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1008 return new_opp;
1009
1010 free_required_opps:
1011 _of_opp_free_required_opps(opp_table, new_opp);
1012 free_opp:
1013 _opp_free(new_opp);
1014
1015 return ret ? ERR_PTR(ret) : NULL;
1016 }
1017
1018 /* Initializes OPP tables based on new bindings */
_of_add_opp_table_v2(struct device * dev,struct opp_table * opp_table)1019 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1020 {
1021 struct device_node *np;
1022 int ret, count = 0;
1023 struct dev_pm_opp *opp;
1024
1025 /* OPP table is already initialized for the device */
1026 mutex_lock(&opp_table->lock);
1027 if (opp_table->parsed_static_opps) {
1028 opp_table->parsed_static_opps++;
1029 mutex_unlock(&opp_table->lock);
1030 return 0;
1031 }
1032
1033 opp_table->parsed_static_opps = 1;
1034 mutex_unlock(&opp_table->lock);
1035
1036 /* We have opp-table node now, iterate over it and add OPPs */
1037 for_each_available_child_of_node(opp_table->np, np) {
1038 opp = _opp_add_static_v2(opp_table, dev, np);
1039 if (IS_ERR(opp)) {
1040 ret = PTR_ERR(opp);
1041 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1042 ret);
1043 of_node_put(np);
1044 goto remove_static_opp;
1045 } else if (opp) {
1046 count++;
1047 }
1048 }
1049
1050 /* There should be one or more OPPs defined */
1051 if (!count) {
1052 dev_err(dev, "%s: no supported OPPs", __func__);
1053 ret = -ENOENT;
1054 goto remove_static_opp;
1055 }
1056
1057 lazy_link_required_opp_table(opp_table);
1058
1059 return 0;
1060
1061 remove_static_opp:
1062 _opp_remove_all_static(opp_table);
1063
1064 return ret;
1065 }
1066
1067 /* Initializes OPP tables based on old-deprecated bindings */
_of_add_opp_table_v1(struct device * dev,struct opp_table * opp_table)1068 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1069 {
1070 const struct property *prop;
1071 const __be32 *val;
1072 int nr, ret = 0;
1073
1074 mutex_lock(&opp_table->lock);
1075 if (opp_table->parsed_static_opps) {
1076 opp_table->parsed_static_opps++;
1077 mutex_unlock(&opp_table->lock);
1078 return 0;
1079 }
1080
1081 opp_table->parsed_static_opps = 1;
1082 mutex_unlock(&opp_table->lock);
1083
1084 prop = of_find_property(dev->of_node, "operating-points", NULL);
1085 if (!prop) {
1086 ret = -ENODEV;
1087 goto remove_static_opp;
1088 }
1089 if (!prop->value) {
1090 ret = -ENODATA;
1091 goto remove_static_opp;
1092 }
1093
1094 /*
1095 * Each OPP is a set of tuples consisting of frequency and
1096 * voltage like <freq-kHz vol-uV>.
1097 */
1098 nr = prop->length / sizeof(u32);
1099 if (nr % 2) {
1100 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1101 ret = -EINVAL;
1102 goto remove_static_opp;
1103 }
1104
1105 val = prop->value;
1106 while (nr) {
1107 unsigned long freq = be32_to_cpup(val++) * 1000;
1108 unsigned long volt = be32_to_cpup(val++);
1109 struct dev_pm_opp_data data = {
1110 .freq = freq,
1111 .u_volt = volt,
1112 };
1113
1114 ret = _opp_add_v1(opp_table, dev, &data, false);
1115 if (ret) {
1116 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1117 __func__, data.freq, ret);
1118 goto remove_static_opp;
1119 }
1120 nr -= 2;
1121 }
1122
1123 return 0;
1124
1125 remove_static_opp:
1126 _opp_remove_all_static(opp_table);
1127
1128 return ret;
1129 }
1130
_of_add_table_indexed(struct device * dev,int index)1131 static int _of_add_table_indexed(struct device *dev, int index)
1132 {
1133 struct opp_table *opp_table;
1134 int ret, count;
1135
1136 if (index) {
1137 /*
1138 * If only one phandle is present, then the same OPP table
1139 * applies for all index requests.
1140 */
1141 count = of_count_phandle_with_args(dev->of_node,
1142 "operating-points-v2", NULL);
1143 if (count == 1)
1144 index = 0;
1145 }
1146
1147 opp_table = _add_opp_table_indexed(dev, index, true);
1148 if (IS_ERR(opp_table))
1149 return PTR_ERR(opp_table);
1150
1151 /*
1152 * OPPs have two version of bindings now. Also try the old (v1)
1153 * bindings for backward compatibility with older dtbs.
1154 */
1155 if (opp_table->np)
1156 ret = _of_add_opp_table_v2(dev, opp_table);
1157 else
1158 ret = _of_add_opp_table_v1(dev, opp_table);
1159
1160 if (ret)
1161 dev_pm_opp_put_opp_table(opp_table);
1162
1163 return ret;
1164 }
1165
devm_pm_opp_of_table_release(void * data)1166 static void devm_pm_opp_of_table_release(void *data)
1167 {
1168 dev_pm_opp_of_remove_table(data);
1169 }
1170
_devm_of_add_table_indexed(struct device * dev,int index)1171 static int _devm_of_add_table_indexed(struct device *dev, int index)
1172 {
1173 int ret;
1174
1175 ret = _of_add_table_indexed(dev, index);
1176 if (ret)
1177 return ret;
1178
1179 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1180 }
1181
1182 /**
1183 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1184 * @dev: device pointer used to lookup OPP table.
1185 *
1186 * Register the initial OPP table with the OPP library for given device.
1187 *
1188 * The opp_table structure will be freed after the device is destroyed.
1189 *
1190 * Return:
1191 * 0 On success OR
1192 * Duplicate OPPs (both freq and volt are same) and opp->available
1193 * -EEXIST Freq are same and volt are different OR
1194 * Duplicate OPPs (both freq and volt are same) and !opp->available
1195 * -ENOMEM Memory allocation failure
1196 * -ENODEV when 'operating-points' property is not found or is invalid data
1197 * in device node.
1198 * -ENODATA when empty 'operating-points' property is found
1199 * -EINVAL when invalid entries are found in opp-v2 table
1200 */
devm_pm_opp_of_add_table(struct device * dev)1201 int devm_pm_opp_of_add_table(struct device *dev)
1202 {
1203 return _devm_of_add_table_indexed(dev, 0);
1204 }
1205 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1206
1207 /**
1208 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1209 * @dev: device pointer used to lookup OPP table.
1210 *
1211 * Register the initial OPP table with the OPP library for given device.
1212 *
1213 * Return:
1214 * 0 On success OR
1215 * Duplicate OPPs (both freq and volt are same) and opp->available
1216 * -EEXIST Freq are same and volt are different OR
1217 * Duplicate OPPs (both freq and volt are same) and !opp->available
1218 * -ENOMEM Memory allocation failure
1219 * -ENODEV when 'operating-points' property is not found or is invalid data
1220 * in device node.
1221 * -ENODATA when empty 'operating-points' property is found
1222 * -EINVAL when invalid entries are found in opp-v2 table
1223 */
dev_pm_opp_of_add_table(struct device * dev)1224 int dev_pm_opp_of_add_table(struct device *dev)
1225 {
1226 return _of_add_table_indexed(dev, 0);
1227 }
1228 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1229
1230 /**
1231 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1232 * @dev: device pointer used to lookup OPP table.
1233 * @index: Index number.
1234 *
1235 * Register the initial OPP table with the OPP library for given device only
1236 * using the "operating-points-v2" property.
1237 *
1238 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1239 */
dev_pm_opp_of_add_table_indexed(struct device * dev,int index)1240 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1241 {
1242 return _of_add_table_indexed(dev, index);
1243 }
1244 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1245
1246 /**
1247 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1248 * @dev: device pointer used to lookup OPP table.
1249 * @index: Index number.
1250 *
1251 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1252 */
devm_pm_opp_of_add_table_indexed(struct device * dev,int index)1253 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1254 {
1255 return _devm_of_add_table_indexed(dev, index);
1256 }
1257 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1258
1259 /* CPU device specific helpers */
1260
1261 /**
1262 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1263 * @cpumask: cpumask for which OPP table needs to be removed
1264 *
1265 * This removes the OPP tables for CPUs present in the @cpumask.
1266 * This should be used only to remove static entries created from DT.
1267 */
dev_pm_opp_of_cpumask_remove_table(const struct cpumask * cpumask)1268 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1269 {
1270 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1271 }
1272 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1273
1274 /**
1275 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1276 * @cpumask: cpumask for which OPP table needs to be added.
1277 *
1278 * This adds the OPP tables for CPUs present in the @cpumask.
1279 */
dev_pm_opp_of_cpumask_add_table(const struct cpumask * cpumask)1280 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1281 {
1282 struct device *cpu_dev;
1283 int cpu, ret;
1284
1285 if (WARN_ON(cpumask_empty(cpumask)))
1286 return -ENODEV;
1287
1288 for_each_cpu(cpu, cpumask) {
1289 cpu_dev = get_cpu_device(cpu);
1290 if (!cpu_dev) {
1291 pr_err("%s: failed to get cpu%d device\n", __func__,
1292 cpu);
1293 ret = -ENODEV;
1294 goto remove_table;
1295 }
1296
1297 ret = dev_pm_opp_of_add_table(cpu_dev);
1298 if (ret) {
1299 /*
1300 * OPP may get registered dynamically, don't print error
1301 * message here.
1302 */
1303 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1304 __func__, cpu, ret);
1305
1306 goto remove_table;
1307 }
1308 }
1309
1310 return 0;
1311
1312 remove_table:
1313 /* Free all other OPPs */
1314 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1315
1316 return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1319
1320 /*
1321 * Works only for OPP v2 bindings.
1322 *
1323 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1324 */
1325 /**
1326 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1327 * @cpu_dev using operating-points-v2
1328 * bindings.
1329 *
1330 * @cpu_dev: CPU device for which we do this operation
1331 * @cpumask: cpumask to update with information of sharing CPUs
1332 *
1333 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1334 *
1335 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1336 */
dev_pm_opp_of_get_sharing_cpus(struct device * cpu_dev,struct cpumask * cpumask)1337 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1338 struct cpumask *cpumask)
1339 {
1340 struct device_node *np, *tmp_np, *cpu_np;
1341 int cpu, ret = 0;
1342
1343 /* Get OPP descriptor node */
1344 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1345 if (!np) {
1346 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1347 return -ENOENT;
1348 }
1349
1350 cpumask_set_cpu(cpu_dev->id, cpumask);
1351
1352 /* OPPs are shared ? */
1353 if (!of_property_read_bool(np, "opp-shared"))
1354 goto put_cpu_node;
1355
1356 for_each_possible_cpu(cpu) {
1357 if (cpu == cpu_dev->id)
1358 continue;
1359
1360 cpu_np = of_cpu_device_node_get(cpu);
1361 if (!cpu_np) {
1362 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1363 __func__, cpu);
1364 ret = -ENOENT;
1365 goto put_cpu_node;
1366 }
1367
1368 /* Get OPP descriptor node */
1369 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1370 of_node_put(cpu_np);
1371 if (!tmp_np) {
1372 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1373 ret = -ENOENT;
1374 goto put_cpu_node;
1375 }
1376
1377 /* CPUs are sharing opp node */
1378 if (np == tmp_np)
1379 cpumask_set_cpu(cpu, cpumask);
1380
1381 of_node_put(tmp_np);
1382 }
1383
1384 put_cpu_node:
1385 of_node_put(np);
1386 return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1389
1390 /**
1391 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1392 * @np: Node that contains the "required-opps" property.
1393 * @index: Index of the phandle to parse.
1394 *
1395 * Returns the performance state of the OPP pointed out by the "required-opps"
1396 * property at @index in @np.
1397 *
1398 * Return: Zero or positive performance state on success, otherwise negative
1399 * value on errors.
1400 */
of_get_required_opp_performance_state(struct device_node * np,int index)1401 int of_get_required_opp_performance_state(struct device_node *np, int index)
1402 {
1403 struct dev_pm_opp *opp;
1404 struct device_node *required_np;
1405 struct opp_table *opp_table;
1406 int pstate = -EINVAL;
1407
1408 required_np = of_parse_required_opp(np, index);
1409 if (!required_np)
1410 return -ENODEV;
1411
1412 opp_table = _find_table_of_opp_np(required_np);
1413 if (IS_ERR(opp_table)) {
1414 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1415 __func__, np, PTR_ERR(opp_table));
1416 goto put_required_np;
1417 }
1418
1419 /* The OPP tables must belong to a genpd */
1420 if (unlikely(!opp_table->is_genpd)) {
1421 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1422 goto put_required_np;
1423 }
1424
1425 opp = _find_opp_of_np(opp_table, required_np);
1426 if (opp) {
1427 if (opp->level == OPP_LEVEL_UNSET) {
1428 pr_err("%s: OPP levels aren't available for %pOF\n",
1429 __func__, np);
1430 } else {
1431 pstate = opp->level;
1432 }
1433 dev_pm_opp_put(opp);
1434
1435 }
1436
1437 dev_pm_opp_put_opp_table(opp_table);
1438
1439 put_required_np:
1440 of_node_put(required_np);
1441
1442 return pstate;
1443 }
1444 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1445
1446 /**
1447 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1448 * @dev: The device to investigate.
1449 *
1450 * Returns true if the device's node has a "operating-points-v2" property and if
1451 * the corresponding node for the opp-table describes opp nodes that uses the
1452 * "required-opps" property.
1453 *
1454 * Return: True if a required-opps is present, else false.
1455 */
dev_pm_opp_of_has_required_opp(struct device * dev)1456 bool dev_pm_opp_of_has_required_opp(struct device *dev)
1457 {
1458 struct device_node *opp_np, *np;
1459 int count;
1460
1461 opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1462 if (!opp_np)
1463 return false;
1464
1465 np = of_get_next_available_child(opp_np, NULL);
1466 of_node_put(opp_np);
1467 if (!np) {
1468 dev_warn(dev, "Empty OPP table\n");
1469 return false;
1470 }
1471
1472 count = of_count_phandle_with_args(np, "required-opps", NULL);
1473 of_node_put(np);
1474
1475 return count > 0;
1476 }
1477
1478 /**
1479 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1480 * @opp: opp for which DT node has to be returned for
1481 *
1482 * Return: DT node corresponding to the opp, else 0 on success.
1483 *
1484 * The caller needs to put the node with of_node_put() after using it.
1485 */
dev_pm_opp_get_of_node(struct dev_pm_opp * opp)1486 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1487 {
1488 if (IS_ERR_OR_NULL(opp)) {
1489 pr_err("%s: Invalid parameters\n", __func__);
1490 return NULL;
1491 }
1492
1493 return of_node_get(opp->np);
1494 }
1495 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1496
1497 /*
1498 * Callback function provided to the Energy Model framework upon registration.
1499 * It provides the power used by @dev at @kHz if it is the frequency of an
1500 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1501 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1502 * frequency and @uW to the associated power.
1503 *
1504 * Returns 0 on success or a proper -EINVAL value in case of error.
1505 */
1506 static int __maybe_unused
_get_dt_power(struct device * dev,unsigned long * uW,unsigned long * kHz)1507 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1508 {
1509 struct dev_pm_opp *opp;
1510 unsigned long opp_freq, opp_power;
1511
1512 /* Find the right frequency and related OPP */
1513 opp_freq = *kHz * 1000;
1514 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1515 if (IS_ERR(opp))
1516 return -EINVAL;
1517
1518 opp_power = dev_pm_opp_get_power(opp);
1519 dev_pm_opp_put(opp);
1520 if (!opp_power)
1521 return -EINVAL;
1522
1523 *kHz = opp_freq / 1000;
1524 *uW = opp_power;
1525
1526 return 0;
1527 }
1528
1529 /**
1530 * dev_pm_opp_calc_power() - Calculate power value for device with EM
1531 * @dev : Device for which an Energy Model has to be registered
1532 * @uW : New power value that is calculated
1533 * @kHz : Frequency for which the new power is calculated
1534 *
1535 * This computes the power estimated by @dev at @kHz if it is the frequency
1536 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1537 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1538 * frequency and @uW to the associated power. The power is estimated as
1539 * P = C * V^2 * f with C being the device's capacitance and V and f
1540 * respectively the voltage and frequency of the OPP.
1541 * It is also used as a callback function provided to the Energy Model
1542 * framework upon registration.
1543 *
1544 * Returns -EINVAL if the power calculation failed because of missing
1545 * parameters, 0 otherwise.
1546 */
dev_pm_opp_calc_power(struct device * dev,unsigned long * uW,unsigned long * kHz)1547 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1548 unsigned long *kHz)
1549 {
1550 struct dev_pm_opp *opp;
1551 struct device_node *np;
1552 unsigned long mV, Hz;
1553 u32 cap;
1554 u64 tmp;
1555 int ret;
1556
1557 np = of_node_get(dev->of_node);
1558 if (!np)
1559 return -EINVAL;
1560
1561 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1562 of_node_put(np);
1563 if (ret)
1564 return -EINVAL;
1565
1566 Hz = *kHz * 1000;
1567 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1568 if (IS_ERR(opp))
1569 return -EINVAL;
1570
1571 mV = dev_pm_opp_get_voltage(opp) / 1000;
1572 dev_pm_opp_put(opp);
1573 if (!mV)
1574 return -EINVAL;
1575
1576 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1577 /* Provide power in micro-Watts */
1578 do_div(tmp, 1000000);
1579
1580 *uW = (unsigned long)tmp;
1581 *kHz = Hz / 1000;
1582
1583 return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1586
_of_has_opp_microwatt_property(struct device * dev)1587 static bool _of_has_opp_microwatt_property(struct device *dev)
1588 {
1589 unsigned long power, freq = 0;
1590 struct dev_pm_opp *opp;
1591
1592 /* Check if at least one OPP has needed property */
1593 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1594 if (IS_ERR(opp))
1595 return false;
1596
1597 power = dev_pm_opp_get_power(opp);
1598 dev_pm_opp_put(opp);
1599 if (!power)
1600 return false;
1601
1602 return true;
1603 }
1604
1605 /**
1606 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1607 * @dev : Device for which an Energy Model has to be registered
1608 * @cpus : CPUs for which an Energy Model has to be registered. For
1609 * other type of devices it should be set to NULL.
1610 *
1611 * This checks whether the "dynamic-power-coefficient" devicetree property has
1612 * been specified, and tries to register an Energy Model with it if it has.
1613 * Having this property means the voltages are known for OPPs and the EM
1614 * might be calculated.
1615 */
dev_pm_opp_of_register_em(struct device * dev,struct cpumask * cpus)1616 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1617 {
1618 struct em_data_callback em_cb;
1619 struct device_node *np;
1620 int ret, nr_opp;
1621 u32 cap;
1622
1623 if (IS_ERR_OR_NULL(dev)) {
1624 ret = -EINVAL;
1625 goto failed;
1626 }
1627
1628 nr_opp = dev_pm_opp_get_opp_count(dev);
1629 if (nr_opp <= 0) {
1630 ret = -EINVAL;
1631 goto failed;
1632 }
1633
1634 /* First, try to find more precised Energy Model in DT */
1635 if (_of_has_opp_microwatt_property(dev)) {
1636 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1637 goto register_em;
1638 }
1639
1640 np = of_node_get(dev->of_node);
1641 if (!np) {
1642 ret = -EINVAL;
1643 goto failed;
1644 }
1645
1646 /*
1647 * Register an EM only if the 'dynamic-power-coefficient' property is
1648 * set in devicetree. It is assumed the voltage values are known if that
1649 * property is set since it is useless otherwise. If voltages are not
1650 * known, just let the EM registration fail with an error to alert the
1651 * user about the inconsistent configuration.
1652 */
1653 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1654 of_node_put(np);
1655 if (ret || !cap) {
1656 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1657 ret = -EINVAL;
1658 goto failed;
1659 }
1660
1661 EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1662
1663 register_em:
1664 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1665 if (ret)
1666 goto failed;
1667
1668 return 0;
1669
1670 failed:
1671 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1672 return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1675