1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */ 25 static LIST_HEAD(lazy_opp_tables); 26 27 /* 28 * Returns opp descriptor node for a device node, caller must 29 * do of_node_put(). 30 */ 31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 32 int index) 33 { 34 /* "operating-points-v2" can be an array for power domain providers */ 35 return of_parse_phandle(np, "operating-points-v2", index); 36 } 37 38 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 40 { 41 return _opp_of_get_opp_desc_node(dev->of_node, 0); 42 } 43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 44 45 struct opp_table *_managed_opp(struct device *dev, int index) 46 { 47 struct opp_table *opp_table, *managed_table = NULL; 48 49 struct device_node *np __free(device_node) = 50 _opp_of_get_opp_desc_node(dev->of_node, index); 51 52 if (!np) 53 return NULL; 54 55 list_for_each_entry(opp_table, &opp_tables, node) { 56 if (opp_table->np == np) { 57 /* 58 * Multiple devices can point to the same OPP table and 59 * so will have same node-pointer, np. 60 * 61 * But the OPPs will be considered as shared only if the 62 * OPP table contains a "opp-shared" property. 63 */ 64 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) 65 managed_table = dev_pm_opp_get_opp_table_ref(opp_table); 66 67 break; 68 } 69 } 70 71 return managed_table; 72 } 73 74 /* The caller must call dev_pm_opp_put() after the OPP is used */ 75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 76 struct device_node *opp_np) 77 { 78 struct dev_pm_opp *opp; 79 80 guard(mutex)(&opp_table->lock); 81 82 list_for_each_entry(opp, &opp_table->opp_list, node) { 83 if (opp->np == opp_np) 84 return dev_pm_opp_get(opp); 85 } 86 87 return NULL; 88 } 89 90 static struct device_node *of_parse_required_opp(struct device_node *np, 91 int index) 92 { 93 return of_parse_phandle(np, "required-opps", index); 94 } 95 96 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 97 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 98 { 99 struct opp_table *opp_table; 100 101 struct device_node *opp_table_np __free(device_node) = 102 of_get_parent(opp_np); 103 104 if (!opp_table_np) 105 return ERR_PTR(-ENODEV); 106 107 guard(mutex)(&opp_table_lock); 108 109 list_for_each_entry(opp_table, &opp_tables, node) { 110 if (opp_table_np == opp_table->np) 111 return dev_pm_opp_get_opp_table_ref(opp_table); 112 } 113 114 return ERR_PTR(-ENODEV); 115 } 116 117 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 118 static void _opp_table_free_required_tables(struct opp_table *opp_table) 119 { 120 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 121 int i; 122 123 if (!required_opp_tables) 124 return; 125 126 for (i = 0; i < opp_table->required_opp_count; i++) { 127 if (IS_ERR_OR_NULL(required_opp_tables[i])) 128 continue; 129 130 dev_pm_opp_put_opp_table(required_opp_tables[i]); 131 } 132 133 kfree(required_opp_tables); 134 135 opp_table->required_opp_count = 0; 136 opp_table->required_opp_tables = NULL; 137 138 guard(mutex)(&opp_table_lock); 139 list_del(&opp_table->lazy); 140 } 141 142 /* 143 * Populate all devices and opp tables which are part of "required-opps" list. 144 * Checking only the first OPP node should be enough. 145 */ 146 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 147 struct device *dev, 148 struct device_node *opp_np) 149 { 150 struct opp_table **required_opp_tables; 151 bool lazy = false; 152 int count, i, size; 153 154 /* Traversing the first OPP node is all we need */ 155 struct device_node *np __free(device_node) = 156 of_get_next_available_child(opp_np, NULL); 157 158 if (!np) { 159 dev_warn(dev, "Empty OPP table\n"); 160 return; 161 } 162 163 count = of_count_phandle_with_args(np, "required-opps", NULL); 164 if (count <= 0) 165 return; 166 167 size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs); 168 required_opp_tables = kcalloc(count, size, GFP_KERNEL); 169 if (!required_opp_tables) 170 return; 171 172 opp_table->required_opp_tables = required_opp_tables; 173 opp_table->required_devs = (void *)(required_opp_tables + count); 174 opp_table->required_opp_count = count; 175 176 for (i = 0; i < count; i++) { 177 struct device_node *required_np __free(device_node) = 178 of_parse_required_opp(np, i); 179 180 if (!required_np) { 181 _opp_table_free_required_tables(opp_table); 182 return; 183 } 184 185 required_opp_tables[i] = _find_table_of_opp_np(required_np); 186 187 if (IS_ERR(required_opp_tables[i])) 188 lazy = true; 189 } 190 191 /* Let's do the linking later on */ 192 if (lazy) { 193 /* 194 * The OPP table is not held while allocating the table, take it 195 * now to avoid corruption to the lazy_opp_tables list. 196 */ 197 guard(mutex)(&opp_table_lock); 198 list_add(&opp_table->lazy, &lazy_opp_tables); 199 } 200 } 201 202 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 203 int index) 204 { 205 struct device_node *opp_np; 206 u32 val; 207 208 /* 209 * Only required for backward compatibility with v1 bindings, but isn't 210 * harmful for other cases. And so we do it unconditionally. 211 */ 212 struct device_node *np __free(device_node) = of_node_get(dev->of_node); 213 214 if (!np) 215 return; 216 217 if (!of_property_read_u32(np, "clock-latency", &val)) 218 opp_table->clock_latency_ns_max = val; 219 of_property_read_u32(np, "voltage-tolerance", 220 &opp_table->voltage_tolerance_v1); 221 222 if (of_property_present(np, "#power-domain-cells")) 223 opp_table->is_genpd = true; 224 225 /* Get OPP table node */ 226 opp_np = _opp_of_get_opp_desc_node(np, index); 227 if (!opp_np) 228 return; 229 230 if (of_property_read_bool(opp_np, "opp-shared")) 231 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 232 else 233 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 234 235 opp_table->np = opp_np; 236 237 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 238 } 239 240 void _of_clear_opp_table(struct opp_table *opp_table) 241 { 242 _opp_table_free_required_tables(opp_table); 243 of_node_put(opp_table->np); 244 } 245 246 /* 247 * Release all resources previously acquired with a call to 248 * _of_opp_alloc_required_opps(). 249 */ 250 static void _of_opp_free_required_opps(struct opp_table *opp_table, 251 struct dev_pm_opp *opp) 252 { 253 struct dev_pm_opp **required_opps = opp->required_opps; 254 int i; 255 256 if (!required_opps) 257 return; 258 259 for (i = 0; i < opp_table->required_opp_count; i++) { 260 if (!required_opps[i]) 261 continue; 262 263 /* Put the reference back */ 264 dev_pm_opp_put(required_opps[i]); 265 } 266 267 opp->required_opps = NULL; 268 kfree(required_opps); 269 } 270 271 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp) 272 { 273 _of_opp_free_required_opps(opp_table, opp); 274 of_node_put(opp->np); 275 } 276 277 static int _link_required_opps(struct dev_pm_opp *opp, 278 struct opp_table *required_table, int index) 279 { 280 struct device_node *np __free(device_node) = 281 of_parse_required_opp(opp->np, index); 282 283 if (unlikely(!np)) 284 return -ENODEV; 285 286 opp->required_opps[index] = _find_opp_of_np(required_table, np); 287 if (!opp->required_opps[index]) { 288 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 289 __func__, opp->np, index); 290 return -ENODEV; 291 } 292 293 return 0; 294 } 295 296 /* Populate all required OPPs which are part of "required-opps" list */ 297 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 298 struct dev_pm_opp *opp) 299 { 300 struct opp_table *required_table; 301 int i, ret, count = opp_table->required_opp_count; 302 303 if (!count) 304 return 0; 305 306 opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL); 307 if (!opp->required_opps) 308 return -ENOMEM; 309 310 for (i = 0; i < count; i++) { 311 required_table = opp_table->required_opp_tables[i]; 312 313 /* Required table not added yet, we will link later */ 314 if (IS_ERR_OR_NULL(required_table)) 315 continue; 316 317 ret = _link_required_opps(opp, required_table, i); 318 if (ret) 319 goto free_required_opps; 320 } 321 322 return 0; 323 324 free_required_opps: 325 _of_opp_free_required_opps(opp_table, opp); 326 327 return ret; 328 } 329 330 /* Link required OPPs for an individual OPP */ 331 static int lazy_link_required_opps(struct opp_table *opp_table, 332 struct opp_table *new_table, int index) 333 { 334 struct dev_pm_opp *opp; 335 int ret; 336 337 list_for_each_entry(opp, &opp_table->opp_list, node) { 338 ret = _link_required_opps(opp, new_table, index); 339 if (ret) 340 return ret; 341 } 342 343 return 0; 344 } 345 346 /* Link required OPPs for all OPPs of the newly added OPP table */ 347 static void lazy_link_required_opp_table(struct opp_table *new_table) 348 { 349 struct opp_table *opp_table, *temp, **required_opp_tables; 350 struct dev_pm_opp *opp; 351 int i, ret; 352 353 guard(mutex)(&opp_table_lock); 354 355 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 356 bool lazy = false; 357 358 /* opp_np can't be invalid here */ 359 struct device_node *opp_np __free(device_node) = 360 of_get_next_available_child(opp_table->np, NULL); 361 362 for (i = 0; i < opp_table->required_opp_count; i++) { 363 required_opp_tables = opp_table->required_opp_tables; 364 365 /* Required opp-table is already parsed */ 366 if (!IS_ERR(required_opp_tables[i])) 367 continue; 368 369 /* required_np can't be invalid here */ 370 struct device_node *required_np __free(device_node) = 371 of_parse_required_opp(opp_np, i); 372 struct device_node *required_table_np __free(device_node) = 373 of_get_parent(required_np); 374 375 /* 376 * Newly added table isn't the required opp-table for 377 * opp_table. 378 */ 379 if (required_table_np != new_table->np) { 380 lazy = true; 381 continue; 382 } 383 384 required_opp_tables[i] = dev_pm_opp_get_opp_table_ref(new_table); 385 386 /* Link OPPs now */ 387 ret = lazy_link_required_opps(opp_table, new_table, i); 388 if (ret) { 389 /* The OPPs will be marked unusable */ 390 lazy = false; 391 break; 392 } 393 } 394 395 /* All required opp-tables found, remove from lazy list */ 396 if (!lazy) { 397 list_del_init(&opp_table->lazy); 398 399 list_for_each_entry(opp, &opp_table->opp_list, node) 400 _required_opps_available(opp, opp_table->required_opp_count); 401 } 402 } 403 } 404 405 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 406 { 407 struct device_node *opp_np __free(device_node) = NULL; 408 struct property *prop; 409 410 if (!opp_table) { 411 struct device_node *np __free(device_node) = 412 of_node_get(dev->of_node); 413 414 if (!np) 415 return -ENODEV; 416 417 opp_np = _opp_of_get_opp_desc_node(np, 0); 418 } else { 419 opp_np = of_node_get(opp_table->np); 420 } 421 422 /* Lets not fail in case we are parsing opp-v1 bindings */ 423 if (!opp_np) 424 return 0; 425 426 /* Checking only first OPP is sufficient */ 427 struct device_node *np __free(device_node) = 428 of_get_next_available_child(opp_np, NULL); 429 430 if (!np) { 431 dev_err(dev, "OPP table empty\n"); 432 return -EINVAL; 433 } 434 435 prop = of_find_property(np, "opp-peak-kBps", NULL); 436 if (!prop || !prop->length) 437 return 0; 438 439 return 1; 440 } 441 442 int dev_pm_opp_of_find_icc_paths(struct device *dev, 443 struct opp_table *opp_table) 444 { 445 struct device_node *np __free(device_node) = of_node_get(dev->of_node); 446 int ret, i, count, num_paths; 447 struct icc_path **paths; 448 449 ret = _bandwidth_supported(dev, opp_table); 450 if (ret == -EINVAL) 451 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 452 else if (ret <= 0) 453 return ret; 454 455 if (!np) 456 return 0; 457 458 ret = 0; 459 460 count = of_count_phandle_with_args(np, "interconnects", 461 "#interconnect-cells"); 462 if (count < 0) 463 return 0; 464 465 /* two phandles when #interconnect-cells = <1> */ 466 if (count % 2) { 467 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 468 return -EINVAL; 469 } 470 471 num_paths = count / 2; 472 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 473 if (!paths) 474 return -ENOMEM; 475 476 for (i = 0; i < num_paths; i++) { 477 paths[i] = of_icc_get_by_index(dev, i); 478 if (IS_ERR(paths[i])) { 479 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i); 480 goto err; 481 } 482 } 483 484 if (opp_table) { 485 opp_table->paths = paths; 486 opp_table->path_count = num_paths; 487 return 0; 488 } 489 490 err: 491 while (i--) 492 icc_put(paths[i]); 493 494 kfree(paths); 495 496 return ret; 497 } 498 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 499 500 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 501 struct device_node *np) 502 { 503 unsigned int levels = opp_table->supported_hw_count; 504 int count, versions, ret, i, j; 505 u32 val; 506 507 if (!opp_table->supported_hw) { 508 /* 509 * In the case that no supported_hw has been set by the 510 * platform but there is an opp-supported-hw value set for 511 * an OPP then the OPP should not be enabled as there is 512 * no way to see if the hardware supports it. 513 */ 514 if (of_property_present(np, "opp-supported-hw")) 515 return false; 516 else 517 return true; 518 } 519 520 count = of_property_count_u32_elems(np, "opp-supported-hw"); 521 if (count <= 0 || count % levels) { 522 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 523 __func__, count); 524 return false; 525 } 526 527 versions = count / levels; 528 529 /* All levels in at least one of the versions should match */ 530 for (i = 0; i < versions; i++) { 531 bool supported = true; 532 533 for (j = 0; j < levels; j++) { 534 ret = of_property_read_u32_index(np, "opp-supported-hw", 535 i * levels + j, &val); 536 if (ret) { 537 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 538 __func__, i * levels + j, ret); 539 return false; 540 } 541 542 /* Check if the level is supported */ 543 if (!(val & opp_table->supported_hw[j])) { 544 supported = false; 545 break; 546 } 547 } 548 549 if (supported) 550 return true; 551 } 552 553 return false; 554 } 555 556 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev, 557 struct opp_table *opp_table, 558 const char *prop_type, bool *triplet) 559 { 560 struct property *prop = NULL; 561 char name[NAME_MAX]; 562 int count, ret; 563 u32 *out; 564 565 /* Search for "opp-<prop_type>-<name>" */ 566 if (opp_table->prop_name) { 567 snprintf(name, sizeof(name), "opp-%s-%s", prop_type, 568 opp_table->prop_name); 569 prop = of_find_property(opp->np, name, NULL); 570 } 571 572 if (!prop) { 573 /* Search for "opp-<prop_type>" */ 574 snprintf(name, sizeof(name), "opp-%s", prop_type); 575 prop = of_find_property(opp->np, name, NULL); 576 if (!prop) 577 return NULL; 578 } 579 580 count = of_property_count_u32_elems(opp->np, name); 581 if (count < 0) { 582 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name, 583 count); 584 return ERR_PTR(count); 585 } 586 587 /* 588 * Initialize regulator_count, if regulator information isn't provided 589 * by the platform. Now that one of the properties is available, fix the 590 * regulator_count to 1. 591 */ 592 if (unlikely(opp_table->regulator_count == -1)) 593 opp_table->regulator_count = 1; 594 595 if (count != opp_table->regulator_count && 596 (!triplet || count != opp_table->regulator_count * 3)) { 597 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n", 598 __func__, prop_type, count, opp_table->regulator_count); 599 return ERR_PTR(-EINVAL); 600 } 601 602 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL); 603 if (!out) 604 return ERR_PTR(-EINVAL); 605 606 ret = of_property_read_u32_array(opp->np, name, out, count); 607 if (ret) { 608 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 609 kfree(out); 610 return ERR_PTR(-EINVAL); 611 } 612 613 if (triplet) 614 *triplet = count != opp_table->regulator_count; 615 616 return out; 617 } 618 619 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev, 620 struct opp_table *opp_table, bool *triplet) 621 { 622 u32 *microvolt; 623 624 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet); 625 if (IS_ERR(microvolt)) 626 return microvolt; 627 628 if (!microvolt) { 629 /* 630 * Missing property isn't a problem, but an invalid 631 * entry is. This property isn't optional if regulator 632 * information is provided. Check only for the first OPP, as 633 * regulator_count may get initialized after that to a valid 634 * value. 635 */ 636 if (list_empty(&opp_table->opp_list) && 637 opp_table->regulator_count > 0) { 638 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 639 __func__); 640 return ERR_PTR(-EINVAL); 641 } 642 } 643 644 return microvolt; 645 } 646 647 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 648 struct opp_table *opp_table) 649 { 650 u32 *microvolt, *microamp, *microwatt; 651 int ret = 0, i, j; 652 bool triplet; 653 654 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet); 655 if (IS_ERR(microvolt)) 656 return PTR_ERR(microvolt); 657 658 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL); 659 if (IS_ERR(microamp)) { 660 ret = PTR_ERR(microamp); 661 goto free_microvolt; 662 } 663 664 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL); 665 if (IS_ERR(microwatt)) { 666 ret = PTR_ERR(microwatt); 667 goto free_microamp; 668 } 669 670 /* 671 * Initialize regulator_count if it is uninitialized and no properties 672 * are found. 673 */ 674 if (unlikely(opp_table->regulator_count == -1)) { 675 opp_table->regulator_count = 0; 676 return 0; 677 } 678 679 for (i = 0, j = 0; i < opp_table->regulator_count; i++) { 680 if (microvolt) { 681 opp->supplies[i].u_volt = microvolt[j++]; 682 683 if (triplet) { 684 opp->supplies[i].u_volt_min = microvolt[j++]; 685 opp->supplies[i].u_volt_max = microvolt[j++]; 686 } else { 687 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 688 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 689 } 690 } 691 692 if (microamp) 693 opp->supplies[i].u_amp = microamp[i]; 694 695 if (microwatt) 696 opp->supplies[i].u_watt = microwatt[i]; 697 } 698 699 kfree(microwatt); 700 free_microamp: 701 kfree(microamp); 702 free_microvolt: 703 kfree(microvolt); 704 705 return ret; 706 } 707 708 /** 709 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 710 * entries 711 * @dev: device pointer used to lookup OPP table. 712 * 713 * Free OPPs created using static entries present in DT. 714 */ 715 void dev_pm_opp_of_remove_table(struct device *dev) 716 { 717 dev_pm_opp_remove_table(dev); 718 } 719 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 720 721 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 722 struct device_node *np) 723 { 724 struct property *prop; 725 int i, count, ret; 726 u64 *rates; 727 728 prop = of_find_property(np, "opp-hz", NULL); 729 if (!prop) 730 return -ENODEV; 731 732 count = prop->length / sizeof(u64); 733 if (opp_table->clk_count != count) { 734 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n", 735 __func__, count, opp_table->clk_count); 736 return -EINVAL; 737 } 738 739 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL); 740 if (!rates) 741 return -ENOMEM; 742 743 ret = of_property_read_u64_array(np, "opp-hz", rates, count); 744 if (ret) { 745 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret); 746 } else { 747 /* 748 * Rate is defined as an unsigned long in clk API, and so 749 * casting explicitly to its type. Must be fixed once rate is 64 750 * bit guaranteed in clk API. 751 */ 752 for (i = 0; i < count; i++) { 753 new_opp->rates[i] = (unsigned long)rates[i]; 754 755 /* This will happen for frequencies > 4.29 GHz */ 756 WARN_ON(new_opp->rates[i] != rates[i]); 757 } 758 } 759 760 kfree(rates); 761 762 return ret; 763 } 764 765 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 766 struct device_node *np, bool peak) 767 { 768 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 769 struct property *prop; 770 int i, count, ret; 771 u32 *bw; 772 773 prop = of_find_property(np, name, NULL); 774 if (!prop) 775 return -ENODEV; 776 777 count = prop->length / sizeof(u32); 778 if (opp_table->path_count != count) { 779 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 780 __func__, name, count, opp_table->path_count); 781 return -EINVAL; 782 } 783 784 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 785 if (!bw) 786 return -ENOMEM; 787 788 ret = of_property_read_u32_array(np, name, bw, count); 789 if (ret) { 790 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 791 goto out; 792 } 793 794 for (i = 0; i < count; i++) { 795 if (peak) 796 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 797 else 798 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 799 } 800 801 out: 802 kfree(bw); 803 return ret; 804 } 805 806 static int _read_opp_key(struct dev_pm_opp *new_opp, 807 struct opp_table *opp_table, struct device_node *np) 808 { 809 bool found = false; 810 int ret; 811 812 ret = _read_rate(new_opp, opp_table, np); 813 if (!ret) 814 found = true; 815 else if (ret != -ENODEV) 816 return ret; 817 818 /* 819 * Bandwidth consists of peak and average (optional) values: 820 * opp-peak-kBps = <path1_value path2_value>; 821 * opp-avg-kBps = <path1_value path2_value>; 822 */ 823 ret = _read_bw(new_opp, opp_table, np, true); 824 if (!ret) { 825 found = true; 826 ret = _read_bw(new_opp, opp_table, np, false); 827 } 828 829 /* The properties were found but we failed to parse them */ 830 if (ret && ret != -ENODEV) 831 return ret; 832 833 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 834 found = true; 835 836 if (found) 837 return 0; 838 839 return ret; 840 } 841 842 /** 843 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 844 * @opp_table: OPP table 845 * @dev: device for which we do this operation 846 * @np: device node 847 * 848 * This function adds an opp definition to the opp table and returns status. The 849 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 850 * removed by dev_pm_opp_remove. 851 * 852 * Return: 853 * Valid OPP pointer: 854 * On success 855 * NULL: 856 * Duplicate OPPs (both freq and volt are same) and opp->available 857 * OR if the OPP is not supported by hardware. 858 * ERR_PTR(-EEXIST): 859 * Freq are same and volt are different OR 860 * Duplicate OPPs (both freq and volt are same) and !opp->available 861 * ERR_PTR(-ENOMEM): 862 * Memory allocation failure 863 * ERR_PTR(-EINVAL): 864 * Failed parsing the OPP node 865 */ 866 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 867 struct device *dev, struct device_node *np) 868 { 869 struct dev_pm_opp *new_opp; 870 u32 val; 871 int ret; 872 873 new_opp = _opp_allocate(opp_table); 874 if (!new_opp) 875 return ERR_PTR(-ENOMEM); 876 877 ret = _read_opp_key(new_opp, opp_table, np); 878 if (ret < 0) { 879 dev_err(dev, "%s: opp key field not found\n", __func__); 880 goto free_opp; 881 } 882 883 /* Check if the OPP supports hardware's hierarchy of versions or not */ 884 if (!_opp_is_supported(dev, opp_table, np)) { 885 dev_dbg(dev, "OPP not supported by hardware: %s\n", 886 of_node_full_name(np)); 887 goto free_opp; 888 } 889 890 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 891 892 new_opp->np = of_node_get(np); 893 new_opp->dynamic = false; 894 new_opp->available = true; 895 896 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 897 if (ret) 898 goto put_node; 899 900 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 901 new_opp->clock_latency_ns = val; 902 903 ret = opp_parse_supplies(new_opp, dev, opp_table); 904 if (ret) 905 goto free_required_opps; 906 907 ret = _opp_add(dev, new_opp, opp_table); 908 if (ret) { 909 /* Don't return error for duplicate OPPs */ 910 if (ret == -EBUSY) 911 ret = 0; 912 goto free_required_opps; 913 } 914 915 /* OPP to select on device suspend */ 916 if (of_property_read_bool(np, "opp-suspend")) { 917 if (opp_table->suspend_opp) { 918 /* Pick the OPP with higher rate/bw/level as suspend OPP */ 919 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) { 920 opp_table->suspend_opp->suspend = false; 921 new_opp->suspend = true; 922 opp_table->suspend_opp = new_opp; 923 } 924 } else { 925 new_opp->suspend = true; 926 opp_table->suspend_opp = new_opp; 927 } 928 } 929 930 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 931 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 932 933 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 934 __func__, new_opp->turbo, new_opp->rates[0], 935 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 936 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 937 new_opp->level); 938 939 /* 940 * Notify the changes in the availability of the operable 941 * frequency/voltage list. 942 */ 943 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 944 return new_opp; 945 946 free_required_opps: 947 _of_opp_free_required_opps(opp_table, new_opp); 948 put_node: 949 of_node_put(np); 950 free_opp: 951 _opp_free(new_opp); 952 953 return ret ? ERR_PTR(ret) : NULL; 954 } 955 956 /* Initializes OPP tables based on new bindings */ 957 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 958 { 959 struct device_node *np; 960 int ret, count = 0; 961 struct dev_pm_opp *opp; 962 963 /* OPP table is already initialized for the device */ 964 scoped_guard(mutex, &opp_table->lock) { 965 if (opp_table->parsed_static_opps) { 966 opp_table->parsed_static_opps++; 967 return 0; 968 } 969 970 opp_table->parsed_static_opps = 1; 971 } 972 973 /* We have opp-table node now, iterate over it and add OPPs */ 974 for_each_available_child_of_node(opp_table->np, np) { 975 opp = _opp_add_static_v2(opp_table, dev, np); 976 if (IS_ERR(opp)) { 977 ret = PTR_ERR(opp); 978 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 979 ret); 980 of_node_put(np); 981 goto remove_static_opp; 982 } else if (opp) { 983 count++; 984 } 985 } 986 987 /* There should be one or more OPPs defined */ 988 if (!count) { 989 dev_err(dev, "%s: no supported OPPs", __func__); 990 ret = -ENOENT; 991 goto remove_static_opp; 992 } 993 994 lazy_link_required_opp_table(opp_table); 995 996 return 0; 997 998 remove_static_opp: 999 _opp_remove_all_static(opp_table); 1000 1001 return ret; 1002 } 1003 1004 /* Initializes OPP tables based on old-deprecated bindings */ 1005 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 1006 { 1007 const struct property *prop; 1008 const __be32 *val; 1009 int nr, ret = 0; 1010 1011 scoped_guard(mutex, &opp_table->lock) { 1012 if (opp_table->parsed_static_opps) { 1013 opp_table->parsed_static_opps++; 1014 return 0; 1015 } 1016 1017 opp_table->parsed_static_opps = 1; 1018 } 1019 1020 prop = of_find_property(dev->of_node, "operating-points", NULL); 1021 if (!prop) { 1022 ret = -ENODEV; 1023 goto remove_static_opp; 1024 } 1025 if (!prop->value) { 1026 ret = -ENODATA; 1027 goto remove_static_opp; 1028 } 1029 1030 /* 1031 * Each OPP is a set of tuples consisting of frequency and 1032 * voltage like <freq-kHz vol-uV>. 1033 */ 1034 nr = prop->length / sizeof(u32); 1035 if (nr % 2) { 1036 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1037 ret = -EINVAL; 1038 goto remove_static_opp; 1039 } 1040 1041 val = prop->value; 1042 while (nr) { 1043 unsigned long freq = be32_to_cpup(val++) * 1000; 1044 unsigned long volt = be32_to_cpup(val++); 1045 struct dev_pm_opp_data data = { 1046 .freq = freq, 1047 .u_volt = volt, 1048 }; 1049 1050 ret = _opp_add_v1(opp_table, dev, &data, false); 1051 if (ret) { 1052 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1053 __func__, data.freq, ret); 1054 goto remove_static_opp; 1055 } 1056 nr -= 2; 1057 } 1058 1059 return 0; 1060 1061 remove_static_opp: 1062 _opp_remove_all_static(opp_table); 1063 1064 return ret; 1065 } 1066 1067 static int _of_add_table_indexed(struct device *dev, int index) 1068 { 1069 struct opp_table *opp_table; 1070 int ret, count; 1071 1072 if (index) { 1073 /* 1074 * If only one phandle is present, then the same OPP table 1075 * applies for all index requests. 1076 */ 1077 count = of_count_phandle_with_args(dev->of_node, 1078 "operating-points-v2", NULL); 1079 if (count == 1) 1080 index = 0; 1081 } 1082 1083 opp_table = _add_opp_table_indexed(dev, index, true); 1084 if (IS_ERR(opp_table)) 1085 return PTR_ERR(opp_table); 1086 1087 /* 1088 * OPPs have two version of bindings now. Also try the old (v1) 1089 * bindings for backward compatibility with older dtbs. 1090 */ 1091 if (opp_table->np) 1092 ret = _of_add_opp_table_v2(dev, opp_table); 1093 else 1094 ret = _of_add_opp_table_v1(dev, opp_table); 1095 1096 if (ret) 1097 dev_pm_opp_put_opp_table(opp_table); 1098 1099 return ret; 1100 } 1101 1102 static void devm_pm_opp_of_table_release(void *data) 1103 { 1104 dev_pm_opp_of_remove_table(data); 1105 } 1106 1107 static int _devm_of_add_table_indexed(struct device *dev, int index) 1108 { 1109 int ret; 1110 1111 ret = _of_add_table_indexed(dev, index); 1112 if (ret) 1113 return ret; 1114 1115 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); 1116 } 1117 1118 /** 1119 * devm_pm_opp_of_add_table() - Initialize opp table from device tree 1120 * @dev: device pointer used to lookup OPP table. 1121 * 1122 * Register the initial OPP table with the OPP library for given device. 1123 * 1124 * The opp_table structure will be freed after the device is destroyed. 1125 * 1126 * Return: 1127 * 0 On success OR 1128 * Duplicate OPPs (both freq and volt are same) and opp->available 1129 * -EEXIST Freq are same and volt are different OR 1130 * Duplicate OPPs (both freq and volt are same) and !opp->available 1131 * -ENOMEM Memory allocation failure 1132 * -ENODEV when 'operating-points' property is not found or is invalid data 1133 * in device node. 1134 * -ENODATA when empty 'operating-points' property is found 1135 * -EINVAL when invalid entries are found in opp-v2 table 1136 */ 1137 int devm_pm_opp_of_add_table(struct device *dev) 1138 { 1139 return _devm_of_add_table_indexed(dev, 0); 1140 } 1141 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); 1142 1143 /** 1144 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1145 * @dev: device pointer used to lookup OPP table. 1146 * 1147 * Register the initial OPP table with the OPP library for given device. 1148 * 1149 * Return: 1150 * 0 On success OR 1151 * Duplicate OPPs (both freq and volt are same) and opp->available 1152 * -EEXIST Freq are same and volt are different OR 1153 * Duplicate OPPs (both freq and volt are same) and !opp->available 1154 * -ENOMEM Memory allocation failure 1155 * -ENODEV when 'operating-points' property is not found or is invalid data 1156 * in device node. 1157 * -ENODATA when empty 'operating-points' property is found 1158 * -EINVAL when invalid entries are found in opp-v2 table 1159 */ 1160 int dev_pm_opp_of_add_table(struct device *dev) 1161 { 1162 return _of_add_table_indexed(dev, 0); 1163 } 1164 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1165 1166 /** 1167 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1168 * @dev: device pointer used to lookup OPP table. 1169 * @index: Index number. 1170 * 1171 * Register the initial OPP table with the OPP library for given device only 1172 * using the "operating-points-v2" property. 1173 * 1174 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1175 */ 1176 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1177 { 1178 return _of_add_table_indexed(dev, index); 1179 } 1180 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1181 1182 /** 1183 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1184 * @dev: device pointer used to lookup OPP table. 1185 * @index: Index number. 1186 * 1187 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). 1188 */ 1189 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) 1190 { 1191 return _devm_of_add_table_indexed(dev, index); 1192 } 1193 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); 1194 1195 /* CPU device specific helpers */ 1196 1197 /** 1198 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1199 * @cpumask: cpumask for which OPP table needs to be removed 1200 * 1201 * This removes the OPP tables for CPUs present in the @cpumask. 1202 * This should be used only to remove static entries created from DT. 1203 */ 1204 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1205 { 1206 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1207 } 1208 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1209 1210 /** 1211 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1212 * @cpumask: cpumask for which OPP table needs to be added. 1213 * 1214 * This adds the OPP tables for CPUs present in the @cpumask. 1215 */ 1216 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1217 { 1218 struct device *cpu_dev; 1219 int cpu, ret; 1220 1221 if (WARN_ON(cpumask_empty(cpumask))) 1222 return -ENODEV; 1223 1224 for_each_cpu(cpu, cpumask) { 1225 cpu_dev = get_cpu_device(cpu); 1226 if (!cpu_dev) { 1227 pr_err("%s: failed to get cpu%d device\n", __func__, 1228 cpu); 1229 ret = -ENODEV; 1230 goto remove_table; 1231 } 1232 1233 ret = dev_pm_opp_of_add_table(cpu_dev); 1234 if (ret) { 1235 /* 1236 * OPP may get registered dynamically, don't print error 1237 * message here. 1238 */ 1239 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1240 __func__, cpu, ret); 1241 1242 goto remove_table; 1243 } 1244 } 1245 1246 return 0; 1247 1248 remove_table: 1249 /* Free all other OPPs */ 1250 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1251 1252 return ret; 1253 } 1254 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1255 1256 /* 1257 * Works only for OPP v2 bindings. 1258 * 1259 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1260 */ 1261 /** 1262 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1263 * @cpu_dev using operating-points-v2 1264 * bindings. 1265 * 1266 * @cpu_dev: CPU device for which we do this operation 1267 * @cpumask: cpumask to update with information of sharing CPUs 1268 * 1269 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1270 * 1271 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1272 */ 1273 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1274 struct cpumask *cpumask) 1275 { 1276 int cpu; 1277 1278 /* Get OPP descriptor node */ 1279 struct device_node *np __free(device_node) = 1280 dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1281 1282 if (!np) { 1283 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1284 return -ENOENT; 1285 } 1286 1287 cpumask_set_cpu(cpu_dev->id, cpumask); 1288 1289 /* OPPs are shared ? */ 1290 if (!of_property_read_bool(np, "opp-shared")) 1291 return 0; 1292 1293 for_each_possible_cpu(cpu) { 1294 if (cpu == cpu_dev->id) 1295 continue; 1296 1297 struct device_node *cpu_np __free(device_node) = 1298 of_cpu_device_node_get(cpu); 1299 1300 if (!cpu_np) { 1301 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1302 __func__, cpu); 1303 return -ENOENT; 1304 } 1305 1306 /* Get OPP descriptor node */ 1307 struct device_node *tmp_np __free(device_node) = 1308 _opp_of_get_opp_desc_node(cpu_np, 0); 1309 1310 if (!tmp_np) { 1311 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1312 return -ENOENT; 1313 } 1314 1315 /* CPUs are sharing opp node */ 1316 if (np == tmp_np) 1317 cpumask_set_cpu(cpu, cpumask); 1318 } 1319 1320 return 0; 1321 } 1322 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1323 1324 /** 1325 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1326 * @np: Node that contains the "required-opps" property. 1327 * @index: Index of the phandle to parse. 1328 * 1329 * Returns the performance state of the OPP pointed out by the "required-opps" 1330 * property at @index in @np. 1331 * 1332 * Return: Zero or positive performance state on success, otherwise negative 1333 * value on errors. 1334 */ 1335 int of_get_required_opp_performance_state(struct device_node *np, int index) 1336 { 1337 int pstate = -EINVAL; 1338 1339 struct device_node *required_np __free(device_node) = 1340 of_parse_required_opp(np, index); 1341 1342 if (!required_np) 1343 return -ENODEV; 1344 1345 struct opp_table *opp_table __free(put_opp_table) = 1346 _find_table_of_opp_np(required_np); 1347 1348 if (IS_ERR(opp_table)) { 1349 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1350 __func__, np, PTR_ERR(opp_table)); 1351 return PTR_ERR(opp_table); 1352 } 1353 1354 /* The OPP tables must belong to a genpd */ 1355 if (unlikely(!opp_table->is_genpd)) { 1356 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 1357 return -EINVAL; 1358 } 1359 1360 struct dev_pm_opp *opp __free(put_opp) = 1361 _find_opp_of_np(opp_table, required_np); 1362 1363 if (opp) { 1364 if (opp->level == OPP_LEVEL_UNSET) { 1365 pr_err("%s: OPP levels aren't available for %pOF\n", 1366 __func__, np); 1367 } else { 1368 pstate = opp->level; 1369 } 1370 } 1371 1372 return pstate; 1373 } 1374 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1375 1376 /** 1377 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists. 1378 * @dev: The device to investigate. 1379 * 1380 * Returns true if the device's node has a "operating-points-v2" property and if 1381 * the corresponding node for the opp-table describes opp nodes that uses the 1382 * "required-opps" property. 1383 * 1384 * Return: True if a required-opps is present, else false. 1385 */ 1386 bool dev_pm_opp_of_has_required_opp(struct device *dev) 1387 { 1388 int count; 1389 1390 struct device_node *opp_np __free(device_node) = 1391 _opp_of_get_opp_desc_node(dev->of_node, 0); 1392 1393 if (!opp_np) 1394 return false; 1395 1396 struct device_node *np __free(device_node) = 1397 of_get_next_available_child(opp_np, NULL); 1398 1399 if (!np) { 1400 dev_warn(dev, "Empty OPP table\n"); 1401 return false; 1402 } 1403 1404 count = of_count_phandle_with_args(np, "required-opps", NULL); 1405 1406 return count > 0; 1407 } 1408 1409 /** 1410 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1411 * @opp: opp for which DT node has to be returned for 1412 * 1413 * Return: DT node corresponding to the opp, else 0 on success. 1414 * 1415 * The caller needs to put the node with of_node_put() after using it. 1416 */ 1417 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1418 { 1419 if (IS_ERR_OR_NULL(opp)) { 1420 pr_err("%s: Invalid parameters\n", __func__); 1421 return NULL; 1422 } 1423 1424 return of_node_get(opp->np); 1425 } 1426 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1427 1428 /* 1429 * Callback function provided to the Energy Model framework upon registration. 1430 * It provides the power used by @dev at @kHz if it is the frequency of an 1431 * existing OPP, or at the frequency of the first OPP above @kHz otherwise 1432 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1433 * frequency and @uW to the associated power. 1434 * 1435 * Returns 0 on success or a proper -EINVAL value in case of error. 1436 */ 1437 static int __maybe_unused 1438 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz) 1439 { 1440 unsigned long opp_freq, opp_power; 1441 1442 /* Find the right frequency and related OPP */ 1443 opp_freq = *kHz * 1000; 1444 1445 struct dev_pm_opp *opp __free(put_opp) = 1446 dev_pm_opp_find_freq_ceil(dev, &opp_freq); 1447 1448 if (IS_ERR(opp)) 1449 return -EINVAL; 1450 1451 opp_power = dev_pm_opp_get_power(opp); 1452 if (!opp_power) 1453 return -EINVAL; 1454 1455 *kHz = opp_freq / 1000; 1456 *uW = opp_power; 1457 1458 return 0; 1459 } 1460 1461 /** 1462 * dev_pm_opp_calc_power() - Calculate power value for device with EM 1463 * @dev : Device for which an Energy Model has to be registered 1464 * @uW : New power value that is calculated 1465 * @kHz : Frequency for which the new power is calculated 1466 * 1467 * This computes the power estimated by @dev at @kHz if it is the frequency 1468 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1469 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1470 * frequency and @uW to the associated power. The power is estimated as 1471 * P = C * V^2 * f with C being the device's capacitance and V and f 1472 * respectively the voltage and frequency of the OPP. 1473 * It is also used as a callback function provided to the Energy Model 1474 * framework upon registration. 1475 * 1476 * Returns -EINVAL if the power calculation failed because of missing 1477 * parameters, 0 otherwise. 1478 */ 1479 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW, 1480 unsigned long *kHz) 1481 { 1482 unsigned long mV, Hz; 1483 u32 cap; 1484 u64 tmp; 1485 int ret; 1486 1487 struct device_node *np __free(device_node) = of_node_get(dev->of_node); 1488 1489 if (!np) 1490 return -EINVAL; 1491 1492 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1493 if (ret) 1494 return -EINVAL; 1495 1496 Hz = *kHz * 1000; 1497 1498 struct dev_pm_opp *opp __free(put_opp) = 1499 dev_pm_opp_find_freq_ceil(dev, &Hz); 1500 1501 if (IS_ERR(opp)) 1502 return -EINVAL; 1503 1504 mV = dev_pm_opp_get_voltage(opp) / 1000; 1505 if (!mV) 1506 return -EINVAL; 1507 1508 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1509 /* Provide power in micro-Watts */ 1510 do_div(tmp, 1000000); 1511 1512 *uW = (unsigned long)tmp; 1513 *kHz = Hz / 1000; 1514 1515 return 0; 1516 } 1517 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power); 1518 1519 static bool _of_has_opp_microwatt_property(struct device *dev) 1520 { 1521 unsigned long freq = 0; 1522 1523 /* Check if at least one OPP has needed property */ 1524 struct dev_pm_opp *opp __free(put_opp) = 1525 dev_pm_opp_find_freq_ceil(dev, &freq); 1526 1527 if (IS_ERR(opp)) 1528 return false; 1529 1530 return !!dev_pm_opp_get_power(opp); 1531 } 1532 1533 /** 1534 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1535 * @dev : Device for which an Energy Model has to be registered 1536 * @cpus : CPUs for which an Energy Model has to be registered. For 1537 * other type of devices it should be set to NULL. 1538 * 1539 * This checks whether the "dynamic-power-coefficient" devicetree property has 1540 * been specified, and tries to register an Energy Model with it if it has. 1541 * Having this property means the voltages are known for OPPs and the EM 1542 * might be calculated. 1543 */ 1544 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1545 { 1546 struct em_data_callback em_cb; 1547 int ret, nr_opp; 1548 u32 cap; 1549 1550 if (IS_ERR_OR_NULL(dev)) 1551 return -EINVAL; 1552 1553 struct device_node *np __free(device_node) = of_node_get(dev->of_node); 1554 1555 if (!np) { 1556 ret = -EINVAL; 1557 goto failed; 1558 } 1559 1560 nr_opp = dev_pm_opp_get_opp_count(dev); 1561 if (nr_opp <= 0) { 1562 ret = -EINVAL; 1563 goto failed; 1564 } 1565 1566 /* First, try to find more precised Energy Model in DT */ 1567 if (_of_has_opp_microwatt_property(dev)) { 1568 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); 1569 goto register_em; 1570 } 1571 1572 /* 1573 * Register an EM only if the 'dynamic-power-coefficient' property is 1574 * set in devicetree. It is assumed the voltage values are known if that 1575 * property is set since it is useless otherwise. If voltages are not 1576 * known, just let the EM registration fail with an error to alert the 1577 * user about the inconsistent configuration. 1578 */ 1579 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1580 if (ret || !cap) { 1581 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1582 ret = -EINVAL; 1583 goto failed; 1584 } 1585 1586 EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power); 1587 1588 register_em: 1589 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1590 if (ret) 1591 goto failed; 1592 1593 return 0; 1594 1595 failed: 1596 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1597 return ret; 1598 } 1599 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1600