1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */ 25 static LIST_HEAD(lazy_opp_tables); 26 27 /* 28 * Returns opp descriptor node for a device node, caller must 29 * do of_node_put(). 30 */ 31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 32 int index) 33 { 34 /* "operating-points-v2" can be an array for power domain providers */ 35 return of_parse_phandle(np, "operating-points-v2", index); 36 } 37 38 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 40 { 41 return _opp_of_get_opp_desc_node(dev->of_node, 0); 42 } 43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 44 45 struct opp_table *_managed_opp(struct device *dev, int index) 46 { 47 struct opp_table *opp_table, *managed_table = NULL; 48 struct device_node *np; 49 50 np = _opp_of_get_opp_desc_node(dev->of_node, index); 51 if (!np) 52 return NULL; 53 54 list_for_each_entry(opp_table, &opp_tables, node) { 55 if (opp_table->np == np) { 56 /* 57 * Multiple devices can point to the same OPP table and 58 * so will have same node-pointer, np. 59 * 60 * But the OPPs will be considered as shared only if the 61 * OPP table contains a "opp-shared" property. 62 */ 63 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { 64 _get_opp_table_kref(opp_table); 65 managed_table = opp_table; 66 } 67 68 break; 69 } 70 } 71 72 of_node_put(np); 73 74 return managed_table; 75 } 76 77 /* The caller must call dev_pm_opp_put() after the OPP is used */ 78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 79 struct device_node *opp_np) 80 { 81 struct dev_pm_opp *opp; 82 83 mutex_lock(&opp_table->lock); 84 85 list_for_each_entry(opp, &opp_table->opp_list, node) { 86 if (opp->np == opp_np) { 87 dev_pm_opp_get(opp); 88 mutex_unlock(&opp_table->lock); 89 return opp; 90 } 91 } 92 93 mutex_unlock(&opp_table->lock); 94 95 return NULL; 96 } 97 98 static struct device_node *of_parse_required_opp(struct device_node *np, 99 int index) 100 { 101 return of_parse_phandle(np, "required-opps", index); 102 } 103 104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 106 { 107 struct opp_table *opp_table; 108 struct device_node *opp_table_np; 109 110 opp_table_np = of_get_parent(opp_np); 111 if (!opp_table_np) 112 goto err; 113 114 /* It is safe to put the node now as all we need now is its address */ 115 of_node_put(opp_table_np); 116 117 mutex_lock(&opp_table_lock); 118 list_for_each_entry(opp_table, &opp_tables, node) { 119 if (opp_table_np == opp_table->np) { 120 _get_opp_table_kref(opp_table); 121 mutex_unlock(&opp_table_lock); 122 return opp_table; 123 } 124 } 125 mutex_unlock(&opp_table_lock); 126 127 err: 128 return ERR_PTR(-ENODEV); 129 } 130 131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 132 static void _opp_table_free_required_tables(struct opp_table *opp_table) 133 { 134 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 135 int i; 136 137 if (!required_opp_tables) 138 return; 139 140 for (i = 0; i < opp_table->required_opp_count; i++) { 141 if (IS_ERR_OR_NULL(required_opp_tables[i])) 142 continue; 143 144 dev_pm_opp_put_opp_table(required_opp_tables[i]); 145 } 146 147 kfree(required_opp_tables); 148 149 opp_table->required_opp_count = 0; 150 opp_table->required_opp_tables = NULL; 151 152 mutex_lock(&opp_table_lock); 153 list_del(&opp_table->lazy); 154 mutex_unlock(&opp_table_lock); 155 } 156 157 /* 158 * Populate all devices and opp tables which are part of "required-opps" list. 159 * Checking only the first OPP node should be enough. 160 */ 161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 162 struct device *dev, 163 struct device_node *opp_np) 164 { 165 struct opp_table **required_opp_tables; 166 struct device_node *required_np, *np; 167 bool lazy = false; 168 int count, i, size; 169 170 /* Traversing the first OPP node is all we need */ 171 np = of_get_next_available_child(opp_np, NULL); 172 if (!np) { 173 dev_warn(dev, "Empty OPP table\n"); 174 175 return; 176 } 177 178 count = of_count_phandle_with_args(np, "required-opps", NULL); 179 if (count <= 0) 180 goto put_np; 181 182 size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs); 183 required_opp_tables = kcalloc(count, size, GFP_KERNEL); 184 if (!required_opp_tables) 185 goto put_np; 186 187 opp_table->required_opp_tables = required_opp_tables; 188 opp_table->required_devs = (void *)(required_opp_tables + count); 189 opp_table->required_opp_count = count; 190 191 for (i = 0; i < count; i++) { 192 required_np = of_parse_required_opp(np, i); 193 if (!required_np) 194 goto free_required_tables; 195 196 required_opp_tables[i] = _find_table_of_opp_np(required_np); 197 of_node_put(required_np); 198 199 if (IS_ERR(required_opp_tables[i])) 200 lazy = true; 201 } 202 203 /* Let's do the linking later on */ 204 if (lazy) { 205 /* 206 * The OPP table is not held while allocating the table, take it 207 * now to avoid corruption to the lazy_opp_tables list. 208 */ 209 mutex_lock(&opp_table_lock); 210 list_add(&opp_table->lazy, &lazy_opp_tables); 211 mutex_unlock(&opp_table_lock); 212 } 213 214 goto put_np; 215 216 free_required_tables: 217 _opp_table_free_required_tables(opp_table); 218 put_np: 219 of_node_put(np); 220 } 221 222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 223 int index) 224 { 225 struct device_node *np, *opp_np; 226 u32 val; 227 228 /* 229 * Only required for backward compatibility with v1 bindings, but isn't 230 * harmful for other cases. And so we do it unconditionally. 231 */ 232 np = of_node_get(dev->of_node); 233 if (!np) 234 return; 235 236 if (!of_property_read_u32(np, "clock-latency", &val)) 237 opp_table->clock_latency_ns_max = val; 238 of_property_read_u32(np, "voltage-tolerance", 239 &opp_table->voltage_tolerance_v1); 240 241 if (of_property_present(np, "#power-domain-cells")) 242 opp_table->is_genpd = true; 243 244 /* Get OPP table node */ 245 opp_np = _opp_of_get_opp_desc_node(np, index); 246 of_node_put(np); 247 248 if (!opp_np) 249 return; 250 251 if (of_property_read_bool(opp_np, "opp-shared")) 252 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 253 else 254 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 255 256 opp_table->np = opp_np; 257 258 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 259 } 260 261 void _of_clear_opp_table(struct opp_table *opp_table) 262 { 263 _opp_table_free_required_tables(opp_table); 264 of_node_put(opp_table->np); 265 } 266 267 /* 268 * Release all resources previously acquired with a call to 269 * _of_opp_alloc_required_opps(). 270 */ 271 static void _of_opp_free_required_opps(struct opp_table *opp_table, 272 struct dev_pm_opp *opp) 273 { 274 struct dev_pm_opp **required_opps = opp->required_opps; 275 int i; 276 277 if (!required_opps) 278 return; 279 280 for (i = 0; i < opp_table->required_opp_count; i++) { 281 if (!required_opps[i]) 282 continue; 283 284 /* Put the reference back */ 285 dev_pm_opp_put(required_opps[i]); 286 } 287 288 opp->required_opps = NULL; 289 kfree(required_opps); 290 } 291 292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp) 293 { 294 _of_opp_free_required_opps(opp_table, opp); 295 of_node_put(opp->np); 296 } 297 298 static int _link_required_opps(struct dev_pm_opp *opp, 299 struct opp_table *required_table, int index) 300 { 301 struct device_node *np; 302 303 np = of_parse_required_opp(opp->np, index); 304 if (unlikely(!np)) 305 return -ENODEV; 306 307 opp->required_opps[index] = _find_opp_of_np(required_table, np); 308 of_node_put(np); 309 310 if (!opp->required_opps[index]) { 311 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 312 __func__, opp->np, index); 313 return -ENODEV; 314 } 315 316 return 0; 317 } 318 319 /* Populate all required OPPs which are part of "required-opps" list */ 320 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 321 struct dev_pm_opp *opp) 322 { 323 struct opp_table *required_table; 324 int i, ret, count = opp_table->required_opp_count; 325 326 if (!count) 327 return 0; 328 329 opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL); 330 if (!opp->required_opps) 331 return -ENOMEM; 332 333 for (i = 0; i < count; i++) { 334 required_table = opp_table->required_opp_tables[i]; 335 336 /* Required table not added yet, we will link later */ 337 if (IS_ERR_OR_NULL(required_table)) 338 continue; 339 340 ret = _link_required_opps(opp, required_table, i); 341 if (ret) 342 goto free_required_opps; 343 } 344 345 return 0; 346 347 free_required_opps: 348 _of_opp_free_required_opps(opp_table, opp); 349 350 return ret; 351 } 352 353 /* Link required OPPs for an individual OPP */ 354 static int lazy_link_required_opps(struct opp_table *opp_table, 355 struct opp_table *new_table, int index) 356 { 357 struct dev_pm_opp *opp; 358 int ret; 359 360 list_for_each_entry(opp, &opp_table->opp_list, node) { 361 ret = _link_required_opps(opp, new_table, index); 362 if (ret) 363 return ret; 364 } 365 366 return 0; 367 } 368 369 /* Link required OPPs for all OPPs of the newly added OPP table */ 370 static void lazy_link_required_opp_table(struct opp_table *new_table) 371 { 372 struct opp_table *opp_table, *temp, **required_opp_tables; 373 struct device_node *required_np, *opp_np, *required_table_np; 374 struct dev_pm_opp *opp; 375 int i, ret; 376 377 mutex_lock(&opp_table_lock); 378 379 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 380 bool lazy = false; 381 382 /* opp_np can't be invalid here */ 383 opp_np = of_get_next_available_child(opp_table->np, NULL); 384 385 for (i = 0; i < opp_table->required_opp_count; i++) { 386 required_opp_tables = opp_table->required_opp_tables; 387 388 /* Required opp-table is already parsed */ 389 if (!IS_ERR(required_opp_tables[i])) 390 continue; 391 392 /* required_np can't be invalid here */ 393 required_np = of_parse_required_opp(opp_np, i); 394 required_table_np = of_get_parent(required_np); 395 396 of_node_put(required_table_np); 397 of_node_put(required_np); 398 399 /* 400 * Newly added table isn't the required opp-table for 401 * opp_table. 402 */ 403 if (required_table_np != new_table->np) { 404 lazy = true; 405 continue; 406 } 407 408 required_opp_tables[i] = new_table; 409 _get_opp_table_kref(new_table); 410 411 /* Link OPPs now */ 412 ret = lazy_link_required_opps(opp_table, new_table, i); 413 if (ret) { 414 /* The OPPs will be marked unusable */ 415 lazy = false; 416 break; 417 } 418 } 419 420 of_node_put(opp_np); 421 422 /* All required opp-tables found, remove from lazy list */ 423 if (!lazy) { 424 list_del_init(&opp_table->lazy); 425 426 list_for_each_entry(opp, &opp_table->opp_list, node) 427 _required_opps_available(opp, opp_table->required_opp_count); 428 } 429 } 430 431 mutex_unlock(&opp_table_lock); 432 } 433 434 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 435 { 436 struct device_node *np, *opp_np; 437 struct property *prop; 438 439 if (!opp_table) { 440 np = of_node_get(dev->of_node); 441 if (!np) 442 return -ENODEV; 443 444 opp_np = _opp_of_get_opp_desc_node(np, 0); 445 of_node_put(np); 446 } else { 447 opp_np = of_node_get(opp_table->np); 448 } 449 450 /* Lets not fail in case we are parsing opp-v1 bindings */ 451 if (!opp_np) 452 return 0; 453 454 /* Checking only first OPP is sufficient */ 455 np = of_get_next_available_child(opp_np, NULL); 456 of_node_put(opp_np); 457 if (!np) { 458 dev_err(dev, "OPP table empty\n"); 459 return -EINVAL; 460 } 461 462 prop = of_find_property(np, "opp-peak-kBps", NULL); 463 of_node_put(np); 464 465 if (!prop || !prop->length) 466 return 0; 467 468 return 1; 469 } 470 471 int dev_pm_opp_of_find_icc_paths(struct device *dev, 472 struct opp_table *opp_table) 473 { 474 struct device_node *np; 475 int ret, i, count, num_paths; 476 struct icc_path **paths; 477 478 ret = _bandwidth_supported(dev, opp_table); 479 if (ret == -EINVAL) 480 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 481 else if (ret <= 0) 482 return ret; 483 484 ret = 0; 485 486 np = of_node_get(dev->of_node); 487 if (!np) 488 return 0; 489 490 count = of_count_phandle_with_args(np, "interconnects", 491 "#interconnect-cells"); 492 of_node_put(np); 493 if (count < 0) 494 return 0; 495 496 /* two phandles when #interconnect-cells = <1> */ 497 if (count % 2) { 498 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 499 return -EINVAL; 500 } 501 502 num_paths = count / 2; 503 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 504 if (!paths) 505 return -ENOMEM; 506 507 for (i = 0; i < num_paths; i++) { 508 paths[i] = of_icc_get_by_index(dev, i); 509 if (IS_ERR(paths[i])) { 510 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i); 511 goto err; 512 } 513 } 514 515 if (opp_table) { 516 opp_table->paths = paths; 517 opp_table->path_count = num_paths; 518 return 0; 519 } 520 521 err: 522 while (i--) 523 icc_put(paths[i]); 524 525 kfree(paths); 526 527 return ret; 528 } 529 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 530 531 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 532 struct device_node *np) 533 { 534 unsigned int levels = opp_table->supported_hw_count; 535 int count, versions, ret, i, j; 536 u32 val; 537 538 if (!opp_table->supported_hw) { 539 /* 540 * In the case that no supported_hw has been set by the 541 * platform but there is an opp-supported-hw value set for 542 * an OPP then the OPP should not be enabled as there is 543 * no way to see if the hardware supports it. 544 */ 545 if (of_property_present(np, "opp-supported-hw")) 546 return false; 547 else 548 return true; 549 } 550 551 count = of_property_count_u32_elems(np, "opp-supported-hw"); 552 if (count <= 0 || count % levels) { 553 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 554 __func__, count); 555 return false; 556 } 557 558 versions = count / levels; 559 560 /* All levels in at least one of the versions should match */ 561 for (i = 0; i < versions; i++) { 562 bool supported = true; 563 564 for (j = 0; j < levels; j++) { 565 ret = of_property_read_u32_index(np, "opp-supported-hw", 566 i * levels + j, &val); 567 if (ret) { 568 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 569 __func__, i * levels + j, ret); 570 return false; 571 } 572 573 /* Check if the level is supported */ 574 if (!(val & opp_table->supported_hw[j])) { 575 supported = false; 576 break; 577 } 578 } 579 580 if (supported) 581 return true; 582 } 583 584 return false; 585 } 586 587 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev, 588 struct opp_table *opp_table, 589 const char *prop_type, bool *triplet) 590 { 591 struct property *prop = NULL; 592 char name[NAME_MAX]; 593 int count, ret; 594 u32 *out; 595 596 /* Search for "opp-<prop_type>-<name>" */ 597 if (opp_table->prop_name) { 598 snprintf(name, sizeof(name), "opp-%s-%s", prop_type, 599 opp_table->prop_name); 600 prop = of_find_property(opp->np, name, NULL); 601 } 602 603 if (!prop) { 604 /* Search for "opp-<prop_type>" */ 605 snprintf(name, sizeof(name), "opp-%s", prop_type); 606 prop = of_find_property(opp->np, name, NULL); 607 if (!prop) 608 return NULL; 609 } 610 611 count = of_property_count_u32_elems(opp->np, name); 612 if (count < 0) { 613 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name, 614 count); 615 return ERR_PTR(count); 616 } 617 618 /* 619 * Initialize regulator_count, if regulator information isn't provided 620 * by the platform. Now that one of the properties is available, fix the 621 * regulator_count to 1. 622 */ 623 if (unlikely(opp_table->regulator_count == -1)) 624 opp_table->regulator_count = 1; 625 626 if (count != opp_table->regulator_count && 627 (!triplet || count != opp_table->regulator_count * 3)) { 628 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n", 629 __func__, prop_type, count, opp_table->regulator_count); 630 return ERR_PTR(-EINVAL); 631 } 632 633 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL); 634 if (!out) 635 return ERR_PTR(-EINVAL); 636 637 ret = of_property_read_u32_array(opp->np, name, out, count); 638 if (ret) { 639 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 640 kfree(out); 641 return ERR_PTR(-EINVAL); 642 } 643 644 if (triplet) 645 *triplet = count != opp_table->regulator_count; 646 647 return out; 648 } 649 650 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev, 651 struct opp_table *opp_table, bool *triplet) 652 { 653 u32 *microvolt; 654 655 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet); 656 if (IS_ERR(microvolt)) 657 return microvolt; 658 659 if (!microvolt) { 660 /* 661 * Missing property isn't a problem, but an invalid 662 * entry is. This property isn't optional if regulator 663 * information is provided. Check only for the first OPP, as 664 * regulator_count may get initialized after that to a valid 665 * value. 666 */ 667 if (list_empty(&opp_table->opp_list) && 668 opp_table->regulator_count > 0) { 669 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 670 __func__); 671 return ERR_PTR(-EINVAL); 672 } 673 } 674 675 return microvolt; 676 } 677 678 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 679 struct opp_table *opp_table) 680 { 681 u32 *microvolt, *microamp, *microwatt; 682 int ret = 0, i, j; 683 bool triplet; 684 685 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet); 686 if (IS_ERR(microvolt)) 687 return PTR_ERR(microvolt); 688 689 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL); 690 if (IS_ERR(microamp)) { 691 ret = PTR_ERR(microamp); 692 goto free_microvolt; 693 } 694 695 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL); 696 if (IS_ERR(microwatt)) { 697 ret = PTR_ERR(microwatt); 698 goto free_microamp; 699 } 700 701 /* 702 * Initialize regulator_count if it is uninitialized and no properties 703 * are found. 704 */ 705 if (unlikely(opp_table->regulator_count == -1)) { 706 opp_table->regulator_count = 0; 707 return 0; 708 } 709 710 for (i = 0, j = 0; i < opp_table->regulator_count; i++) { 711 if (microvolt) { 712 opp->supplies[i].u_volt = microvolt[j++]; 713 714 if (triplet) { 715 opp->supplies[i].u_volt_min = microvolt[j++]; 716 opp->supplies[i].u_volt_max = microvolt[j++]; 717 } else { 718 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 719 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 720 } 721 } 722 723 if (microamp) 724 opp->supplies[i].u_amp = microamp[i]; 725 726 if (microwatt) 727 opp->supplies[i].u_watt = microwatt[i]; 728 } 729 730 kfree(microwatt); 731 free_microamp: 732 kfree(microamp); 733 free_microvolt: 734 kfree(microvolt); 735 736 return ret; 737 } 738 739 /** 740 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 741 * entries 742 * @dev: device pointer used to lookup OPP table. 743 * 744 * Free OPPs created using static entries present in DT. 745 */ 746 void dev_pm_opp_of_remove_table(struct device *dev) 747 { 748 dev_pm_opp_remove_table(dev); 749 } 750 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 751 752 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 753 struct device_node *np) 754 { 755 struct property *prop; 756 int i, count, ret; 757 u64 *rates; 758 759 prop = of_find_property(np, "opp-hz", NULL); 760 if (!prop) 761 return -ENODEV; 762 763 count = prop->length / sizeof(u64); 764 if (opp_table->clk_count != count) { 765 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n", 766 __func__, count, opp_table->clk_count); 767 return -EINVAL; 768 } 769 770 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL); 771 if (!rates) 772 return -ENOMEM; 773 774 ret = of_property_read_u64_array(np, "opp-hz", rates, count); 775 if (ret) { 776 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret); 777 } else { 778 /* 779 * Rate is defined as an unsigned long in clk API, and so 780 * casting explicitly to its type. Must be fixed once rate is 64 781 * bit guaranteed in clk API. 782 */ 783 for (i = 0; i < count; i++) { 784 new_opp->rates[i] = (unsigned long)rates[i]; 785 786 /* This will happen for frequencies > 4.29 GHz */ 787 WARN_ON(new_opp->rates[i] != rates[i]); 788 } 789 } 790 791 kfree(rates); 792 793 return ret; 794 } 795 796 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 797 struct device_node *np, bool peak) 798 { 799 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 800 struct property *prop; 801 int i, count, ret; 802 u32 *bw; 803 804 prop = of_find_property(np, name, NULL); 805 if (!prop) 806 return -ENODEV; 807 808 count = prop->length / sizeof(u32); 809 if (opp_table->path_count != count) { 810 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 811 __func__, name, count, opp_table->path_count); 812 return -EINVAL; 813 } 814 815 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 816 if (!bw) 817 return -ENOMEM; 818 819 ret = of_property_read_u32_array(np, name, bw, count); 820 if (ret) { 821 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 822 goto out; 823 } 824 825 for (i = 0; i < count; i++) { 826 if (peak) 827 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 828 else 829 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 830 } 831 832 out: 833 kfree(bw); 834 return ret; 835 } 836 837 static int _read_opp_key(struct dev_pm_opp *new_opp, 838 struct opp_table *opp_table, struct device_node *np) 839 { 840 bool found = false; 841 int ret; 842 843 ret = _read_rate(new_opp, opp_table, np); 844 if (!ret) 845 found = true; 846 else if (ret != -ENODEV) 847 return ret; 848 849 /* 850 * Bandwidth consists of peak and average (optional) values: 851 * opp-peak-kBps = <path1_value path2_value>; 852 * opp-avg-kBps = <path1_value path2_value>; 853 */ 854 ret = _read_bw(new_opp, opp_table, np, true); 855 if (!ret) { 856 found = true; 857 ret = _read_bw(new_opp, opp_table, np, false); 858 } 859 860 /* The properties were found but we failed to parse them */ 861 if (ret && ret != -ENODEV) 862 return ret; 863 864 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 865 found = true; 866 867 if (found) 868 return 0; 869 870 return ret; 871 } 872 873 /** 874 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 875 * @opp_table: OPP table 876 * @dev: device for which we do this operation 877 * @np: device node 878 * 879 * This function adds an opp definition to the opp table and returns status. The 880 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 881 * removed by dev_pm_opp_remove. 882 * 883 * Return: 884 * Valid OPP pointer: 885 * On success 886 * NULL: 887 * Duplicate OPPs (both freq and volt are same) and opp->available 888 * OR if the OPP is not supported by hardware. 889 * ERR_PTR(-EEXIST): 890 * Freq are same and volt are different OR 891 * Duplicate OPPs (both freq and volt are same) and !opp->available 892 * ERR_PTR(-ENOMEM): 893 * Memory allocation failure 894 * ERR_PTR(-EINVAL): 895 * Failed parsing the OPP node 896 */ 897 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 898 struct device *dev, struct device_node *np) 899 { 900 struct dev_pm_opp *new_opp; 901 u32 val; 902 int ret; 903 904 new_opp = _opp_allocate(opp_table); 905 if (!new_opp) 906 return ERR_PTR(-ENOMEM); 907 908 ret = _read_opp_key(new_opp, opp_table, np); 909 if (ret < 0) { 910 dev_err(dev, "%s: opp key field not found\n", __func__); 911 goto free_opp; 912 } 913 914 /* Check if the OPP supports hardware's hierarchy of versions or not */ 915 if (!_opp_is_supported(dev, opp_table, np)) { 916 dev_dbg(dev, "OPP not supported by hardware: %s\n", 917 of_node_full_name(np)); 918 goto free_opp; 919 } 920 921 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 922 923 new_opp->np = of_node_get(np); 924 new_opp->dynamic = false; 925 new_opp->available = true; 926 927 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 928 if (ret) 929 goto free_opp; 930 931 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 932 new_opp->clock_latency_ns = val; 933 934 ret = opp_parse_supplies(new_opp, dev, opp_table); 935 if (ret) 936 goto free_required_opps; 937 938 ret = _opp_add(dev, new_opp, opp_table); 939 if (ret) { 940 /* Don't return error for duplicate OPPs */ 941 if (ret == -EBUSY) 942 ret = 0; 943 goto free_required_opps; 944 } 945 946 /* OPP to select on device suspend */ 947 if (of_property_read_bool(np, "opp-suspend")) { 948 if (opp_table->suspend_opp) { 949 /* Pick the OPP with higher rate/bw/level as suspend OPP */ 950 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) { 951 opp_table->suspend_opp->suspend = false; 952 new_opp->suspend = true; 953 opp_table->suspend_opp = new_opp; 954 } 955 } else { 956 new_opp->suspend = true; 957 opp_table->suspend_opp = new_opp; 958 } 959 } 960 961 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 962 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 963 964 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 965 __func__, new_opp->turbo, new_opp->rates[0], 966 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 967 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 968 new_opp->level); 969 970 /* 971 * Notify the changes in the availability of the operable 972 * frequency/voltage list. 973 */ 974 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 975 return new_opp; 976 977 free_required_opps: 978 _of_opp_free_required_opps(opp_table, new_opp); 979 free_opp: 980 _opp_free(new_opp); 981 982 return ret ? ERR_PTR(ret) : NULL; 983 } 984 985 /* Initializes OPP tables based on new bindings */ 986 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 987 { 988 struct device_node *np; 989 int ret, count = 0; 990 struct dev_pm_opp *opp; 991 992 /* OPP table is already initialized for the device */ 993 mutex_lock(&opp_table->lock); 994 if (opp_table->parsed_static_opps) { 995 opp_table->parsed_static_opps++; 996 mutex_unlock(&opp_table->lock); 997 return 0; 998 } 999 1000 opp_table->parsed_static_opps = 1; 1001 mutex_unlock(&opp_table->lock); 1002 1003 /* We have opp-table node now, iterate over it and add OPPs */ 1004 for_each_available_child_of_node(opp_table->np, np) { 1005 opp = _opp_add_static_v2(opp_table, dev, np); 1006 if (IS_ERR(opp)) { 1007 ret = PTR_ERR(opp); 1008 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 1009 ret); 1010 of_node_put(np); 1011 goto remove_static_opp; 1012 } else if (opp) { 1013 count++; 1014 } 1015 } 1016 1017 /* There should be one or more OPPs defined */ 1018 if (!count) { 1019 dev_err(dev, "%s: no supported OPPs", __func__); 1020 ret = -ENOENT; 1021 goto remove_static_opp; 1022 } 1023 1024 lazy_link_required_opp_table(opp_table); 1025 1026 return 0; 1027 1028 remove_static_opp: 1029 _opp_remove_all_static(opp_table); 1030 1031 return ret; 1032 } 1033 1034 /* Initializes OPP tables based on old-deprecated bindings */ 1035 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 1036 { 1037 const struct property *prop; 1038 const __be32 *val; 1039 int nr, ret = 0; 1040 1041 mutex_lock(&opp_table->lock); 1042 if (opp_table->parsed_static_opps) { 1043 opp_table->parsed_static_opps++; 1044 mutex_unlock(&opp_table->lock); 1045 return 0; 1046 } 1047 1048 opp_table->parsed_static_opps = 1; 1049 mutex_unlock(&opp_table->lock); 1050 1051 prop = of_find_property(dev->of_node, "operating-points", NULL); 1052 if (!prop) { 1053 ret = -ENODEV; 1054 goto remove_static_opp; 1055 } 1056 if (!prop->value) { 1057 ret = -ENODATA; 1058 goto remove_static_opp; 1059 } 1060 1061 /* 1062 * Each OPP is a set of tuples consisting of frequency and 1063 * voltage like <freq-kHz vol-uV>. 1064 */ 1065 nr = prop->length / sizeof(u32); 1066 if (nr % 2) { 1067 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1068 ret = -EINVAL; 1069 goto remove_static_opp; 1070 } 1071 1072 val = prop->value; 1073 while (nr) { 1074 unsigned long freq = be32_to_cpup(val++) * 1000; 1075 unsigned long volt = be32_to_cpup(val++); 1076 struct dev_pm_opp_data data = { 1077 .freq = freq, 1078 .u_volt = volt, 1079 }; 1080 1081 ret = _opp_add_v1(opp_table, dev, &data, false); 1082 if (ret) { 1083 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1084 __func__, data.freq, ret); 1085 goto remove_static_opp; 1086 } 1087 nr -= 2; 1088 } 1089 1090 return 0; 1091 1092 remove_static_opp: 1093 _opp_remove_all_static(opp_table); 1094 1095 return ret; 1096 } 1097 1098 static int _of_add_table_indexed(struct device *dev, int index) 1099 { 1100 struct opp_table *opp_table; 1101 int ret, count; 1102 1103 if (index) { 1104 /* 1105 * If only one phandle is present, then the same OPP table 1106 * applies for all index requests. 1107 */ 1108 count = of_count_phandle_with_args(dev->of_node, 1109 "operating-points-v2", NULL); 1110 if (count == 1) 1111 index = 0; 1112 } 1113 1114 opp_table = _add_opp_table_indexed(dev, index, true); 1115 if (IS_ERR(opp_table)) 1116 return PTR_ERR(opp_table); 1117 1118 /* 1119 * OPPs have two version of bindings now. Also try the old (v1) 1120 * bindings for backward compatibility with older dtbs. 1121 */ 1122 if (opp_table->np) 1123 ret = _of_add_opp_table_v2(dev, opp_table); 1124 else 1125 ret = _of_add_opp_table_v1(dev, opp_table); 1126 1127 if (ret) 1128 dev_pm_opp_put_opp_table(opp_table); 1129 1130 return ret; 1131 } 1132 1133 static void devm_pm_opp_of_table_release(void *data) 1134 { 1135 dev_pm_opp_of_remove_table(data); 1136 } 1137 1138 static int _devm_of_add_table_indexed(struct device *dev, int index) 1139 { 1140 int ret; 1141 1142 ret = _of_add_table_indexed(dev, index); 1143 if (ret) 1144 return ret; 1145 1146 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); 1147 } 1148 1149 /** 1150 * devm_pm_opp_of_add_table() - Initialize opp table from device tree 1151 * @dev: device pointer used to lookup OPP table. 1152 * 1153 * Register the initial OPP table with the OPP library for given device. 1154 * 1155 * The opp_table structure will be freed after the device is destroyed. 1156 * 1157 * Return: 1158 * 0 On success OR 1159 * Duplicate OPPs (both freq and volt are same) and opp->available 1160 * -EEXIST Freq are same and volt are different OR 1161 * Duplicate OPPs (both freq and volt are same) and !opp->available 1162 * -ENOMEM Memory allocation failure 1163 * -ENODEV when 'operating-points' property is not found or is invalid data 1164 * in device node. 1165 * -ENODATA when empty 'operating-points' property is found 1166 * -EINVAL when invalid entries are found in opp-v2 table 1167 */ 1168 int devm_pm_opp_of_add_table(struct device *dev) 1169 { 1170 return _devm_of_add_table_indexed(dev, 0); 1171 } 1172 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); 1173 1174 /** 1175 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1176 * @dev: device pointer used to lookup OPP table. 1177 * 1178 * Register the initial OPP table with the OPP library for given device. 1179 * 1180 * Return: 1181 * 0 On success OR 1182 * Duplicate OPPs (both freq and volt are same) and opp->available 1183 * -EEXIST Freq are same and volt are different OR 1184 * Duplicate OPPs (both freq and volt are same) and !opp->available 1185 * -ENOMEM Memory allocation failure 1186 * -ENODEV when 'operating-points' property is not found or is invalid data 1187 * in device node. 1188 * -ENODATA when empty 'operating-points' property is found 1189 * -EINVAL when invalid entries are found in opp-v2 table 1190 */ 1191 int dev_pm_opp_of_add_table(struct device *dev) 1192 { 1193 return _of_add_table_indexed(dev, 0); 1194 } 1195 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1196 1197 /** 1198 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1199 * @dev: device pointer used to lookup OPP table. 1200 * @index: Index number. 1201 * 1202 * Register the initial OPP table with the OPP library for given device only 1203 * using the "operating-points-v2" property. 1204 * 1205 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1206 */ 1207 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1208 { 1209 return _of_add_table_indexed(dev, index); 1210 } 1211 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1212 1213 /** 1214 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1215 * @dev: device pointer used to lookup OPP table. 1216 * @index: Index number. 1217 * 1218 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). 1219 */ 1220 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) 1221 { 1222 return _devm_of_add_table_indexed(dev, index); 1223 } 1224 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); 1225 1226 /* CPU device specific helpers */ 1227 1228 /** 1229 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1230 * @cpumask: cpumask for which OPP table needs to be removed 1231 * 1232 * This removes the OPP tables for CPUs present in the @cpumask. 1233 * This should be used only to remove static entries created from DT. 1234 */ 1235 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1236 { 1237 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1238 } 1239 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1240 1241 /** 1242 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1243 * @cpumask: cpumask for which OPP table needs to be added. 1244 * 1245 * This adds the OPP tables for CPUs present in the @cpumask. 1246 */ 1247 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1248 { 1249 struct device *cpu_dev; 1250 int cpu, ret; 1251 1252 if (WARN_ON(cpumask_empty(cpumask))) 1253 return -ENODEV; 1254 1255 for_each_cpu(cpu, cpumask) { 1256 cpu_dev = get_cpu_device(cpu); 1257 if (!cpu_dev) { 1258 pr_err("%s: failed to get cpu%d device\n", __func__, 1259 cpu); 1260 ret = -ENODEV; 1261 goto remove_table; 1262 } 1263 1264 ret = dev_pm_opp_of_add_table(cpu_dev); 1265 if (ret) { 1266 /* 1267 * OPP may get registered dynamically, don't print error 1268 * message here. 1269 */ 1270 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1271 __func__, cpu, ret); 1272 1273 goto remove_table; 1274 } 1275 } 1276 1277 return 0; 1278 1279 remove_table: 1280 /* Free all other OPPs */ 1281 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1282 1283 return ret; 1284 } 1285 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1286 1287 /* 1288 * Works only for OPP v2 bindings. 1289 * 1290 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1291 */ 1292 /** 1293 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1294 * @cpu_dev using operating-points-v2 1295 * bindings. 1296 * 1297 * @cpu_dev: CPU device for which we do this operation 1298 * @cpumask: cpumask to update with information of sharing CPUs 1299 * 1300 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1301 * 1302 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1303 */ 1304 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1305 struct cpumask *cpumask) 1306 { 1307 struct device_node *np, *tmp_np, *cpu_np; 1308 int cpu, ret = 0; 1309 1310 /* Get OPP descriptor node */ 1311 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1312 if (!np) { 1313 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1314 return -ENOENT; 1315 } 1316 1317 cpumask_set_cpu(cpu_dev->id, cpumask); 1318 1319 /* OPPs are shared ? */ 1320 if (!of_property_read_bool(np, "opp-shared")) 1321 goto put_cpu_node; 1322 1323 for_each_possible_cpu(cpu) { 1324 if (cpu == cpu_dev->id) 1325 continue; 1326 1327 cpu_np = of_cpu_device_node_get(cpu); 1328 if (!cpu_np) { 1329 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1330 __func__, cpu); 1331 ret = -ENOENT; 1332 goto put_cpu_node; 1333 } 1334 1335 /* Get OPP descriptor node */ 1336 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); 1337 of_node_put(cpu_np); 1338 if (!tmp_np) { 1339 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1340 ret = -ENOENT; 1341 goto put_cpu_node; 1342 } 1343 1344 /* CPUs are sharing opp node */ 1345 if (np == tmp_np) 1346 cpumask_set_cpu(cpu, cpumask); 1347 1348 of_node_put(tmp_np); 1349 } 1350 1351 put_cpu_node: 1352 of_node_put(np); 1353 return ret; 1354 } 1355 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1356 1357 /** 1358 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1359 * @np: Node that contains the "required-opps" property. 1360 * @index: Index of the phandle to parse. 1361 * 1362 * Returns the performance state of the OPP pointed out by the "required-opps" 1363 * property at @index in @np. 1364 * 1365 * Return: Zero or positive performance state on success, otherwise negative 1366 * value on errors. 1367 */ 1368 int of_get_required_opp_performance_state(struct device_node *np, int index) 1369 { 1370 struct dev_pm_opp *opp; 1371 struct device_node *required_np; 1372 struct opp_table *opp_table; 1373 int pstate = -EINVAL; 1374 1375 required_np = of_parse_required_opp(np, index); 1376 if (!required_np) 1377 return -ENODEV; 1378 1379 opp_table = _find_table_of_opp_np(required_np); 1380 if (IS_ERR(opp_table)) { 1381 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1382 __func__, np, PTR_ERR(opp_table)); 1383 goto put_required_np; 1384 } 1385 1386 /* The OPP tables must belong to a genpd */ 1387 if (unlikely(!opp_table->is_genpd)) { 1388 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 1389 goto put_required_np; 1390 } 1391 1392 opp = _find_opp_of_np(opp_table, required_np); 1393 if (opp) { 1394 if (opp->level == OPP_LEVEL_UNSET) { 1395 pr_err("%s: OPP levels aren't available for %pOF\n", 1396 __func__, np); 1397 } else { 1398 pstate = opp->level; 1399 } 1400 dev_pm_opp_put(opp); 1401 1402 } 1403 1404 dev_pm_opp_put_opp_table(opp_table); 1405 1406 put_required_np: 1407 of_node_put(required_np); 1408 1409 return pstate; 1410 } 1411 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1412 1413 /** 1414 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists. 1415 * @dev: The device to investigate. 1416 * 1417 * Returns true if the device's node has a "operating-points-v2" property and if 1418 * the corresponding node for the opp-table describes opp nodes that uses the 1419 * "required-opps" property. 1420 * 1421 * Return: True if a required-opps is present, else false. 1422 */ 1423 bool dev_pm_opp_of_has_required_opp(struct device *dev) 1424 { 1425 struct device_node *opp_np, *np; 1426 int count; 1427 1428 opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0); 1429 if (!opp_np) 1430 return false; 1431 1432 np = of_get_next_available_child(opp_np, NULL); 1433 of_node_put(opp_np); 1434 if (!np) { 1435 dev_warn(dev, "Empty OPP table\n"); 1436 return false; 1437 } 1438 1439 count = of_count_phandle_with_args(np, "required-opps", NULL); 1440 of_node_put(np); 1441 1442 return count > 0; 1443 } 1444 1445 /** 1446 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1447 * @opp: opp for which DT node has to be returned for 1448 * 1449 * Return: DT node corresponding to the opp, else 0 on success. 1450 * 1451 * The caller needs to put the node with of_node_put() after using it. 1452 */ 1453 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1454 { 1455 if (IS_ERR_OR_NULL(opp)) { 1456 pr_err("%s: Invalid parameters\n", __func__); 1457 return NULL; 1458 } 1459 1460 return of_node_get(opp->np); 1461 } 1462 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1463 1464 /* 1465 * Callback function provided to the Energy Model framework upon registration. 1466 * It provides the power used by @dev at @kHz if it is the frequency of an 1467 * existing OPP, or at the frequency of the first OPP above @kHz otherwise 1468 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1469 * frequency and @uW to the associated power. 1470 * 1471 * Returns 0 on success or a proper -EINVAL value in case of error. 1472 */ 1473 static int __maybe_unused 1474 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz) 1475 { 1476 struct dev_pm_opp *opp; 1477 unsigned long opp_freq, opp_power; 1478 1479 /* Find the right frequency and related OPP */ 1480 opp_freq = *kHz * 1000; 1481 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq); 1482 if (IS_ERR(opp)) 1483 return -EINVAL; 1484 1485 opp_power = dev_pm_opp_get_power(opp); 1486 dev_pm_opp_put(opp); 1487 if (!opp_power) 1488 return -EINVAL; 1489 1490 *kHz = opp_freq / 1000; 1491 *uW = opp_power; 1492 1493 return 0; 1494 } 1495 1496 /** 1497 * dev_pm_opp_calc_power() - Calculate power value for device with EM 1498 * @dev : Device for which an Energy Model has to be registered 1499 * @uW : New power value that is calculated 1500 * @kHz : Frequency for which the new power is calculated 1501 * 1502 * This computes the power estimated by @dev at @kHz if it is the frequency 1503 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1504 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1505 * frequency and @uW to the associated power. The power is estimated as 1506 * P = C * V^2 * f with C being the device's capacitance and V and f 1507 * respectively the voltage and frequency of the OPP. 1508 * It is also used as a callback function provided to the Energy Model 1509 * framework upon registration. 1510 * 1511 * Returns -EINVAL if the power calculation failed because of missing 1512 * parameters, 0 otherwise. 1513 */ 1514 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW, 1515 unsigned long *kHz) 1516 { 1517 struct dev_pm_opp *opp; 1518 struct device_node *np; 1519 unsigned long mV, Hz; 1520 u32 cap; 1521 u64 tmp; 1522 int ret; 1523 1524 np = of_node_get(dev->of_node); 1525 if (!np) 1526 return -EINVAL; 1527 1528 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1529 of_node_put(np); 1530 if (ret) 1531 return -EINVAL; 1532 1533 Hz = *kHz * 1000; 1534 opp = dev_pm_opp_find_freq_ceil(dev, &Hz); 1535 if (IS_ERR(opp)) 1536 return -EINVAL; 1537 1538 mV = dev_pm_opp_get_voltage(opp) / 1000; 1539 dev_pm_opp_put(opp); 1540 if (!mV) 1541 return -EINVAL; 1542 1543 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1544 /* Provide power in micro-Watts */ 1545 do_div(tmp, 1000000); 1546 1547 *uW = (unsigned long)tmp; 1548 *kHz = Hz / 1000; 1549 1550 return 0; 1551 } 1552 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power); 1553 1554 static bool _of_has_opp_microwatt_property(struct device *dev) 1555 { 1556 unsigned long power, freq = 0; 1557 struct dev_pm_opp *opp; 1558 1559 /* Check if at least one OPP has needed property */ 1560 opp = dev_pm_opp_find_freq_ceil(dev, &freq); 1561 if (IS_ERR(opp)) 1562 return false; 1563 1564 power = dev_pm_opp_get_power(opp); 1565 dev_pm_opp_put(opp); 1566 if (!power) 1567 return false; 1568 1569 return true; 1570 } 1571 1572 /** 1573 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1574 * @dev : Device for which an Energy Model has to be registered 1575 * @cpus : CPUs for which an Energy Model has to be registered. For 1576 * other type of devices it should be set to NULL. 1577 * 1578 * This checks whether the "dynamic-power-coefficient" devicetree property has 1579 * been specified, and tries to register an Energy Model with it if it has. 1580 * Having this property means the voltages are known for OPPs and the EM 1581 * might be calculated. 1582 */ 1583 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1584 { 1585 struct em_data_callback em_cb; 1586 struct device_node *np; 1587 int ret, nr_opp; 1588 u32 cap; 1589 1590 if (IS_ERR_OR_NULL(dev)) { 1591 ret = -EINVAL; 1592 goto failed; 1593 } 1594 1595 nr_opp = dev_pm_opp_get_opp_count(dev); 1596 if (nr_opp <= 0) { 1597 ret = -EINVAL; 1598 goto failed; 1599 } 1600 1601 /* First, try to find more precised Energy Model in DT */ 1602 if (_of_has_opp_microwatt_property(dev)) { 1603 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); 1604 goto register_em; 1605 } 1606 1607 np = of_node_get(dev->of_node); 1608 if (!np) { 1609 ret = -EINVAL; 1610 goto failed; 1611 } 1612 1613 /* 1614 * Register an EM only if the 'dynamic-power-coefficient' property is 1615 * set in devicetree. It is assumed the voltage values are known if that 1616 * property is set since it is useless otherwise. If voltages are not 1617 * known, just let the EM registration fail with an error to alert the 1618 * user about the inconsistent configuration. 1619 */ 1620 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1621 of_node_put(np); 1622 if (ret || !cap) { 1623 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1624 ret = -EINVAL; 1625 goto failed; 1626 } 1627 1628 EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power); 1629 1630 register_em: 1631 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1632 if (ret) 1633 goto failed; 1634 1635 return 0; 1636 1637 failed: 1638 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1639 return ret; 1640 } 1641 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1642