xref: /linux/drivers/opp/of.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21 
22 #include "opp.h"
23 
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
26 
27 /*
28  * Returns opp descriptor node for a device node, caller must
29  * do of_node_put().
30  */
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 						     int index)
33 {
34 	/* "operating-points-v2" can be an array for power domain providers */
35 	return of_parse_phandle(np, "operating-points-v2", index);
36 }
37 
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44 
45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47 	struct opp_table *opp_table, *managed_table = NULL;
48 	struct device_node *np;
49 
50 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 	if (!np)
52 		return NULL;
53 
54 	list_for_each_entry(opp_table, &opp_tables, node) {
55 		if (opp_table->np == np) {
56 			/*
57 			 * Multiple devices can point to the same OPP table and
58 			 * so will have same node-pointer, np.
59 			 *
60 			 * But the OPPs will be considered as shared only if the
61 			 * OPP table contains a "opp-shared" property.
62 			 */
63 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 				_get_opp_table_kref(opp_table);
65 				managed_table = opp_table;
66 			}
67 
68 			break;
69 		}
70 	}
71 
72 	of_node_put(np);
73 
74 	return managed_table;
75 }
76 
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 					  struct device_node *opp_np)
80 {
81 	struct dev_pm_opp *opp;
82 
83 	mutex_lock(&opp_table->lock);
84 
85 	list_for_each_entry(opp, &opp_table->opp_list, node) {
86 		if (opp->np == opp_np) {
87 			dev_pm_opp_get(opp);
88 			mutex_unlock(&opp_table->lock);
89 			return opp;
90 		}
91 	}
92 
93 	mutex_unlock(&opp_table->lock);
94 
95 	return NULL;
96 }
97 
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99 						 int index)
100 {
101 	return of_parse_phandle(np, "required-opps", index);
102 }
103 
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106 {
107 	struct opp_table *opp_table;
108 	struct device_node *opp_table_np;
109 
110 	opp_table_np = of_get_parent(opp_np);
111 	if (!opp_table_np)
112 		goto err;
113 
114 	/* It is safe to put the node now as all we need now is its address */
115 	of_node_put(opp_table_np);
116 
117 	mutex_lock(&opp_table_lock);
118 	list_for_each_entry(opp_table, &opp_tables, node) {
119 		if (opp_table_np == opp_table->np) {
120 			_get_opp_table_kref(opp_table);
121 			mutex_unlock(&opp_table_lock);
122 			return opp_table;
123 		}
124 	}
125 	mutex_unlock(&opp_table_lock);
126 
127 err:
128 	return ERR_PTR(-ENODEV);
129 }
130 
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
133 {
134 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 	int i;
136 
137 	if (!required_opp_tables)
138 		return;
139 
140 	for (i = 0; i < opp_table->required_opp_count; i++) {
141 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 			continue;
143 
144 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
145 	}
146 
147 	kfree(required_opp_tables);
148 
149 	opp_table->required_opp_count = 0;
150 	opp_table->required_opp_tables = NULL;
151 
152 	mutex_lock(&opp_table_lock);
153 	list_del(&opp_table->lazy);
154 	mutex_unlock(&opp_table_lock);
155 }
156 
157 /*
158  * Populate all devices and opp tables which are part of "required-opps" list.
159  * Checking only the first OPP node should be enough.
160  */
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 					     struct device *dev,
163 					     struct device_node *opp_np)
164 {
165 	struct opp_table **required_opp_tables;
166 	struct device_node *required_np, *np;
167 	bool lazy = false;
168 	int count, i, size;
169 
170 	/* Traversing the first OPP node is all we need */
171 	np = of_get_next_available_child(opp_np, NULL);
172 	if (!np) {
173 		dev_warn(dev, "Empty OPP table\n");
174 
175 		return;
176 	}
177 
178 	count = of_count_phandle_with_args(np, "required-opps", NULL);
179 	if (count <= 0)
180 		goto put_np;
181 
182 	size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183 	required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184 	if (!required_opp_tables)
185 		goto put_np;
186 
187 	opp_table->required_opp_tables = required_opp_tables;
188 	opp_table->required_devs = (void *)(required_opp_tables + count);
189 	opp_table->required_opp_count = count;
190 
191 	for (i = 0; i < count; i++) {
192 		required_np = of_parse_required_opp(np, i);
193 		if (!required_np)
194 			goto free_required_tables;
195 
196 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
197 		of_node_put(required_np);
198 
199 		if (IS_ERR(required_opp_tables[i]))
200 			lazy = true;
201 	}
202 
203 	/* Let's do the linking later on */
204 	if (lazy) {
205 		/*
206 		 * The OPP table is not held while allocating the table, take it
207 		 * now to avoid corruption to the lazy_opp_tables list.
208 		 */
209 		mutex_lock(&opp_table_lock);
210 		list_add(&opp_table->lazy, &lazy_opp_tables);
211 		mutex_unlock(&opp_table_lock);
212 	}
213 
214 	goto put_np;
215 
216 free_required_tables:
217 	_opp_table_free_required_tables(opp_table);
218 put_np:
219 	of_node_put(np);
220 }
221 
222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223 			int index)
224 {
225 	struct device_node *np, *opp_np;
226 	u32 val;
227 
228 	/*
229 	 * Only required for backward compatibility with v1 bindings, but isn't
230 	 * harmful for other cases. And so we do it unconditionally.
231 	 */
232 	np = of_node_get(dev->of_node);
233 	if (!np)
234 		return;
235 
236 	if (!of_property_read_u32(np, "clock-latency", &val))
237 		opp_table->clock_latency_ns_max = val;
238 	of_property_read_u32(np, "voltage-tolerance",
239 			     &opp_table->voltage_tolerance_v1);
240 
241 	if (of_property_present(np, "#power-domain-cells"))
242 		opp_table->is_genpd = true;
243 
244 	/* Get OPP table node */
245 	opp_np = _opp_of_get_opp_desc_node(np, index);
246 	of_node_put(np);
247 
248 	if (!opp_np)
249 		return;
250 
251 	if (of_property_read_bool(opp_np, "opp-shared"))
252 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253 	else
254 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
255 
256 	opp_table->np = opp_np;
257 
258 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
259 }
260 
261 void _of_clear_opp_table(struct opp_table *opp_table)
262 {
263 	_opp_table_free_required_tables(opp_table);
264 	of_node_put(opp_table->np);
265 }
266 
267 /*
268  * Release all resources previously acquired with a call to
269  * _of_opp_alloc_required_opps().
270  */
271 static void _of_opp_free_required_opps(struct opp_table *opp_table,
272 				       struct dev_pm_opp *opp)
273 {
274 	struct dev_pm_opp **required_opps = opp->required_opps;
275 	int i;
276 
277 	if (!required_opps)
278 		return;
279 
280 	for (i = 0; i < opp_table->required_opp_count; i++) {
281 		if (!required_opps[i])
282 			continue;
283 
284 		/* Put the reference back */
285 		dev_pm_opp_put(required_opps[i]);
286 	}
287 
288 	opp->required_opps = NULL;
289 	kfree(required_opps);
290 }
291 
292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
293 {
294 	_of_opp_free_required_opps(opp_table, opp);
295 	of_node_put(opp->np);
296 }
297 
298 static int _link_required_opps(struct dev_pm_opp *opp,
299 			       struct opp_table *required_table, int index)
300 {
301 	struct device_node *np;
302 
303 	np = of_parse_required_opp(opp->np, index);
304 	if (unlikely(!np))
305 		return -ENODEV;
306 
307 	opp->required_opps[index] = _find_opp_of_np(required_table, np);
308 	of_node_put(np);
309 
310 	if (!opp->required_opps[index]) {
311 		pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312 		       __func__, opp->np, index);
313 		return -ENODEV;
314 	}
315 
316 	return 0;
317 }
318 
319 /* Populate all required OPPs which are part of "required-opps" list */
320 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
321 				       struct dev_pm_opp *opp)
322 {
323 	struct opp_table *required_table;
324 	int i, ret, count = opp_table->required_opp_count;
325 
326 	if (!count)
327 		return 0;
328 
329 	opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
330 	if (!opp->required_opps)
331 		return -ENOMEM;
332 
333 	for (i = 0; i < count; i++) {
334 		required_table = opp_table->required_opp_tables[i];
335 
336 		/* Required table not added yet, we will link later */
337 		if (IS_ERR_OR_NULL(required_table))
338 			continue;
339 
340 		ret = _link_required_opps(opp, required_table, i);
341 		if (ret)
342 			goto free_required_opps;
343 	}
344 
345 	return 0;
346 
347 free_required_opps:
348 	_of_opp_free_required_opps(opp_table, opp);
349 
350 	return ret;
351 }
352 
353 /* Link required OPPs for an individual OPP */
354 static int lazy_link_required_opps(struct opp_table *opp_table,
355 				   struct opp_table *new_table, int index)
356 {
357 	struct dev_pm_opp *opp;
358 	int ret;
359 
360 	list_for_each_entry(opp, &opp_table->opp_list, node) {
361 		ret = _link_required_opps(opp, new_table, index);
362 		if (ret)
363 			return ret;
364 	}
365 
366 	return 0;
367 }
368 
369 /* Link required OPPs for all OPPs of the newly added OPP table */
370 static void lazy_link_required_opp_table(struct opp_table *new_table)
371 {
372 	struct opp_table *opp_table, *temp, **required_opp_tables;
373 	struct device_node *required_np, *opp_np, *required_table_np;
374 	struct dev_pm_opp *opp;
375 	int i, ret;
376 
377 	mutex_lock(&opp_table_lock);
378 
379 	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
380 		bool lazy = false;
381 
382 		/* opp_np can't be invalid here */
383 		opp_np = of_get_next_available_child(opp_table->np, NULL);
384 
385 		for (i = 0; i < opp_table->required_opp_count; i++) {
386 			required_opp_tables = opp_table->required_opp_tables;
387 
388 			/* Required opp-table is already parsed */
389 			if (!IS_ERR(required_opp_tables[i]))
390 				continue;
391 
392 			/* required_np can't be invalid here */
393 			required_np = of_parse_required_opp(opp_np, i);
394 			required_table_np = of_get_parent(required_np);
395 
396 			of_node_put(required_table_np);
397 			of_node_put(required_np);
398 
399 			/*
400 			 * Newly added table isn't the required opp-table for
401 			 * opp_table.
402 			 */
403 			if (required_table_np != new_table->np) {
404 				lazy = true;
405 				continue;
406 			}
407 
408 			required_opp_tables[i] = new_table;
409 			_get_opp_table_kref(new_table);
410 
411 			/* Link OPPs now */
412 			ret = lazy_link_required_opps(opp_table, new_table, i);
413 			if (ret) {
414 				/* The OPPs will be marked unusable */
415 				lazy = false;
416 				break;
417 			}
418 		}
419 
420 		of_node_put(opp_np);
421 
422 		/* All required opp-tables found, remove from lazy list */
423 		if (!lazy) {
424 			list_del_init(&opp_table->lazy);
425 
426 			list_for_each_entry(opp, &opp_table->opp_list, node)
427 				_required_opps_available(opp, opp_table->required_opp_count);
428 		}
429 	}
430 
431 	mutex_unlock(&opp_table_lock);
432 }
433 
434 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
435 {
436 	struct device_node *np, *opp_np;
437 	struct property *prop;
438 
439 	if (!opp_table) {
440 		np = of_node_get(dev->of_node);
441 		if (!np)
442 			return -ENODEV;
443 
444 		opp_np = _opp_of_get_opp_desc_node(np, 0);
445 		of_node_put(np);
446 	} else {
447 		opp_np = of_node_get(opp_table->np);
448 	}
449 
450 	/* Lets not fail in case we are parsing opp-v1 bindings */
451 	if (!opp_np)
452 		return 0;
453 
454 	/* Checking only first OPP is sufficient */
455 	np = of_get_next_available_child(opp_np, NULL);
456 	of_node_put(opp_np);
457 	if (!np) {
458 		dev_err(dev, "OPP table empty\n");
459 		return -EINVAL;
460 	}
461 
462 	prop = of_find_property(np, "opp-peak-kBps", NULL);
463 	of_node_put(np);
464 
465 	if (!prop || !prop->length)
466 		return 0;
467 
468 	return 1;
469 }
470 
471 int dev_pm_opp_of_find_icc_paths(struct device *dev,
472 				 struct opp_table *opp_table)
473 {
474 	struct device_node *np;
475 	int ret, i, count, num_paths;
476 	struct icc_path **paths;
477 
478 	ret = _bandwidth_supported(dev, opp_table);
479 	if (ret == -EINVAL)
480 		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
481 	else if (ret <= 0)
482 		return ret;
483 
484 	ret = 0;
485 
486 	np = of_node_get(dev->of_node);
487 	if (!np)
488 		return 0;
489 
490 	count = of_count_phandle_with_args(np, "interconnects",
491 					   "#interconnect-cells");
492 	of_node_put(np);
493 	if (count < 0)
494 		return 0;
495 
496 	/* two phandles when #interconnect-cells = <1> */
497 	if (count % 2) {
498 		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
499 		return -EINVAL;
500 	}
501 
502 	num_paths = count / 2;
503 	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
504 	if (!paths)
505 		return -ENOMEM;
506 
507 	for (i = 0; i < num_paths; i++) {
508 		paths[i] = of_icc_get_by_index(dev, i);
509 		if (IS_ERR(paths[i])) {
510 			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
511 			goto err;
512 		}
513 	}
514 
515 	if (opp_table) {
516 		opp_table->paths = paths;
517 		opp_table->path_count = num_paths;
518 		return 0;
519 	}
520 
521 err:
522 	while (i--)
523 		icc_put(paths[i]);
524 
525 	kfree(paths);
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
530 
531 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
532 			      struct device_node *np)
533 {
534 	unsigned int levels = opp_table->supported_hw_count;
535 	int count, versions, ret, i, j;
536 	u32 val;
537 
538 	if (!opp_table->supported_hw) {
539 		/*
540 		 * In the case that no supported_hw has been set by the
541 		 * platform but there is an opp-supported-hw value set for
542 		 * an OPP then the OPP should not be enabled as there is
543 		 * no way to see if the hardware supports it.
544 		 */
545 		if (of_property_present(np, "opp-supported-hw"))
546 			return false;
547 		else
548 			return true;
549 	}
550 
551 	count = of_property_count_u32_elems(np, "opp-supported-hw");
552 	if (count <= 0 || count % levels) {
553 		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
554 			__func__, count);
555 		return false;
556 	}
557 
558 	versions = count / levels;
559 
560 	/* All levels in at least one of the versions should match */
561 	for (i = 0; i < versions; i++) {
562 		bool supported = true;
563 
564 		for (j = 0; j < levels; j++) {
565 			ret = of_property_read_u32_index(np, "opp-supported-hw",
566 							 i * levels + j, &val);
567 			if (ret) {
568 				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
569 					 __func__, i * levels + j, ret);
570 				return false;
571 			}
572 
573 			/* Check if the level is supported */
574 			if (!(val & opp_table->supported_hw[j])) {
575 				supported = false;
576 				break;
577 			}
578 		}
579 
580 		if (supported)
581 			return true;
582 	}
583 
584 	return false;
585 }
586 
587 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
588 			      struct opp_table *opp_table,
589 			      const char *prop_type, bool *triplet)
590 {
591 	struct property *prop = NULL;
592 	char name[NAME_MAX];
593 	int count, ret;
594 	u32 *out;
595 
596 	/* Search for "opp-<prop_type>-<name>" */
597 	if (opp_table->prop_name) {
598 		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
599 			 opp_table->prop_name);
600 		prop = of_find_property(opp->np, name, NULL);
601 	}
602 
603 	if (!prop) {
604 		/* Search for "opp-<prop_type>" */
605 		snprintf(name, sizeof(name), "opp-%s", prop_type);
606 		prop = of_find_property(opp->np, name, NULL);
607 		if (!prop)
608 			return NULL;
609 	}
610 
611 	count = of_property_count_u32_elems(opp->np, name);
612 	if (count < 0) {
613 		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
614 			count);
615 		return ERR_PTR(count);
616 	}
617 
618 	/*
619 	 * Initialize regulator_count, if regulator information isn't provided
620 	 * by the platform. Now that one of the properties is available, fix the
621 	 * regulator_count to 1.
622 	 */
623 	if (unlikely(opp_table->regulator_count == -1))
624 		opp_table->regulator_count = 1;
625 
626 	if (count != opp_table->regulator_count &&
627 	    (!triplet || count != opp_table->regulator_count * 3)) {
628 		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
629 			__func__, prop_type, count, opp_table->regulator_count);
630 		return ERR_PTR(-EINVAL);
631 	}
632 
633 	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
634 	if (!out)
635 		return ERR_PTR(-EINVAL);
636 
637 	ret = of_property_read_u32_array(opp->np, name, out, count);
638 	if (ret) {
639 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
640 		kfree(out);
641 		return ERR_PTR(-EINVAL);
642 	}
643 
644 	if (triplet)
645 		*triplet = count != opp_table->regulator_count;
646 
647 	return out;
648 }
649 
650 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
651 				struct opp_table *opp_table, bool *triplet)
652 {
653 	u32 *microvolt;
654 
655 	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
656 	if (IS_ERR(microvolt))
657 		return microvolt;
658 
659 	if (!microvolt) {
660 		/*
661 		 * Missing property isn't a problem, but an invalid
662 		 * entry is. This property isn't optional if regulator
663 		 * information is provided. Check only for the first OPP, as
664 		 * regulator_count may get initialized after that to a valid
665 		 * value.
666 		 */
667 		if (list_empty(&opp_table->opp_list) &&
668 		    opp_table->regulator_count > 0) {
669 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
670 				__func__);
671 			return ERR_PTR(-EINVAL);
672 		}
673 	}
674 
675 	return microvolt;
676 }
677 
678 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
679 			      struct opp_table *opp_table)
680 {
681 	u32 *microvolt, *microamp, *microwatt;
682 	int ret = 0, i, j;
683 	bool triplet;
684 
685 	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
686 	if (IS_ERR(microvolt))
687 		return PTR_ERR(microvolt);
688 
689 	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
690 	if (IS_ERR(microamp)) {
691 		ret = PTR_ERR(microamp);
692 		goto free_microvolt;
693 	}
694 
695 	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
696 	if (IS_ERR(microwatt)) {
697 		ret = PTR_ERR(microwatt);
698 		goto free_microamp;
699 	}
700 
701 	/*
702 	 * Initialize regulator_count if it is uninitialized and no properties
703 	 * are found.
704 	 */
705 	if (unlikely(opp_table->regulator_count == -1)) {
706 		opp_table->regulator_count = 0;
707 		return 0;
708 	}
709 
710 	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
711 		if (microvolt) {
712 			opp->supplies[i].u_volt = microvolt[j++];
713 
714 			if (triplet) {
715 				opp->supplies[i].u_volt_min = microvolt[j++];
716 				opp->supplies[i].u_volt_max = microvolt[j++];
717 			} else {
718 				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
719 				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
720 			}
721 		}
722 
723 		if (microamp)
724 			opp->supplies[i].u_amp = microamp[i];
725 
726 		if (microwatt)
727 			opp->supplies[i].u_watt = microwatt[i];
728 	}
729 
730 	kfree(microwatt);
731 free_microamp:
732 	kfree(microamp);
733 free_microvolt:
734 	kfree(microvolt);
735 
736 	return ret;
737 }
738 
739 /**
740  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
741  *				  entries
742  * @dev:	device pointer used to lookup OPP table.
743  *
744  * Free OPPs created using static entries present in DT.
745  */
746 void dev_pm_opp_of_remove_table(struct device *dev)
747 {
748 	dev_pm_opp_remove_table(dev);
749 }
750 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
751 
752 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
753 		      struct device_node *np)
754 {
755 	struct property *prop;
756 	int i, count, ret;
757 	u64 *rates;
758 
759 	prop = of_find_property(np, "opp-hz", NULL);
760 	if (!prop)
761 		return -ENODEV;
762 
763 	count = prop->length / sizeof(u64);
764 	if (opp_table->clk_count != count) {
765 		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
766 		       __func__, count, opp_table->clk_count);
767 		return -EINVAL;
768 	}
769 
770 	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
771 	if (!rates)
772 		return -ENOMEM;
773 
774 	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
775 	if (ret) {
776 		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
777 	} else {
778 		/*
779 		 * Rate is defined as an unsigned long in clk API, and so
780 		 * casting explicitly to its type. Must be fixed once rate is 64
781 		 * bit guaranteed in clk API.
782 		 */
783 		for (i = 0; i < count; i++) {
784 			new_opp->rates[i] = (unsigned long)rates[i];
785 
786 			/* This will happen for frequencies > 4.29 GHz */
787 			WARN_ON(new_opp->rates[i] != rates[i]);
788 		}
789 	}
790 
791 	kfree(rates);
792 
793 	return ret;
794 }
795 
796 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
797 		    struct device_node *np, bool peak)
798 {
799 	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
800 	struct property *prop;
801 	int i, count, ret;
802 	u32 *bw;
803 
804 	prop = of_find_property(np, name, NULL);
805 	if (!prop)
806 		return -ENODEV;
807 
808 	count = prop->length / sizeof(u32);
809 	if (opp_table->path_count != count) {
810 		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
811 				__func__, name, count, opp_table->path_count);
812 		return -EINVAL;
813 	}
814 
815 	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
816 	if (!bw)
817 		return -ENOMEM;
818 
819 	ret = of_property_read_u32_array(np, name, bw, count);
820 	if (ret) {
821 		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
822 		goto out;
823 	}
824 
825 	for (i = 0; i < count; i++) {
826 		if (peak)
827 			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
828 		else
829 			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
830 	}
831 
832 out:
833 	kfree(bw);
834 	return ret;
835 }
836 
837 static int _read_opp_key(struct dev_pm_opp *new_opp,
838 			 struct opp_table *opp_table, struct device_node *np)
839 {
840 	bool found = false;
841 	int ret;
842 
843 	ret = _read_rate(new_opp, opp_table, np);
844 	if (!ret)
845 		found = true;
846 	else if (ret != -ENODEV)
847 		return ret;
848 
849 	/*
850 	 * Bandwidth consists of peak and average (optional) values:
851 	 * opp-peak-kBps = <path1_value path2_value>;
852 	 * opp-avg-kBps = <path1_value path2_value>;
853 	 */
854 	ret = _read_bw(new_opp, opp_table, np, true);
855 	if (!ret) {
856 		found = true;
857 		ret = _read_bw(new_opp, opp_table, np, false);
858 	}
859 
860 	/* The properties were found but we failed to parse them */
861 	if (ret && ret != -ENODEV)
862 		return ret;
863 
864 	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
865 		found = true;
866 
867 	if (found)
868 		return 0;
869 
870 	return ret;
871 }
872 
873 /**
874  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
875  * @opp_table:	OPP table
876  * @dev:	device for which we do this operation
877  * @np:		device node
878  *
879  * This function adds an opp definition to the opp table and returns status. The
880  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
881  * removed by dev_pm_opp_remove.
882  *
883  * Return:
884  * Valid OPP pointer:
885  *		On success
886  * NULL:
887  *		Duplicate OPPs (both freq and volt are same) and opp->available
888  *		OR if the OPP is not supported by hardware.
889  * ERR_PTR(-EEXIST):
890  *		Freq are same and volt are different OR
891  *		Duplicate OPPs (both freq and volt are same) and !opp->available
892  * ERR_PTR(-ENOMEM):
893  *		Memory allocation failure
894  * ERR_PTR(-EINVAL):
895  *		Failed parsing the OPP node
896  */
897 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
898 		struct device *dev, struct device_node *np)
899 {
900 	struct dev_pm_opp *new_opp;
901 	u32 val;
902 	int ret;
903 
904 	new_opp = _opp_allocate(opp_table);
905 	if (!new_opp)
906 		return ERR_PTR(-ENOMEM);
907 
908 	ret = _read_opp_key(new_opp, opp_table, np);
909 	if (ret < 0) {
910 		dev_err(dev, "%s: opp key field not found\n", __func__);
911 		goto free_opp;
912 	}
913 
914 	/* Check if the OPP supports hardware's hierarchy of versions or not */
915 	if (!_opp_is_supported(dev, opp_table, np)) {
916 		dev_dbg(dev, "OPP not supported by hardware: %s\n",
917 			of_node_full_name(np));
918 		goto free_opp;
919 	}
920 
921 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
922 
923 	new_opp->np = of_node_get(np);
924 	new_opp->dynamic = false;
925 	new_opp->available = true;
926 
927 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
928 	if (ret)
929 		goto free_opp;
930 
931 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
932 		new_opp->clock_latency_ns = val;
933 
934 	ret = opp_parse_supplies(new_opp, dev, opp_table);
935 	if (ret)
936 		goto free_required_opps;
937 
938 	ret = _opp_add(dev, new_opp, opp_table);
939 	if (ret) {
940 		/* Don't return error for duplicate OPPs */
941 		if (ret == -EBUSY)
942 			ret = 0;
943 		goto free_required_opps;
944 	}
945 
946 	/* OPP to select on device suspend */
947 	if (of_property_read_bool(np, "opp-suspend")) {
948 		if (opp_table->suspend_opp) {
949 			/* Pick the OPP with higher rate/bw/level as suspend OPP */
950 			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
951 				opp_table->suspend_opp->suspend = false;
952 				new_opp->suspend = true;
953 				opp_table->suspend_opp = new_opp;
954 			}
955 		} else {
956 			new_opp->suspend = true;
957 			opp_table->suspend_opp = new_opp;
958 		}
959 	}
960 
961 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
962 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
963 
964 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
965 		 __func__, new_opp->turbo, new_opp->rates[0],
966 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
967 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
968 		 new_opp->level);
969 
970 	/*
971 	 * Notify the changes in the availability of the operable
972 	 * frequency/voltage list.
973 	 */
974 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
975 	return new_opp;
976 
977 free_required_opps:
978 	_of_opp_free_required_opps(opp_table, new_opp);
979 free_opp:
980 	_opp_free(new_opp);
981 
982 	return ret ? ERR_PTR(ret) : NULL;
983 }
984 
985 /* Initializes OPP tables based on new bindings */
986 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
987 {
988 	struct device_node *np;
989 	int ret, count = 0;
990 	struct dev_pm_opp *opp;
991 
992 	/* OPP table is already initialized for the device */
993 	mutex_lock(&opp_table->lock);
994 	if (opp_table->parsed_static_opps) {
995 		opp_table->parsed_static_opps++;
996 		mutex_unlock(&opp_table->lock);
997 		return 0;
998 	}
999 
1000 	opp_table->parsed_static_opps = 1;
1001 	mutex_unlock(&opp_table->lock);
1002 
1003 	/* We have opp-table node now, iterate over it and add OPPs */
1004 	for_each_available_child_of_node(opp_table->np, np) {
1005 		opp = _opp_add_static_v2(opp_table, dev, np);
1006 		if (IS_ERR(opp)) {
1007 			ret = PTR_ERR(opp);
1008 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1009 				ret);
1010 			of_node_put(np);
1011 			goto remove_static_opp;
1012 		} else if (opp) {
1013 			count++;
1014 		}
1015 	}
1016 
1017 	/* There should be one or more OPPs defined */
1018 	if (!count) {
1019 		dev_err(dev, "%s: no supported OPPs", __func__);
1020 		ret = -ENOENT;
1021 		goto remove_static_opp;
1022 	}
1023 
1024 	lazy_link_required_opp_table(opp_table);
1025 
1026 	return 0;
1027 
1028 remove_static_opp:
1029 	_opp_remove_all_static(opp_table);
1030 
1031 	return ret;
1032 }
1033 
1034 /* Initializes OPP tables based on old-deprecated bindings */
1035 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1036 {
1037 	const struct property *prop;
1038 	const __be32 *val;
1039 	int nr, ret = 0;
1040 
1041 	mutex_lock(&opp_table->lock);
1042 	if (opp_table->parsed_static_opps) {
1043 		opp_table->parsed_static_opps++;
1044 		mutex_unlock(&opp_table->lock);
1045 		return 0;
1046 	}
1047 
1048 	opp_table->parsed_static_opps = 1;
1049 	mutex_unlock(&opp_table->lock);
1050 
1051 	prop = of_find_property(dev->of_node, "operating-points", NULL);
1052 	if (!prop) {
1053 		ret = -ENODEV;
1054 		goto remove_static_opp;
1055 	}
1056 	if (!prop->value) {
1057 		ret = -ENODATA;
1058 		goto remove_static_opp;
1059 	}
1060 
1061 	/*
1062 	 * Each OPP is a set of tuples consisting of frequency and
1063 	 * voltage like <freq-kHz vol-uV>.
1064 	 */
1065 	nr = prop->length / sizeof(u32);
1066 	if (nr % 2) {
1067 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1068 		ret = -EINVAL;
1069 		goto remove_static_opp;
1070 	}
1071 
1072 	val = prop->value;
1073 	while (nr) {
1074 		unsigned long freq = be32_to_cpup(val++) * 1000;
1075 		unsigned long volt = be32_to_cpup(val++);
1076 		struct dev_pm_opp_data data = {
1077 			.freq = freq,
1078 			.u_volt = volt,
1079 		};
1080 
1081 		ret = _opp_add_v1(opp_table, dev, &data, false);
1082 		if (ret) {
1083 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1084 				__func__, data.freq, ret);
1085 			goto remove_static_opp;
1086 		}
1087 		nr -= 2;
1088 	}
1089 
1090 	return 0;
1091 
1092 remove_static_opp:
1093 	_opp_remove_all_static(opp_table);
1094 
1095 	return ret;
1096 }
1097 
1098 static int _of_add_table_indexed(struct device *dev, int index)
1099 {
1100 	struct opp_table *opp_table;
1101 	int ret, count;
1102 
1103 	if (index) {
1104 		/*
1105 		 * If only one phandle is present, then the same OPP table
1106 		 * applies for all index requests.
1107 		 */
1108 		count = of_count_phandle_with_args(dev->of_node,
1109 						   "operating-points-v2", NULL);
1110 		if (count == 1)
1111 			index = 0;
1112 	}
1113 
1114 	opp_table = _add_opp_table_indexed(dev, index, true);
1115 	if (IS_ERR(opp_table))
1116 		return PTR_ERR(opp_table);
1117 
1118 	/*
1119 	 * OPPs have two version of bindings now. Also try the old (v1)
1120 	 * bindings for backward compatibility with older dtbs.
1121 	 */
1122 	if (opp_table->np)
1123 		ret = _of_add_opp_table_v2(dev, opp_table);
1124 	else
1125 		ret = _of_add_opp_table_v1(dev, opp_table);
1126 
1127 	if (ret)
1128 		dev_pm_opp_put_opp_table(opp_table);
1129 
1130 	return ret;
1131 }
1132 
1133 static void devm_pm_opp_of_table_release(void *data)
1134 {
1135 	dev_pm_opp_of_remove_table(data);
1136 }
1137 
1138 static int _devm_of_add_table_indexed(struct device *dev, int index)
1139 {
1140 	int ret;
1141 
1142 	ret = _of_add_table_indexed(dev, index);
1143 	if (ret)
1144 		return ret;
1145 
1146 	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1147 }
1148 
1149 /**
1150  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1151  * @dev:	device pointer used to lookup OPP table.
1152  *
1153  * Register the initial OPP table with the OPP library for given device.
1154  *
1155  * The opp_table structure will be freed after the device is destroyed.
1156  *
1157  * Return:
1158  * 0		On success OR
1159  *		Duplicate OPPs (both freq and volt are same) and opp->available
1160  * -EEXIST	Freq are same and volt are different OR
1161  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1162  * -ENOMEM	Memory allocation failure
1163  * -ENODEV	when 'operating-points' property is not found or is invalid data
1164  *		in device node.
1165  * -ENODATA	when empty 'operating-points' property is found
1166  * -EINVAL	when invalid entries are found in opp-v2 table
1167  */
1168 int devm_pm_opp_of_add_table(struct device *dev)
1169 {
1170 	return _devm_of_add_table_indexed(dev, 0);
1171 }
1172 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1173 
1174 /**
1175  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1176  * @dev:	device pointer used to lookup OPP table.
1177  *
1178  * Register the initial OPP table with the OPP library for given device.
1179  *
1180  * Return:
1181  * 0		On success OR
1182  *		Duplicate OPPs (both freq and volt are same) and opp->available
1183  * -EEXIST	Freq are same and volt are different OR
1184  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1185  * -ENOMEM	Memory allocation failure
1186  * -ENODEV	when 'operating-points' property is not found or is invalid data
1187  *		in device node.
1188  * -ENODATA	when empty 'operating-points' property is found
1189  * -EINVAL	when invalid entries are found in opp-v2 table
1190  */
1191 int dev_pm_opp_of_add_table(struct device *dev)
1192 {
1193 	return _of_add_table_indexed(dev, 0);
1194 }
1195 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1196 
1197 /**
1198  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1199  * @dev:	device pointer used to lookup OPP table.
1200  * @index:	Index number.
1201  *
1202  * Register the initial OPP table with the OPP library for given device only
1203  * using the "operating-points-v2" property.
1204  *
1205  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1206  */
1207 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1208 {
1209 	return _of_add_table_indexed(dev, index);
1210 }
1211 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1212 
1213 /**
1214  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1215  * @dev:	device pointer used to lookup OPP table.
1216  * @index:	Index number.
1217  *
1218  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1219  */
1220 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1221 {
1222 	return _devm_of_add_table_indexed(dev, index);
1223 }
1224 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1225 
1226 /* CPU device specific helpers */
1227 
1228 /**
1229  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1230  * @cpumask:	cpumask for which OPP table needs to be removed
1231  *
1232  * This removes the OPP tables for CPUs present in the @cpumask.
1233  * This should be used only to remove static entries created from DT.
1234  */
1235 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1236 {
1237 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1238 }
1239 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1240 
1241 /**
1242  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1243  * @cpumask:	cpumask for which OPP table needs to be added.
1244  *
1245  * This adds the OPP tables for CPUs present in the @cpumask.
1246  */
1247 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1248 {
1249 	struct device *cpu_dev;
1250 	int cpu, ret;
1251 
1252 	if (WARN_ON(cpumask_empty(cpumask)))
1253 		return -ENODEV;
1254 
1255 	for_each_cpu(cpu, cpumask) {
1256 		cpu_dev = get_cpu_device(cpu);
1257 		if (!cpu_dev) {
1258 			pr_err("%s: failed to get cpu%d device\n", __func__,
1259 			       cpu);
1260 			ret = -ENODEV;
1261 			goto remove_table;
1262 		}
1263 
1264 		ret = dev_pm_opp_of_add_table(cpu_dev);
1265 		if (ret) {
1266 			/*
1267 			 * OPP may get registered dynamically, don't print error
1268 			 * message here.
1269 			 */
1270 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1271 				 __func__, cpu, ret);
1272 
1273 			goto remove_table;
1274 		}
1275 	}
1276 
1277 	return 0;
1278 
1279 remove_table:
1280 	/* Free all other OPPs */
1281 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1282 
1283 	return ret;
1284 }
1285 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1286 
1287 /*
1288  * Works only for OPP v2 bindings.
1289  *
1290  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1291  */
1292 /**
1293  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1294  *				      @cpu_dev using operating-points-v2
1295  *				      bindings.
1296  *
1297  * @cpu_dev:	CPU device for which we do this operation
1298  * @cpumask:	cpumask to update with information of sharing CPUs
1299  *
1300  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1301  *
1302  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1303  */
1304 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1305 				   struct cpumask *cpumask)
1306 {
1307 	struct device_node *np, *tmp_np, *cpu_np;
1308 	int cpu, ret = 0;
1309 
1310 	/* Get OPP descriptor node */
1311 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1312 	if (!np) {
1313 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1314 		return -ENOENT;
1315 	}
1316 
1317 	cpumask_set_cpu(cpu_dev->id, cpumask);
1318 
1319 	/* OPPs are shared ? */
1320 	if (!of_property_read_bool(np, "opp-shared"))
1321 		goto put_cpu_node;
1322 
1323 	for_each_possible_cpu(cpu) {
1324 		if (cpu == cpu_dev->id)
1325 			continue;
1326 
1327 		cpu_np = of_cpu_device_node_get(cpu);
1328 		if (!cpu_np) {
1329 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1330 				__func__, cpu);
1331 			ret = -ENOENT;
1332 			goto put_cpu_node;
1333 		}
1334 
1335 		/* Get OPP descriptor node */
1336 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1337 		of_node_put(cpu_np);
1338 		if (!tmp_np) {
1339 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1340 			ret = -ENOENT;
1341 			goto put_cpu_node;
1342 		}
1343 
1344 		/* CPUs are sharing opp node */
1345 		if (np == tmp_np)
1346 			cpumask_set_cpu(cpu, cpumask);
1347 
1348 		of_node_put(tmp_np);
1349 	}
1350 
1351 put_cpu_node:
1352 	of_node_put(np);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1356 
1357 /**
1358  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1359  * @np: Node that contains the "required-opps" property.
1360  * @index: Index of the phandle to parse.
1361  *
1362  * Returns the performance state of the OPP pointed out by the "required-opps"
1363  * property at @index in @np.
1364  *
1365  * Return: Zero or positive performance state on success, otherwise negative
1366  * value on errors.
1367  */
1368 int of_get_required_opp_performance_state(struct device_node *np, int index)
1369 {
1370 	struct dev_pm_opp *opp;
1371 	struct device_node *required_np;
1372 	struct opp_table *opp_table;
1373 	int pstate = -EINVAL;
1374 
1375 	required_np = of_parse_required_opp(np, index);
1376 	if (!required_np)
1377 		return -ENODEV;
1378 
1379 	opp_table = _find_table_of_opp_np(required_np);
1380 	if (IS_ERR(opp_table)) {
1381 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1382 		       __func__, np, PTR_ERR(opp_table));
1383 		goto put_required_np;
1384 	}
1385 
1386 	/* The OPP tables must belong to a genpd */
1387 	if (unlikely(!opp_table->is_genpd)) {
1388 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1389 		goto put_required_np;
1390 	}
1391 
1392 	opp = _find_opp_of_np(opp_table, required_np);
1393 	if (opp) {
1394 		if (opp->level == OPP_LEVEL_UNSET) {
1395 			pr_err("%s: OPP levels aren't available for %pOF\n",
1396 			       __func__, np);
1397 		} else {
1398 			pstate = opp->level;
1399 		}
1400 		dev_pm_opp_put(opp);
1401 
1402 	}
1403 
1404 	dev_pm_opp_put_opp_table(opp_table);
1405 
1406 put_required_np:
1407 	of_node_put(required_np);
1408 
1409 	return pstate;
1410 }
1411 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1412 
1413 /**
1414  * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1415  * @dev: The device to investigate.
1416  *
1417  * Returns true if the device's node has a "operating-points-v2" property and if
1418  * the corresponding node for the opp-table describes opp nodes that uses the
1419  * "required-opps" property.
1420  *
1421  * Return: True if a required-opps is present, else false.
1422  */
1423 bool dev_pm_opp_of_has_required_opp(struct device *dev)
1424 {
1425 	struct device_node *opp_np, *np;
1426 	int count;
1427 
1428 	opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1429 	if (!opp_np)
1430 		return false;
1431 
1432 	np = of_get_next_available_child(opp_np, NULL);
1433 	of_node_put(opp_np);
1434 	if (!np) {
1435 		dev_warn(dev, "Empty OPP table\n");
1436 		return false;
1437 	}
1438 
1439 	count = of_count_phandle_with_args(np, "required-opps", NULL);
1440 	of_node_put(np);
1441 
1442 	return count > 0;
1443 }
1444 
1445 /**
1446  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1447  * @opp:	opp for which DT node has to be returned for
1448  *
1449  * Return: DT node corresponding to the opp, else 0 on success.
1450  *
1451  * The caller needs to put the node with of_node_put() after using it.
1452  */
1453 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1454 {
1455 	if (IS_ERR_OR_NULL(opp)) {
1456 		pr_err("%s: Invalid parameters\n", __func__);
1457 		return NULL;
1458 	}
1459 
1460 	return of_node_get(opp->np);
1461 }
1462 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1463 
1464 /*
1465  * Callback function provided to the Energy Model framework upon registration.
1466  * It provides the power used by @dev at @kHz if it is the frequency of an
1467  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1468  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1469  * frequency and @uW to the associated power.
1470  *
1471  * Returns 0 on success or a proper -EINVAL value in case of error.
1472  */
1473 static int __maybe_unused
1474 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1475 {
1476 	struct dev_pm_opp *opp;
1477 	unsigned long opp_freq, opp_power;
1478 
1479 	/* Find the right frequency and related OPP */
1480 	opp_freq = *kHz * 1000;
1481 	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1482 	if (IS_ERR(opp))
1483 		return -EINVAL;
1484 
1485 	opp_power = dev_pm_opp_get_power(opp);
1486 	dev_pm_opp_put(opp);
1487 	if (!opp_power)
1488 		return -EINVAL;
1489 
1490 	*kHz = opp_freq / 1000;
1491 	*uW = opp_power;
1492 
1493 	return 0;
1494 }
1495 
1496 /**
1497  * dev_pm_opp_calc_power() - Calculate power value for device with EM
1498  * @dev		: Device for which an Energy Model has to be registered
1499  * @uW		: New power value that is calculated
1500  * @kHz		: Frequency for which the new power is calculated
1501  *
1502  * This computes the power estimated by @dev at @kHz if it is the frequency
1503  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1504  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1505  * frequency and @uW to the associated power. The power is estimated as
1506  * P = C * V^2 * f with C being the device's capacitance and V and f
1507  * respectively the voltage and frequency of the OPP.
1508  * It is also used as a callback function provided to the Energy Model
1509  * framework upon registration.
1510  *
1511  * Returns -EINVAL if the power calculation failed because of missing
1512  * parameters, 0 otherwise.
1513  */
1514 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1515 			  unsigned long *kHz)
1516 {
1517 	struct dev_pm_opp *opp;
1518 	struct device_node *np;
1519 	unsigned long mV, Hz;
1520 	u32 cap;
1521 	u64 tmp;
1522 	int ret;
1523 
1524 	np = of_node_get(dev->of_node);
1525 	if (!np)
1526 		return -EINVAL;
1527 
1528 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1529 	of_node_put(np);
1530 	if (ret)
1531 		return -EINVAL;
1532 
1533 	Hz = *kHz * 1000;
1534 	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1535 	if (IS_ERR(opp))
1536 		return -EINVAL;
1537 
1538 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1539 	dev_pm_opp_put(opp);
1540 	if (!mV)
1541 		return -EINVAL;
1542 
1543 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1544 	/* Provide power in micro-Watts */
1545 	do_div(tmp, 1000000);
1546 
1547 	*uW = (unsigned long)tmp;
1548 	*kHz = Hz / 1000;
1549 
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1553 
1554 static bool _of_has_opp_microwatt_property(struct device *dev)
1555 {
1556 	unsigned long power, freq = 0;
1557 	struct dev_pm_opp *opp;
1558 
1559 	/* Check if at least one OPP has needed property */
1560 	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1561 	if (IS_ERR(opp))
1562 		return false;
1563 
1564 	power = dev_pm_opp_get_power(opp);
1565 	dev_pm_opp_put(opp);
1566 	if (!power)
1567 		return false;
1568 
1569 	return true;
1570 }
1571 
1572 /**
1573  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1574  * @dev		: Device for which an Energy Model has to be registered
1575  * @cpus	: CPUs for which an Energy Model has to be registered. For
1576  *		other type of devices it should be set to NULL.
1577  *
1578  * This checks whether the "dynamic-power-coefficient" devicetree property has
1579  * been specified, and tries to register an Energy Model with it if it has.
1580  * Having this property means the voltages are known for OPPs and the EM
1581  * might be calculated.
1582  */
1583 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1584 {
1585 	struct em_data_callback em_cb;
1586 	struct device_node *np;
1587 	int ret, nr_opp;
1588 	u32 cap;
1589 
1590 	if (IS_ERR_OR_NULL(dev)) {
1591 		ret = -EINVAL;
1592 		goto failed;
1593 	}
1594 
1595 	nr_opp = dev_pm_opp_get_opp_count(dev);
1596 	if (nr_opp <= 0) {
1597 		ret = -EINVAL;
1598 		goto failed;
1599 	}
1600 
1601 	/* First, try to find more precised Energy Model in DT */
1602 	if (_of_has_opp_microwatt_property(dev)) {
1603 		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1604 		goto register_em;
1605 	}
1606 
1607 	np = of_node_get(dev->of_node);
1608 	if (!np) {
1609 		ret = -EINVAL;
1610 		goto failed;
1611 	}
1612 
1613 	/*
1614 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1615 	 * set in devicetree. It is assumed the voltage values are known if that
1616 	 * property is set since it is useless otherwise. If voltages are not
1617 	 * known, just let the EM registration fail with an error to alert the
1618 	 * user about the inconsistent configuration.
1619 	 */
1620 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1621 	of_node_put(np);
1622 	if (ret || !cap) {
1623 		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1624 		ret = -EINVAL;
1625 		goto failed;
1626 	}
1627 
1628 	EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1629 
1630 register_em:
1631 	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1632 	if (ret)
1633 		goto failed;
1634 
1635 	return 0;
1636 
1637 failed:
1638 	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1639 	return ret;
1640 }
1641 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1642