1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* 25 * Returns opp descriptor node for a device node, caller must 26 * do of_node_put(). 27 */ 28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 29 int index) 30 { 31 /* "operating-points-v2" can be an array for power domain providers */ 32 return of_parse_phandle(np, "operating-points-v2", index); 33 } 34 35 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 37 { 38 return _opp_of_get_opp_desc_node(dev->of_node, 0); 39 } 40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 41 42 struct opp_table *_managed_opp(struct device *dev, int index) 43 { 44 struct opp_table *opp_table, *managed_table = NULL; 45 struct device_node *np; 46 47 np = _opp_of_get_opp_desc_node(dev->of_node, index); 48 if (!np) 49 return NULL; 50 51 list_for_each_entry(opp_table, &opp_tables, node) { 52 if (opp_table->np == np) { 53 /* 54 * Multiple devices can point to the same OPP table and 55 * so will have same node-pointer, np. 56 * 57 * But the OPPs will be considered as shared only if the 58 * OPP table contains a "opp-shared" property. 59 */ 60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { 61 _get_opp_table_kref(opp_table); 62 managed_table = opp_table; 63 } 64 65 break; 66 } 67 } 68 69 of_node_put(np); 70 71 return managed_table; 72 } 73 74 /* The caller must call dev_pm_opp_put() after the OPP is used */ 75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 76 struct device_node *opp_np) 77 { 78 struct dev_pm_opp *opp; 79 80 mutex_lock(&opp_table->lock); 81 82 list_for_each_entry(opp, &opp_table->opp_list, node) { 83 if (opp->np == opp_np) { 84 dev_pm_opp_get(opp); 85 mutex_unlock(&opp_table->lock); 86 return opp; 87 } 88 } 89 90 mutex_unlock(&opp_table->lock); 91 92 return NULL; 93 } 94 95 static struct device_node *of_parse_required_opp(struct device_node *np, 96 int index) 97 { 98 struct device_node *required_np; 99 100 required_np = of_parse_phandle(np, "required-opps", index); 101 if (unlikely(!required_np)) { 102 pr_err("%s: Unable to parse required-opps: %pOF, index: %d\n", 103 __func__, np, index); 104 } 105 106 return required_np; 107 } 108 109 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 110 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 111 { 112 struct opp_table *opp_table; 113 struct device_node *opp_table_np; 114 115 opp_table_np = of_get_parent(opp_np); 116 if (!opp_table_np) 117 goto err; 118 119 /* It is safe to put the node now as all we need now is its address */ 120 of_node_put(opp_table_np); 121 122 mutex_lock(&opp_table_lock); 123 list_for_each_entry(opp_table, &opp_tables, node) { 124 if (opp_table_np == opp_table->np) { 125 _get_opp_table_kref(opp_table); 126 mutex_unlock(&opp_table_lock); 127 return opp_table; 128 } 129 } 130 mutex_unlock(&opp_table_lock); 131 132 err: 133 return ERR_PTR(-ENODEV); 134 } 135 136 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 137 static void _opp_table_free_required_tables(struct opp_table *opp_table) 138 { 139 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 140 int i; 141 142 if (!required_opp_tables) 143 return; 144 145 for (i = 0; i < opp_table->required_opp_count; i++) { 146 if (IS_ERR_OR_NULL(required_opp_tables[i])) 147 continue; 148 149 dev_pm_opp_put_opp_table(required_opp_tables[i]); 150 } 151 152 kfree(required_opp_tables); 153 154 opp_table->required_opp_count = 0; 155 opp_table->required_opp_tables = NULL; 156 list_del(&opp_table->lazy); 157 } 158 159 /* 160 * Populate all devices and opp tables which are part of "required-opps" list. 161 * Checking only the first OPP node should be enough. 162 */ 163 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 164 struct device *dev, 165 struct device_node *opp_np) 166 { 167 struct opp_table **required_opp_tables; 168 struct device_node *required_np, *np; 169 bool lazy = false; 170 int count, i; 171 172 /* Traversing the first OPP node is all we need */ 173 np = of_get_next_available_child(opp_np, NULL); 174 if (!np) { 175 dev_warn(dev, "Empty OPP table\n"); 176 177 return; 178 } 179 180 count = of_count_phandle_with_args(np, "required-opps", NULL); 181 if (!count) 182 goto put_np; 183 184 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables), 185 GFP_KERNEL); 186 if (!required_opp_tables) 187 goto put_np; 188 189 opp_table->required_opp_tables = required_opp_tables; 190 opp_table->required_opp_count = count; 191 192 for (i = 0; i < count; i++) { 193 required_np = of_parse_required_opp(np, i); 194 if (!required_np) 195 goto free_required_tables; 196 197 required_opp_tables[i] = _find_table_of_opp_np(required_np); 198 of_node_put(required_np); 199 200 if (IS_ERR(required_opp_tables[i])) { 201 lazy = true; 202 continue; 203 } 204 205 /* 206 * We only support genpd's OPPs in the "required-opps" for now, 207 * as we don't know how much about other cases. Error out if the 208 * required OPP doesn't belong to a genpd. 209 */ 210 if (!required_opp_tables[i]->is_genpd) { 211 dev_err(dev, "required-opp doesn't belong to genpd: %pOF\n", 212 required_np); 213 goto free_required_tables; 214 } 215 } 216 217 /* Let's do the linking later on */ 218 if (lazy) 219 list_add(&opp_table->lazy, &lazy_opp_tables); 220 221 goto put_np; 222 223 free_required_tables: 224 _opp_table_free_required_tables(opp_table); 225 put_np: 226 of_node_put(np); 227 } 228 229 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 230 int index) 231 { 232 struct device_node *np, *opp_np; 233 u32 val; 234 235 /* 236 * Only required for backward compatibility with v1 bindings, but isn't 237 * harmful for other cases. And so we do it unconditionally. 238 */ 239 np = of_node_get(dev->of_node); 240 if (!np) 241 return; 242 243 if (!of_property_read_u32(np, "clock-latency", &val)) 244 opp_table->clock_latency_ns_max = val; 245 of_property_read_u32(np, "voltage-tolerance", 246 &opp_table->voltage_tolerance_v1); 247 248 if (of_find_property(np, "#power-domain-cells", NULL)) 249 opp_table->is_genpd = true; 250 251 /* Get OPP table node */ 252 opp_np = _opp_of_get_opp_desc_node(np, index); 253 of_node_put(np); 254 255 if (!opp_np) 256 return; 257 258 if (of_property_read_bool(opp_np, "opp-shared")) 259 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 260 else 261 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 262 263 opp_table->np = opp_np; 264 265 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 266 of_node_put(opp_np); 267 } 268 269 void _of_clear_opp_table(struct opp_table *opp_table) 270 { 271 _opp_table_free_required_tables(opp_table); 272 } 273 274 /* 275 * Release all resources previously acquired with a call to 276 * _of_opp_alloc_required_opps(). 277 */ 278 void _of_opp_free_required_opps(struct opp_table *opp_table, 279 struct dev_pm_opp *opp) 280 { 281 struct dev_pm_opp **required_opps = opp->required_opps; 282 int i; 283 284 if (!required_opps) 285 return; 286 287 for (i = 0; i < opp_table->required_opp_count; i++) { 288 if (!required_opps[i]) 289 continue; 290 291 /* Put the reference back */ 292 dev_pm_opp_put(required_opps[i]); 293 } 294 295 opp->required_opps = NULL; 296 kfree(required_opps); 297 } 298 299 /* Populate all required OPPs which are part of "required-opps" list */ 300 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 301 struct dev_pm_opp *opp) 302 { 303 struct dev_pm_opp **required_opps; 304 struct opp_table *required_table; 305 struct device_node *np; 306 int i, ret, count = opp_table->required_opp_count; 307 308 if (!count) 309 return 0; 310 311 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL); 312 if (!required_opps) 313 return -ENOMEM; 314 315 opp->required_opps = required_opps; 316 317 for (i = 0; i < count; i++) { 318 required_table = opp_table->required_opp_tables[i]; 319 320 /* Required table not added yet, we will link later */ 321 if (IS_ERR_OR_NULL(required_table)) 322 continue; 323 324 np = of_parse_required_opp(opp->np, i); 325 if (unlikely(!np)) { 326 ret = -ENODEV; 327 goto free_required_opps; 328 } 329 330 required_opps[i] = _find_opp_of_np(required_table, np); 331 of_node_put(np); 332 333 if (!required_opps[i]) { 334 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 335 __func__, opp->np, i); 336 ret = -ENODEV; 337 goto free_required_opps; 338 } 339 } 340 341 return 0; 342 343 free_required_opps: 344 _of_opp_free_required_opps(opp_table, opp); 345 346 return ret; 347 } 348 349 /* Link required OPPs for an individual OPP */ 350 static int lazy_link_required_opps(struct opp_table *opp_table, 351 struct opp_table *new_table, int index) 352 { 353 struct device_node *required_np; 354 struct dev_pm_opp *opp; 355 356 list_for_each_entry(opp, &opp_table->opp_list, node) { 357 required_np = of_parse_required_opp(opp->np, index); 358 if (unlikely(!required_np)) 359 return -ENODEV; 360 361 opp->required_opps[index] = _find_opp_of_np(new_table, required_np); 362 of_node_put(required_np); 363 364 if (!opp->required_opps[index]) { 365 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 366 __func__, opp->np, index); 367 return -ENODEV; 368 } 369 } 370 371 return 0; 372 } 373 374 /* Link required OPPs for all OPPs of the newly added OPP table */ 375 static void lazy_link_required_opp_table(struct opp_table *new_table) 376 { 377 struct opp_table *opp_table, *temp, **required_opp_tables; 378 struct device_node *required_np, *opp_np, *required_table_np; 379 struct dev_pm_opp *opp; 380 int i, ret; 381 382 /* 383 * We only support genpd's OPPs in the "required-opps" for now, 384 * as we don't know much about other cases. 385 */ 386 if (!new_table->is_genpd) 387 return; 388 389 mutex_lock(&opp_table_lock); 390 391 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 392 bool lazy = false; 393 394 /* opp_np can't be invalid here */ 395 opp_np = of_get_next_available_child(opp_table->np, NULL); 396 397 for (i = 0; i < opp_table->required_opp_count; i++) { 398 required_opp_tables = opp_table->required_opp_tables; 399 400 /* Required opp-table is already parsed */ 401 if (!IS_ERR(required_opp_tables[i])) 402 continue; 403 404 /* required_np can't be invalid here */ 405 required_np = of_parse_required_opp(opp_np, i); 406 required_table_np = of_get_parent(required_np); 407 408 of_node_put(required_table_np); 409 of_node_put(required_np); 410 411 /* 412 * Newly added table isn't the required opp-table for 413 * opp_table. 414 */ 415 if (required_table_np != new_table->np) { 416 lazy = true; 417 continue; 418 } 419 420 required_opp_tables[i] = new_table; 421 _get_opp_table_kref(new_table); 422 423 /* Link OPPs now */ 424 ret = lazy_link_required_opps(opp_table, new_table, i); 425 if (ret) { 426 /* The OPPs will be marked unusable */ 427 lazy = false; 428 break; 429 } 430 } 431 432 of_node_put(opp_np); 433 434 /* All required opp-tables found, remove from lazy list */ 435 if (!lazy) { 436 list_del(&opp_table->lazy); 437 INIT_LIST_HEAD(&opp_table->lazy); 438 439 list_for_each_entry(opp, &opp_table->opp_list, node) 440 _required_opps_available(opp, opp_table->required_opp_count); 441 } 442 } 443 444 mutex_unlock(&opp_table_lock); 445 } 446 447 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 448 { 449 struct device_node *np, *opp_np; 450 struct property *prop; 451 452 if (!opp_table) { 453 np = of_node_get(dev->of_node); 454 if (!np) 455 return -ENODEV; 456 457 opp_np = _opp_of_get_opp_desc_node(np, 0); 458 of_node_put(np); 459 } else { 460 opp_np = of_node_get(opp_table->np); 461 } 462 463 /* Lets not fail in case we are parsing opp-v1 bindings */ 464 if (!opp_np) 465 return 0; 466 467 /* Checking only first OPP is sufficient */ 468 np = of_get_next_available_child(opp_np, NULL); 469 if (!np) { 470 dev_err(dev, "OPP table empty\n"); 471 return -EINVAL; 472 } 473 of_node_put(opp_np); 474 475 prop = of_find_property(np, "opp-peak-kBps", NULL); 476 of_node_put(np); 477 478 if (!prop || !prop->length) 479 return 0; 480 481 return 1; 482 } 483 484 int dev_pm_opp_of_find_icc_paths(struct device *dev, 485 struct opp_table *opp_table) 486 { 487 struct device_node *np; 488 int ret, i, count, num_paths; 489 struct icc_path **paths; 490 491 ret = _bandwidth_supported(dev, opp_table); 492 if (ret == -EINVAL) 493 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 494 else if (ret <= 0) 495 return ret; 496 497 ret = 0; 498 499 np = of_node_get(dev->of_node); 500 if (!np) 501 return 0; 502 503 count = of_count_phandle_with_args(np, "interconnects", 504 "#interconnect-cells"); 505 of_node_put(np); 506 if (count < 0) 507 return 0; 508 509 /* two phandles when #interconnect-cells = <1> */ 510 if (count % 2) { 511 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 512 return -EINVAL; 513 } 514 515 num_paths = count / 2; 516 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 517 if (!paths) 518 return -ENOMEM; 519 520 for (i = 0; i < num_paths; i++) { 521 paths[i] = of_icc_get_by_index(dev, i); 522 if (IS_ERR(paths[i])) { 523 ret = PTR_ERR(paths[i]); 524 if (ret != -EPROBE_DEFER) { 525 dev_err(dev, "%s: Unable to get path%d: %d\n", 526 __func__, i, ret); 527 } 528 goto err; 529 } 530 } 531 532 if (opp_table) { 533 opp_table->paths = paths; 534 opp_table->path_count = num_paths; 535 return 0; 536 } 537 538 err: 539 while (i--) 540 icc_put(paths[i]); 541 542 kfree(paths); 543 544 return ret; 545 } 546 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 547 548 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 549 struct device_node *np) 550 { 551 unsigned int levels = opp_table->supported_hw_count; 552 int count, versions, ret, i, j; 553 u32 val; 554 555 if (!opp_table->supported_hw) { 556 /* 557 * In the case that no supported_hw has been set by the 558 * platform but there is an opp-supported-hw value set for 559 * an OPP then the OPP should not be enabled as there is 560 * no way to see if the hardware supports it. 561 */ 562 if (of_find_property(np, "opp-supported-hw", NULL)) 563 return false; 564 else 565 return true; 566 } 567 568 count = of_property_count_u32_elems(np, "opp-supported-hw"); 569 if (count <= 0 || count % levels) { 570 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 571 __func__, count); 572 return false; 573 } 574 575 versions = count / levels; 576 577 /* All levels in at least one of the versions should match */ 578 for (i = 0; i < versions; i++) { 579 bool supported = true; 580 581 for (j = 0; j < levels; j++) { 582 ret = of_property_read_u32_index(np, "opp-supported-hw", 583 i * levels + j, &val); 584 if (ret) { 585 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 586 __func__, i * levels + j, ret); 587 return false; 588 } 589 590 /* Check if the level is supported */ 591 if (!(val & opp_table->supported_hw[j])) { 592 supported = false; 593 break; 594 } 595 } 596 597 if (supported) 598 return true; 599 } 600 601 return false; 602 } 603 604 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 605 struct opp_table *opp_table) 606 { 607 u32 *microvolt, *microamp = NULL; 608 int supplies = opp_table->regulator_count, vcount, icount, ret, i, j; 609 struct property *prop = NULL; 610 char name[NAME_MAX]; 611 612 /* Search for "opp-microvolt-<name>" */ 613 if (opp_table->prop_name) { 614 snprintf(name, sizeof(name), "opp-microvolt-%s", 615 opp_table->prop_name); 616 prop = of_find_property(opp->np, name, NULL); 617 } 618 619 if (!prop) { 620 /* Search for "opp-microvolt" */ 621 sprintf(name, "opp-microvolt"); 622 prop = of_find_property(opp->np, name, NULL); 623 624 /* Missing property isn't a problem, but an invalid entry is */ 625 if (!prop) { 626 if (unlikely(supplies == -1)) { 627 /* Initialize regulator_count */ 628 opp_table->regulator_count = 0; 629 return 0; 630 } 631 632 if (!supplies) 633 return 0; 634 635 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 636 __func__); 637 return -EINVAL; 638 } 639 } 640 641 if (unlikely(supplies == -1)) { 642 /* Initialize regulator_count */ 643 supplies = opp_table->regulator_count = 1; 644 } else if (unlikely(!supplies)) { 645 dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__); 646 return -EINVAL; 647 } 648 649 vcount = of_property_count_u32_elems(opp->np, name); 650 if (vcount < 0) { 651 dev_err(dev, "%s: Invalid %s property (%d)\n", 652 __func__, name, vcount); 653 return vcount; 654 } 655 656 /* There can be one or three elements per supply */ 657 if (vcount != supplies && vcount != supplies * 3) { 658 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n", 659 __func__, name, vcount, supplies); 660 return -EINVAL; 661 } 662 663 microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL); 664 if (!microvolt) 665 return -ENOMEM; 666 667 ret = of_property_read_u32_array(opp->np, name, microvolt, vcount); 668 if (ret) { 669 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 670 ret = -EINVAL; 671 goto free_microvolt; 672 } 673 674 /* Search for "opp-microamp-<name>" */ 675 prop = NULL; 676 if (opp_table->prop_name) { 677 snprintf(name, sizeof(name), "opp-microamp-%s", 678 opp_table->prop_name); 679 prop = of_find_property(opp->np, name, NULL); 680 } 681 682 if (!prop) { 683 /* Search for "opp-microamp" */ 684 sprintf(name, "opp-microamp"); 685 prop = of_find_property(opp->np, name, NULL); 686 } 687 688 if (prop) { 689 icount = of_property_count_u32_elems(opp->np, name); 690 if (icount < 0) { 691 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, 692 name, icount); 693 ret = icount; 694 goto free_microvolt; 695 } 696 697 if (icount != supplies) { 698 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n", 699 __func__, name, icount, supplies); 700 ret = -EINVAL; 701 goto free_microvolt; 702 } 703 704 microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL); 705 if (!microamp) { 706 ret = -EINVAL; 707 goto free_microvolt; 708 } 709 710 ret = of_property_read_u32_array(opp->np, name, microamp, 711 icount); 712 if (ret) { 713 dev_err(dev, "%s: error parsing %s: %d\n", __func__, 714 name, ret); 715 ret = -EINVAL; 716 goto free_microamp; 717 } 718 } 719 720 for (i = 0, j = 0; i < supplies; i++) { 721 opp->supplies[i].u_volt = microvolt[j++]; 722 723 if (vcount == supplies) { 724 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 725 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 726 } else { 727 opp->supplies[i].u_volt_min = microvolt[j++]; 728 opp->supplies[i].u_volt_max = microvolt[j++]; 729 } 730 731 if (microamp) 732 opp->supplies[i].u_amp = microamp[i]; 733 } 734 735 free_microamp: 736 kfree(microamp); 737 free_microvolt: 738 kfree(microvolt); 739 740 return ret; 741 } 742 743 /** 744 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 745 * entries 746 * @dev: device pointer used to lookup OPP table. 747 * 748 * Free OPPs created using static entries present in DT. 749 */ 750 void dev_pm_opp_of_remove_table(struct device *dev) 751 { 752 dev_pm_opp_remove_table(dev); 753 } 754 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 755 756 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *table, 757 struct device_node *np, bool peak) 758 { 759 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 760 struct property *prop; 761 int i, count, ret; 762 u32 *bw; 763 764 prop = of_find_property(np, name, NULL); 765 if (!prop) 766 return -ENODEV; 767 768 count = prop->length / sizeof(u32); 769 if (table->path_count != count) { 770 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 771 __func__, name, count, table->path_count); 772 return -EINVAL; 773 } 774 775 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 776 if (!bw) 777 return -ENOMEM; 778 779 ret = of_property_read_u32_array(np, name, bw, count); 780 if (ret) { 781 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 782 goto out; 783 } 784 785 for (i = 0; i < count; i++) { 786 if (peak) 787 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 788 else 789 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 790 } 791 792 out: 793 kfree(bw); 794 return ret; 795 } 796 797 static int _read_opp_key(struct dev_pm_opp *new_opp, struct opp_table *table, 798 struct device_node *np, bool *rate_not_available) 799 { 800 bool found = false; 801 u64 rate; 802 int ret; 803 804 ret = of_property_read_u64(np, "opp-hz", &rate); 805 if (!ret) { 806 /* 807 * Rate is defined as an unsigned long in clk API, and so 808 * casting explicitly to its type. Must be fixed once rate is 64 809 * bit guaranteed in clk API. 810 */ 811 new_opp->rate = (unsigned long)rate; 812 found = true; 813 } 814 *rate_not_available = !!ret; 815 816 /* 817 * Bandwidth consists of peak and average (optional) values: 818 * opp-peak-kBps = <path1_value path2_value>; 819 * opp-avg-kBps = <path1_value path2_value>; 820 */ 821 ret = _read_bw(new_opp, table, np, true); 822 if (!ret) { 823 found = true; 824 ret = _read_bw(new_opp, table, np, false); 825 } 826 827 /* The properties were found but we failed to parse them */ 828 if (ret && ret != -ENODEV) 829 return ret; 830 831 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 832 found = true; 833 834 if (found) 835 return 0; 836 837 return ret; 838 } 839 840 /** 841 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 842 * @opp_table: OPP table 843 * @dev: device for which we do this operation 844 * @np: device node 845 * 846 * This function adds an opp definition to the opp table and returns status. The 847 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 848 * removed by dev_pm_opp_remove. 849 * 850 * Return: 851 * Valid OPP pointer: 852 * On success 853 * NULL: 854 * Duplicate OPPs (both freq and volt are same) and opp->available 855 * OR if the OPP is not supported by hardware. 856 * ERR_PTR(-EEXIST): 857 * Freq are same and volt are different OR 858 * Duplicate OPPs (both freq and volt are same) and !opp->available 859 * ERR_PTR(-ENOMEM): 860 * Memory allocation failure 861 * ERR_PTR(-EINVAL): 862 * Failed parsing the OPP node 863 */ 864 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 865 struct device *dev, struct device_node *np) 866 { 867 struct dev_pm_opp *new_opp; 868 u32 val; 869 int ret; 870 bool rate_not_available = false; 871 872 new_opp = _opp_allocate(opp_table); 873 if (!new_opp) 874 return ERR_PTR(-ENOMEM); 875 876 ret = _read_opp_key(new_opp, opp_table, np, &rate_not_available); 877 if (ret < 0 && !opp_table->is_genpd) { 878 dev_err(dev, "%s: opp key field not found\n", __func__); 879 goto free_opp; 880 } 881 882 /* Check if the OPP supports hardware's hierarchy of versions or not */ 883 if (!_opp_is_supported(dev, opp_table, np)) { 884 dev_dbg(dev, "OPP not supported by hardware: %lu\n", 885 new_opp->rate); 886 goto free_opp; 887 } 888 889 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 890 891 new_opp->np = np; 892 new_opp->dynamic = false; 893 new_opp->available = true; 894 895 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 896 if (ret) 897 goto free_opp; 898 899 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 900 new_opp->clock_latency_ns = val; 901 902 ret = opp_parse_supplies(new_opp, dev, opp_table); 903 if (ret) 904 goto free_required_opps; 905 906 if (opp_table->is_genpd) 907 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp); 908 909 ret = _opp_add(dev, new_opp, opp_table, rate_not_available); 910 if (ret) { 911 /* Don't return error for duplicate OPPs */ 912 if (ret == -EBUSY) 913 ret = 0; 914 goto free_required_opps; 915 } 916 917 /* OPP to select on device suspend */ 918 if (of_property_read_bool(np, "opp-suspend")) { 919 if (opp_table->suspend_opp) { 920 /* Pick the OPP with higher rate as suspend OPP */ 921 if (new_opp->rate > opp_table->suspend_opp->rate) { 922 opp_table->suspend_opp->suspend = false; 923 new_opp->suspend = true; 924 opp_table->suspend_opp = new_opp; 925 } 926 } else { 927 new_opp->suspend = true; 928 opp_table->suspend_opp = new_opp; 929 } 930 } 931 932 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 933 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 934 935 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 936 __func__, new_opp->turbo, new_opp->rate, 937 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 938 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 939 new_opp->level); 940 941 /* 942 * Notify the changes in the availability of the operable 943 * frequency/voltage list. 944 */ 945 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 946 return new_opp; 947 948 free_required_opps: 949 _of_opp_free_required_opps(opp_table, new_opp); 950 free_opp: 951 _opp_free(new_opp); 952 953 return ERR_PTR(ret); 954 } 955 956 /* Initializes OPP tables based on new bindings */ 957 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 958 { 959 struct device_node *np; 960 int ret, count = 0; 961 struct dev_pm_opp *opp; 962 963 /* OPP table is already initialized for the device */ 964 mutex_lock(&opp_table->lock); 965 if (opp_table->parsed_static_opps) { 966 opp_table->parsed_static_opps++; 967 mutex_unlock(&opp_table->lock); 968 return 0; 969 } 970 971 opp_table->parsed_static_opps = 1; 972 mutex_unlock(&opp_table->lock); 973 974 /* We have opp-table node now, iterate over it and add OPPs */ 975 for_each_available_child_of_node(opp_table->np, np) { 976 opp = _opp_add_static_v2(opp_table, dev, np); 977 if (IS_ERR(opp)) { 978 ret = PTR_ERR(opp); 979 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 980 ret); 981 of_node_put(np); 982 goto remove_static_opp; 983 } else if (opp) { 984 count++; 985 } 986 } 987 988 /* There should be one of more OPP defined */ 989 if (WARN_ON(!count)) { 990 ret = -ENOENT; 991 goto remove_static_opp; 992 } 993 994 list_for_each_entry(opp, &opp_table->opp_list, node) { 995 /* Any non-zero performance state would enable the feature */ 996 if (opp->pstate) { 997 opp_table->genpd_performance_state = true; 998 break; 999 } 1000 } 1001 1002 lazy_link_required_opp_table(opp_table); 1003 1004 return 0; 1005 1006 remove_static_opp: 1007 _opp_remove_all_static(opp_table); 1008 1009 return ret; 1010 } 1011 1012 /* Initializes OPP tables based on old-deprecated bindings */ 1013 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 1014 { 1015 const struct property *prop; 1016 const __be32 *val; 1017 int nr, ret = 0; 1018 1019 mutex_lock(&opp_table->lock); 1020 if (opp_table->parsed_static_opps) { 1021 opp_table->parsed_static_opps++; 1022 mutex_unlock(&opp_table->lock); 1023 return 0; 1024 } 1025 1026 opp_table->parsed_static_opps = 1; 1027 mutex_unlock(&opp_table->lock); 1028 1029 prop = of_find_property(dev->of_node, "operating-points", NULL); 1030 if (!prop) { 1031 ret = -ENODEV; 1032 goto remove_static_opp; 1033 } 1034 if (!prop->value) { 1035 ret = -ENODATA; 1036 goto remove_static_opp; 1037 } 1038 1039 /* 1040 * Each OPP is a set of tuples consisting of frequency and 1041 * voltage like <freq-kHz vol-uV>. 1042 */ 1043 nr = prop->length / sizeof(u32); 1044 if (nr % 2) { 1045 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1046 ret = -EINVAL; 1047 goto remove_static_opp; 1048 } 1049 1050 val = prop->value; 1051 while (nr) { 1052 unsigned long freq = be32_to_cpup(val++) * 1000; 1053 unsigned long volt = be32_to_cpup(val++); 1054 1055 ret = _opp_add_v1(opp_table, dev, freq, volt, false); 1056 if (ret) { 1057 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1058 __func__, freq, ret); 1059 goto remove_static_opp; 1060 } 1061 nr -= 2; 1062 } 1063 1064 return 0; 1065 1066 remove_static_opp: 1067 _opp_remove_all_static(opp_table); 1068 1069 return ret; 1070 } 1071 1072 static int _of_add_table_indexed(struct device *dev, int index, bool getclk) 1073 { 1074 struct opp_table *opp_table; 1075 int ret, count; 1076 1077 if (index) { 1078 /* 1079 * If only one phandle is present, then the same OPP table 1080 * applies for all index requests. 1081 */ 1082 count = of_count_phandle_with_args(dev->of_node, 1083 "operating-points-v2", NULL); 1084 if (count == 1) 1085 index = 0; 1086 } 1087 1088 opp_table = _add_opp_table_indexed(dev, index, getclk); 1089 if (IS_ERR(opp_table)) 1090 return PTR_ERR(opp_table); 1091 1092 /* 1093 * OPPs have two version of bindings now. Also try the old (v1) 1094 * bindings for backward compatibility with older dtbs. 1095 */ 1096 if (opp_table->np) 1097 ret = _of_add_opp_table_v2(dev, opp_table); 1098 else 1099 ret = _of_add_opp_table_v1(dev, opp_table); 1100 1101 if (ret) 1102 dev_pm_opp_put_opp_table(opp_table); 1103 1104 return ret; 1105 } 1106 1107 /** 1108 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1109 * @dev: device pointer used to lookup OPP table. 1110 * 1111 * Register the initial OPP table with the OPP library for given device. 1112 * 1113 * Return: 1114 * 0 On success OR 1115 * Duplicate OPPs (both freq and volt are same) and opp->available 1116 * -EEXIST Freq are same and volt are different OR 1117 * Duplicate OPPs (both freq and volt are same) and !opp->available 1118 * -ENOMEM Memory allocation failure 1119 * -ENODEV when 'operating-points' property is not found or is invalid data 1120 * in device node. 1121 * -ENODATA when empty 'operating-points' property is found 1122 * -EINVAL when invalid entries are found in opp-v2 table 1123 */ 1124 int dev_pm_opp_of_add_table(struct device *dev) 1125 { 1126 return _of_add_table_indexed(dev, 0, true); 1127 } 1128 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1129 1130 /** 1131 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1132 * @dev: device pointer used to lookup OPP table. 1133 * @index: Index number. 1134 * 1135 * Register the initial OPP table with the OPP library for given device only 1136 * using the "operating-points-v2" property. 1137 * 1138 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1139 */ 1140 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1141 { 1142 return _of_add_table_indexed(dev, index, true); 1143 } 1144 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1145 1146 /** 1147 * dev_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device 1148 * tree without getting clk for device. 1149 * @dev: device pointer used to lookup OPP table. 1150 * @index: Index number. 1151 * 1152 * Register the initial OPP table with the OPP library for given device only 1153 * using the "operating-points-v2" property. Do not try to get the clk for the 1154 * device. 1155 * 1156 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1157 */ 1158 int dev_pm_opp_of_add_table_noclk(struct device *dev, int index) 1159 { 1160 return _of_add_table_indexed(dev, index, false); 1161 } 1162 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_noclk); 1163 1164 /* CPU device specific helpers */ 1165 1166 /** 1167 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1168 * @cpumask: cpumask for which OPP table needs to be removed 1169 * 1170 * This removes the OPP tables for CPUs present in the @cpumask. 1171 * This should be used only to remove static entries created from DT. 1172 */ 1173 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1174 { 1175 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1176 } 1177 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1178 1179 /** 1180 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1181 * @cpumask: cpumask for which OPP table needs to be added. 1182 * 1183 * This adds the OPP tables for CPUs present in the @cpumask. 1184 */ 1185 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1186 { 1187 struct device *cpu_dev; 1188 int cpu, ret; 1189 1190 if (WARN_ON(cpumask_empty(cpumask))) 1191 return -ENODEV; 1192 1193 for_each_cpu(cpu, cpumask) { 1194 cpu_dev = get_cpu_device(cpu); 1195 if (!cpu_dev) { 1196 pr_err("%s: failed to get cpu%d device\n", __func__, 1197 cpu); 1198 ret = -ENODEV; 1199 goto remove_table; 1200 } 1201 1202 ret = dev_pm_opp_of_add_table(cpu_dev); 1203 if (ret) { 1204 /* 1205 * OPP may get registered dynamically, don't print error 1206 * message here. 1207 */ 1208 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1209 __func__, cpu, ret); 1210 1211 goto remove_table; 1212 } 1213 } 1214 1215 return 0; 1216 1217 remove_table: 1218 /* Free all other OPPs */ 1219 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1220 1221 return ret; 1222 } 1223 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1224 1225 /* 1226 * Works only for OPP v2 bindings. 1227 * 1228 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1229 */ 1230 /** 1231 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1232 * @cpu_dev using operating-points-v2 1233 * bindings. 1234 * 1235 * @cpu_dev: CPU device for which we do this operation 1236 * @cpumask: cpumask to update with information of sharing CPUs 1237 * 1238 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1239 * 1240 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1241 */ 1242 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1243 struct cpumask *cpumask) 1244 { 1245 struct device_node *np, *tmp_np, *cpu_np; 1246 int cpu, ret = 0; 1247 1248 /* Get OPP descriptor node */ 1249 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1250 if (!np) { 1251 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1252 return -ENOENT; 1253 } 1254 1255 cpumask_set_cpu(cpu_dev->id, cpumask); 1256 1257 /* OPPs are shared ? */ 1258 if (!of_property_read_bool(np, "opp-shared")) 1259 goto put_cpu_node; 1260 1261 for_each_possible_cpu(cpu) { 1262 if (cpu == cpu_dev->id) 1263 continue; 1264 1265 cpu_np = of_cpu_device_node_get(cpu); 1266 if (!cpu_np) { 1267 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1268 __func__, cpu); 1269 ret = -ENOENT; 1270 goto put_cpu_node; 1271 } 1272 1273 /* Get OPP descriptor node */ 1274 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); 1275 of_node_put(cpu_np); 1276 if (!tmp_np) { 1277 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1278 ret = -ENOENT; 1279 goto put_cpu_node; 1280 } 1281 1282 /* CPUs are sharing opp node */ 1283 if (np == tmp_np) 1284 cpumask_set_cpu(cpu, cpumask); 1285 1286 of_node_put(tmp_np); 1287 } 1288 1289 put_cpu_node: 1290 of_node_put(np); 1291 return ret; 1292 } 1293 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1294 1295 /** 1296 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1297 * @np: Node that contains the "required-opps" property. 1298 * @index: Index of the phandle to parse. 1299 * 1300 * Returns the performance state of the OPP pointed out by the "required-opps" 1301 * property at @index in @np. 1302 * 1303 * Return: Zero or positive performance state on success, otherwise negative 1304 * value on errors. 1305 */ 1306 int of_get_required_opp_performance_state(struct device_node *np, int index) 1307 { 1308 struct dev_pm_opp *opp; 1309 struct device_node *required_np; 1310 struct opp_table *opp_table; 1311 int pstate = -EINVAL; 1312 1313 required_np = of_parse_required_opp(np, index); 1314 if (!required_np) 1315 return -EINVAL; 1316 1317 opp_table = _find_table_of_opp_np(required_np); 1318 if (IS_ERR(opp_table)) { 1319 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1320 __func__, np, PTR_ERR(opp_table)); 1321 goto put_required_np; 1322 } 1323 1324 opp = _find_opp_of_np(opp_table, required_np); 1325 if (opp) { 1326 pstate = opp->pstate; 1327 dev_pm_opp_put(opp); 1328 } 1329 1330 dev_pm_opp_put_opp_table(opp_table); 1331 1332 put_required_np: 1333 of_node_put(required_np); 1334 1335 return pstate; 1336 } 1337 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1338 1339 /** 1340 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1341 * @opp: opp for which DT node has to be returned for 1342 * 1343 * Return: DT node corresponding to the opp, else 0 on success. 1344 * 1345 * The caller needs to put the node with of_node_put() after using it. 1346 */ 1347 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1348 { 1349 if (IS_ERR_OR_NULL(opp)) { 1350 pr_err("%s: Invalid parameters\n", __func__); 1351 return NULL; 1352 } 1353 1354 return of_node_get(opp->np); 1355 } 1356 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1357 1358 /* 1359 * Callback function provided to the Energy Model framework upon registration. 1360 * This computes the power estimated by @dev at @kHz if it is the frequency 1361 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1362 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1363 * frequency and @mW to the associated power. The power is estimated as 1364 * P = C * V^2 * f with C being the device's capacitance and V and f 1365 * respectively the voltage and frequency of the OPP. 1366 * 1367 * Returns -EINVAL if the power calculation failed because of missing 1368 * parameters, 0 otherwise. 1369 */ 1370 static int __maybe_unused _get_power(unsigned long *mW, unsigned long *kHz, 1371 struct device *dev) 1372 { 1373 struct dev_pm_opp *opp; 1374 struct device_node *np; 1375 unsigned long mV, Hz; 1376 u32 cap; 1377 u64 tmp; 1378 int ret; 1379 1380 np = of_node_get(dev->of_node); 1381 if (!np) 1382 return -EINVAL; 1383 1384 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1385 of_node_put(np); 1386 if (ret) 1387 return -EINVAL; 1388 1389 Hz = *kHz * 1000; 1390 opp = dev_pm_opp_find_freq_ceil(dev, &Hz); 1391 if (IS_ERR(opp)) 1392 return -EINVAL; 1393 1394 mV = dev_pm_opp_get_voltage(opp) / 1000; 1395 dev_pm_opp_put(opp); 1396 if (!mV) 1397 return -EINVAL; 1398 1399 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1400 do_div(tmp, 1000000000); 1401 1402 *mW = (unsigned long)tmp; 1403 *kHz = Hz / 1000; 1404 1405 return 0; 1406 } 1407 1408 /** 1409 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1410 * @dev : Device for which an Energy Model has to be registered 1411 * @cpus : CPUs for which an Energy Model has to be registered. For 1412 * other type of devices it should be set to NULL. 1413 * 1414 * This checks whether the "dynamic-power-coefficient" devicetree property has 1415 * been specified, and tries to register an Energy Model with it if it has. 1416 * Having this property means the voltages are known for OPPs and the EM 1417 * might be calculated. 1418 */ 1419 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1420 { 1421 struct em_data_callback em_cb = EM_DATA_CB(_get_power); 1422 struct device_node *np; 1423 int ret, nr_opp; 1424 u32 cap; 1425 1426 if (IS_ERR_OR_NULL(dev)) { 1427 ret = -EINVAL; 1428 goto failed; 1429 } 1430 1431 nr_opp = dev_pm_opp_get_opp_count(dev); 1432 if (nr_opp <= 0) { 1433 ret = -EINVAL; 1434 goto failed; 1435 } 1436 1437 np = of_node_get(dev->of_node); 1438 if (!np) { 1439 ret = -EINVAL; 1440 goto failed; 1441 } 1442 1443 /* 1444 * Register an EM only if the 'dynamic-power-coefficient' property is 1445 * set in devicetree. It is assumed the voltage values are known if that 1446 * property is set since it is useless otherwise. If voltages are not 1447 * known, just let the EM registration fail with an error to alert the 1448 * user about the inconsistent configuration. 1449 */ 1450 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1451 of_node_put(np); 1452 if (ret || !cap) { 1453 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1454 ret = -EINVAL; 1455 goto failed; 1456 } 1457 1458 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1459 if (ret) 1460 goto failed; 1461 1462 return 0; 1463 1464 failed: 1465 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1466 return ret; 1467 } 1468 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1469