xref: /linux/drivers/opp/of.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21 
22 #include "opp.h"
23 
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
26 
27 /*
28  * Returns opp descriptor node for a device node, caller must
29  * do of_node_put().
30  */
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 						     int index)
33 {
34 	/* "operating-points-v2" can be an array for power domain providers */
35 	return of_parse_phandle(np, "operating-points-v2", index);
36 }
37 
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44 
45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47 	struct opp_table *opp_table, *managed_table = NULL;
48 	struct device_node *np;
49 
50 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 	if (!np)
52 		return NULL;
53 
54 	list_for_each_entry(opp_table, &opp_tables, node) {
55 		if (opp_table->np == np) {
56 			/*
57 			 * Multiple devices can point to the same OPP table and
58 			 * so will have same node-pointer, np.
59 			 *
60 			 * But the OPPs will be considered as shared only if the
61 			 * OPP table contains a "opp-shared" property.
62 			 */
63 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 				_get_opp_table_kref(opp_table);
65 				managed_table = opp_table;
66 			}
67 
68 			break;
69 		}
70 	}
71 
72 	of_node_put(np);
73 
74 	return managed_table;
75 }
76 
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 					  struct device_node *opp_np)
80 {
81 	struct dev_pm_opp *opp;
82 
83 	mutex_lock(&opp_table->lock);
84 
85 	list_for_each_entry(opp, &opp_table->opp_list, node) {
86 		if (opp->np == opp_np) {
87 			dev_pm_opp_get(opp);
88 			mutex_unlock(&opp_table->lock);
89 			return opp;
90 		}
91 	}
92 
93 	mutex_unlock(&opp_table->lock);
94 
95 	return NULL;
96 }
97 
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99 						 int index)
100 {
101 	return of_parse_phandle(np, "required-opps", index);
102 }
103 
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106 {
107 	struct opp_table *opp_table;
108 	struct device_node *opp_table_np;
109 
110 	opp_table_np = of_get_parent(opp_np);
111 	if (!opp_table_np)
112 		goto err;
113 
114 	/* It is safe to put the node now as all we need now is its address */
115 	of_node_put(opp_table_np);
116 
117 	mutex_lock(&opp_table_lock);
118 	list_for_each_entry(opp_table, &opp_tables, node) {
119 		if (opp_table_np == opp_table->np) {
120 			_get_opp_table_kref(opp_table);
121 			mutex_unlock(&opp_table_lock);
122 			return opp_table;
123 		}
124 	}
125 	mutex_unlock(&opp_table_lock);
126 
127 err:
128 	return ERR_PTR(-ENODEV);
129 }
130 
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
133 {
134 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 	int i;
136 
137 	if (!required_opp_tables)
138 		return;
139 
140 	for (i = 0; i < opp_table->required_opp_count; i++) {
141 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 			continue;
143 
144 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
145 	}
146 
147 	kfree(required_opp_tables);
148 
149 	opp_table->required_opp_count = 0;
150 	opp_table->required_opp_tables = NULL;
151 
152 	mutex_lock(&opp_table_lock);
153 	list_del(&opp_table->lazy);
154 	mutex_unlock(&opp_table_lock);
155 }
156 
157 /*
158  * Populate all devices and opp tables which are part of "required-opps" list.
159  * Checking only the first OPP node should be enough.
160  */
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 					     struct device *dev,
163 					     struct device_node *opp_np)
164 {
165 	struct opp_table **required_opp_tables;
166 	struct device_node *required_np, *np;
167 	bool lazy = false;
168 	int count, i, size;
169 
170 	/* Traversing the first OPP node is all we need */
171 	np = of_get_next_available_child(opp_np, NULL);
172 	if (!np) {
173 		dev_warn(dev, "Empty OPP table\n");
174 
175 		return;
176 	}
177 
178 	count = of_count_phandle_with_args(np, "required-opps", NULL);
179 	if (count <= 0)
180 		goto put_np;
181 
182 	size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183 	required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184 	if (!required_opp_tables)
185 		goto put_np;
186 
187 	opp_table->required_opp_tables = required_opp_tables;
188 	opp_table->required_devs = (void *)(required_opp_tables + count);
189 	opp_table->required_opp_count = count;
190 
191 	for (i = 0; i < count; i++) {
192 		required_np = of_parse_required_opp(np, i);
193 		if (!required_np)
194 			goto free_required_tables;
195 
196 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
197 		of_node_put(required_np);
198 
199 		if (IS_ERR(required_opp_tables[i]))
200 			lazy = true;
201 	}
202 
203 	/* Let's do the linking later on */
204 	if (lazy) {
205 		/*
206 		 * The OPP table is not held while allocating the table, take it
207 		 * now to avoid corruption to the lazy_opp_tables list.
208 		 */
209 		mutex_lock(&opp_table_lock);
210 		list_add(&opp_table->lazy, &lazy_opp_tables);
211 		mutex_unlock(&opp_table_lock);
212 	}
213 
214 	goto put_np;
215 
216 free_required_tables:
217 	_opp_table_free_required_tables(opp_table);
218 put_np:
219 	of_node_put(np);
220 }
221 
222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223 			int index)
224 {
225 	struct device_node *np, *opp_np;
226 	u32 val;
227 
228 	/*
229 	 * Only required for backward compatibility with v1 bindings, but isn't
230 	 * harmful for other cases. And so we do it unconditionally.
231 	 */
232 	np = of_node_get(dev->of_node);
233 	if (!np)
234 		return;
235 
236 	if (!of_property_read_u32(np, "clock-latency", &val))
237 		opp_table->clock_latency_ns_max = val;
238 	of_property_read_u32(np, "voltage-tolerance",
239 			     &opp_table->voltage_tolerance_v1);
240 
241 	if (of_property_present(np, "#power-domain-cells"))
242 		opp_table->is_genpd = true;
243 
244 	/* Get OPP table node */
245 	opp_np = _opp_of_get_opp_desc_node(np, index);
246 	of_node_put(np);
247 
248 	if (!opp_np)
249 		return;
250 
251 	if (of_property_read_bool(opp_np, "opp-shared"))
252 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253 	else
254 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
255 
256 	opp_table->np = opp_np;
257 
258 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
259 }
260 
261 void _of_clear_opp_table(struct opp_table *opp_table)
262 {
263 	_opp_table_free_required_tables(opp_table);
264 	of_node_put(opp_table->np);
265 }
266 
267 /*
268  * Release all resources previously acquired with a call to
269  * _of_opp_alloc_required_opps().
270  */
271 static void _of_opp_free_required_opps(struct opp_table *opp_table,
272 				       struct dev_pm_opp *opp)
273 {
274 	struct dev_pm_opp **required_opps = opp->required_opps;
275 	int i;
276 
277 	if (!required_opps)
278 		return;
279 
280 	for (i = 0; i < opp_table->required_opp_count; i++) {
281 		if (!required_opps[i])
282 			continue;
283 
284 		/* Put the reference back */
285 		dev_pm_opp_put(required_opps[i]);
286 	}
287 
288 	opp->required_opps = NULL;
289 	kfree(required_opps);
290 }
291 
292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
293 {
294 	_of_opp_free_required_opps(opp_table, opp);
295 	of_node_put(opp->np);
296 }
297 
298 static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table,
299 			       struct opp_table *required_table, int index)
300 {
301 	struct device_node *np;
302 
303 	np = of_parse_required_opp(opp->np, index);
304 	if (unlikely(!np))
305 		return -ENODEV;
306 
307 	opp->required_opps[index] = _find_opp_of_np(required_table, np);
308 	of_node_put(np);
309 
310 	if (!opp->required_opps[index]) {
311 		pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312 		       __func__, opp->np, index);
313 		return -ENODEV;
314 	}
315 
316 	/*
317 	 * There are two genpd (as required-opp) cases that we need to handle,
318 	 * devices with a single genpd and ones with multiple genpds.
319 	 *
320 	 * The single genpd case requires special handling as we need to use the
321 	 * same `dev` structure (instead of a virtual one provided by genpd
322 	 * core) for setting the performance state.
323 	 *
324 	 * It doesn't make sense for a device's DT entry to have both
325 	 * "opp-level" and single "required-opps" entry pointing to a genpd's
326 	 * OPP, as that would make the OPP core call
327 	 * dev_pm_domain_set_performance_state() for two different values for
328 	 * the same device structure. Lets treat single genpd configuration as a
329 	 * case where the OPP's level is directly available without required-opp
330 	 * link in the DT.
331 	 *
332 	 * Just update the `level` with the right value, which
333 	 * dev_pm_opp_set_opp() will take care of in the normal path itself.
334 	 *
335 	 * There is another case though, where a genpd's OPP table has
336 	 * required-opps set to a parent genpd. The OPP core expects the user to
337 	 * set the respective required `struct device` pointer via
338 	 * dev_pm_opp_set_config().
339 	 */
340 	if (required_table->is_genpd && opp_table->required_opp_count == 1 &&
341 	    !opp_table->required_devs[0]) {
342 		/* Genpd core takes care of propagation to parent genpd */
343 		if (!opp_table->is_genpd) {
344 			if (!WARN_ON(opp->level != OPP_LEVEL_UNSET))
345 				opp->level = opp->required_opps[0]->level;
346 		}
347 	}
348 
349 	return 0;
350 }
351 
352 /* Populate all required OPPs which are part of "required-opps" list */
353 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
354 				       struct dev_pm_opp *opp)
355 {
356 	struct opp_table *required_table;
357 	int i, ret, count = opp_table->required_opp_count;
358 
359 	if (!count)
360 		return 0;
361 
362 	opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
363 	if (!opp->required_opps)
364 		return -ENOMEM;
365 
366 	for (i = 0; i < count; i++) {
367 		required_table = opp_table->required_opp_tables[i];
368 
369 		/* Required table not added yet, we will link later */
370 		if (IS_ERR_OR_NULL(required_table))
371 			continue;
372 
373 		ret = _link_required_opps(opp, opp_table, required_table, i);
374 		if (ret)
375 			goto free_required_opps;
376 	}
377 
378 	return 0;
379 
380 free_required_opps:
381 	_of_opp_free_required_opps(opp_table, opp);
382 
383 	return ret;
384 }
385 
386 /* Link required OPPs for an individual OPP */
387 static int lazy_link_required_opps(struct opp_table *opp_table,
388 				   struct opp_table *new_table, int index)
389 {
390 	struct dev_pm_opp *opp;
391 	int ret;
392 
393 	list_for_each_entry(opp, &opp_table->opp_list, node) {
394 		ret = _link_required_opps(opp, opp_table, new_table, index);
395 		if (ret)
396 			return ret;
397 	}
398 
399 	return 0;
400 }
401 
402 /* Link required OPPs for all OPPs of the newly added OPP table */
403 static void lazy_link_required_opp_table(struct opp_table *new_table)
404 {
405 	struct opp_table *opp_table, *temp, **required_opp_tables;
406 	struct device_node *required_np, *opp_np, *required_table_np;
407 	struct dev_pm_opp *opp;
408 	int i, ret;
409 
410 	mutex_lock(&opp_table_lock);
411 
412 	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
413 		bool lazy = false;
414 
415 		/* opp_np can't be invalid here */
416 		opp_np = of_get_next_available_child(opp_table->np, NULL);
417 
418 		for (i = 0; i < opp_table->required_opp_count; i++) {
419 			required_opp_tables = opp_table->required_opp_tables;
420 
421 			/* Required opp-table is already parsed */
422 			if (!IS_ERR(required_opp_tables[i]))
423 				continue;
424 
425 			/* required_np can't be invalid here */
426 			required_np = of_parse_required_opp(opp_np, i);
427 			required_table_np = of_get_parent(required_np);
428 
429 			of_node_put(required_table_np);
430 			of_node_put(required_np);
431 
432 			/*
433 			 * Newly added table isn't the required opp-table for
434 			 * opp_table.
435 			 */
436 			if (required_table_np != new_table->np) {
437 				lazy = true;
438 				continue;
439 			}
440 
441 			required_opp_tables[i] = new_table;
442 			_get_opp_table_kref(new_table);
443 
444 			/* Link OPPs now */
445 			ret = lazy_link_required_opps(opp_table, new_table, i);
446 			if (ret) {
447 				/* The OPPs will be marked unusable */
448 				lazy = false;
449 				break;
450 			}
451 		}
452 
453 		of_node_put(opp_np);
454 
455 		/* All required opp-tables found, remove from lazy list */
456 		if (!lazy) {
457 			list_del_init(&opp_table->lazy);
458 
459 			list_for_each_entry(opp, &opp_table->opp_list, node)
460 				_required_opps_available(opp, opp_table->required_opp_count);
461 		}
462 	}
463 
464 	mutex_unlock(&opp_table_lock);
465 }
466 
467 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
468 {
469 	struct device_node *np, *opp_np;
470 	struct property *prop;
471 
472 	if (!opp_table) {
473 		np = of_node_get(dev->of_node);
474 		if (!np)
475 			return -ENODEV;
476 
477 		opp_np = _opp_of_get_opp_desc_node(np, 0);
478 		of_node_put(np);
479 	} else {
480 		opp_np = of_node_get(opp_table->np);
481 	}
482 
483 	/* Lets not fail in case we are parsing opp-v1 bindings */
484 	if (!opp_np)
485 		return 0;
486 
487 	/* Checking only first OPP is sufficient */
488 	np = of_get_next_available_child(opp_np, NULL);
489 	of_node_put(opp_np);
490 	if (!np) {
491 		dev_err(dev, "OPP table empty\n");
492 		return -EINVAL;
493 	}
494 
495 	prop = of_find_property(np, "opp-peak-kBps", NULL);
496 	of_node_put(np);
497 
498 	if (!prop || !prop->length)
499 		return 0;
500 
501 	return 1;
502 }
503 
504 int dev_pm_opp_of_find_icc_paths(struct device *dev,
505 				 struct opp_table *opp_table)
506 {
507 	struct device_node *np;
508 	int ret, i, count, num_paths;
509 	struct icc_path **paths;
510 
511 	ret = _bandwidth_supported(dev, opp_table);
512 	if (ret == -EINVAL)
513 		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
514 	else if (ret <= 0)
515 		return ret;
516 
517 	ret = 0;
518 
519 	np = of_node_get(dev->of_node);
520 	if (!np)
521 		return 0;
522 
523 	count = of_count_phandle_with_args(np, "interconnects",
524 					   "#interconnect-cells");
525 	of_node_put(np);
526 	if (count < 0)
527 		return 0;
528 
529 	/* two phandles when #interconnect-cells = <1> */
530 	if (count % 2) {
531 		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
532 		return -EINVAL;
533 	}
534 
535 	num_paths = count / 2;
536 	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
537 	if (!paths)
538 		return -ENOMEM;
539 
540 	for (i = 0; i < num_paths; i++) {
541 		paths[i] = of_icc_get_by_index(dev, i);
542 		if (IS_ERR(paths[i])) {
543 			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
544 			goto err;
545 		}
546 	}
547 
548 	if (opp_table) {
549 		opp_table->paths = paths;
550 		opp_table->path_count = num_paths;
551 		return 0;
552 	}
553 
554 err:
555 	while (i--)
556 		icc_put(paths[i]);
557 
558 	kfree(paths);
559 
560 	return ret;
561 }
562 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
563 
564 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
565 			      struct device_node *np)
566 {
567 	unsigned int levels = opp_table->supported_hw_count;
568 	int count, versions, ret, i, j;
569 	u32 val;
570 
571 	if (!opp_table->supported_hw) {
572 		/*
573 		 * In the case that no supported_hw has been set by the
574 		 * platform but there is an opp-supported-hw value set for
575 		 * an OPP then the OPP should not be enabled as there is
576 		 * no way to see if the hardware supports it.
577 		 */
578 		if (of_property_present(np, "opp-supported-hw"))
579 			return false;
580 		else
581 			return true;
582 	}
583 
584 	count = of_property_count_u32_elems(np, "opp-supported-hw");
585 	if (count <= 0 || count % levels) {
586 		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
587 			__func__, count);
588 		return false;
589 	}
590 
591 	versions = count / levels;
592 
593 	/* All levels in at least one of the versions should match */
594 	for (i = 0; i < versions; i++) {
595 		bool supported = true;
596 
597 		for (j = 0; j < levels; j++) {
598 			ret = of_property_read_u32_index(np, "opp-supported-hw",
599 							 i * levels + j, &val);
600 			if (ret) {
601 				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
602 					 __func__, i * levels + j, ret);
603 				return false;
604 			}
605 
606 			/* Check if the level is supported */
607 			if (!(val & opp_table->supported_hw[j])) {
608 				supported = false;
609 				break;
610 			}
611 		}
612 
613 		if (supported)
614 			return true;
615 	}
616 
617 	return false;
618 }
619 
620 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
621 			      struct opp_table *opp_table,
622 			      const char *prop_type, bool *triplet)
623 {
624 	struct property *prop = NULL;
625 	char name[NAME_MAX];
626 	int count, ret;
627 	u32 *out;
628 
629 	/* Search for "opp-<prop_type>-<name>" */
630 	if (opp_table->prop_name) {
631 		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
632 			 opp_table->prop_name);
633 		prop = of_find_property(opp->np, name, NULL);
634 	}
635 
636 	if (!prop) {
637 		/* Search for "opp-<prop_type>" */
638 		snprintf(name, sizeof(name), "opp-%s", prop_type);
639 		prop = of_find_property(opp->np, name, NULL);
640 		if (!prop)
641 			return NULL;
642 	}
643 
644 	count = of_property_count_u32_elems(opp->np, name);
645 	if (count < 0) {
646 		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
647 			count);
648 		return ERR_PTR(count);
649 	}
650 
651 	/*
652 	 * Initialize regulator_count, if regulator information isn't provided
653 	 * by the platform. Now that one of the properties is available, fix the
654 	 * regulator_count to 1.
655 	 */
656 	if (unlikely(opp_table->regulator_count == -1))
657 		opp_table->regulator_count = 1;
658 
659 	if (count != opp_table->regulator_count &&
660 	    (!triplet || count != opp_table->regulator_count * 3)) {
661 		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
662 			__func__, prop_type, count, opp_table->regulator_count);
663 		return ERR_PTR(-EINVAL);
664 	}
665 
666 	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
667 	if (!out)
668 		return ERR_PTR(-EINVAL);
669 
670 	ret = of_property_read_u32_array(opp->np, name, out, count);
671 	if (ret) {
672 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
673 		kfree(out);
674 		return ERR_PTR(-EINVAL);
675 	}
676 
677 	if (triplet)
678 		*triplet = count != opp_table->regulator_count;
679 
680 	return out;
681 }
682 
683 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
684 				struct opp_table *opp_table, bool *triplet)
685 {
686 	u32 *microvolt;
687 
688 	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
689 	if (IS_ERR(microvolt))
690 		return microvolt;
691 
692 	if (!microvolt) {
693 		/*
694 		 * Missing property isn't a problem, but an invalid
695 		 * entry is. This property isn't optional if regulator
696 		 * information is provided. Check only for the first OPP, as
697 		 * regulator_count may get initialized after that to a valid
698 		 * value.
699 		 */
700 		if (list_empty(&opp_table->opp_list) &&
701 		    opp_table->regulator_count > 0) {
702 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
703 				__func__);
704 			return ERR_PTR(-EINVAL);
705 		}
706 	}
707 
708 	return microvolt;
709 }
710 
711 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
712 			      struct opp_table *opp_table)
713 {
714 	u32 *microvolt, *microamp, *microwatt;
715 	int ret = 0, i, j;
716 	bool triplet;
717 
718 	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
719 	if (IS_ERR(microvolt))
720 		return PTR_ERR(microvolt);
721 
722 	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
723 	if (IS_ERR(microamp)) {
724 		ret = PTR_ERR(microamp);
725 		goto free_microvolt;
726 	}
727 
728 	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
729 	if (IS_ERR(microwatt)) {
730 		ret = PTR_ERR(microwatt);
731 		goto free_microamp;
732 	}
733 
734 	/*
735 	 * Initialize regulator_count if it is uninitialized and no properties
736 	 * are found.
737 	 */
738 	if (unlikely(opp_table->regulator_count == -1)) {
739 		opp_table->regulator_count = 0;
740 		return 0;
741 	}
742 
743 	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
744 		if (microvolt) {
745 			opp->supplies[i].u_volt = microvolt[j++];
746 
747 			if (triplet) {
748 				opp->supplies[i].u_volt_min = microvolt[j++];
749 				opp->supplies[i].u_volt_max = microvolt[j++];
750 			} else {
751 				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
752 				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
753 			}
754 		}
755 
756 		if (microamp)
757 			opp->supplies[i].u_amp = microamp[i];
758 
759 		if (microwatt)
760 			opp->supplies[i].u_watt = microwatt[i];
761 	}
762 
763 	kfree(microwatt);
764 free_microamp:
765 	kfree(microamp);
766 free_microvolt:
767 	kfree(microvolt);
768 
769 	return ret;
770 }
771 
772 /**
773  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
774  *				  entries
775  * @dev:	device pointer used to lookup OPP table.
776  *
777  * Free OPPs created using static entries present in DT.
778  */
779 void dev_pm_opp_of_remove_table(struct device *dev)
780 {
781 	dev_pm_opp_remove_table(dev);
782 }
783 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
784 
785 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
786 		      struct device_node *np)
787 {
788 	struct property *prop;
789 	int i, count, ret;
790 	u64 *rates;
791 
792 	prop = of_find_property(np, "opp-hz", NULL);
793 	if (!prop)
794 		return -ENODEV;
795 
796 	count = prop->length / sizeof(u64);
797 	if (opp_table->clk_count != count) {
798 		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
799 		       __func__, count, opp_table->clk_count);
800 		return -EINVAL;
801 	}
802 
803 	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
804 	if (!rates)
805 		return -ENOMEM;
806 
807 	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
808 	if (ret) {
809 		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
810 	} else {
811 		/*
812 		 * Rate is defined as an unsigned long in clk API, and so
813 		 * casting explicitly to its type. Must be fixed once rate is 64
814 		 * bit guaranteed in clk API.
815 		 */
816 		for (i = 0; i < count; i++) {
817 			new_opp->rates[i] = (unsigned long)rates[i];
818 
819 			/* This will happen for frequencies > 4.29 GHz */
820 			WARN_ON(new_opp->rates[i] != rates[i]);
821 		}
822 	}
823 
824 	kfree(rates);
825 
826 	return ret;
827 }
828 
829 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
830 		    struct device_node *np, bool peak)
831 {
832 	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
833 	struct property *prop;
834 	int i, count, ret;
835 	u32 *bw;
836 
837 	prop = of_find_property(np, name, NULL);
838 	if (!prop)
839 		return -ENODEV;
840 
841 	count = prop->length / sizeof(u32);
842 	if (opp_table->path_count != count) {
843 		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
844 				__func__, name, count, opp_table->path_count);
845 		return -EINVAL;
846 	}
847 
848 	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
849 	if (!bw)
850 		return -ENOMEM;
851 
852 	ret = of_property_read_u32_array(np, name, bw, count);
853 	if (ret) {
854 		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
855 		goto out;
856 	}
857 
858 	for (i = 0; i < count; i++) {
859 		if (peak)
860 			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
861 		else
862 			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
863 	}
864 
865 out:
866 	kfree(bw);
867 	return ret;
868 }
869 
870 static int _read_opp_key(struct dev_pm_opp *new_opp,
871 			 struct opp_table *opp_table, struct device_node *np)
872 {
873 	bool found = false;
874 	int ret;
875 
876 	ret = _read_rate(new_opp, opp_table, np);
877 	if (!ret)
878 		found = true;
879 	else if (ret != -ENODEV)
880 		return ret;
881 
882 	/*
883 	 * Bandwidth consists of peak and average (optional) values:
884 	 * opp-peak-kBps = <path1_value path2_value>;
885 	 * opp-avg-kBps = <path1_value path2_value>;
886 	 */
887 	ret = _read_bw(new_opp, opp_table, np, true);
888 	if (!ret) {
889 		found = true;
890 		ret = _read_bw(new_opp, opp_table, np, false);
891 	}
892 
893 	/* The properties were found but we failed to parse them */
894 	if (ret && ret != -ENODEV)
895 		return ret;
896 
897 	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
898 		found = true;
899 
900 	if (found)
901 		return 0;
902 
903 	return ret;
904 }
905 
906 /**
907  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
908  * @opp_table:	OPP table
909  * @dev:	device for which we do this operation
910  * @np:		device node
911  *
912  * This function adds an opp definition to the opp table and returns status. The
913  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
914  * removed by dev_pm_opp_remove.
915  *
916  * Return:
917  * Valid OPP pointer:
918  *		On success
919  * NULL:
920  *		Duplicate OPPs (both freq and volt are same) and opp->available
921  *		OR if the OPP is not supported by hardware.
922  * ERR_PTR(-EEXIST):
923  *		Freq are same and volt are different OR
924  *		Duplicate OPPs (both freq and volt are same) and !opp->available
925  * ERR_PTR(-ENOMEM):
926  *		Memory allocation failure
927  * ERR_PTR(-EINVAL):
928  *		Failed parsing the OPP node
929  */
930 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
931 		struct device *dev, struct device_node *np)
932 {
933 	struct dev_pm_opp *new_opp;
934 	u32 val;
935 	int ret;
936 
937 	new_opp = _opp_allocate(opp_table);
938 	if (!new_opp)
939 		return ERR_PTR(-ENOMEM);
940 
941 	ret = _read_opp_key(new_opp, opp_table, np);
942 	if (ret < 0) {
943 		dev_err(dev, "%s: opp key field not found\n", __func__);
944 		goto free_opp;
945 	}
946 
947 	/* Check if the OPP supports hardware's hierarchy of versions or not */
948 	if (!_opp_is_supported(dev, opp_table, np)) {
949 		dev_dbg(dev, "OPP not supported by hardware: %s\n",
950 			of_node_full_name(np));
951 		goto free_opp;
952 	}
953 
954 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
955 
956 	new_opp->np = of_node_get(np);
957 	new_opp->dynamic = false;
958 	new_opp->available = true;
959 
960 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
961 	if (ret)
962 		goto free_opp;
963 
964 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
965 		new_opp->clock_latency_ns = val;
966 
967 	ret = opp_parse_supplies(new_opp, dev, opp_table);
968 	if (ret)
969 		goto free_required_opps;
970 
971 	ret = _opp_add(dev, new_opp, opp_table);
972 	if (ret) {
973 		/* Don't return error for duplicate OPPs */
974 		if (ret == -EBUSY)
975 			ret = 0;
976 		goto free_required_opps;
977 	}
978 
979 	/* OPP to select on device suspend */
980 	if (of_property_read_bool(np, "opp-suspend")) {
981 		if (opp_table->suspend_opp) {
982 			/* Pick the OPP with higher rate/bw/level as suspend OPP */
983 			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
984 				opp_table->suspend_opp->suspend = false;
985 				new_opp->suspend = true;
986 				opp_table->suspend_opp = new_opp;
987 			}
988 		} else {
989 			new_opp->suspend = true;
990 			opp_table->suspend_opp = new_opp;
991 		}
992 	}
993 
994 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
995 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
996 
997 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
998 		 __func__, new_opp->turbo, new_opp->rates[0],
999 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
1000 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
1001 		 new_opp->level);
1002 
1003 	/*
1004 	 * Notify the changes in the availability of the operable
1005 	 * frequency/voltage list.
1006 	 */
1007 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1008 	return new_opp;
1009 
1010 free_required_opps:
1011 	_of_opp_free_required_opps(opp_table, new_opp);
1012 free_opp:
1013 	_opp_free(new_opp);
1014 
1015 	return ret ? ERR_PTR(ret) : NULL;
1016 }
1017 
1018 /* Initializes OPP tables based on new bindings */
1019 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1020 {
1021 	struct device_node *np;
1022 	int ret, count = 0;
1023 	struct dev_pm_opp *opp;
1024 
1025 	/* OPP table is already initialized for the device */
1026 	mutex_lock(&opp_table->lock);
1027 	if (opp_table->parsed_static_opps) {
1028 		opp_table->parsed_static_opps++;
1029 		mutex_unlock(&opp_table->lock);
1030 		return 0;
1031 	}
1032 
1033 	opp_table->parsed_static_opps = 1;
1034 	mutex_unlock(&opp_table->lock);
1035 
1036 	/* We have opp-table node now, iterate over it and add OPPs */
1037 	for_each_available_child_of_node(opp_table->np, np) {
1038 		opp = _opp_add_static_v2(opp_table, dev, np);
1039 		if (IS_ERR(opp)) {
1040 			ret = PTR_ERR(opp);
1041 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1042 				ret);
1043 			of_node_put(np);
1044 			goto remove_static_opp;
1045 		} else if (opp) {
1046 			count++;
1047 		}
1048 	}
1049 
1050 	/* There should be one or more OPPs defined */
1051 	if (!count) {
1052 		dev_err(dev, "%s: no supported OPPs", __func__);
1053 		ret = -ENOENT;
1054 		goto remove_static_opp;
1055 	}
1056 
1057 	lazy_link_required_opp_table(opp_table);
1058 
1059 	return 0;
1060 
1061 remove_static_opp:
1062 	_opp_remove_all_static(opp_table);
1063 
1064 	return ret;
1065 }
1066 
1067 /* Initializes OPP tables based on old-deprecated bindings */
1068 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1069 {
1070 	const struct property *prop;
1071 	const __be32 *val;
1072 	int nr, ret = 0;
1073 
1074 	mutex_lock(&opp_table->lock);
1075 	if (opp_table->parsed_static_opps) {
1076 		opp_table->parsed_static_opps++;
1077 		mutex_unlock(&opp_table->lock);
1078 		return 0;
1079 	}
1080 
1081 	opp_table->parsed_static_opps = 1;
1082 	mutex_unlock(&opp_table->lock);
1083 
1084 	prop = of_find_property(dev->of_node, "operating-points", NULL);
1085 	if (!prop) {
1086 		ret = -ENODEV;
1087 		goto remove_static_opp;
1088 	}
1089 	if (!prop->value) {
1090 		ret = -ENODATA;
1091 		goto remove_static_opp;
1092 	}
1093 
1094 	/*
1095 	 * Each OPP is a set of tuples consisting of frequency and
1096 	 * voltage like <freq-kHz vol-uV>.
1097 	 */
1098 	nr = prop->length / sizeof(u32);
1099 	if (nr % 2) {
1100 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1101 		ret = -EINVAL;
1102 		goto remove_static_opp;
1103 	}
1104 
1105 	val = prop->value;
1106 	while (nr) {
1107 		unsigned long freq = be32_to_cpup(val++) * 1000;
1108 		unsigned long volt = be32_to_cpup(val++);
1109 		struct dev_pm_opp_data data = {
1110 			.freq = freq,
1111 			.u_volt = volt,
1112 		};
1113 
1114 		ret = _opp_add_v1(opp_table, dev, &data, false);
1115 		if (ret) {
1116 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1117 				__func__, data.freq, ret);
1118 			goto remove_static_opp;
1119 		}
1120 		nr -= 2;
1121 	}
1122 
1123 	return 0;
1124 
1125 remove_static_opp:
1126 	_opp_remove_all_static(opp_table);
1127 
1128 	return ret;
1129 }
1130 
1131 static int _of_add_table_indexed(struct device *dev, int index)
1132 {
1133 	struct opp_table *opp_table;
1134 	int ret, count;
1135 
1136 	if (index) {
1137 		/*
1138 		 * If only one phandle is present, then the same OPP table
1139 		 * applies for all index requests.
1140 		 */
1141 		count = of_count_phandle_with_args(dev->of_node,
1142 						   "operating-points-v2", NULL);
1143 		if (count == 1)
1144 			index = 0;
1145 	}
1146 
1147 	opp_table = _add_opp_table_indexed(dev, index, true);
1148 	if (IS_ERR(opp_table))
1149 		return PTR_ERR(opp_table);
1150 
1151 	/*
1152 	 * OPPs have two version of bindings now. Also try the old (v1)
1153 	 * bindings for backward compatibility with older dtbs.
1154 	 */
1155 	if (opp_table->np)
1156 		ret = _of_add_opp_table_v2(dev, opp_table);
1157 	else
1158 		ret = _of_add_opp_table_v1(dev, opp_table);
1159 
1160 	if (ret)
1161 		dev_pm_opp_put_opp_table(opp_table);
1162 
1163 	return ret;
1164 }
1165 
1166 static void devm_pm_opp_of_table_release(void *data)
1167 {
1168 	dev_pm_opp_of_remove_table(data);
1169 }
1170 
1171 static int _devm_of_add_table_indexed(struct device *dev, int index)
1172 {
1173 	int ret;
1174 
1175 	ret = _of_add_table_indexed(dev, index);
1176 	if (ret)
1177 		return ret;
1178 
1179 	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1180 }
1181 
1182 /**
1183  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1184  * @dev:	device pointer used to lookup OPP table.
1185  *
1186  * Register the initial OPP table with the OPP library for given device.
1187  *
1188  * The opp_table structure will be freed after the device is destroyed.
1189  *
1190  * Return:
1191  * 0		On success OR
1192  *		Duplicate OPPs (both freq and volt are same) and opp->available
1193  * -EEXIST	Freq are same and volt are different OR
1194  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1195  * -ENOMEM	Memory allocation failure
1196  * -ENODEV	when 'operating-points' property is not found or is invalid data
1197  *		in device node.
1198  * -ENODATA	when empty 'operating-points' property is found
1199  * -EINVAL	when invalid entries are found in opp-v2 table
1200  */
1201 int devm_pm_opp_of_add_table(struct device *dev)
1202 {
1203 	return _devm_of_add_table_indexed(dev, 0);
1204 }
1205 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1206 
1207 /**
1208  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1209  * @dev:	device pointer used to lookup OPP table.
1210  *
1211  * Register the initial OPP table with the OPP library for given device.
1212  *
1213  * Return:
1214  * 0		On success OR
1215  *		Duplicate OPPs (both freq and volt are same) and opp->available
1216  * -EEXIST	Freq are same and volt are different OR
1217  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1218  * -ENOMEM	Memory allocation failure
1219  * -ENODEV	when 'operating-points' property is not found or is invalid data
1220  *		in device node.
1221  * -ENODATA	when empty 'operating-points' property is found
1222  * -EINVAL	when invalid entries are found in opp-v2 table
1223  */
1224 int dev_pm_opp_of_add_table(struct device *dev)
1225 {
1226 	return _of_add_table_indexed(dev, 0);
1227 }
1228 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1229 
1230 /**
1231  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1232  * @dev:	device pointer used to lookup OPP table.
1233  * @index:	Index number.
1234  *
1235  * Register the initial OPP table with the OPP library for given device only
1236  * using the "operating-points-v2" property.
1237  *
1238  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1239  */
1240 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1241 {
1242 	return _of_add_table_indexed(dev, index);
1243 }
1244 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1245 
1246 /**
1247  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1248  * @dev:	device pointer used to lookup OPP table.
1249  * @index:	Index number.
1250  *
1251  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1252  */
1253 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1254 {
1255 	return _devm_of_add_table_indexed(dev, index);
1256 }
1257 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1258 
1259 /* CPU device specific helpers */
1260 
1261 /**
1262  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1263  * @cpumask:	cpumask for which OPP table needs to be removed
1264  *
1265  * This removes the OPP tables for CPUs present in the @cpumask.
1266  * This should be used only to remove static entries created from DT.
1267  */
1268 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1269 {
1270 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1271 }
1272 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1273 
1274 /**
1275  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1276  * @cpumask:	cpumask for which OPP table needs to be added.
1277  *
1278  * This adds the OPP tables for CPUs present in the @cpumask.
1279  */
1280 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1281 {
1282 	struct device *cpu_dev;
1283 	int cpu, ret;
1284 
1285 	if (WARN_ON(cpumask_empty(cpumask)))
1286 		return -ENODEV;
1287 
1288 	for_each_cpu(cpu, cpumask) {
1289 		cpu_dev = get_cpu_device(cpu);
1290 		if (!cpu_dev) {
1291 			pr_err("%s: failed to get cpu%d device\n", __func__,
1292 			       cpu);
1293 			ret = -ENODEV;
1294 			goto remove_table;
1295 		}
1296 
1297 		ret = dev_pm_opp_of_add_table(cpu_dev);
1298 		if (ret) {
1299 			/*
1300 			 * OPP may get registered dynamically, don't print error
1301 			 * message here.
1302 			 */
1303 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1304 				 __func__, cpu, ret);
1305 
1306 			goto remove_table;
1307 		}
1308 	}
1309 
1310 	return 0;
1311 
1312 remove_table:
1313 	/* Free all other OPPs */
1314 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1315 
1316 	return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1319 
1320 /*
1321  * Works only for OPP v2 bindings.
1322  *
1323  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1324  */
1325 /**
1326  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1327  *				      @cpu_dev using operating-points-v2
1328  *				      bindings.
1329  *
1330  * @cpu_dev:	CPU device for which we do this operation
1331  * @cpumask:	cpumask to update with information of sharing CPUs
1332  *
1333  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1334  *
1335  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1336  */
1337 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1338 				   struct cpumask *cpumask)
1339 {
1340 	struct device_node *np, *tmp_np, *cpu_np;
1341 	int cpu, ret = 0;
1342 
1343 	/* Get OPP descriptor node */
1344 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1345 	if (!np) {
1346 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1347 		return -ENOENT;
1348 	}
1349 
1350 	cpumask_set_cpu(cpu_dev->id, cpumask);
1351 
1352 	/* OPPs are shared ? */
1353 	if (!of_property_read_bool(np, "opp-shared"))
1354 		goto put_cpu_node;
1355 
1356 	for_each_possible_cpu(cpu) {
1357 		if (cpu == cpu_dev->id)
1358 			continue;
1359 
1360 		cpu_np = of_cpu_device_node_get(cpu);
1361 		if (!cpu_np) {
1362 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1363 				__func__, cpu);
1364 			ret = -ENOENT;
1365 			goto put_cpu_node;
1366 		}
1367 
1368 		/* Get OPP descriptor node */
1369 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1370 		of_node_put(cpu_np);
1371 		if (!tmp_np) {
1372 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1373 			ret = -ENOENT;
1374 			goto put_cpu_node;
1375 		}
1376 
1377 		/* CPUs are sharing opp node */
1378 		if (np == tmp_np)
1379 			cpumask_set_cpu(cpu, cpumask);
1380 
1381 		of_node_put(tmp_np);
1382 	}
1383 
1384 put_cpu_node:
1385 	of_node_put(np);
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1389 
1390 /**
1391  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1392  * @np: Node that contains the "required-opps" property.
1393  * @index: Index of the phandle to parse.
1394  *
1395  * Returns the performance state of the OPP pointed out by the "required-opps"
1396  * property at @index in @np.
1397  *
1398  * Return: Zero or positive performance state on success, otherwise negative
1399  * value on errors.
1400  */
1401 int of_get_required_opp_performance_state(struct device_node *np, int index)
1402 {
1403 	struct dev_pm_opp *opp;
1404 	struct device_node *required_np;
1405 	struct opp_table *opp_table;
1406 	int pstate = -EINVAL;
1407 
1408 	required_np = of_parse_required_opp(np, index);
1409 	if (!required_np)
1410 		return -ENODEV;
1411 
1412 	opp_table = _find_table_of_opp_np(required_np);
1413 	if (IS_ERR(opp_table)) {
1414 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1415 		       __func__, np, PTR_ERR(opp_table));
1416 		goto put_required_np;
1417 	}
1418 
1419 	/* The OPP tables must belong to a genpd */
1420 	if (unlikely(!opp_table->is_genpd)) {
1421 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1422 		goto put_required_np;
1423 	}
1424 
1425 	opp = _find_opp_of_np(opp_table, required_np);
1426 	if (opp) {
1427 		if (opp->level == OPP_LEVEL_UNSET) {
1428 			pr_err("%s: OPP levels aren't available for %pOF\n",
1429 			       __func__, np);
1430 		} else {
1431 			pstate = opp->level;
1432 		}
1433 		dev_pm_opp_put(opp);
1434 
1435 	}
1436 
1437 	dev_pm_opp_put_opp_table(opp_table);
1438 
1439 put_required_np:
1440 	of_node_put(required_np);
1441 
1442 	return pstate;
1443 }
1444 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1445 
1446 /**
1447  * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1448  * @dev: The device to investigate.
1449  *
1450  * Returns true if the device's node has a "operating-points-v2" property and if
1451  * the corresponding node for the opp-table describes opp nodes that uses the
1452  * "required-opps" property.
1453  *
1454  * Return: True if a required-opps is present, else false.
1455  */
1456 bool dev_pm_opp_of_has_required_opp(struct device *dev)
1457 {
1458 	struct device_node *opp_np, *np;
1459 	int count;
1460 
1461 	opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1462 	if (!opp_np)
1463 		return false;
1464 
1465 	np = of_get_next_available_child(opp_np, NULL);
1466 	of_node_put(opp_np);
1467 	if (!np) {
1468 		dev_warn(dev, "Empty OPP table\n");
1469 		return false;
1470 	}
1471 
1472 	count = of_count_phandle_with_args(np, "required-opps", NULL);
1473 	of_node_put(np);
1474 
1475 	return count > 0;
1476 }
1477 
1478 /**
1479  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1480  * @opp:	opp for which DT node has to be returned for
1481  *
1482  * Return: DT node corresponding to the opp, else 0 on success.
1483  *
1484  * The caller needs to put the node with of_node_put() after using it.
1485  */
1486 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1487 {
1488 	if (IS_ERR_OR_NULL(opp)) {
1489 		pr_err("%s: Invalid parameters\n", __func__);
1490 		return NULL;
1491 	}
1492 
1493 	return of_node_get(opp->np);
1494 }
1495 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1496 
1497 /*
1498  * Callback function provided to the Energy Model framework upon registration.
1499  * It provides the power used by @dev at @kHz if it is the frequency of an
1500  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1501  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1502  * frequency and @uW to the associated power.
1503  *
1504  * Returns 0 on success or a proper -EINVAL value in case of error.
1505  */
1506 static int __maybe_unused
1507 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1508 {
1509 	struct dev_pm_opp *opp;
1510 	unsigned long opp_freq, opp_power;
1511 
1512 	/* Find the right frequency and related OPP */
1513 	opp_freq = *kHz * 1000;
1514 	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1515 	if (IS_ERR(opp))
1516 		return -EINVAL;
1517 
1518 	opp_power = dev_pm_opp_get_power(opp);
1519 	dev_pm_opp_put(opp);
1520 	if (!opp_power)
1521 		return -EINVAL;
1522 
1523 	*kHz = opp_freq / 1000;
1524 	*uW = opp_power;
1525 
1526 	return 0;
1527 }
1528 
1529 /**
1530  * dev_pm_opp_calc_power() - Calculate power value for device with EM
1531  * @dev		: Device for which an Energy Model has to be registered
1532  * @uW		: New power value that is calculated
1533  * @kHz		: Frequency for which the new power is calculated
1534  *
1535  * This computes the power estimated by @dev at @kHz if it is the frequency
1536  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1537  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1538  * frequency and @uW to the associated power. The power is estimated as
1539  * P = C * V^2 * f with C being the device's capacitance and V and f
1540  * respectively the voltage and frequency of the OPP.
1541  * It is also used as a callback function provided to the Energy Model
1542  * framework upon registration.
1543  *
1544  * Returns -EINVAL if the power calculation failed because of missing
1545  * parameters, 0 otherwise.
1546  */
1547 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1548 			  unsigned long *kHz)
1549 {
1550 	struct dev_pm_opp *opp;
1551 	struct device_node *np;
1552 	unsigned long mV, Hz;
1553 	u32 cap;
1554 	u64 tmp;
1555 	int ret;
1556 
1557 	np = of_node_get(dev->of_node);
1558 	if (!np)
1559 		return -EINVAL;
1560 
1561 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1562 	of_node_put(np);
1563 	if (ret)
1564 		return -EINVAL;
1565 
1566 	Hz = *kHz * 1000;
1567 	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1568 	if (IS_ERR(opp))
1569 		return -EINVAL;
1570 
1571 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1572 	dev_pm_opp_put(opp);
1573 	if (!mV)
1574 		return -EINVAL;
1575 
1576 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1577 	/* Provide power in micro-Watts */
1578 	do_div(tmp, 1000000);
1579 
1580 	*uW = (unsigned long)tmp;
1581 	*kHz = Hz / 1000;
1582 
1583 	return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1586 
1587 static bool _of_has_opp_microwatt_property(struct device *dev)
1588 {
1589 	unsigned long power, freq = 0;
1590 	struct dev_pm_opp *opp;
1591 
1592 	/* Check if at least one OPP has needed property */
1593 	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1594 	if (IS_ERR(opp))
1595 		return false;
1596 
1597 	power = dev_pm_opp_get_power(opp);
1598 	dev_pm_opp_put(opp);
1599 	if (!power)
1600 		return false;
1601 
1602 	return true;
1603 }
1604 
1605 /**
1606  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1607  * @dev		: Device for which an Energy Model has to be registered
1608  * @cpus	: CPUs for which an Energy Model has to be registered. For
1609  *		other type of devices it should be set to NULL.
1610  *
1611  * This checks whether the "dynamic-power-coefficient" devicetree property has
1612  * been specified, and tries to register an Energy Model with it if it has.
1613  * Having this property means the voltages are known for OPPs and the EM
1614  * might be calculated.
1615  */
1616 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1617 {
1618 	struct em_data_callback em_cb;
1619 	struct device_node *np;
1620 	int ret, nr_opp;
1621 	u32 cap;
1622 
1623 	if (IS_ERR_OR_NULL(dev)) {
1624 		ret = -EINVAL;
1625 		goto failed;
1626 	}
1627 
1628 	nr_opp = dev_pm_opp_get_opp_count(dev);
1629 	if (nr_opp <= 0) {
1630 		ret = -EINVAL;
1631 		goto failed;
1632 	}
1633 
1634 	/* First, try to find more precised Energy Model in DT */
1635 	if (_of_has_opp_microwatt_property(dev)) {
1636 		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1637 		goto register_em;
1638 	}
1639 
1640 	np = of_node_get(dev->of_node);
1641 	if (!np) {
1642 		ret = -EINVAL;
1643 		goto failed;
1644 	}
1645 
1646 	/*
1647 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1648 	 * set in devicetree. It is assumed the voltage values are known if that
1649 	 * property is set since it is useless otherwise. If voltages are not
1650 	 * known, just let the EM registration fail with an error to alert the
1651 	 * user about the inconsistent configuration.
1652 	 */
1653 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1654 	of_node_put(np);
1655 	if (ret || !cap) {
1656 		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1657 		ret = -EINVAL;
1658 		goto failed;
1659 	}
1660 
1661 	EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1662 
1663 register_em:
1664 	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1665 	if (ret)
1666 		goto failed;
1667 
1668 	return 0;
1669 
1670 failed:
1671 	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1672 	return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1675