1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* 25 * Returns opp descriptor node for a device node, caller must 26 * do of_node_put(). 27 */ 28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 29 int index) 30 { 31 /* "operating-points-v2" can be an array for power domain providers */ 32 return of_parse_phandle(np, "operating-points-v2", index); 33 } 34 35 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 37 { 38 return _opp_of_get_opp_desc_node(dev->of_node, 0); 39 } 40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 41 42 struct opp_table *_managed_opp(struct device *dev, int index) 43 { 44 struct opp_table *opp_table, *managed_table = NULL; 45 struct device_node *np; 46 47 np = _opp_of_get_opp_desc_node(dev->of_node, index); 48 if (!np) 49 return NULL; 50 51 list_for_each_entry(opp_table, &opp_tables, node) { 52 if (opp_table->np == np) { 53 /* 54 * Multiple devices can point to the same OPP table and 55 * so will have same node-pointer, np. 56 * 57 * But the OPPs will be considered as shared only if the 58 * OPP table contains a "opp-shared" property. 59 */ 60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { 61 _get_opp_table_kref(opp_table); 62 managed_table = opp_table; 63 } 64 65 break; 66 } 67 } 68 69 of_node_put(np); 70 71 return managed_table; 72 } 73 74 /* The caller must call dev_pm_opp_put() after the OPP is used */ 75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 76 struct device_node *opp_np) 77 { 78 struct dev_pm_opp *opp; 79 80 mutex_lock(&opp_table->lock); 81 82 list_for_each_entry(opp, &opp_table->opp_list, node) { 83 if (opp->np == opp_np) { 84 dev_pm_opp_get(opp); 85 mutex_unlock(&opp_table->lock); 86 return opp; 87 } 88 } 89 90 mutex_unlock(&opp_table->lock); 91 92 return NULL; 93 } 94 95 static struct device_node *of_parse_required_opp(struct device_node *np, 96 int index) 97 { 98 return of_parse_phandle(np, "required-opps", index); 99 } 100 101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 103 { 104 struct opp_table *opp_table; 105 struct device_node *opp_table_np; 106 107 opp_table_np = of_get_parent(opp_np); 108 if (!opp_table_np) 109 goto err; 110 111 /* It is safe to put the node now as all we need now is its address */ 112 of_node_put(opp_table_np); 113 114 mutex_lock(&opp_table_lock); 115 list_for_each_entry(opp_table, &opp_tables, node) { 116 if (opp_table_np == opp_table->np) { 117 _get_opp_table_kref(opp_table); 118 mutex_unlock(&opp_table_lock); 119 return opp_table; 120 } 121 } 122 mutex_unlock(&opp_table_lock); 123 124 err: 125 return ERR_PTR(-ENODEV); 126 } 127 128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 129 static void _opp_table_free_required_tables(struct opp_table *opp_table) 130 { 131 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 132 int i; 133 134 if (!required_opp_tables) 135 return; 136 137 for (i = 0; i < opp_table->required_opp_count; i++) { 138 if (IS_ERR_OR_NULL(required_opp_tables[i])) 139 continue; 140 141 dev_pm_opp_put_opp_table(required_opp_tables[i]); 142 } 143 144 kfree(required_opp_tables); 145 146 opp_table->required_opp_count = 0; 147 opp_table->required_opp_tables = NULL; 148 list_del(&opp_table->lazy); 149 } 150 151 /* 152 * Populate all devices and opp tables which are part of "required-opps" list. 153 * Checking only the first OPP node should be enough. 154 */ 155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 156 struct device *dev, 157 struct device_node *opp_np) 158 { 159 struct opp_table **required_opp_tables; 160 struct device_node *required_np, *np; 161 bool lazy = false; 162 int count, i; 163 164 /* Traversing the first OPP node is all we need */ 165 np = of_get_next_available_child(opp_np, NULL); 166 if (!np) { 167 dev_warn(dev, "Empty OPP table\n"); 168 169 return; 170 } 171 172 count = of_count_phandle_with_args(np, "required-opps", NULL); 173 if (count <= 0) 174 goto put_np; 175 176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables), 177 GFP_KERNEL); 178 if (!required_opp_tables) 179 goto put_np; 180 181 opp_table->required_opp_tables = required_opp_tables; 182 opp_table->required_opp_count = count; 183 184 for (i = 0; i < count; i++) { 185 required_np = of_parse_required_opp(np, i); 186 if (!required_np) 187 goto free_required_tables; 188 189 required_opp_tables[i] = _find_table_of_opp_np(required_np); 190 of_node_put(required_np); 191 192 if (IS_ERR(required_opp_tables[i])) 193 lazy = true; 194 } 195 196 /* Let's do the linking later on */ 197 if (lazy) 198 list_add(&opp_table->lazy, &lazy_opp_tables); 199 200 goto put_np; 201 202 free_required_tables: 203 _opp_table_free_required_tables(opp_table); 204 put_np: 205 of_node_put(np); 206 } 207 208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 209 int index) 210 { 211 struct device_node *np, *opp_np; 212 u32 val; 213 214 /* 215 * Only required for backward compatibility with v1 bindings, but isn't 216 * harmful for other cases. And so we do it unconditionally. 217 */ 218 np = of_node_get(dev->of_node); 219 if (!np) 220 return; 221 222 if (!of_property_read_u32(np, "clock-latency", &val)) 223 opp_table->clock_latency_ns_max = val; 224 of_property_read_u32(np, "voltage-tolerance", 225 &opp_table->voltage_tolerance_v1); 226 227 if (of_find_property(np, "#power-domain-cells", NULL)) 228 opp_table->is_genpd = true; 229 230 /* Get OPP table node */ 231 opp_np = _opp_of_get_opp_desc_node(np, index); 232 of_node_put(np); 233 234 if (!opp_np) 235 return; 236 237 if (of_property_read_bool(opp_np, "opp-shared")) 238 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 239 else 240 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 241 242 opp_table->np = opp_np; 243 244 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 245 of_node_put(opp_np); 246 } 247 248 void _of_clear_opp_table(struct opp_table *opp_table) 249 { 250 _opp_table_free_required_tables(opp_table); 251 } 252 253 /* 254 * Release all resources previously acquired with a call to 255 * _of_opp_alloc_required_opps(). 256 */ 257 void _of_opp_free_required_opps(struct opp_table *opp_table, 258 struct dev_pm_opp *opp) 259 { 260 struct dev_pm_opp **required_opps = opp->required_opps; 261 int i; 262 263 if (!required_opps) 264 return; 265 266 for (i = 0; i < opp_table->required_opp_count; i++) { 267 if (!required_opps[i]) 268 continue; 269 270 /* Put the reference back */ 271 dev_pm_opp_put(required_opps[i]); 272 } 273 274 opp->required_opps = NULL; 275 kfree(required_opps); 276 } 277 278 /* Populate all required OPPs which are part of "required-opps" list */ 279 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 280 struct dev_pm_opp *opp) 281 { 282 struct dev_pm_opp **required_opps; 283 struct opp_table *required_table; 284 struct device_node *np; 285 int i, ret, count = opp_table->required_opp_count; 286 287 if (!count) 288 return 0; 289 290 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL); 291 if (!required_opps) 292 return -ENOMEM; 293 294 opp->required_opps = required_opps; 295 296 for (i = 0; i < count; i++) { 297 required_table = opp_table->required_opp_tables[i]; 298 299 /* Required table not added yet, we will link later */ 300 if (IS_ERR_OR_NULL(required_table)) 301 continue; 302 303 np = of_parse_required_opp(opp->np, i); 304 if (unlikely(!np)) { 305 ret = -ENODEV; 306 goto free_required_opps; 307 } 308 309 required_opps[i] = _find_opp_of_np(required_table, np); 310 of_node_put(np); 311 312 if (!required_opps[i]) { 313 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 314 __func__, opp->np, i); 315 ret = -ENODEV; 316 goto free_required_opps; 317 } 318 } 319 320 return 0; 321 322 free_required_opps: 323 _of_opp_free_required_opps(opp_table, opp); 324 325 return ret; 326 } 327 328 /* Link required OPPs for an individual OPP */ 329 static int lazy_link_required_opps(struct opp_table *opp_table, 330 struct opp_table *new_table, int index) 331 { 332 struct device_node *required_np; 333 struct dev_pm_opp *opp; 334 335 list_for_each_entry(opp, &opp_table->opp_list, node) { 336 required_np = of_parse_required_opp(opp->np, index); 337 if (unlikely(!required_np)) 338 return -ENODEV; 339 340 opp->required_opps[index] = _find_opp_of_np(new_table, required_np); 341 of_node_put(required_np); 342 343 if (!opp->required_opps[index]) { 344 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 345 __func__, opp->np, index); 346 return -ENODEV; 347 } 348 } 349 350 return 0; 351 } 352 353 /* Link required OPPs for all OPPs of the newly added OPP table */ 354 static void lazy_link_required_opp_table(struct opp_table *new_table) 355 { 356 struct opp_table *opp_table, *temp, **required_opp_tables; 357 struct device_node *required_np, *opp_np, *required_table_np; 358 struct dev_pm_opp *opp; 359 int i, ret; 360 361 mutex_lock(&opp_table_lock); 362 363 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 364 bool lazy = false; 365 366 /* opp_np can't be invalid here */ 367 opp_np = of_get_next_available_child(opp_table->np, NULL); 368 369 for (i = 0; i < opp_table->required_opp_count; i++) { 370 required_opp_tables = opp_table->required_opp_tables; 371 372 /* Required opp-table is already parsed */ 373 if (!IS_ERR(required_opp_tables[i])) 374 continue; 375 376 /* required_np can't be invalid here */ 377 required_np = of_parse_required_opp(opp_np, i); 378 required_table_np = of_get_parent(required_np); 379 380 of_node_put(required_table_np); 381 of_node_put(required_np); 382 383 /* 384 * Newly added table isn't the required opp-table for 385 * opp_table. 386 */ 387 if (required_table_np != new_table->np) { 388 lazy = true; 389 continue; 390 } 391 392 required_opp_tables[i] = new_table; 393 _get_opp_table_kref(new_table); 394 395 /* Link OPPs now */ 396 ret = lazy_link_required_opps(opp_table, new_table, i); 397 if (ret) { 398 /* The OPPs will be marked unusable */ 399 lazy = false; 400 break; 401 } 402 } 403 404 of_node_put(opp_np); 405 406 /* All required opp-tables found, remove from lazy list */ 407 if (!lazy) { 408 list_del_init(&opp_table->lazy); 409 410 list_for_each_entry(opp, &opp_table->opp_list, node) 411 _required_opps_available(opp, opp_table->required_opp_count); 412 } 413 } 414 415 mutex_unlock(&opp_table_lock); 416 } 417 418 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 419 { 420 struct device_node *np, *opp_np; 421 struct property *prop; 422 423 if (!opp_table) { 424 np = of_node_get(dev->of_node); 425 if (!np) 426 return -ENODEV; 427 428 opp_np = _opp_of_get_opp_desc_node(np, 0); 429 of_node_put(np); 430 } else { 431 opp_np = of_node_get(opp_table->np); 432 } 433 434 /* Lets not fail in case we are parsing opp-v1 bindings */ 435 if (!opp_np) 436 return 0; 437 438 /* Checking only first OPP is sufficient */ 439 np = of_get_next_available_child(opp_np, NULL); 440 if (!np) { 441 dev_err(dev, "OPP table empty\n"); 442 return -EINVAL; 443 } 444 of_node_put(opp_np); 445 446 prop = of_find_property(np, "opp-peak-kBps", NULL); 447 of_node_put(np); 448 449 if (!prop || !prop->length) 450 return 0; 451 452 return 1; 453 } 454 455 int dev_pm_opp_of_find_icc_paths(struct device *dev, 456 struct opp_table *opp_table) 457 { 458 struct device_node *np; 459 int ret, i, count, num_paths; 460 struct icc_path **paths; 461 462 ret = _bandwidth_supported(dev, opp_table); 463 if (ret == -EINVAL) 464 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 465 else if (ret <= 0) 466 return ret; 467 468 ret = 0; 469 470 np = of_node_get(dev->of_node); 471 if (!np) 472 return 0; 473 474 count = of_count_phandle_with_args(np, "interconnects", 475 "#interconnect-cells"); 476 of_node_put(np); 477 if (count < 0) 478 return 0; 479 480 /* two phandles when #interconnect-cells = <1> */ 481 if (count % 2) { 482 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 483 return -EINVAL; 484 } 485 486 num_paths = count / 2; 487 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 488 if (!paths) 489 return -ENOMEM; 490 491 for (i = 0; i < num_paths; i++) { 492 paths[i] = of_icc_get_by_index(dev, i); 493 if (IS_ERR(paths[i])) { 494 ret = PTR_ERR(paths[i]); 495 if (ret != -EPROBE_DEFER) { 496 dev_err(dev, "%s: Unable to get path%d: %d\n", 497 __func__, i, ret); 498 } 499 goto err; 500 } 501 } 502 503 if (opp_table) { 504 opp_table->paths = paths; 505 opp_table->path_count = num_paths; 506 return 0; 507 } 508 509 err: 510 while (i--) 511 icc_put(paths[i]); 512 513 kfree(paths); 514 515 return ret; 516 } 517 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 518 519 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 520 struct device_node *np) 521 { 522 unsigned int levels = opp_table->supported_hw_count; 523 int count, versions, ret, i, j; 524 u32 val; 525 526 if (!opp_table->supported_hw) { 527 /* 528 * In the case that no supported_hw has been set by the 529 * platform but there is an opp-supported-hw value set for 530 * an OPP then the OPP should not be enabled as there is 531 * no way to see if the hardware supports it. 532 */ 533 if (of_find_property(np, "opp-supported-hw", NULL)) 534 return false; 535 else 536 return true; 537 } 538 539 count = of_property_count_u32_elems(np, "opp-supported-hw"); 540 if (count <= 0 || count % levels) { 541 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 542 __func__, count); 543 return false; 544 } 545 546 versions = count / levels; 547 548 /* All levels in at least one of the versions should match */ 549 for (i = 0; i < versions; i++) { 550 bool supported = true; 551 552 for (j = 0; j < levels; j++) { 553 ret = of_property_read_u32_index(np, "opp-supported-hw", 554 i * levels + j, &val); 555 if (ret) { 556 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 557 __func__, i * levels + j, ret); 558 return false; 559 } 560 561 /* Check if the level is supported */ 562 if (!(val & opp_table->supported_hw[j])) { 563 supported = false; 564 break; 565 } 566 } 567 568 if (supported) 569 return true; 570 } 571 572 return false; 573 } 574 575 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 576 struct opp_table *opp_table) 577 { 578 u32 *microvolt, *microamp = NULL; 579 int supplies = opp_table->regulator_count, vcount, icount, ret, i, j; 580 struct property *prop = NULL; 581 char name[NAME_MAX]; 582 583 /* Search for "opp-microvolt-<name>" */ 584 if (opp_table->prop_name) { 585 snprintf(name, sizeof(name), "opp-microvolt-%s", 586 opp_table->prop_name); 587 prop = of_find_property(opp->np, name, NULL); 588 } 589 590 if (!prop) { 591 /* Search for "opp-microvolt" */ 592 sprintf(name, "opp-microvolt"); 593 prop = of_find_property(opp->np, name, NULL); 594 595 /* Missing property isn't a problem, but an invalid entry is */ 596 if (!prop) { 597 if (unlikely(supplies == -1)) { 598 /* Initialize regulator_count */ 599 opp_table->regulator_count = 0; 600 return 0; 601 } 602 603 if (!supplies) 604 return 0; 605 606 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 607 __func__); 608 return -EINVAL; 609 } 610 } 611 612 if (unlikely(supplies == -1)) { 613 /* Initialize regulator_count */ 614 supplies = opp_table->regulator_count = 1; 615 } else if (unlikely(!supplies)) { 616 dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__); 617 return -EINVAL; 618 } 619 620 vcount = of_property_count_u32_elems(opp->np, name); 621 if (vcount < 0) { 622 dev_err(dev, "%s: Invalid %s property (%d)\n", 623 __func__, name, vcount); 624 return vcount; 625 } 626 627 /* There can be one or three elements per supply */ 628 if (vcount != supplies && vcount != supplies * 3) { 629 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n", 630 __func__, name, vcount, supplies); 631 return -EINVAL; 632 } 633 634 microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL); 635 if (!microvolt) 636 return -ENOMEM; 637 638 ret = of_property_read_u32_array(opp->np, name, microvolt, vcount); 639 if (ret) { 640 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 641 ret = -EINVAL; 642 goto free_microvolt; 643 } 644 645 /* Search for "opp-microamp-<name>" */ 646 prop = NULL; 647 if (opp_table->prop_name) { 648 snprintf(name, sizeof(name), "opp-microamp-%s", 649 opp_table->prop_name); 650 prop = of_find_property(opp->np, name, NULL); 651 } 652 653 if (!prop) { 654 /* Search for "opp-microamp" */ 655 sprintf(name, "opp-microamp"); 656 prop = of_find_property(opp->np, name, NULL); 657 } 658 659 if (prop) { 660 icount = of_property_count_u32_elems(opp->np, name); 661 if (icount < 0) { 662 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, 663 name, icount); 664 ret = icount; 665 goto free_microvolt; 666 } 667 668 if (icount != supplies) { 669 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n", 670 __func__, name, icount, supplies); 671 ret = -EINVAL; 672 goto free_microvolt; 673 } 674 675 microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL); 676 if (!microamp) { 677 ret = -EINVAL; 678 goto free_microvolt; 679 } 680 681 ret = of_property_read_u32_array(opp->np, name, microamp, 682 icount); 683 if (ret) { 684 dev_err(dev, "%s: error parsing %s: %d\n", __func__, 685 name, ret); 686 ret = -EINVAL; 687 goto free_microamp; 688 } 689 } 690 691 for (i = 0, j = 0; i < supplies; i++) { 692 opp->supplies[i].u_volt = microvolt[j++]; 693 694 if (vcount == supplies) { 695 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 696 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 697 } else { 698 opp->supplies[i].u_volt_min = microvolt[j++]; 699 opp->supplies[i].u_volt_max = microvolt[j++]; 700 } 701 702 if (microamp) 703 opp->supplies[i].u_amp = microamp[i]; 704 } 705 706 free_microamp: 707 kfree(microamp); 708 free_microvolt: 709 kfree(microvolt); 710 711 return ret; 712 } 713 714 /** 715 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 716 * entries 717 * @dev: device pointer used to lookup OPP table. 718 * 719 * Free OPPs created using static entries present in DT. 720 */ 721 void dev_pm_opp_of_remove_table(struct device *dev) 722 { 723 dev_pm_opp_remove_table(dev); 724 } 725 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 726 727 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *table, 728 struct device_node *np, bool peak) 729 { 730 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 731 struct property *prop; 732 int i, count, ret; 733 u32 *bw; 734 735 prop = of_find_property(np, name, NULL); 736 if (!prop) 737 return -ENODEV; 738 739 count = prop->length / sizeof(u32); 740 if (table->path_count != count) { 741 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 742 __func__, name, count, table->path_count); 743 return -EINVAL; 744 } 745 746 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 747 if (!bw) 748 return -ENOMEM; 749 750 ret = of_property_read_u32_array(np, name, bw, count); 751 if (ret) { 752 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 753 goto out; 754 } 755 756 for (i = 0; i < count; i++) { 757 if (peak) 758 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 759 else 760 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 761 } 762 763 out: 764 kfree(bw); 765 return ret; 766 } 767 768 static int _read_opp_key(struct dev_pm_opp *new_opp, struct opp_table *table, 769 struct device_node *np, bool *rate_not_available) 770 { 771 bool found = false; 772 u64 rate; 773 int ret; 774 775 ret = of_property_read_u64(np, "opp-hz", &rate); 776 if (!ret) { 777 /* 778 * Rate is defined as an unsigned long in clk API, and so 779 * casting explicitly to its type. Must be fixed once rate is 64 780 * bit guaranteed in clk API. 781 */ 782 new_opp->rate = (unsigned long)rate; 783 found = true; 784 } 785 *rate_not_available = !!ret; 786 787 /* 788 * Bandwidth consists of peak and average (optional) values: 789 * opp-peak-kBps = <path1_value path2_value>; 790 * opp-avg-kBps = <path1_value path2_value>; 791 */ 792 ret = _read_bw(new_opp, table, np, true); 793 if (!ret) { 794 found = true; 795 ret = _read_bw(new_opp, table, np, false); 796 } 797 798 /* The properties were found but we failed to parse them */ 799 if (ret && ret != -ENODEV) 800 return ret; 801 802 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 803 found = true; 804 805 if (found) 806 return 0; 807 808 return ret; 809 } 810 811 /** 812 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 813 * @opp_table: OPP table 814 * @dev: device for which we do this operation 815 * @np: device node 816 * 817 * This function adds an opp definition to the opp table and returns status. The 818 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 819 * removed by dev_pm_opp_remove. 820 * 821 * Return: 822 * Valid OPP pointer: 823 * On success 824 * NULL: 825 * Duplicate OPPs (both freq and volt are same) and opp->available 826 * OR if the OPP is not supported by hardware. 827 * ERR_PTR(-EEXIST): 828 * Freq are same and volt are different OR 829 * Duplicate OPPs (both freq and volt are same) and !opp->available 830 * ERR_PTR(-ENOMEM): 831 * Memory allocation failure 832 * ERR_PTR(-EINVAL): 833 * Failed parsing the OPP node 834 */ 835 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 836 struct device *dev, struct device_node *np) 837 { 838 struct dev_pm_opp *new_opp; 839 u32 val; 840 int ret; 841 bool rate_not_available = false; 842 843 new_opp = _opp_allocate(opp_table); 844 if (!new_opp) 845 return ERR_PTR(-ENOMEM); 846 847 ret = _read_opp_key(new_opp, opp_table, np, &rate_not_available); 848 if (ret < 0) { 849 dev_err(dev, "%s: opp key field not found\n", __func__); 850 goto free_opp; 851 } 852 853 /* Check if the OPP supports hardware's hierarchy of versions or not */ 854 if (!_opp_is_supported(dev, opp_table, np)) { 855 dev_dbg(dev, "OPP not supported by hardware: %lu\n", 856 new_opp->rate); 857 goto free_opp; 858 } 859 860 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 861 862 new_opp->np = np; 863 new_opp->dynamic = false; 864 new_opp->available = true; 865 866 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 867 if (ret) 868 goto free_opp; 869 870 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 871 new_opp->clock_latency_ns = val; 872 873 ret = opp_parse_supplies(new_opp, dev, opp_table); 874 if (ret) 875 goto free_required_opps; 876 877 if (opp_table->is_genpd) 878 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp); 879 880 ret = _opp_add(dev, new_opp, opp_table, rate_not_available); 881 if (ret) { 882 /* Don't return error for duplicate OPPs */ 883 if (ret == -EBUSY) 884 ret = 0; 885 goto free_required_opps; 886 } 887 888 /* OPP to select on device suspend */ 889 if (of_property_read_bool(np, "opp-suspend")) { 890 if (opp_table->suspend_opp) { 891 /* Pick the OPP with higher rate as suspend OPP */ 892 if (new_opp->rate > opp_table->suspend_opp->rate) { 893 opp_table->suspend_opp->suspend = false; 894 new_opp->suspend = true; 895 opp_table->suspend_opp = new_opp; 896 } 897 } else { 898 new_opp->suspend = true; 899 opp_table->suspend_opp = new_opp; 900 } 901 } 902 903 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 904 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 905 906 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 907 __func__, new_opp->turbo, new_opp->rate, 908 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 909 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 910 new_opp->level); 911 912 /* 913 * Notify the changes in the availability of the operable 914 * frequency/voltage list. 915 */ 916 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 917 return new_opp; 918 919 free_required_opps: 920 _of_opp_free_required_opps(opp_table, new_opp); 921 free_opp: 922 _opp_free(new_opp); 923 924 return ret ? ERR_PTR(ret) : NULL; 925 } 926 927 /* Initializes OPP tables based on new bindings */ 928 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 929 { 930 struct device_node *np; 931 int ret, count = 0; 932 struct dev_pm_opp *opp; 933 934 /* OPP table is already initialized for the device */ 935 mutex_lock(&opp_table->lock); 936 if (opp_table->parsed_static_opps) { 937 opp_table->parsed_static_opps++; 938 mutex_unlock(&opp_table->lock); 939 return 0; 940 } 941 942 opp_table->parsed_static_opps = 1; 943 mutex_unlock(&opp_table->lock); 944 945 /* We have opp-table node now, iterate over it and add OPPs */ 946 for_each_available_child_of_node(opp_table->np, np) { 947 opp = _opp_add_static_v2(opp_table, dev, np); 948 if (IS_ERR(opp)) { 949 ret = PTR_ERR(opp); 950 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 951 ret); 952 of_node_put(np); 953 goto remove_static_opp; 954 } else if (opp) { 955 count++; 956 } 957 } 958 959 /* There should be one or more OPPs defined */ 960 if (!count) { 961 dev_err(dev, "%s: no supported OPPs", __func__); 962 ret = -ENOENT; 963 goto remove_static_opp; 964 } 965 966 list_for_each_entry(opp, &opp_table->opp_list, node) { 967 /* Any non-zero performance state would enable the feature */ 968 if (opp->pstate) { 969 opp_table->genpd_performance_state = true; 970 break; 971 } 972 } 973 974 lazy_link_required_opp_table(opp_table); 975 976 return 0; 977 978 remove_static_opp: 979 _opp_remove_all_static(opp_table); 980 981 return ret; 982 } 983 984 /* Initializes OPP tables based on old-deprecated bindings */ 985 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 986 { 987 const struct property *prop; 988 const __be32 *val; 989 int nr, ret = 0; 990 991 mutex_lock(&opp_table->lock); 992 if (opp_table->parsed_static_opps) { 993 opp_table->parsed_static_opps++; 994 mutex_unlock(&opp_table->lock); 995 return 0; 996 } 997 998 opp_table->parsed_static_opps = 1; 999 mutex_unlock(&opp_table->lock); 1000 1001 prop = of_find_property(dev->of_node, "operating-points", NULL); 1002 if (!prop) { 1003 ret = -ENODEV; 1004 goto remove_static_opp; 1005 } 1006 if (!prop->value) { 1007 ret = -ENODATA; 1008 goto remove_static_opp; 1009 } 1010 1011 /* 1012 * Each OPP is a set of tuples consisting of frequency and 1013 * voltage like <freq-kHz vol-uV>. 1014 */ 1015 nr = prop->length / sizeof(u32); 1016 if (nr % 2) { 1017 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1018 ret = -EINVAL; 1019 goto remove_static_opp; 1020 } 1021 1022 val = prop->value; 1023 while (nr) { 1024 unsigned long freq = be32_to_cpup(val++) * 1000; 1025 unsigned long volt = be32_to_cpup(val++); 1026 1027 ret = _opp_add_v1(opp_table, dev, freq, volt, false); 1028 if (ret) { 1029 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1030 __func__, freq, ret); 1031 goto remove_static_opp; 1032 } 1033 nr -= 2; 1034 } 1035 1036 return 0; 1037 1038 remove_static_opp: 1039 _opp_remove_all_static(opp_table); 1040 1041 return ret; 1042 } 1043 1044 static int _of_add_table_indexed(struct device *dev, int index, bool getclk) 1045 { 1046 struct opp_table *opp_table; 1047 int ret, count; 1048 1049 if (index) { 1050 /* 1051 * If only one phandle is present, then the same OPP table 1052 * applies for all index requests. 1053 */ 1054 count = of_count_phandle_with_args(dev->of_node, 1055 "operating-points-v2", NULL); 1056 if (count == 1) 1057 index = 0; 1058 } 1059 1060 opp_table = _add_opp_table_indexed(dev, index, getclk); 1061 if (IS_ERR(opp_table)) 1062 return PTR_ERR(opp_table); 1063 1064 /* 1065 * OPPs have two version of bindings now. Also try the old (v1) 1066 * bindings for backward compatibility with older dtbs. 1067 */ 1068 if (opp_table->np) 1069 ret = _of_add_opp_table_v2(dev, opp_table); 1070 else 1071 ret = _of_add_opp_table_v1(dev, opp_table); 1072 1073 if (ret) 1074 dev_pm_opp_put_opp_table(opp_table); 1075 1076 return ret; 1077 } 1078 1079 static void devm_pm_opp_of_table_release(void *data) 1080 { 1081 dev_pm_opp_of_remove_table(data); 1082 } 1083 1084 static int _devm_of_add_table_indexed(struct device *dev, int index, bool getclk) 1085 { 1086 int ret; 1087 1088 ret = _of_add_table_indexed(dev, index, getclk); 1089 if (ret) 1090 return ret; 1091 1092 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); 1093 } 1094 1095 /** 1096 * devm_pm_opp_of_add_table() - Initialize opp table from device tree 1097 * @dev: device pointer used to lookup OPP table. 1098 * 1099 * Register the initial OPP table with the OPP library for given device. 1100 * 1101 * The opp_table structure will be freed after the device is destroyed. 1102 * 1103 * Return: 1104 * 0 On success OR 1105 * Duplicate OPPs (both freq and volt are same) and opp->available 1106 * -EEXIST Freq are same and volt are different OR 1107 * Duplicate OPPs (both freq and volt are same) and !opp->available 1108 * -ENOMEM Memory allocation failure 1109 * -ENODEV when 'operating-points' property is not found or is invalid data 1110 * in device node. 1111 * -ENODATA when empty 'operating-points' property is found 1112 * -EINVAL when invalid entries are found in opp-v2 table 1113 */ 1114 int devm_pm_opp_of_add_table(struct device *dev) 1115 { 1116 return _devm_of_add_table_indexed(dev, 0, true); 1117 } 1118 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); 1119 1120 /** 1121 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1122 * @dev: device pointer used to lookup OPP table. 1123 * 1124 * Register the initial OPP table with the OPP library for given device. 1125 * 1126 * Return: 1127 * 0 On success OR 1128 * Duplicate OPPs (both freq and volt are same) and opp->available 1129 * -EEXIST Freq are same and volt are different OR 1130 * Duplicate OPPs (both freq and volt are same) and !opp->available 1131 * -ENOMEM Memory allocation failure 1132 * -ENODEV when 'operating-points' property is not found or is invalid data 1133 * in device node. 1134 * -ENODATA when empty 'operating-points' property is found 1135 * -EINVAL when invalid entries are found in opp-v2 table 1136 */ 1137 int dev_pm_opp_of_add_table(struct device *dev) 1138 { 1139 return _of_add_table_indexed(dev, 0, true); 1140 } 1141 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1142 1143 /** 1144 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1145 * @dev: device pointer used to lookup OPP table. 1146 * @index: Index number. 1147 * 1148 * Register the initial OPP table with the OPP library for given device only 1149 * using the "operating-points-v2" property. 1150 * 1151 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1152 */ 1153 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1154 { 1155 return _of_add_table_indexed(dev, index, true); 1156 } 1157 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1158 1159 /** 1160 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1161 * @dev: device pointer used to lookup OPP table. 1162 * @index: Index number. 1163 * 1164 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). 1165 */ 1166 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) 1167 { 1168 return _devm_of_add_table_indexed(dev, index, true); 1169 } 1170 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); 1171 1172 /** 1173 * dev_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device 1174 * tree without getting clk for device. 1175 * @dev: device pointer used to lookup OPP table. 1176 * @index: Index number. 1177 * 1178 * Register the initial OPP table with the OPP library for given device only 1179 * using the "operating-points-v2" property. Do not try to get the clk for the 1180 * device. 1181 * 1182 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1183 */ 1184 int dev_pm_opp_of_add_table_noclk(struct device *dev, int index) 1185 { 1186 return _of_add_table_indexed(dev, index, false); 1187 } 1188 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_noclk); 1189 1190 /** 1191 * devm_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device 1192 * tree without getting clk for device. 1193 * @dev: device pointer used to lookup OPP table. 1194 * @index: Index number. 1195 * 1196 * This is a resource-managed variant of dev_pm_opp_of_add_table_noclk(). 1197 */ 1198 int devm_pm_opp_of_add_table_noclk(struct device *dev, int index) 1199 { 1200 return _devm_of_add_table_indexed(dev, index, false); 1201 } 1202 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_noclk); 1203 1204 /* CPU device specific helpers */ 1205 1206 /** 1207 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1208 * @cpumask: cpumask for which OPP table needs to be removed 1209 * 1210 * This removes the OPP tables for CPUs present in the @cpumask. 1211 * This should be used only to remove static entries created from DT. 1212 */ 1213 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1214 { 1215 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1216 } 1217 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1218 1219 /** 1220 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1221 * @cpumask: cpumask for which OPP table needs to be added. 1222 * 1223 * This adds the OPP tables for CPUs present in the @cpumask. 1224 */ 1225 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1226 { 1227 struct device *cpu_dev; 1228 int cpu, ret; 1229 1230 if (WARN_ON(cpumask_empty(cpumask))) 1231 return -ENODEV; 1232 1233 for_each_cpu(cpu, cpumask) { 1234 cpu_dev = get_cpu_device(cpu); 1235 if (!cpu_dev) { 1236 pr_err("%s: failed to get cpu%d device\n", __func__, 1237 cpu); 1238 ret = -ENODEV; 1239 goto remove_table; 1240 } 1241 1242 ret = dev_pm_opp_of_add_table(cpu_dev); 1243 if (ret) { 1244 /* 1245 * OPP may get registered dynamically, don't print error 1246 * message here. 1247 */ 1248 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1249 __func__, cpu, ret); 1250 1251 goto remove_table; 1252 } 1253 } 1254 1255 return 0; 1256 1257 remove_table: 1258 /* Free all other OPPs */ 1259 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1260 1261 return ret; 1262 } 1263 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1264 1265 /* 1266 * Works only for OPP v2 bindings. 1267 * 1268 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1269 */ 1270 /** 1271 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1272 * @cpu_dev using operating-points-v2 1273 * bindings. 1274 * 1275 * @cpu_dev: CPU device for which we do this operation 1276 * @cpumask: cpumask to update with information of sharing CPUs 1277 * 1278 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1279 * 1280 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1281 */ 1282 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1283 struct cpumask *cpumask) 1284 { 1285 struct device_node *np, *tmp_np, *cpu_np; 1286 int cpu, ret = 0; 1287 1288 /* Get OPP descriptor node */ 1289 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1290 if (!np) { 1291 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1292 return -ENOENT; 1293 } 1294 1295 cpumask_set_cpu(cpu_dev->id, cpumask); 1296 1297 /* OPPs are shared ? */ 1298 if (!of_property_read_bool(np, "opp-shared")) 1299 goto put_cpu_node; 1300 1301 for_each_possible_cpu(cpu) { 1302 if (cpu == cpu_dev->id) 1303 continue; 1304 1305 cpu_np = of_cpu_device_node_get(cpu); 1306 if (!cpu_np) { 1307 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1308 __func__, cpu); 1309 ret = -ENOENT; 1310 goto put_cpu_node; 1311 } 1312 1313 /* Get OPP descriptor node */ 1314 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); 1315 of_node_put(cpu_np); 1316 if (!tmp_np) { 1317 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1318 ret = -ENOENT; 1319 goto put_cpu_node; 1320 } 1321 1322 /* CPUs are sharing opp node */ 1323 if (np == tmp_np) 1324 cpumask_set_cpu(cpu, cpumask); 1325 1326 of_node_put(tmp_np); 1327 } 1328 1329 put_cpu_node: 1330 of_node_put(np); 1331 return ret; 1332 } 1333 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1334 1335 /** 1336 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1337 * @np: Node that contains the "required-opps" property. 1338 * @index: Index of the phandle to parse. 1339 * 1340 * Returns the performance state of the OPP pointed out by the "required-opps" 1341 * property at @index in @np. 1342 * 1343 * Return: Zero or positive performance state on success, otherwise negative 1344 * value on errors. 1345 */ 1346 int of_get_required_opp_performance_state(struct device_node *np, int index) 1347 { 1348 struct dev_pm_opp *opp; 1349 struct device_node *required_np; 1350 struct opp_table *opp_table; 1351 int pstate = -EINVAL; 1352 1353 required_np = of_parse_required_opp(np, index); 1354 if (!required_np) 1355 return -ENODEV; 1356 1357 opp_table = _find_table_of_opp_np(required_np); 1358 if (IS_ERR(opp_table)) { 1359 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1360 __func__, np, PTR_ERR(opp_table)); 1361 goto put_required_np; 1362 } 1363 1364 opp = _find_opp_of_np(opp_table, required_np); 1365 if (opp) { 1366 pstate = opp->pstate; 1367 dev_pm_opp_put(opp); 1368 } 1369 1370 dev_pm_opp_put_opp_table(opp_table); 1371 1372 put_required_np: 1373 of_node_put(required_np); 1374 1375 return pstate; 1376 } 1377 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1378 1379 /** 1380 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1381 * @opp: opp for which DT node has to be returned for 1382 * 1383 * Return: DT node corresponding to the opp, else 0 on success. 1384 * 1385 * The caller needs to put the node with of_node_put() after using it. 1386 */ 1387 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1388 { 1389 if (IS_ERR_OR_NULL(opp)) { 1390 pr_err("%s: Invalid parameters\n", __func__); 1391 return NULL; 1392 } 1393 1394 return of_node_get(opp->np); 1395 } 1396 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1397 1398 /* 1399 * Callback function provided to the Energy Model framework upon registration. 1400 * This computes the power estimated by @dev at @kHz if it is the frequency 1401 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1402 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1403 * frequency and @mW to the associated power. The power is estimated as 1404 * P = C * V^2 * f with C being the device's capacitance and V and f 1405 * respectively the voltage and frequency of the OPP. 1406 * 1407 * Returns -EINVAL if the power calculation failed because of missing 1408 * parameters, 0 otherwise. 1409 */ 1410 static int __maybe_unused _get_power(unsigned long *mW, unsigned long *kHz, 1411 struct device *dev) 1412 { 1413 struct dev_pm_opp *opp; 1414 struct device_node *np; 1415 unsigned long mV, Hz; 1416 u32 cap; 1417 u64 tmp; 1418 int ret; 1419 1420 np = of_node_get(dev->of_node); 1421 if (!np) 1422 return -EINVAL; 1423 1424 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1425 of_node_put(np); 1426 if (ret) 1427 return -EINVAL; 1428 1429 Hz = *kHz * 1000; 1430 opp = dev_pm_opp_find_freq_ceil(dev, &Hz); 1431 if (IS_ERR(opp)) 1432 return -EINVAL; 1433 1434 mV = dev_pm_opp_get_voltage(opp) / 1000; 1435 dev_pm_opp_put(opp); 1436 if (!mV) 1437 return -EINVAL; 1438 1439 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1440 do_div(tmp, 1000000000); 1441 1442 *mW = (unsigned long)tmp; 1443 *kHz = Hz / 1000; 1444 1445 return 0; 1446 } 1447 1448 /** 1449 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1450 * @dev : Device for which an Energy Model has to be registered 1451 * @cpus : CPUs for which an Energy Model has to be registered. For 1452 * other type of devices it should be set to NULL. 1453 * 1454 * This checks whether the "dynamic-power-coefficient" devicetree property has 1455 * been specified, and tries to register an Energy Model with it if it has. 1456 * Having this property means the voltages are known for OPPs and the EM 1457 * might be calculated. 1458 */ 1459 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1460 { 1461 struct em_data_callback em_cb = EM_DATA_CB(_get_power); 1462 struct device_node *np; 1463 int ret, nr_opp; 1464 u32 cap; 1465 1466 if (IS_ERR_OR_NULL(dev)) { 1467 ret = -EINVAL; 1468 goto failed; 1469 } 1470 1471 nr_opp = dev_pm_opp_get_opp_count(dev); 1472 if (nr_opp <= 0) { 1473 ret = -EINVAL; 1474 goto failed; 1475 } 1476 1477 np = of_node_get(dev->of_node); 1478 if (!np) { 1479 ret = -EINVAL; 1480 goto failed; 1481 } 1482 1483 /* 1484 * Register an EM only if the 'dynamic-power-coefficient' property is 1485 * set in devicetree. It is assumed the voltage values are known if that 1486 * property is set since it is useless otherwise. If voltages are not 1487 * known, just let the EM registration fail with an error to alert the 1488 * user about the inconsistent configuration. 1489 */ 1490 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1491 of_node_put(np); 1492 if (ret || !cap) { 1493 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1494 ret = -EINVAL; 1495 goto failed; 1496 } 1497 1498 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1499 if (ret) 1500 goto failed; 1501 1502 return 0; 1503 1504 failed: 1505 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1506 return ret; 1507 } 1508 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1509