xref: /linux/drivers/opp/of.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21 
22 #include "opp.h"
23 
24 /*
25  * Returns opp descriptor node for a device node, caller must
26  * do of_node_put().
27  */
28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 						     int index)
30 {
31 	/* "operating-points-v2" can be an array for power domain providers */
32 	return of_parse_phandle(np, "operating-points-v2", index);
33 }
34 
35 /* Returns opp descriptor node for a device, caller must do of_node_put() */
36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37 {
38 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
39 }
40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41 
42 struct opp_table *_managed_opp(struct device *dev, int index)
43 {
44 	struct opp_table *opp_table, *managed_table = NULL;
45 	struct device_node *np;
46 
47 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 	if (!np)
49 		return NULL;
50 
51 	list_for_each_entry(opp_table, &opp_tables, node) {
52 		if (opp_table->np == np) {
53 			/*
54 			 * Multiple devices can point to the same OPP table and
55 			 * so will have same node-pointer, np.
56 			 *
57 			 * But the OPPs will be considered as shared only if the
58 			 * OPP table contains a "opp-shared" property.
59 			 */
60 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 				_get_opp_table_kref(opp_table);
62 				managed_table = opp_table;
63 			}
64 
65 			break;
66 		}
67 	}
68 
69 	of_node_put(np);
70 
71 	return managed_table;
72 }
73 
74 /* The caller must call dev_pm_opp_put() after the OPP is used */
75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 					  struct device_node *opp_np)
77 {
78 	struct dev_pm_opp *opp;
79 
80 	mutex_lock(&opp_table->lock);
81 
82 	list_for_each_entry(opp, &opp_table->opp_list, node) {
83 		if (opp->np == opp_np) {
84 			dev_pm_opp_get(opp);
85 			mutex_unlock(&opp_table->lock);
86 			return opp;
87 		}
88 	}
89 
90 	mutex_unlock(&opp_table->lock);
91 
92 	return NULL;
93 }
94 
95 static struct device_node *of_parse_required_opp(struct device_node *np,
96 						 int index)
97 {
98 	return of_parse_phandle(np, "required-opps", index);
99 }
100 
101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103 {
104 	struct opp_table *opp_table;
105 	struct device_node *opp_table_np;
106 
107 	opp_table_np = of_get_parent(opp_np);
108 	if (!opp_table_np)
109 		goto err;
110 
111 	/* It is safe to put the node now as all we need now is its address */
112 	of_node_put(opp_table_np);
113 
114 	mutex_lock(&opp_table_lock);
115 	list_for_each_entry(opp_table, &opp_tables, node) {
116 		if (opp_table_np == opp_table->np) {
117 			_get_opp_table_kref(opp_table);
118 			mutex_unlock(&opp_table_lock);
119 			return opp_table;
120 		}
121 	}
122 	mutex_unlock(&opp_table_lock);
123 
124 err:
125 	return ERR_PTR(-ENODEV);
126 }
127 
128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
130 {
131 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 	int i;
133 
134 	if (!required_opp_tables)
135 		return;
136 
137 	for (i = 0; i < opp_table->required_opp_count; i++) {
138 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 			continue;
140 
141 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 	}
143 
144 	kfree(required_opp_tables);
145 
146 	opp_table->required_opp_count = 0;
147 	opp_table->required_opp_tables = NULL;
148 	list_del(&opp_table->lazy);
149 }
150 
151 /*
152  * Populate all devices and opp tables which are part of "required-opps" list.
153  * Checking only the first OPP node should be enough.
154  */
155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 					     struct device *dev,
157 					     struct device_node *opp_np)
158 {
159 	struct opp_table **required_opp_tables;
160 	struct device_node *required_np, *np;
161 	bool lazy = false;
162 	int count, i;
163 
164 	/* Traversing the first OPP node is all we need */
165 	np = of_get_next_available_child(opp_np, NULL);
166 	if (!np) {
167 		dev_warn(dev, "Empty OPP table\n");
168 
169 		return;
170 	}
171 
172 	count = of_count_phandle_with_args(np, "required-opps", NULL);
173 	if (count <= 0)
174 		goto put_np;
175 
176 	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 				      GFP_KERNEL);
178 	if (!required_opp_tables)
179 		goto put_np;
180 
181 	opp_table->required_opp_tables = required_opp_tables;
182 	opp_table->required_opp_count = count;
183 
184 	for (i = 0; i < count; i++) {
185 		required_np = of_parse_required_opp(np, i);
186 		if (!required_np)
187 			goto free_required_tables;
188 
189 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 		of_node_put(required_np);
191 
192 		if (IS_ERR(required_opp_tables[i]))
193 			lazy = true;
194 	}
195 
196 	/* Let's do the linking later on */
197 	if (lazy)
198 		list_add(&opp_table->lazy, &lazy_opp_tables);
199 
200 	goto put_np;
201 
202 free_required_tables:
203 	_opp_table_free_required_tables(opp_table);
204 put_np:
205 	of_node_put(np);
206 }
207 
208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209 			int index)
210 {
211 	struct device_node *np, *opp_np;
212 	u32 val;
213 
214 	/*
215 	 * Only required for backward compatibility with v1 bindings, but isn't
216 	 * harmful for other cases. And so we do it unconditionally.
217 	 */
218 	np = of_node_get(dev->of_node);
219 	if (!np)
220 		return;
221 
222 	if (!of_property_read_u32(np, "clock-latency", &val))
223 		opp_table->clock_latency_ns_max = val;
224 	of_property_read_u32(np, "voltage-tolerance",
225 			     &opp_table->voltage_tolerance_v1);
226 
227 	if (of_find_property(np, "#power-domain-cells", NULL))
228 		opp_table->is_genpd = true;
229 
230 	/* Get OPP table node */
231 	opp_np = _opp_of_get_opp_desc_node(np, index);
232 	of_node_put(np);
233 
234 	if (!opp_np)
235 		return;
236 
237 	if (of_property_read_bool(opp_np, "opp-shared"))
238 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239 	else
240 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241 
242 	opp_table->np = opp_np;
243 
244 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
245 	of_node_put(opp_np);
246 }
247 
248 void _of_clear_opp_table(struct opp_table *opp_table)
249 {
250 	_opp_table_free_required_tables(opp_table);
251 }
252 
253 /*
254  * Release all resources previously acquired with a call to
255  * _of_opp_alloc_required_opps().
256  */
257 void _of_opp_free_required_opps(struct opp_table *opp_table,
258 				struct dev_pm_opp *opp)
259 {
260 	struct dev_pm_opp **required_opps = opp->required_opps;
261 	int i;
262 
263 	if (!required_opps)
264 		return;
265 
266 	for (i = 0; i < opp_table->required_opp_count; i++) {
267 		if (!required_opps[i])
268 			continue;
269 
270 		/* Put the reference back */
271 		dev_pm_opp_put(required_opps[i]);
272 	}
273 
274 	opp->required_opps = NULL;
275 	kfree(required_opps);
276 }
277 
278 /* Populate all required OPPs which are part of "required-opps" list */
279 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
280 				       struct dev_pm_opp *opp)
281 {
282 	struct dev_pm_opp **required_opps;
283 	struct opp_table *required_table;
284 	struct device_node *np;
285 	int i, ret, count = opp_table->required_opp_count;
286 
287 	if (!count)
288 		return 0;
289 
290 	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
291 	if (!required_opps)
292 		return -ENOMEM;
293 
294 	opp->required_opps = required_opps;
295 
296 	for (i = 0; i < count; i++) {
297 		required_table = opp_table->required_opp_tables[i];
298 
299 		/* Required table not added yet, we will link later */
300 		if (IS_ERR_OR_NULL(required_table))
301 			continue;
302 
303 		np = of_parse_required_opp(opp->np, i);
304 		if (unlikely(!np)) {
305 			ret = -ENODEV;
306 			goto free_required_opps;
307 		}
308 
309 		required_opps[i] = _find_opp_of_np(required_table, np);
310 		of_node_put(np);
311 
312 		if (!required_opps[i]) {
313 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
314 			       __func__, opp->np, i);
315 			ret = -ENODEV;
316 			goto free_required_opps;
317 		}
318 	}
319 
320 	return 0;
321 
322 free_required_opps:
323 	_of_opp_free_required_opps(opp_table, opp);
324 
325 	return ret;
326 }
327 
328 /* Link required OPPs for an individual OPP */
329 static int lazy_link_required_opps(struct opp_table *opp_table,
330 				   struct opp_table *new_table, int index)
331 {
332 	struct device_node *required_np;
333 	struct dev_pm_opp *opp;
334 
335 	list_for_each_entry(opp, &opp_table->opp_list, node) {
336 		required_np = of_parse_required_opp(opp->np, index);
337 		if (unlikely(!required_np))
338 			return -ENODEV;
339 
340 		opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
341 		of_node_put(required_np);
342 
343 		if (!opp->required_opps[index]) {
344 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
345 			       __func__, opp->np, index);
346 			return -ENODEV;
347 		}
348 	}
349 
350 	return 0;
351 }
352 
353 /* Link required OPPs for all OPPs of the newly added OPP table */
354 static void lazy_link_required_opp_table(struct opp_table *new_table)
355 {
356 	struct opp_table *opp_table, *temp, **required_opp_tables;
357 	struct device_node *required_np, *opp_np, *required_table_np;
358 	struct dev_pm_opp *opp;
359 	int i, ret;
360 
361 	mutex_lock(&opp_table_lock);
362 
363 	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
364 		bool lazy = false;
365 
366 		/* opp_np can't be invalid here */
367 		opp_np = of_get_next_available_child(opp_table->np, NULL);
368 
369 		for (i = 0; i < opp_table->required_opp_count; i++) {
370 			required_opp_tables = opp_table->required_opp_tables;
371 
372 			/* Required opp-table is already parsed */
373 			if (!IS_ERR(required_opp_tables[i]))
374 				continue;
375 
376 			/* required_np can't be invalid here */
377 			required_np = of_parse_required_opp(opp_np, i);
378 			required_table_np = of_get_parent(required_np);
379 
380 			of_node_put(required_table_np);
381 			of_node_put(required_np);
382 
383 			/*
384 			 * Newly added table isn't the required opp-table for
385 			 * opp_table.
386 			 */
387 			if (required_table_np != new_table->np) {
388 				lazy = true;
389 				continue;
390 			}
391 
392 			required_opp_tables[i] = new_table;
393 			_get_opp_table_kref(new_table);
394 
395 			/* Link OPPs now */
396 			ret = lazy_link_required_opps(opp_table, new_table, i);
397 			if (ret) {
398 				/* The OPPs will be marked unusable */
399 				lazy = false;
400 				break;
401 			}
402 		}
403 
404 		of_node_put(opp_np);
405 
406 		/* All required opp-tables found, remove from lazy list */
407 		if (!lazy) {
408 			list_del_init(&opp_table->lazy);
409 
410 			list_for_each_entry(opp, &opp_table->opp_list, node)
411 				_required_opps_available(opp, opp_table->required_opp_count);
412 		}
413 	}
414 
415 	mutex_unlock(&opp_table_lock);
416 }
417 
418 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
419 {
420 	struct device_node *np, *opp_np;
421 	struct property *prop;
422 
423 	if (!opp_table) {
424 		np = of_node_get(dev->of_node);
425 		if (!np)
426 			return -ENODEV;
427 
428 		opp_np = _opp_of_get_opp_desc_node(np, 0);
429 		of_node_put(np);
430 	} else {
431 		opp_np = of_node_get(opp_table->np);
432 	}
433 
434 	/* Lets not fail in case we are parsing opp-v1 bindings */
435 	if (!opp_np)
436 		return 0;
437 
438 	/* Checking only first OPP is sufficient */
439 	np = of_get_next_available_child(opp_np, NULL);
440 	if (!np) {
441 		dev_err(dev, "OPP table empty\n");
442 		return -EINVAL;
443 	}
444 	of_node_put(opp_np);
445 
446 	prop = of_find_property(np, "opp-peak-kBps", NULL);
447 	of_node_put(np);
448 
449 	if (!prop || !prop->length)
450 		return 0;
451 
452 	return 1;
453 }
454 
455 int dev_pm_opp_of_find_icc_paths(struct device *dev,
456 				 struct opp_table *opp_table)
457 {
458 	struct device_node *np;
459 	int ret, i, count, num_paths;
460 	struct icc_path **paths;
461 
462 	ret = _bandwidth_supported(dev, opp_table);
463 	if (ret == -EINVAL)
464 		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
465 	else if (ret <= 0)
466 		return ret;
467 
468 	ret = 0;
469 
470 	np = of_node_get(dev->of_node);
471 	if (!np)
472 		return 0;
473 
474 	count = of_count_phandle_with_args(np, "interconnects",
475 					   "#interconnect-cells");
476 	of_node_put(np);
477 	if (count < 0)
478 		return 0;
479 
480 	/* two phandles when #interconnect-cells = <1> */
481 	if (count % 2) {
482 		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
483 		return -EINVAL;
484 	}
485 
486 	num_paths = count / 2;
487 	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
488 	if (!paths)
489 		return -ENOMEM;
490 
491 	for (i = 0; i < num_paths; i++) {
492 		paths[i] = of_icc_get_by_index(dev, i);
493 		if (IS_ERR(paths[i])) {
494 			ret = PTR_ERR(paths[i]);
495 			if (ret != -EPROBE_DEFER) {
496 				dev_err(dev, "%s: Unable to get path%d: %d\n",
497 					__func__, i, ret);
498 			}
499 			goto err;
500 		}
501 	}
502 
503 	if (opp_table) {
504 		opp_table->paths = paths;
505 		opp_table->path_count = num_paths;
506 		return 0;
507 	}
508 
509 err:
510 	while (i--)
511 		icc_put(paths[i]);
512 
513 	kfree(paths);
514 
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
518 
519 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
520 			      struct device_node *np)
521 {
522 	unsigned int levels = opp_table->supported_hw_count;
523 	int count, versions, ret, i, j;
524 	u32 val;
525 
526 	if (!opp_table->supported_hw) {
527 		/*
528 		 * In the case that no supported_hw has been set by the
529 		 * platform but there is an opp-supported-hw value set for
530 		 * an OPP then the OPP should not be enabled as there is
531 		 * no way to see if the hardware supports it.
532 		 */
533 		if (of_find_property(np, "opp-supported-hw", NULL))
534 			return false;
535 		else
536 			return true;
537 	}
538 
539 	count = of_property_count_u32_elems(np, "opp-supported-hw");
540 	if (count <= 0 || count % levels) {
541 		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
542 			__func__, count);
543 		return false;
544 	}
545 
546 	versions = count / levels;
547 
548 	/* All levels in at least one of the versions should match */
549 	for (i = 0; i < versions; i++) {
550 		bool supported = true;
551 
552 		for (j = 0; j < levels; j++) {
553 			ret = of_property_read_u32_index(np, "opp-supported-hw",
554 							 i * levels + j, &val);
555 			if (ret) {
556 				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
557 					 __func__, i * levels + j, ret);
558 				return false;
559 			}
560 
561 			/* Check if the level is supported */
562 			if (!(val & opp_table->supported_hw[j])) {
563 				supported = false;
564 				break;
565 			}
566 		}
567 
568 		if (supported)
569 			return true;
570 	}
571 
572 	return false;
573 }
574 
575 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
576 			      struct opp_table *opp_table)
577 {
578 	u32 *microvolt, *microamp = NULL;
579 	int supplies = opp_table->regulator_count, vcount, icount, ret, i, j;
580 	struct property *prop = NULL;
581 	char name[NAME_MAX];
582 
583 	/* Search for "opp-microvolt-<name>" */
584 	if (opp_table->prop_name) {
585 		snprintf(name, sizeof(name), "opp-microvolt-%s",
586 			 opp_table->prop_name);
587 		prop = of_find_property(opp->np, name, NULL);
588 	}
589 
590 	if (!prop) {
591 		/* Search for "opp-microvolt" */
592 		sprintf(name, "opp-microvolt");
593 		prop = of_find_property(opp->np, name, NULL);
594 
595 		/* Missing property isn't a problem, but an invalid entry is */
596 		if (!prop) {
597 			if (unlikely(supplies == -1)) {
598 				/* Initialize regulator_count */
599 				opp_table->regulator_count = 0;
600 				return 0;
601 			}
602 
603 			if (!supplies)
604 				return 0;
605 
606 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
607 				__func__);
608 			return -EINVAL;
609 		}
610 	}
611 
612 	if (unlikely(supplies == -1)) {
613 		/* Initialize regulator_count */
614 		supplies = opp_table->regulator_count = 1;
615 	} else if (unlikely(!supplies)) {
616 		dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
617 		return -EINVAL;
618 	}
619 
620 	vcount = of_property_count_u32_elems(opp->np, name);
621 	if (vcount < 0) {
622 		dev_err(dev, "%s: Invalid %s property (%d)\n",
623 			__func__, name, vcount);
624 		return vcount;
625 	}
626 
627 	/* There can be one or three elements per supply */
628 	if (vcount != supplies && vcount != supplies * 3) {
629 		dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
630 			__func__, name, vcount, supplies);
631 		return -EINVAL;
632 	}
633 
634 	microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
635 	if (!microvolt)
636 		return -ENOMEM;
637 
638 	ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
639 	if (ret) {
640 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
641 		ret = -EINVAL;
642 		goto free_microvolt;
643 	}
644 
645 	/* Search for "opp-microamp-<name>" */
646 	prop = NULL;
647 	if (opp_table->prop_name) {
648 		snprintf(name, sizeof(name), "opp-microamp-%s",
649 			 opp_table->prop_name);
650 		prop = of_find_property(opp->np, name, NULL);
651 	}
652 
653 	if (!prop) {
654 		/* Search for "opp-microamp" */
655 		sprintf(name, "opp-microamp");
656 		prop = of_find_property(opp->np, name, NULL);
657 	}
658 
659 	if (prop) {
660 		icount = of_property_count_u32_elems(opp->np, name);
661 		if (icount < 0) {
662 			dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
663 				name, icount);
664 			ret = icount;
665 			goto free_microvolt;
666 		}
667 
668 		if (icount != supplies) {
669 			dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
670 				__func__, name, icount, supplies);
671 			ret = -EINVAL;
672 			goto free_microvolt;
673 		}
674 
675 		microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
676 		if (!microamp) {
677 			ret = -EINVAL;
678 			goto free_microvolt;
679 		}
680 
681 		ret = of_property_read_u32_array(opp->np, name, microamp,
682 						 icount);
683 		if (ret) {
684 			dev_err(dev, "%s: error parsing %s: %d\n", __func__,
685 				name, ret);
686 			ret = -EINVAL;
687 			goto free_microamp;
688 		}
689 	}
690 
691 	for (i = 0, j = 0; i < supplies; i++) {
692 		opp->supplies[i].u_volt = microvolt[j++];
693 
694 		if (vcount == supplies) {
695 			opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
696 			opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
697 		} else {
698 			opp->supplies[i].u_volt_min = microvolt[j++];
699 			opp->supplies[i].u_volt_max = microvolt[j++];
700 		}
701 
702 		if (microamp)
703 			opp->supplies[i].u_amp = microamp[i];
704 	}
705 
706 free_microamp:
707 	kfree(microamp);
708 free_microvolt:
709 	kfree(microvolt);
710 
711 	return ret;
712 }
713 
714 /**
715  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
716  *				  entries
717  * @dev:	device pointer used to lookup OPP table.
718  *
719  * Free OPPs created using static entries present in DT.
720  */
721 void dev_pm_opp_of_remove_table(struct device *dev)
722 {
723 	dev_pm_opp_remove_table(dev);
724 }
725 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
726 
727 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *table,
728 		    struct device_node *np, bool peak)
729 {
730 	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
731 	struct property *prop;
732 	int i, count, ret;
733 	u32 *bw;
734 
735 	prop = of_find_property(np, name, NULL);
736 	if (!prop)
737 		return -ENODEV;
738 
739 	count = prop->length / sizeof(u32);
740 	if (table->path_count != count) {
741 		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
742 				__func__, name, count, table->path_count);
743 		return -EINVAL;
744 	}
745 
746 	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
747 	if (!bw)
748 		return -ENOMEM;
749 
750 	ret = of_property_read_u32_array(np, name, bw, count);
751 	if (ret) {
752 		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
753 		goto out;
754 	}
755 
756 	for (i = 0; i < count; i++) {
757 		if (peak)
758 			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
759 		else
760 			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
761 	}
762 
763 out:
764 	kfree(bw);
765 	return ret;
766 }
767 
768 static int _read_opp_key(struct dev_pm_opp *new_opp, struct opp_table *table,
769 			 struct device_node *np, bool *rate_not_available)
770 {
771 	bool found = false;
772 	u64 rate;
773 	int ret;
774 
775 	ret = of_property_read_u64(np, "opp-hz", &rate);
776 	if (!ret) {
777 		/*
778 		 * Rate is defined as an unsigned long in clk API, and so
779 		 * casting explicitly to its type. Must be fixed once rate is 64
780 		 * bit guaranteed in clk API.
781 		 */
782 		new_opp->rate = (unsigned long)rate;
783 		found = true;
784 	}
785 	*rate_not_available = !!ret;
786 
787 	/*
788 	 * Bandwidth consists of peak and average (optional) values:
789 	 * opp-peak-kBps = <path1_value path2_value>;
790 	 * opp-avg-kBps = <path1_value path2_value>;
791 	 */
792 	ret = _read_bw(new_opp, table, np, true);
793 	if (!ret) {
794 		found = true;
795 		ret = _read_bw(new_opp, table, np, false);
796 	}
797 
798 	/* The properties were found but we failed to parse them */
799 	if (ret && ret != -ENODEV)
800 		return ret;
801 
802 	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
803 		found = true;
804 
805 	if (found)
806 		return 0;
807 
808 	return ret;
809 }
810 
811 /**
812  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
813  * @opp_table:	OPP table
814  * @dev:	device for which we do this operation
815  * @np:		device node
816  *
817  * This function adds an opp definition to the opp table and returns status. The
818  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
819  * removed by dev_pm_opp_remove.
820  *
821  * Return:
822  * Valid OPP pointer:
823  *		On success
824  * NULL:
825  *		Duplicate OPPs (both freq and volt are same) and opp->available
826  *		OR if the OPP is not supported by hardware.
827  * ERR_PTR(-EEXIST):
828  *		Freq are same and volt are different OR
829  *		Duplicate OPPs (both freq and volt are same) and !opp->available
830  * ERR_PTR(-ENOMEM):
831  *		Memory allocation failure
832  * ERR_PTR(-EINVAL):
833  *		Failed parsing the OPP node
834  */
835 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
836 		struct device *dev, struct device_node *np)
837 {
838 	struct dev_pm_opp *new_opp;
839 	u32 val;
840 	int ret;
841 	bool rate_not_available = false;
842 
843 	new_opp = _opp_allocate(opp_table);
844 	if (!new_opp)
845 		return ERR_PTR(-ENOMEM);
846 
847 	ret = _read_opp_key(new_opp, opp_table, np, &rate_not_available);
848 	if (ret < 0) {
849 		dev_err(dev, "%s: opp key field not found\n", __func__);
850 		goto free_opp;
851 	}
852 
853 	/* Check if the OPP supports hardware's hierarchy of versions or not */
854 	if (!_opp_is_supported(dev, opp_table, np)) {
855 		dev_dbg(dev, "OPP not supported by hardware: %lu\n",
856 			new_opp->rate);
857 		goto free_opp;
858 	}
859 
860 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
861 
862 	new_opp->np = np;
863 	new_opp->dynamic = false;
864 	new_opp->available = true;
865 
866 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
867 	if (ret)
868 		goto free_opp;
869 
870 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
871 		new_opp->clock_latency_ns = val;
872 
873 	ret = opp_parse_supplies(new_opp, dev, opp_table);
874 	if (ret)
875 		goto free_required_opps;
876 
877 	if (opp_table->is_genpd)
878 		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
879 
880 	ret = _opp_add(dev, new_opp, opp_table, rate_not_available);
881 	if (ret) {
882 		/* Don't return error for duplicate OPPs */
883 		if (ret == -EBUSY)
884 			ret = 0;
885 		goto free_required_opps;
886 	}
887 
888 	/* OPP to select on device suspend */
889 	if (of_property_read_bool(np, "opp-suspend")) {
890 		if (opp_table->suspend_opp) {
891 			/* Pick the OPP with higher rate as suspend OPP */
892 			if (new_opp->rate > opp_table->suspend_opp->rate) {
893 				opp_table->suspend_opp->suspend = false;
894 				new_opp->suspend = true;
895 				opp_table->suspend_opp = new_opp;
896 			}
897 		} else {
898 			new_opp->suspend = true;
899 			opp_table->suspend_opp = new_opp;
900 		}
901 	}
902 
903 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
904 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
905 
906 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
907 		 __func__, new_opp->turbo, new_opp->rate,
908 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
909 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
910 		 new_opp->level);
911 
912 	/*
913 	 * Notify the changes in the availability of the operable
914 	 * frequency/voltage list.
915 	 */
916 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
917 	return new_opp;
918 
919 free_required_opps:
920 	_of_opp_free_required_opps(opp_table, new_opp);
921 free_opp:
922 	_opp_free(new_opp);
923 
924 	return ret ? ERR_PTR(ret) : NULL;
925 }
926 
927 /* Initializes OPP tables based on new bindings */
928 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
929 {
930 	struct device_node *np;
931 	int ret, count = 0;
932 	struct dev_pm_opp *opp;
933 
934 	/* OPP table is already initialized for the device */
935 	mutex_lock(&opp_table->lock);
936 	if (opp_table->parsed_static_opps) {
937 		opp_table->parsed_static_opps++;
938 		mutex_unlock(&opp_table->lock);
939 		return 0;
940 	}
941 
942 	opp_table->parsed_static_opps = 1;
943 	mutex_unlock(&opp_table->lock);
944 
945 	/* We have opp-table node now, iterate over it and add OPPs */
946 	for_each_available_child_of_node(opp_table->np, np) {
947 		opp = _opp_add_static_v2(opp_table, dev, np);
948 		if (IS_ERR(opp)) {
949 			ret = PTR_ERR(opp);
950 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
951 				ret);
952 			of_node_put(np);
953 			goto remove_static_opp;
954 		} else if (opp) {
955 			count++;
956 		}
957 	}
958 
959 	/* There should be one or more OPPs defined */
960 	if (!count) {
961 		dev_err(dev, "%s: no supported OPPs", __func__);
962 		ret = -ENOENT;
963 		goto remove_static_opp;
964 	}
965 
966 	list_for_each_entry(opp, &opp_table->opp_list, node) {
967 		/* Any non-zero performance state would enable the feature */
968 		if (opp->pstate) {
969 			opp_table->genpd_performance_state = true;
970 			break;
971 		}
972 	}
973 
974 	lazy_link_required_opp_table(opp_table);
975 
976 	return 0;
977 
978 remove_static_opp:
979 	_opp_remove_all_static(opp_table);
980 
981 	return ret;
982 }
983 
984 /* Initializes OPP tables based on old-deprecated bindings */
985 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
986 {
987 	const struct property *prop;
988 	const __be32 *val;
989 	int nr, ret = 0;
990 
991 	mutex_lock(&opp_table->lock);
992 	if (opp_table->parsed_static_opps) {
993 		opp_table->parsed_static_opps++;
994 		mutex_unlock(&opp_table->lock);
995 		return 0;
996 	}
997 
998 	opp_table->parsed_static_opps = 1;
999 	mutex_unlock(&opp_table->lock);
1000 
1001 	prop = of_find_property(dev->of_node, "operating-points", NULL);
1002 	if (!prop) {
1003 		ret = -ENODEV;
1004 		goto remove_static_opp;
1005 	}
1006 	if (!prop->value) {
1007 		ret = -ENODATA;
1008 		goto remove_static_opp;
1009 	}
1010 
1011 	/*
1012 	 * Each OPP is a set of tuples consisting of frequency and
1013 	 * voltage like <freq-kHz vol-uV>.
1014 	 */
1015 	nr = prop->length / sizeof(u32);
1016 	if (nr % 2) {
1017 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1018 		ret = -EINVAL;
1019 		goto remove_static_opp;
1020 	}
1021 
1022 	val = prop->value;
1023 	while (nr) {
1024 		unsigned long freq = be32_to_cpup(val++) * 1000;
1025 		unsigned long volt = be32_to_cpup(val++);
1026 
1027 		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1028 		if (ret) {
1029 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1030 				__func__, freq, ret);
1031 			goto remove_static_opp;
1032 		}
1033 		nr -= 2;
1034 	}
1035 
1036 	return 0;
1037 
1038 remove_static_opp:
1039 	_opp_remove_all_static(opp_table);
1040 
1041 	return ret;
1042 }
1043 
1044 static int _of_add_table_indexed(struct device *dev, int index, bool getclk)
1045 {
1046 	struct opp_table *opp_table;
1047 	int ret, count;
1048 
1049 	if (index) {
1050 		/*
1051 		 * If only one phandle is present, then the same OPP table
1052 		 * applies for all index requests.
1053 		 */
1054 		count = of_count_phandle_with_args(dev->of_node,
1055 						   "operating-points-v2", NULL);
1056 		if (count == 1)
1057 			index = 0;
1058 	}
1059 
1060 	opp_table = _add_opp_table_indexed(dev, index, getclk);
1061 	if (IS_ERR(opp_table))
1062 		return PTR_ERR(opp_table);
1063 
1064 	/*
1065 	 * OPPs have two version of bindings now. Also try the old (v1)
1066 	 * bindings for backward compatibility with older dtbs.
1067 	 */
1068 	if (opp_table->np)
1069 		ret = _of_add_opp_table_v2(dev, opp_table);
1070 	else
1071 		ret = _of_add_opp_table_v1(dev, opp_table);
1072 
1073 	if (ret)
1074 		dev_pm_opp_put_opp_table(opp_table);
1075 
1076 	return ret;
1077 }
1078 
1079 static void devm_pm_opp_of_table_release(void *data)
1080 {
1081 	dev_pm_opp_of_remove_table(data);
1082 }
1083 
1084 static int _devm_of_add_table_indexed(struct device *dev, int index, bool getclk)
1085 {
1086 	int ret;
1087 
1088 	ret = _of_add_table_indexed(dev, index, getclk);
1089 	if (ret)
1090 		return ret;
1091 
1092 	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1093 }
1094 
1095 /**
1096  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1097  * @dev:	device pointer used to lookup OPP table.
1098  *
1099  * Register the initial OPP table with the OPP library for given device.
1100  *
1101  * The opp_table structure will be freed after the device is destroyed.
1102  *
1103  * Return:
1104  * 0		On success OR
1105  *		Duplicate OPPs (both freq and volt are same) and opp->available
1106  * -EEXIST	Freq are same and volt are different OR
1107  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1108  * -ENOMEM	Memory allocation failure
1109  * -ENODEV	when 'operating-points' property is not found or is invalid data
1110  *		in device node.
1111  * -ENODATA	when empty 'operating-points' property is found
1112  * -EINVAL	when invalid entries are found in opp-v2 table
1113  */
1114 int devm_pm_opp_of_add_table(struct device *dev)
1115 {
1116 	return _devm_of_add_table_indexed(dev, 0, true);
1117 }
1118 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1119 
1120 /**
1121  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1122  * @dev:	device pointer used to lookup OPP table.
1123  *
1124  * Register the initial OPP table with the OPP library for given device.
1125  *
1126  * Return:
1127  * 0		On success OR
1128  *		Duplicate OPPs (both freq and volt are same) and opp->available
1129  * -EEXIST	Freq are same and volt are different OR
1130  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1131  * -ENOMEM	Memory allocation failure
1132  * -ENODEV	when 'operating-points' property is not found or is invalid data
1133  *		in device node.
1134  * -ENODATA	when empty 'operating-points' property is found
1135  * -EINVAL	when invalid entries are found in opp-v2 table
1136  */
1137 int dev_pm_opp_of_add_table(struct device *dev)
1138 {
1139 	return _of_add_table_indexed(dev, 0, true);
1140 }
1141 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1142 
1143 /**
1144  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1145  * @dev:	device pointer used to lookup OPP table.
1146  * @index:	Index number.
1147  *
1148  * Register the initial OPP table with the OPP library for given device only
1149  * using the "operating-points-v2" property.
1150  *
1151  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1152  */
1153 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1154 {
1155 	return _of_add_table_indexed(dev, index, true);
1156 }
1157 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1158 
1159 /**
1160  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1161  * @dev:	device pointer used to lookup OPP table.
1162  * @index:	Index number.
1163  *
1164  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1165  */
1166 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1167 {
1168 	return _devm_of_add_table_indexed(dev, index, true);
1169 }
1170 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1171 
1172 /**
1173  * dev_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device
1174  *		tree without getting clk for device.
1175  * @dev:	device pointer used to lookup OPP table.
1176  * @index:	Index number.
1177  *
1178  * Register the initial OPP table with the OPP library for given device only
1179  * using the "operating-points-v2" property. Do not try to get the clk for the
1180  * device.
1181  *
1182  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1183  */
1184 int dev_pm_opp_of_add_table_noclk(struct device *dev, int index)
1185 {
1186 	return _of_add_table_indexed(dev, index, false);
1187 }
1188 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_noclk);
1189 
1190 /**
1191  * devm_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device
1192  *		tree without getting clk for device.
1193  * @dev:	device pointer used to lookup OPP table.
1194  * @index:	Index number.
1195  *
1196  * This is a resource-managed variant of dev_pm_opp_of_add_table_noclk().
1197  */
1198 int devm_pm_opp_of_add_table_noclk(struct device *dev, int index)
1199 {
1200 	return _devm_of_add_table_indexed(dev, index, false);
1201 }
1202 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_noclk);
1203 
1204 /* CPU device specific helpers */
1205 
1206 /**
1207  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1208  * @cpumask:	cpumask for which OPP table needs to be removed
1209  *
1210  * This removes the OPP tables for CPUs present in the @cpumask.
1211  * This should be used only to remove static entries created from DT.
1212  */
1213 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1214 {
1215 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1216 }
1217 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1218 
1219 /**
1220  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1221  * @cpumask:	cpumask for which OPP table needs to be added.
1222  *
1223  * This adds the OPP tables for CPUs present in the @cpumask.
1224  */
1225 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1226 {
1227 	struct device *cpu_dev;
1228 	int cpu, ret;
1229 
1230 	if (WARN_ON(cpumask_empty(cpumask)))
1231 		return -ENODEV;
1232 
1233 	for_each_cpu(cpu, cpumask) {
1234 		cpu_dev = get_cpu_device(cpu);
1235 		if (!cpu_dev) {
1236 			pr_err("%s: failed to get cpu%d device\n", __func__,
1237 			       cpu);
1238 			ret = -ENODEV;
1239 			goto remove_table;
1240 		}
1241 
1242 		ret = dev_pm_opp_of_add_table(cpu_dev);
1243 		if (ret) {
1244 			/*
1245 			 * OPP may get registered dynamically, don't print error
1246 			 * message here.
1247 			 */
1248 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1249 				 __func__, cpu, ret);
1250 
1251 			goto remove_table;
1252 		}
1253 	}
1254 
1255 	return 0;
1256 
1257 remove_table:
1258 	/* Free all other OPPs */
1259 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1260 
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1264 
1265 /*
1266  * Works only for OPP v2 bindings.
1267  *
1268  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1269  */
1270 /**
1271  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1272  *				      @cpu_dev using operating-points-v2
1273  *				      bindings.
1274  *
1275  * @cpu_dev:	CPU device for which we do this operation
1276  * @cpumask:	cpumask to update with information of sharing CPUs
1277  *
1278  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1279  *
1280  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1281  */
1282 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1283 				   struct cpumask *cpumask)
1284 {
1285 	struct device_node *np, *tmp_np, *cpu_np;
1286 	int cpu, ret = 0;
1287 
1288 	/* Get OPP descriptor node */
1289 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1290 	if (!np) {
1291 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1292 		return -ENOENT;
1293 	}
1294 
1295 	cpumask_set_cpu(cpu_dev->id, cpumask);
1296 
1297 	/* OPPs are shared ? */
1298 	if (!of_property_read_bool(np, "opp-shared"))
1299 		goto put_cpu_node;
1300 
1301 	for_each_possible_cpu(cpu) {
1302 		if (cpu == cpu_dev->id)
1303 			continue;
1304 
1305 		cpu_np = of_cpu_device_node_get(cpu);
1306 		if (!cpu_np) {
1307 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1308 				__func__, cpu);
1309 			ret = -ENOENT;
1310 			goto put_cpu_node;
1311 		}
1312 
1313 		/* Get OPP descriptor node */
1314 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1315 		of_node_put(cpu_np);
1316 		if (!tmp_np) {
1317 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1318 			ret = -ENOENT;
1319 			goto put_cpu_node;
1320 		}
1321 
1322 		/* CPUs are sharing opp node */
1323 		if (np == tmp_np)
1324 			cpumask_set_cpu(cpu, cpumask);
1325 
1326 		of_node_put(tmp_np);
1327 	}
1328 
1329 put_cpu_node:
1330 	of_node_put(np);
1331 	return ret;
1332 }
1333 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1334 
1335 /**
1336  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1337  * @np: Node that contains the "required-opps" property.
1338  * @index: Index of the phandle to parse.
1339  *
1340  * Returns the performance state of the OPP pointed out by the "required-opps"
1341  * property at @index in @np.
1342  *
1343  * Return: Zero or positive performance state on success, otherwise negative
1344  * value on errors.
1345  */
1346 int of_get_required_opp_performance_state(struct device_node *np, int index)
1347 {
1348 	struct dev_pm_opp *opp;
1349 	struct device_node *required_np;
1350 	struct opp_table *opp_table;
1351 	int pstate = -EINVAL;
1352 
1353 	required_np = of_parse_required_opp(np, index);
1354 	if (!required_np)
1355 		return -ENODEV;
1356 
1357 	opp_table = _find_table_of_opp_np(required_np);
1358 	if (IS_ERR(opp_table)) {
1359 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1360 		       __func__, np, PTR_ERR(opp_table));
1361 		goto put_required_np;
1362 	}
1363 
1364 	opp = _find_opp_of_np(opp_table, required_np);
1365 	if (opp) {
1366 		pstate = opp->pstate;
1367 		dev_pm_opp_put(opp);
1368 	}
1369 
1370 	dev_pm_opp_put_opp_table(opp_table);
1371 
1372 put_required_np:
1373 	of_node_put(required_np);
1374 
1375 	return pstate;
1376 }
1377 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1378 
1379 /**
1380  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1381  * @opp:	opp for which DT node has to be returned for
1382  *
1383  * Return: DT node corresponding to the opp, else 0 on success.
1384  *
1385  * The caller needs to put the node with of_node_put() after using it.
1386  */
1387 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1388 {
1389 	if (IS_ERR_OR_NULL(opp)) {
1390 		pr_err("%s: Invalid parameters\n", __func__);
1391 		return NULL;
1392 	}
1393 
1394 	return of_node_get(opp->np);
1395 }
1396 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1397 
1398 /*
1399  * Callback function provided to the Energy Model framework upon registration.
1400  * This computes the power estimated by @dev at @kHz if it is the frequency
1401  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1402  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1403  * frequency and @mW to the associated power. The power is estimated as
1404  * P = C * V^2 * f with C being the device's capacitance and V and f
1405  * respectively the voltage and frequency of the OPP.
1406  *
1407  * Returns -EINVAL if the power calculation failed because of missing
1408  * parameters, 0 otherwise.
1409  */
1410 static int __maybe_unused _get_power(unsigned long *mW, unsigned long *kHz,
1411 				     struct device *dev)
1412 {
1413 	struct dev_pm_opp *opp;
1414 	struct device_node *np;
1415 	unsigned long mV, Hz;
1416 	u32 cap;
1417 	u64 tmp;
1418 	int ret;
1419 
1420 	np = of_node_get(dev->of_node);
1421 	if (!np)
1422 		return -EINVAL;
1423 
1424 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1425 	of_node_put(np);
1426 	if (ret)
1427 		return -EINVAL;
1428 
1429 	Hz = *kHz * 1000;
1430 	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1431 	if (IS_ERR(opp))
1432 		return -EINVAL;
1433 
1434 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1435 	dev_pm_opp_put(opp);
1436 	if (!mV)
1437 		return -EINVAL;
1438 
1439 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1440 	do_div(tmp, 1000000000);
1441 
1442 	*mW = (unsigned long)tmp;
1443 	*kHz = Hz / 1000;
1444 
1445 	return 0;
1446 }
1447 
1448 /**
1449  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1450  * @dev		: Device for which an Energy Model has to be registered
1451  * @cpus	: CPUs for which an Energy Model has to be registered. For
1452  *		other type of devices it should be set to NULL.
1453  *
1454  * This checks whether the "dynamic-power-coefficient" devicetree property has
1455  * been specified, and tries to register an Energy Model with it if it has.
1456  * Having this property means the voltages are known for OPPs and the EM
1457  * might be calculated.
1458  */
1459 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1460 {
1461 	struct em_data_callback em_cb = EM_DATA_CB(_get_power);
1462 	struct device_node *np;
1463 	int ret, nr_opp;
1464 	u32 cap;
1465 
1466 	if (IS_ERR_OR_NULL(dev)) {
1467 		ret = -EINVAL;
1468 		goto failed;
1469 	}
1470 
1471 	nr_opp = dev_pm_opp_get_opp_count(dev);
1472 	if (nr_opp <= 0) {
1473 		ret = -EINVAL;
1474 		goto failed;
1475 	}
1476 
1477 	np = of_node_get(dev->of_node);
1478 	if (!np) {
1479 		ret = -EINVAL;
1480 		goto failed;
1481 	}
1482 
1483 	/*
1484 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1485 	 * set in devicetree. It is assumed the voltage values are known if that
1486 	 * property is set since it is useless otherwise. If voltages are not
1487 	 * known, just let the EM registration fail with an error to alert the
1488 	 * user about the inconsistent configuration.
1489 	 */
1490 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1491 	of_node_put(np);
1492 	if (ret || !cap) {
1493 		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1494 		ret = -EINVAL;
1495 		goto failed;
1496 	}
1497 
1498 	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1499 	if (ret)
1500 		goto failed;
1501 
1502 	return 0;
1503 
1504 failed:
1505 	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1506 	return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1509