xref: /linux/drivers/opp/of.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21 
22 #include "opp.h"
23 
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
26 
27 /*
28  * Returns opp descriptor node for a device node, caller must
29  * do of_node_put().
30  */
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 						     int index)
33 {
34 	/* "operating-points-v2" can be an array for power domain providers */
35 	return of_parse_phandle(np, "operating-points-v2", index);
36 }
37 
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44 
45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47 	struct opp_table *opp_table, *managed_table = NULL;
48 	struct device_node *np;
49 
50 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 	if (!np)
52 		return NULL;
53 
54 	list_for_each_entry(opp_table, &opp_tables, node) {
55 		if (opp_table->np == np) {
56 			/*
57 			 * Multiple devices can point to the same OPP table and
58 			 * so will have same node-pointer, np.
59 			 *
60 			 * But the OPPs will be considered as shared only if the
61 			 * OPP table contains a "opp-shared" property.
62 			 */
63 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 				_get_opp_table_kref(opp_table);
65 				managed_table = opp_table;
66 			}
67 
68 			break;
69 		}
70 	}
71 
72 	of_node_put(np);
73 
74 	return managed_table;
75 }
76 
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 					  struct device_node *opp_np)
80 {
81 	struct dev_pm_opp *opp;
82 
83 	mutex_lock(&opp_table->lock);
84 
85 	list_for_each_entry(opp, &opp_table->opp_list, node) {
86 		if (opp->np == opp_np) {
87 			dev_pm_opp_get(opp);
88 			mutex_unlock(&opp_table->lock);
89 			return opp;
90 		}
91 	}
92 
93 	mutex_unlock(&opp_table->lock);
94 
95 	return NULL;
96 }
97 
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99 						 int index)
100 {
101 	return of_parse_phandle(np, "required-opps", index);
102 }
103 
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106 {
107 	struct opp_table *opp_table;
108 	struct device_node *opp_table_np;
109 
110 	opp_table_np = of_get_parent(opp_np);
111 	if (!opp_table_np)
112 		goto err;
113 
114 	/* It is safe to put the node now as all we need now is its address */
115 	of_node_put(opp_table_np);
116 
117 	mutex_lock(&opp_table_lock);
118 	list_for_each_entry(opp_table, &opp_tables, node) {
119 		if (opp_table_np == opp_table->np) {
120 			_get_opp_table_kref(opp_table);
121 			mutex_unlock(&opp_table_lock);
122 			return opp_table;
123 		}
124 	}
125 	mutex_unlock(&opp_table_lock);
126 
127 err:
128 	return ERR_PTR(-ENODEV);
129 }
130 
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
133 {
134 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 	int i;
136 
137 	if (!required_opp_tables)
138 		return;
139 
140 	for (i = 0; i < opp_table->required_opp_count; i++) {
141 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 			continue;
143 
144 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
145 	}
146 
147 	kfree(required_opp_tables);
148 
149 	opp_table->required_opp_count = 0;
150 	opp_table->required_opp_tables = NULL;
151 
152 	mutex_lock(&opp_table_lock);
153 	list_del(&opp_table->lazy);
154 	mutex_unlock(&opp_table_lock);
155 }
156 
157 /*
158  * Populate all devices and opp tables which are part of "required-opps" list.
159  * Checking only the first OPP node should be enough.
160  */
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 					     struct device *dev,
163 					     struct device_node *opp_np)
164 {
165 	struct opp_table **required_opp_tables;
166 	struct device_node *required_np, *np;
167 	bool lazy = false;
168 	int count, i;
169 
170 	/* Traversing the first OPP node is all we need */
171 	np = of_get_next_available_child(opp_np, NULL);
172 	if (!np) {
173 		dev_warn(dev, "Empty OPP table\n");
174 
175 		return;
176 	}
177 
178 	count = of_count_phandle_with_args(np, "required-opps", NULL);
179 	if (count <= 0)
180 		goto put_np;
181 
182 	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
183 				      GFP_KERNEL);
184 	if (!required_opp_tables)
185 		goto put_np;
186 
187 	opp_table->required_opp_tables = required_opp_tables;
188 	opp_table->required_opp_count = count;
189 
190 	for (i = 0; i < count; i++) {
191 		required_np = of_parse_required_opp(np, i);
192 		if (!required_np)
193 			goto free_required_tables;
194 
195 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
196 		of_node_put(required_np);
197 
198 		if (IS_ERR(required_opp_tables[i]))
199 			lazy = true;
200 	}
201 
202 	/* Let's do the linking later on */
203 	if (lazy) {
204 		/*
205 		 * The OPP table is not held while allocating the table, take it
206 		 * now to avoid corruption to the lazy_opp_tables list.
207 		 */
208 		mutex_lock(&opp_table_lock);
209 		list_add(&opp_table->lazy, &lazy_opp_tables);
210 		mutex_unlock(&opp_table_lock);
211 	} else {
212 		_update_set_required_opps(opp_table);
213 	}
214 
215 	goto put_np;
216 
217 free_required_tables:
218 	_opp_table_free_required_tables(opp_table);
219 put_np:
220 	of_node_put(np);
221 }
222 
223 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
224 			int index)
225 {
226 	struct device_node *np, *opp_np;
227 	u32 val;
228 
229 	/*
230 	 * Only required for backward compatibility with v1 bindings, but isn't
231 	 * harmful for other cases. And so we do it unconditionally.
232 	 */
233 	np = of_node_get(dev->of_node);
234 	if (!np)
235 		return;
236 
237 	if (!of_property_read_u32(np, "clock-latency", &val))
238 		opp_table->clock_latency_ns_max = val;
239 	of_property_read_u32(np, "voltage-tolerance",
240 			     &opp_table->voltage_tolerance_v1);
241 
242 	if (of_property_present(np, "#power-domain-cells"))
243 		opp_table->is_genpd = true;
244 
245 	/* Get OPP table node */
246 	opp_np = _opp_of_get_opp_desc_node(np, index);
247 	of_node_put(np);
248 
249 	if (!opp_np)
250 		return;
251 
252 	if (of_property_read_bool(opp_np, "opp-shared"))
253 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
254 	else
255 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
256 
257 	opp_table->np = opp_np;
258 
259 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
260 }
261 
262 void _of_clear_opp_table(struct opp_table *opp_table)
263 {
264 	_opp_table_free_required_tables(opp_table);
265 	of_node_put(opp_table->np);
266 }
267 
268 /*
269  * Release all resources previously acquired with a call to
270  * _of_opp_alloc_required_opps().
271  */
272 static void _of_opp_free_required_opps(struct opp_table *opp_table,
273 				       struct dev_pm_opp *opp)
274 {
275 	struct dev_pm_opp **required_opps = opp->required_opps;
276 	int i;
277 
278 	if (!required_opps)
279 		return;
280 
281 	for (i = 0; i < opp_table->required_opp_count; i++) {
282 		if (!required_opps[i])
283 			continue;
284 
285 		/* Put the reference back */
286 		dev_pm_opp_put(required_opps[i]);
287 	}
288 
289 	opp->required_opps = NULL;
290 	kfree(required_opps);
291 }
292 
293 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
294 {
295 	_of_opp_free_required_opps(opp_table, opp);
296 	of_node_put(opp->np);
297 }
298 
299 static int _link_required_opps(struct dev_pm_opp *opp,
300 			       struct opp_table *required_table, int index)
301 {
302 	struct device_node *np;
303 
304 	np = of_parse_required_opp(opp->np, index);
305 	if (unlikely(!np))
306 		return -ENODEV;
307 
308 	opp->required_opps[index] = _find_opp_of_np(required_table, np);
309 	of_node_put(np);
310 
311 	if (!opp->required_opps[index]) {
312 		pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
313 		       __func__, opp->np, index);
314 		return -ENODEV;
315 	}
316 
317 	return 0;
318 }
319 
320 /* Populate all required OPPs which are part of "required-opps" list */
321 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
322 				       struct dev_pm_opp *opp)
323 {
324 	struct opp_table *required_table;
325 	int i, ret, count = opp_table->required_opp_count;
326 
327 	if (!count)
328 		return 0;
329 
330 	opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
331 	if (!opp->required_opps)
332 		return -ENOMEM;
333 
334 	for (i = 0; i < count; i++) {
335 		required_table = opp_table->required_opp_tables[i];
336 
337 		/* Required table not added yet, we will link later */
338 		if (IS_ERR_OR_NULL(required_table))
339 			continue;
340 
341 		ret = _link_required_opps(opp, required_table, i);
342 		if (ret)
343 			goto free_required_opps;
344 	}
345 
346 	return 0;
347 
348 free_required_opps:
349 	_of_opp_free_required_opps(opp_table, opp);
350 
351 	return ret;
352 }
353 
354 /* Link required OPPs for an individual OPP */
355 static int lazy_link_required_opps(struct opp_table *opp_table,
356 				   struct opp_table *new_table, int index)
357 {
358 	struct dev_pm_opp *opp;
359 	int ret;
360 
361 	list_for_each_entry(opp, &opp_table->opp_list, node) {
362 		ret = _link_required_opps(opp, new_table, index);
363 		if (ret)
364 			return ret;
365 	}
366 
367 	return 0;
368 }
369 
370 /* Link required OPPs for all OPPs of the newly added OPP table */
371 static void lazy_link_required_opp_table(struct opp_table *new_table)
372 {
373 	struct opp_table *opp_table, *temp, **required_opp_tables;
374 	struct device_node *required_np, *opp_np, *required_table_np;
375 	struct dev_pm_opp *opp;
376 	int i, ret;
377 
378 	mutex_lock(&opp_table_lock);
379 
380 	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
381 		bool lazy = false;
382 
383 		/* opp_np can't be invalid here */
384 		opp_np = of_get_next_available_child(opp_table->np, NULL);
385 
386 		for (i = 0; i < opp_table->required_opp_count; i++) {
387 			required_opp_tables = opp_table->required_opp_tables;
388 
389 			/* Required opp-table is already parsed */
390 			if (!IS_ERR(required_opp_tables[i]))
391 				continue;
392 
393 			/* required_np can't be invalid here */
394 			required_np = of_parse_required_opp(opp_np, i);
395 			required_table_np = of_get_parent(required_np);
396 
397 			of_node_put(required_table_np);
398 			of_node_put(required_np);
399 
400 			/*
401 			 * Newly added table isn't the required opp-table for
402 			 * opp_table.
403 			 */
404 			if (required_table_np != new_table->np) {
405 				lazy = true;
406 				continue;
407 			}
408 
409 			required_opp_tables[i] = new_table;
410 			_get_opp_table_kref(new_table);
411 
412 			/* Link OPPs now */
413 			ret = lazy_link_required_opps(opp_table, new_table, i);
414 			if (ret) {
415 				/* The OPPs will be marked unusable */
416 				lazy = false;
417 				break;
418 			}
419 		}
420 
421 		of_node_put(opp_np);
422 
423 		/* All required opp-tables found, remove from lazy list */
424 		if (!lazy) {
425 			_update_set_required_opps(opp_table);
426 			list_del_init(&opp_table->lazy);
427 
428 			list_for_each_entry(opp, &opp_table->opp_list, node)
429 				_required_opps_available(opp, opp_table->required_opp_count);
430 		}
431 	}
432 
433 	mutex_unlock(&opp_table_lock);
434 }
435 
436 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
437 {
438 	struct device_node *np, *opp_np;
439 	struct property *prop;
440 
441 	if (!opp_table) {
442 		np = of_node_get(dev->of_node);
443 		if (!np)
444 			return -ENODEV;
445 
446 		opp_np = _opp_of_get_opp_desc_node(np, 0);
447 		of_node_put(np);
448 	} else {
449 		opp_np = of_node_get(opp_table->np);
450 	}
451 
452 	/* Lets not fail in case we are parsing opp-v1 bindings */
453 	if (!opp_np)
454 		return 0;
455 
456 	/* Checking only first OPP is sufficient */
457 	np = of_get_next_available_child(opp_np, NULL);
458 	of_node_put(opp_np);
459 	if (!np) {
460 		dev_err(dev, "OPP table empty\n");
461 		return -EINVAL;
462 	}
463 
464 	prop = of_find_property(np, "opp-peak-kBps", NULL);
465 	of_node_put(np);
466 
467 	if (!prop || !prop->length)
468 		return 0;
469 
470 	return 1;
471 }
472 
473 int dev_pm_opp_of_find_icc_paths(struct device *dev,
474 				 struct opp_table *opp_table)
475 {
476 	struct device_node *np;
477 	int ret, i, count, num_paths;
478 	struct icc_path **paths;
479 
480 	ret = _bandwidth_supported(dev, opp_table);
481 	if (ret == -EINVAL)
482 		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
483 	else if (ret <= 0)
484 		return ret;
485 
486 	ret = 0;
487 
488 	np = of_node_get(dev->of_node);
489 	if (!np)
490 		return 0;
491 
492 	count = of_count_phandle_with_args(np, "interconnects",
493 					   "#interconnect-cells");
494 	of_node_put(np);
495 	if (count < 0)
496 		return 0;
497 
498 	/* two phandles when #interconnect-cells = <1> */
499 	if (count % 2) {
500 		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
501 		return -EINVAL;
502 	}
503 
504 	num_paths = count / 2;
505 	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
506 	if (!paths)
507 		return -ENOMEM;
508 
509 	for (i = 0; i < num_paths; i++) {
510 		paths[i] = of_icc_get_by_index(dev, i);
511 		if (IS_ERR(paths[i])) {
512 			ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
513 			goto err;
514 		}
515 	}
516 
517 	if (opp_table) {
518 		opp_table->paths = paths;
519 		opp_table->path_count = num_paths;
520 		return 0;
521 	}
522 
523 err:
524 	while (i--)
525 		icc_put(paths[i]);
526 
527 	kfree(paths);
528 
529 	return ret;
530 }
531 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
532 
533 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
534 			      struct device_node *np)
535 {
536 	unsigned int levels = opp_table->supported_hw_count;
537 	int count, versions, ret, i, j;
538 	u32 val;
539 
540 	if (!opp_table->supported_hw) {
541 		/*
542 		 * In the case that no supported_hw has been set by the
543 		 * platform but there is an opp-supported-hw value set for
544 		 * an OPP then the OPP should not be enabled as there is
545 		 * no way to see if the hardware supports it.
546 		 */
547 		if (of_property_present(np, "opp-supported-hw"))
548 			return false;
549 		else
550 			return true;
551 	}
552 
553 	count = of_property_count_u32_elems(np, "opp-supported-hw");
554 	if (count <= 0 || count % levels) {
555 		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
556 			__func__, count);
557 		return false;
558 	}
559 
560 	versions = count / levels;
561 
562 	/* All levels in at least one of the versions should match */
563 	for (i = 0; i < versions; i++) {
564 		bool supported = true;
565 
566 		for (j = 0; j < levels; j++) {
567 			ret = of_property_read_u32_index(np, "opp-supported-hw",
568 							 i * levels + j, &val);
569 			if (ret) {
570 				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
571 					 __func__, i * levels + j, ret);
572 				return false;
573 			}
574 
575 			/* Check if the level is supported */
576 			if (!(val & opp_table->supported_hw[j])) {
577 				supported = false;
578 				break;
579 			}
580 		}
581 
582 		if (supported)
583 			return true;
584 	}
585 
586 	return false;
587 }
588 
589 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
590 			      struct opp_table *opp_table,
591 			      const char *prop_type, bool *triplet)
592 {
593 	struct property *prop = NULL;
594 	char name[NAME_MAX];
595 	int count, ret;
596 	u32 *out;
597 
598 	/* Search for "opp-<prop_type>-<name>" */
599 	if (opp_table->prop_name) {
600 		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
601 			 opp_table->prop_name);
602 		prop = of_find_property(opp->np, name, NULL);
603 	}
604 
605 	if (!prop) {
606 		/* Search for "opp-<prop_type>" */
607 		snprintf(name, sizeof(name), "opp-%s", prop_type);
608 		prop = of_find_property(opp->np, name, NULL);
609 		if (!prop)
610 			return NULL;
611 	}
612 
613 	count = of_property_count_u32_elems(opp->np, name);
614 	if (count < 0) {
615 		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
616 			count);
617 		return ERR_PTR(count);
618 	}
619 
620 	/*
621 	 * Initialize regulator_count, if regulator information isn't provided
622 	 * by the platform. Now that one of the properties is available, fix the
623 	 * regulator_count to 1.
624 	 */
625 	if (unlikely(opp_table->regulator_count == -1))
626 		opp_table->regulator_count = 1;
627 
628 	if (count != opp_table->regulator_count &&
629 	    (!triplet || count != opp_table->regulator_count * 3)) {
630 		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
631 			__func__, prop_type, count, opp_table->regulator_count);
632 		return ERR_PTR(-EINVAL);
633 	}
634 
635 	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
636 	if (!out)
637 		return ERR_PTR(-EINVAL);
638 
639 	ret = of_property_read_u32_array(opp->np, name, out, count);
640 	if (ret) {
641 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
642 		kfree(out);
643 		return ERR_PTR(-EINVAL);
644 	}
645 
646 	if (triplet)
647 		*triplet = count != opp_table->regulator_count;
648 
649 	return out;
650 }
651 
652 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
653 				struct opp_table *opp_table, bool *triplet)
654 {
655 	u32 *microvolt;
656 
657 	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
658 	if (IS_ERR(microvolt))
659 		return microvolt;
660 
661 	if (!microvolt) {
662 		/*
663 		 * Missing property isn't a problem, but an invalid
664 		 * entry is. This property isn't optional if regulator
665 		 * information is provided. Check only for the first OPP, as
666 		 * regulator_count may get initialized after that to a valid
667 		 * value.
668 		 */
669 		if (list_empty(&opp_table->opp_list) &&
670 		    opp_table->regulator_count > 0) {
671 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
672 				__func__);
673 			return ERR_PTR(-EINVAL);
674 		}
675 	}
676 
677 	return microvolt;
678 }
679 
680 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
681 			      struct opp_table *opp_table)
682 {
683 	u32 *microvolt, *microamp, *microwatt;
684 	int ret = 0, i, j;
685 	bool triplet;
686 
687 	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
688 	if (IS_ERR(microvolt))
689 		return PTR_ERR(microvolt);
690 
691 	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
692 	if (IS_ERR(microamp)) {
693 		ret = PTR_ERR(microamp);
694 		goto free_microvolt;
695 	}
696 
697 	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
698 	if (IS_ERR(microwatt)) {
699 		ret = PTR_ERR(microwatt);
700 		goto free_microamp;
701 	}
702 
703 	/*
704 	 * Initialize regulator_count if it is uninitialized and no properties
705 	 * are found.
706 	 */
707 	if (unlikely(opp_table->regulator_count == -1)) {
708 		opp_table->regulator_count = 0;
709 		return 0;
710 	}
711 
712 	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
713 		if (microvolt) {
714 			opp->supplies[i].u_volt = microvolt[j++];
715 
716 			if (triplet) {
717 				opp->supplies[i].u_volt_min = microvolt[j++];
718 				opp->supplies[i].u_volt_max = microvolt[j++];
719 			} else {
720 				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
721 				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
722 			}
723 		}
724 
725 		if (microamp)
726 			opp->supplies[i].u_amp = microamp[i];
727 
728 		if (microwatt)
729 			opp->supplies[i].u_watt = microwatt[i];
730 	}
731 
732 	kfree(microwatt);
733 free_microamp:
734 	kfree(microamp);
735 free_microvolt:
736 	kfree(microvolt);
737 
738 	return ret;
739 }
740 
741 /**
742  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
743  *				  entries
744  * @dev:	device pointer used to lookup OPP table.
745  *
746  * Free OPPs created using static entries present in DT.
747  */
748 void dev_pm_opp_of_remove_table(struct device *dev)
749 {
750 	dev_pm_opp_remove_table(dev);
751 }
752 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
753 
754 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
755 		      struct device_node *np)
756 {
757 	struct property *prop;
758 	int i, count, ret;
759 	u64 *rates;
760 
761 	prop = of_find_property(np, "opp-hz", NULL);
762 	if (!prop)
763 		return -ENODEV;
764 
765 	count = prop->length / sizeof(u64);
766 	if (opp_table->clk_count != count) {
767 		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
768 		       __func__, count, opp_table->clk_count);
769 		return -EINVAL;
770 	}
771 
772 	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
773 	if (!rates)
774 		return -ENOMEM;
775 
776 	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
777 	if (ret) {
778 		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
779 	} else {
780 		/*
781 		 * Rate is defined as an unsigned long in clk API, and so
782 		 * casting explicitly to its type. Must be fixed once rate is 64
783 		 * bit guaranteed in clk API.
784 		 */
785 		for (i = 0; i < count; i++) {
786 			new_opp->rates[i] = (unsigned long)rates[i];
787 
788 			/* This will happen for frequencies > 4.29 GHz */
789 			WARN_ON(new_opp->rates[i] != rates[i]);
790 		}
791 	}
792 
793 	kfree(rates);
794 
795 	return ret;
796 }
797 
798 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
799 		    struct device_node *np, bool peak)
800 {
801 	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
802 	struct property *prop;
803 	int i, count, ret;
804 	u32 *bw;
805 
806 	prop = of_find_property(np, name, NULL);
807 	if (!prop)
808 		return -ENODEV;
809 
810 	count = prop->length / sizeof(u32);
811 	if (opp_table->path_count != count) {
812 		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
813 				__func__, name, count, opp_table->path_count);
814 		return -EINVAL;
815 	}
816 
817 	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
818 	if (!bw)
819 		return -ENOMEM;
820 
821 	ret = of_property_read_u32_array(np, name, bw, count);
822 	if (ret) {
823 		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
824 		goto out;
825 	}
826 
827 	for (i = 0; i < count; i++) {
828 		if (peak)
829 			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
830 		else
831 			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
832 	}
833 
834 out:
835 	kfree(bw);
836 	return ret;
837 }
838 
839 static int _read_opp_key(struct dev_pm_opp *new_opp,
840 			 struct opp_table *opp_table, struct device_node *np)
841 {
842 	bool found = false;
843 	int ret;
844 
845 	ret = _read_rate(new_opp, opp_table, np);
846 	if (!ret)
847 		found = true;
848 	else if (ret != -ENODEV)
849 		return ret;
850 
851 	/*
852 	 * Bandwidth consists of peak and average (optional) values:
853 	 * opp-peak-kBps = <path1_value path2_value>;
854 	 * opp-avg-kBps = <path1_value path2_value>;
855 	 */
856 	ret = _read_bw(new_opp, opp_table, np, true);
857 	if (!ret) {
858 		found = true;
859 		ret = _read_bw(new_opp, opp_table, np, false);
860 	}
861 
862 	/* The properties were found but we failed to parse them */
863 	if (ret && ret != -ENODEV)
864 		return ret;
865 
866 	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
867 		found = true;
868 
869 	if (found)
870 		return 0;
871 
872 	return ret;
873 }
874 
875 /**
876  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
877  * @opp_table:	OPP table
878  * @dev:	device for which we do this operation
879  * @np:		device node
880  *
881  * This function adds an opp definition to the opp table and returns status. The
882  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
883  * removed by dev_pm_opp_remove.
884  *
885  * Return:
886  * Valid OPP pointer:
887  *		On success
888  * NULL:
889  *		Duplicate OPPs (both freq and volt are same) and opp->available
890  *		OR if the OPP is not supported by hardware.
891  * ERR_PTR(-EEXIST):
892  *		Freq are same and volt are different OR
893  *		Duplicate OPPs (both freq and volt are same) and !opp->available
894  * ERR_PTR(-ENOMEM):
895  *		Memory allocation failure
896  * ERR_PTR(-EINVAL):
897  *		Failed parsing the OPP node
898  */
899 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
900 		struct device *dev, struct device_node *np)
901 {
902 	struct dev_pm_opp *new_opp;
903 	u32 val;
904 	int ret;
905 
906 	new_opp = _opp_allocate(opp_table);
907 	if (!new_opp)
908 		return ERR_PTR(-ENOMEM);
909 
910 	ret = _read_opp_key(new_opp, opp_table, np);
911 	if (ret < 0) {
912 		dev_err(dev, "%s: opp key field not found\n", __func__);
913 		goto free_opp;
914 	}
915 
916 	/* Check if the OPP supports hardware's hierarchy of versions or not */
917 	if (!_opp_is_supported(dev, opp_table, np)) {
918 		dev_dbg(dev, "OPP not supported by hardware: %s\n",
919 			of_node_full_name(np));
920 		goto free_opp;
921 	}
922 
923 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
924 
925 	new_opp->np = of_node_get(np);
926 	new_opp->dynamic = false;
927 	new_opp->available = true;
928 
929 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
930 	if (ret)
931 		goto free_opp;
932 
933 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
934 		new_opp->clock_latency_ns = val;
935 
936 	ret = opp_parse_supplies(new_opp, dev, opp_table);
937 	if (ret)
938 		goto free_required_opps;
939 
940 	ret = _opp_add(dev, new_opp, opp_table);
941 	if (ret) {
942 		/* Don't return error for duplicate OPPs */
943 		if (ret == -EBUSY)
944 			ret = 0;
945 		goto free_required_opps;
946 	}
947 
948 	/* OPP to select on device suspend */
949 	if (of_property_read_bool(np, "opp-suspend")) {
950 		if (opp_table->suspend_opp) {
951 			/* Pick the OPP with higher rate/bw/level as suspend OPP */
952 			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
953 				opp_table->suspend_opp->suspend = false;
954 				new_opp->suspend = true;
955 				opp_table->suspend_opp = new_opp;
956 			}
957 		} else {
958 			new_opp->suspend = true;
959 			opp_table->suspend_opp = new_opp;
960 		}
961 	}
962 
963 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
964 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
965 
966 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
967 		 __func__, new_opp->turbo, new_opp->rates[0],
968 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
969 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
970 		 new_opp->level);
971 
972 	/*
973 	 * Notify the changes in the availability of the operable
974 	 * frequency/voltage list.
975 	 */
976 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
977 	return new_opp;
978 
979 free_required_opps:
980 	_of_opp_free_required_opps(opp_table, new_opp);
981 free_opp:
982 	_opp_free(new_opp);
983 
984 	return ret ? ERR_PTR(ret) : NULL;
985 }
986 
987 /* Initializes OPP tables based on new bindings */
988 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
989 {
990 	struct device_node *np;
991 	int ret, count = 0;
992 	struct dev_pm_opp *opp;
993 
994 	/* OPP table is already initialized for the device */
995 	mutex_lock(&opp_table->lock);
996 	if (opp_table->parsed_static_opps) {
997 		opp_table->parsed_static_opps++;
998 		mutex_unlock(&opp_table->lock);
999 		return 0;
1000 	}
1001 
1002 	opp_table->parsed_static_opps = 1;
1003 	mutex_unlock(&opp_table->lock);
1004 
1005 	/* We have opp-table node now, iterate over it and add OPPs */
1006 	for_each_available_child_of_node(opp_table->np, np) {
1007 		opp = _opp_add_static_v2(opp_table, dev, np);
1008 		if (IS_ERR(opp)) {
1009 			ret = PTR_ERR(opp);
1010 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1011 				ret);
1012 			of_node_put(np);
1013 			goto remove_static_opp;
1014 		} else if (opp) {
1015 			count++;
1016 		}
1017 	}
1018 
1019 	/* There should be one or more OPPs defined */
1020 	if (!count) {
1021 		dev_err(dev, "%s: no supported OPPs", __func__);
1022 		ret = -ENOENT;
1023 		goto remove_static_opp;
1024 	}
1025 
1026 	lazy_link_required_opp_table(opp_table);
1027 
1028 	return 0;
1029 
1030 remove_static_opp:
1031 	_opp_remove_all_static(opp_table);
1032 
1033 	return ret;
1034 }
1035 
1036 /* Initializes OPP tables based on old-deprecated bindings */
1037 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1038 {
1039 	const struct property *prop;
1040 	const __be32 *val;
1041 	int nr, ret = 0;
1042 
1043 	mutex_lock(&opp_table->lock);
1044 	if (opp_table->parsed_static_opps) {
1045 		opp_table->parsed_static_opps++;
1046 		mutex_unlock(&opp_table->lock);
1047 		return 0;
1048 	}
1049 
1050 	opp_table->parsed_static_opps = 1;
1051 	mutex_unlock(&opp_table->lock);
1052 
1053 	prop = of_find_property(dev->of_node, "operating-points", NULL);
1054 	if (!prop) {
1055 		ret = -ENODEV;
1056 		goto remove_static_opp;
1057 	}
1058 	if (!prop->value) {
1059 		ret = -ENODATA;
1060 		goto remove_static_opp;
1061 	}
1062 
1063 	/*
1064 	 * Each OPP is a set of tuples consisting of frequency and
1065 	 * voltage like <freq-kHz vol-uV>.
1066 	 */
1067 	nr = prop->length / sizeof(u32);
1068 	if (nr % 2) {
1069 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1070 		ret = -EINVAL;
1071 		goto remove_static_opp;
1072 	}
1073 
1074 	val = prop->value;
1075 	while (nr) {
1076 		unsigned long freq = be32_to_cpup(val++) * 1000;
1077 		unsigned long volt = be32_to_cpup(val++);
1078 		struct dev_pm_opp_data data = {
1079 			.freq = freq,
1080 			.u_volt = volt,
1081 		};
1082 
1083 		ret = _opp_add_v1(opp_table, dev, &data, false);
1084 		if (ret) {
1085 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1086 				__func__, data.freq, ret);
1087 			goto remove_static_opp;
1088 		}
1089 		nr -= 2;
1090 	}
1091 
1092 	return 0;
1093 
1094 remove_static_opp:
1095 	_opp_remove_all_static(opp_table);
1096 
1097 	return ret;
1098 }
1099 
1100 static int _of_add_table_indexed(struct device *dev, int index)
1101 {
1102 	struct opp_table *opp_table;
1103 	int ret, count;
1104 
1105 	if (index) {
1106 		/*
1107 		 * If only one phandle is present, then the same OPP table
1108 		 * applies for all index requests.
1109 		 */
1110 		count = of_count_phandle_with_args(dev->of_node,
1111 						   "operating-points-v2", NULL);
1112 		if (count == 1)
1113 			index = 0;
1114 	}
1115 
1116 	opp_table = _add_opp_table_indexed(dev, index, true);
1117 	if (IS_ERR(opp_table))
1118 		return PTR_ERR(opp_table);
1119 
1120 	/*
1121 	 * OPPs have two version of bindings now. Also try the old (v1)
1122 	 * bindings for backward compatibility with older dtbs.
1123 	 */
1124 	if (opp_table->np)
1125 		ret = _of_add_opp_table_v2(dev, opp_table);
1126 	else
1127 		ret = _of_add_opp_table_v1(dev, opp_table);
1128 
1129 	if (ret)
1130 		dev_pm_opp_put_opp_table(opp_table);
1131 
1132 	return ret;
1133 }
1134 
1135 static void devm_pm_opp_of_table_release(void *data)
1136 {
1137 	dev_pm_opp_of_remove_table(data);
1138 }
1139 
1140 static int _devm_of_add_table_indexed(struct device *dev, int index)
1141 {
1142 	int ret;
1143 
1144 	ret = _of_add_table_indexed(dev, index);
1145 	if (ret)
1146 		return ret;
1147 
1148 	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1149 }
1150 
1151 /**
1152  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1153  * @dev:	device pointer used to lookup OPP table.
1154  *
1155  * Register the initial OPP table with the OPP library for given device.
1156  *
1157  * The opp_table structure will be freed after the device is destroyed.
1158  *
1159  * Return:
1160  * 0		On success OR
1161  *		Duplicate OPPs (both freq and volt are same) and opp->available
1162  * -EEXIST	Freq are same and volt are different OR
1163  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1164  * -ENOMEM	Memory allocation failure
1165  * -ENODEV	when 'operating-points' property is not found or is invalid data
1166  *		in device node.
1167  * -ENODATA	when empty 'operating-points' property is found
1168  * -EINVAL	when invalid entries are found in opp-v2 table
1169  */
1170 int devm_pm_opp_of_add_table(struct device *dev)
1171 {
1172 	return _devm_of_add_table_indexed(dev, 0);
1173 }
1174 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1175 
1176 /**
1177  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1178  * @dev:	device pointer used to lookup OPP table.
1179  *
1180  * Register the initial OPP table with the OPP library for given device.
1181  *
1182  * Return:
1183  * 0		On success OR
1184  *		Duplicate OPPs (both freq and volt are same) and opp->available
1185  * -EEXIST	Freq are same and volt are different OR
1186  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1187  * -ENOMEM	Memory allocation failure
1188  * -ENODEV	when 'operating-points' property is not found or is invalid data
1189  *		in device node.
1190  * -ENODATA	when empty 'operating-points' property is found
1191  * -EINVAL	when invalid entries are found in opp-v2 table
1192  */
1193 int dev_pm_opp_of_add_table(struct device *dev)
1194 {
1195 	return _of_add_table_indexed(dev, 0);
1196 }
1197 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1198 
1199 /**
1200  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1201  * @dev:	device pointer used to lookup OPP table.
1202  * @index:	Index number.
1203  *
1204  * Register the initial OPP table with the OPP library for given device only
1205  * using the "operating-points-v2" property.
1206  *
1207  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1208  */
1209 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1210 {
1211 	return _of_add_table_indexed(dev, index);
1212 }
1213 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1214 
1215 /**
1216  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1217  * @dev:	device pointer used to lookup OPP table.
1218  * @index:	Index number.
1219  *
1220  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1221  */
1222 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1223 {
1224 	return _devm_of_add_table_indexed(dev, index);
1225 }
1226 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1227 
1228 /* CPU device specific helpers */
1229 
1230 /**
1231  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1232  * @cpumask:	cpumask for which OPP table needs to be removed
1233  *
1234  * This removes the OPP tables for CPUs present in the @cpumask.
1235  * This should be used only to remove static entries created from DT.
1236  */
1237 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1238 {
1239 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1240 }
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1242 
1243 /**
1244  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1245  * @cpumask:	cpumask for which OPP table needs to be added.
1246  *
1247  * This adds the OPP tables for CPUs present in the @cpumask.
1248  */
1249 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1250 {
1251 	struct device *cpu_dev;
1252 	int cpu, ret;
1253 
1254 	if (WARN_ON(cpumask_empty(cpumask)))
1255 		return -ENODEV;
1256 
1257 	for_each_cpu(cpu, cpumask) {
1258 		cpu_dev = get_cpu_device(cpu);
1259 		if (!cpu_dev) {
1260 			pr_err("%s: failed to get cpu%d device\n", __func__,
1261 			       cpu);
1262 			ret = -ENODEV;
1263 			goto remove_table;
1264 		}
1265 
1266 		ret = dev_pm_opp_of_add_table(cpu_dev);
1267 		if (ret) {
1268 			/*
1269 			 * OPP may get registered dynamically, don't print error
1270 			 * message here.
1271 			 */
1272 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1273 				 __func__, cpu, ret);
1274 
1275 			goto remove_table;
1276 		}
1277 	}
1278 
1279 	return 0;
1280 
1281 remove_table:
1282 	/* Free all other OPPs */
1283 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1284 
1285 	return ret;
1286 }
1287 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1288 
1289 /*
1290  * Works only for OPP v2 bindings.
1291  *
1292  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1293  */
1294 /**
1295  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1296  *				      @cpu_dev using operating-points-v2
1297  *				      bindings.
1298  *
1299  * @cpu_dev:	CPU device for which we do this operation
1300  * @cpumask:	cpumask to update with information of sharing CPUs
1301  *
1302  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1303  *
1304  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1305  */
1306 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1307 				   struct cpumask *cpumask)
1308 {
1309 	struct device_node *np, *tmp_np, *cpu_np;
1310 	int cpu, ret = 0;
1311 
1312 	/* Get OPP descriptor node */
1313 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1314 	if (!np) {
1315 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1316 		return -ENOENT;
1317 	}
1318 
1319 	cpumask_set_cpu(cpu_dev->id, cpumask);
1320 
1321 	/* OPPs are shared ? */
1322 	if (!of_property_read_bool(np, "opp-shared"))
1323 		goto put_cpu_node;
1324 
1325 	for_each_possible_cpu(cpu) {
1326 		if (cpu == cpu_dev->id)
1327 			continue;
1328 
1329 		cpu_np = of_cpu_device_node_get(cpu);
1330 		if (!cpu_np) {
1331 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1332 				__func__, cpu);
1333 			ret = -ENOENT;
1334 			goto put_cpu_node;
1335 		}
1336 
1337 		/* Get OPP descriptor node */
1338 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1339 		of_node_put(cpu_np);
1340 		if (!tmp_np) {
1341 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1342 			ret = -ENOENT;
1343 			goto put_cpu_node;
1344 		}
1345 
1346 		/* CPUs are sharing opp node */
1347 		if (np == tmp_np)
1348 			cpumask_set_cpu(cpu, cpumask);
1349 
1350 		of_node_put(tmp_np);
1351 	}
1352 
1353 put_cpu_node:
1354 	of_node_put(np);
1355 	return ret;
1356 }
1357 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1358 
1359 /**
1360  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1361  * @np: Node that contains the "required-opps" property.
1362  * @index: Index of the phandle to parse.
1363  *
1364  * Returns the performance state of the OPP pointed out by the "required-opps"
1365  * property at @index in @np.
1366  *
1367  * Return: Zero or positive performance state on success, otherwise negative
1368  * value on errors.
1369  */
1370 int of_get_required_opp_performance_state(struct device_node *np, int index)
1371 {
1372 	struct dev_pm_opp *opp;
1373 	struct device_node *required_np;
1374 	struct opp_table *opp_table;
1375 	int pstate = -EINVAL;
1376 
1377 	required_np = of_parse_required_opp(np, index);
1378 	if (!required_np)
1379 		return -ENODEV;
1380 
1381 	opp_table = _find_table_of_opp_np(required_np);
1382 	if (IS_ERR(opp_table)) {
1383 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1384 		       __func__, np, PTR_ERR(opp_table));
1385 		goto put_required_np;
1386 	}
1387 
1388 	/* The OPP tables must belong to a genpd */
1389 	if (unlikely(!opp_table->is_genpd)) {
1390 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1391 		goto put_required_np;
1392 	}
1393 
1394 	opp = _find_opp_of_np(opp_table, required_np);
1395 	if (opp) {
1396 		pstate = opp->level;
1397 		dev_pm_opp_put(opp);
1398 	}
1399 
1400 	dev_pm_opp_put_opp_table(opp_table);
1401 
1402 put_required_np:
1403 	of_node_put(required_np);
1404 
1405 	return pstate;
1406 }
1407 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1408 
1409 /**
1410  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1411  * @opp:	opp for which DT node has to be returned for
1412  *
1413  * Return: DT node corresponding to the opp, else 0 on success.
1414  *
1415  * The caller needs to put the node with of_node_put() after using it.
1416  */
1417 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1418 {
1419 	if (IS_ERR_OR_NULL(opp)) {
1420 		pr_err("%s: Invalid parameters\n", __func__);
1421 		return NULL;
1422 	}
1423 
1424 	return of_node_get(opp->np);
1425 }
1426 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1427 
1428 /*
1429  * Callback function provided to the Energy Model framework upon registration.
1430  * It provides the power used by @dev at @kHz if it is the frequency of an
1431  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1432  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1433  * frequency and @uW to the associated power.
1434  *
1435  * Returns 0 on success or a proper -EINVAL value in case of error.
1436  */
1437 static int __maybe_unused
1438 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1439 {
1440 	struct dev_pm_opp *opp;
1441 	unsigned long opp_freq, opp_power;
1442 
1443 	/* Find the right frequency and related OPP */
1444 	opp_freq = *kHz * 1000;
1445 	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1446 	if (IS_ERR(opp))
1447 		return -EINVAL;
1448 
1449 	opp_power = dev_pm_opp_get_power(opp);
1450 	dev_pm_opp_put(opp);
1451 	if (!opp_power)
1452 		return -EINVAL;
1453 
1454 	*kHz = opp_freq / 1000;
1455 	*uW = opp_power;
1456 
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Callback function provided to the Energy Model framework upon registration.
1462  * This computes the power estimated by @dev at @kHz if it is the frequency
1463  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1464  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1465  * frequency and @uW to the associated power. The power is estimated as
1466  * P = C * V^2 * f with C being the device's capacitance and V and f
1467  * respectively the voltage and frequency of the OPP.
1468  *
1469  * Returns -EINVAL if the power calculation failed because of missing
1470  * parameters, 0 otherwise.
1471  */
1472 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1473 				     unsigned long *kHz)
1474 {
1475 	struct dev_pm_opp *opp;
1476 	struct device_node *np;
1477 	unsigned long mV, Hz;
1478 	u32 cap;
1479 	u64 tmp;
1480 	int ret;
1481 
1482 	np = of_node_get(dev->of_node);
1483 	if (!np)
1484 		return -EINVAL;
1485 
1486 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1487 	of_node_put(np);
1488 	if (ret)
1489 		return -EINVAL;
1490 
1491 	Hz = *kHz * 1000;
1492 	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1493 	if (IS_ERR(opp))
1494 		return -EINVAL;
1495 
1496 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1497 	dev_pm_opp_put(opp);
1498 	if (!mV)
1499 		return -EINVAL;
1500 
1501 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1502 	/* Provide power in micro-Watts */
1503 	do_div(tmp, 1000000);
1504 
1505 	*uW = (unsigned long)tmp;
1506 	*kHz = Hz / 1000;
1507 
1508 	return 0;
1509 }
1510 
1511 static bool _of_has_opp_microwatt_property(struct device *dev)
1512 {
1513 	unsigned long power, freq = 0;
1514 	struct dev_pm_opp *opp;
1515 
1516 	/* Check if at least one OPP has needed property */
1517 	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1518 	if (IS_ERR(opp))
1519 		return false;
1520 
1521 	power = dev_pm_opp_get_power(opp);
1522 	dev_pm_opp_put(opp);
1523 	if (!power)
1524 		return false;
1525 
1526 	return true;
1527 }
1528 
1529 /**
1530  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1531  * @dev		: Device for which an Energy Model has to be registered
1532  * @cpus	: CPUs for which an Energy Model has to be registered. For
1533  *		other type of devices it should be set to NULL.
1534  *
1535  * This checks whether the "dynamic-power-coefficient" devicetree property has
1536  * been specified, and tries to register an Energy Model with it if it has.
1537  * Having this property means the voltages are known for OPPs and the EM
1538  * might be calculated.
1539  */
1540 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1541 {
1542 	struct em_data_callback em_cb;
1543 	struct device_node *np;
1544 	int ret, nr_opp;
1545 	u32 cap;
1546 
1547 	if (IS_ERR_OR_NULL(dev)) {
1548 		ret = -EINVAL;
1549 		goto failed;
1550 	}
1551 
1552 	nr_opp = dev_pm_opp_get_opp_count(dev);
1553 	if (nr_opp <= 0) {
1554 		ret = -EINVAL;
1555 		goto failed;
1556 	}
1557 
1558 	/* First, try to find more precised Energy Model in DT */
1559 	if (_of_has_opp_microwatt_property(dev)) {
1560 		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1561 		goto register_em;
1562 	}
1563 
1564 	np = of_node_get(dev->of_node);
1565 	if (!np) {
1566 		ret = -EINVAL;
1567 		goto failed;
1568 	}
1569 
1570 	/*
1571 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1572 	 * set in devicetree. It is assumed the voltage values are known if that
1573 	 * property is set since it is useless otherwise. If voltages are not
1574 	 * known, just let the EM registration fail with an error to alert the
1575 	 * user about the inconsistent configuration.
1576 	 */
1577 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1578 	of_node_put(np);
1579 	if (ret || !cap) {
1580 		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1581 		ret = -EINVAL;
1582 		goto failed;
1583 	}
1584 
1585 	EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1586 
1587 register_em:
1588 	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1589 	if (ret)
1590 		goto failed;
1591 
1592 	return 0;
1593 
1594 failed:
1595 	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1599