1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */ 38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT 0 39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT 4 40 #define ATH9K_PWRTBL_11NA_HT_SHIFT 8 41 #define ATH9K_PWRTBL_11NG_HT_SHIFT 12 42 43 44 static u16 bits_per_symbol[][2] = { 45 /* 20MHz 40MHz */ 46 { 26, 54 }, /* 0: BPSK */ 47 { 52, 108 }, /* 1: QPSK 1/2 */ 48 { 78, 162 }, /* 2: QPSK 3/4 */ 49 { 104, 216 }, /* 3: 16-QAM 1/2 */ 50 { 156, 324 }, /* 4: 16-QAM 3/4 */ 51 { 208, 432 }, /* 5: 64-QAM 2/3 */ 52 { 234, 486 }, /* 6: 64-QAM 3/4 */ 53 { 260, 540 }, /* 7: 64-QAM 5/6 */ 54 }; 55 56 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 57 struct ath_atx_tid *tid, struct sk_buff *skb); 58 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 59 int tx_flags, struct ath_txq *txq, 60 struct ieee80211_sta *sta); 61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_txq *txq, struct list_head *bf_q, 63 struct ieee80211_sta *sta, 64 struct ath_tx_status *ts, int txok); 65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 66 struct list_head *head, bool internal); 67 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 68 struct ath_tx_status *ts, int nframes, int nbad, 69 int txok); 70 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 71 struct ath_buf *bf); 72 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 73 struct ath_txq *txq, 74 struct ath_atx_tid *tid, 75 struct sk_buff *skb); 76 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 77 struct ath_tx_control *txctl); 78 79 enum { 80 MCS_HT20, 81 MCS_HT20_SGI, 82 MCS_HT40, 83 MCS_HT40_SGI, 84 }; 85 86 /*********************/ 87 /* Aggregation logic */ 88 /*********************/ 89 90 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) 91 { 92 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 93 struct ieee80211_sta *sta = info->status.status_driver_data[0]; 94 95 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS | 96 IEEE80211_TX_STATUS_EOSP)) { 97 ieee80211_tx_status_skb(hw, skb); 98 return; 99 } 100 101 if (sta) 102 ieee80211_tx_status_noskb(hw, sta, info); 103 104 dev_kfree_skb(skb); 105 } 106 107 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 108 __releases(&txq->axq_lock) 109 { 110 struct ieee80211_hw *hw = sc->hw; 111 struct sk_buff_head q; 112 struct sk_buff *skb; 113 114 __skb_queue_head_init(&q); 115 skb_queue_splice_init(&txq->complete_q, &q); 116 spin_unlock_bh(&txq->axq_lock); 117 118 while ((skb = __skb_dequeue(&q))) 119 ath_tx_status(hw, skb); 120 } 121 122 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 123 { 124 struct ieee80211_txq *queue = 125 container_of((void *)tid, struct ieee80211_txq, drv_priv); 126 127 ieee80211_schedule_txq(sc->hw, queue); 128 } 129 130 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue) 131 { 132 struct ath_softc *sc = hw->priv; 133 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 134 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv; 135 struct ath_txq *txq = tid->txq; 136 137 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n", 138 queue->sta ? queue->sta->addr : queue->vif->addr, 139 tid->tidno); 140 141 ath_txq_lock(sc, txq); 142 ath_txq_schedule(sc, txq); 143 ath_txq_unlock(sc, txq); 144 } 145 146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 147 { 148 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 149 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 150 sizeof(tx_info->status.status_driver_data)); 151 return (struct ath_frame_info *) &tx_info->status.status_driver_data[0]; 152 } 153 154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 155 { 156 if (!tid->an->sta) 157 return; 158 159 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 160 seqno << IEEE80211_SEQ_SEQ_SHIFT); 161 } 162 163 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf, 164 struct ieee80211_tx_info *tx_info) 165 { 166 struct ieee80211_sta_rates *ratetbl; 167 u8 i; 168 169 if (!sta) 170 return false; 171 172 ratetbl = rcu_dereference(sta->rates); 173 if (!ratetbl) 174 return false; 175 176 if (tx_info->control.rates[0].idx < 0 || 177 tx_info->control.rates[0].count == 0) 178 { 179 i = 0; 180 } else { 181 bf->rates[0] = tx_info->control.rates[0]; 182 i = 1; 183 } 184 185 for ( ; i < IEEE80211_TX_MAX_RATES; i++) { 186 bf->rates[i].idx = ratetbl->rate[i].idx; 187 bf->rates[i].flags = ratetbl->rate[i].flags; 188 if (tx_info->control.use_rts) 189 bf->rates[i].count = ratetbl->rate[i].count_rts; 190 else if (tx_info->control.use_cts_prot) 191 bf->rates[i].count = ratetbl->rate[i].count_cts; 192 else 193 bf->rates[i].count = ratetbl->rate[i].count; 194 } 195 196 return true; 197 } 198 199 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 200 struct ath_buf *bf) 201 { 202 struct ieee80211_tx_info *tx_info; 203 204 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 205 206 if (!ath_merge_ratetbl(sta, bf, tx_info)) 207 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 208 ARRAY_SIZE(bf->rates)); 209 } 210 211 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 212 struct sk_buff *skb) 213 { 214 struct ath_frame_info *fi = get_frame_info(skb); 215 int q = fi->txq; 216 217 if (q < 0) 218 return; 219 220 txq = sc->tx.txq_map[q]; 221 if (WARN_ON(--txq->pending_frames < 0)) 222 txq->pending_frames = 0; 223 224 } 225 226 static struct ath_atx_tid * 227 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 228 { 229 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 230 return ATH_AN_2_TID(an, tidno); 231 } 232 233 static int 234 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf) 235 { 236 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv); 237 struct ath_softc *sc = tid->an->sc; 238 struct ieee80211_hw *hw = sc->hw; 239 struct ath_tx_control txctl = { 240 .txq = tid->txq, 241 .sta = tid->an->sta, 242 }; 243 struct sk_buff *skb; 244 struct ath_frame_info *fi; 245 int q, ret; 246 247 skb = ieee80211_tx_dequeue(hw, txq); 248 if (!skb) 249 return -ENOENT; 250 251 ret = ath_tx_prepare(hw, skb, &txctl); 252 if (ret) { 253 ieee80211_free_txskb(hw, skb); 254 return ret; 255 } 256 257 q = skb_get_queue_mapping(skb); 258 if (tid->txq == sc->tx.txq_map[q]) { 259 fi = get_frame_info(skb); 260 fi->txq = q; 261 ++tid->txq->pending_frames; 262 } 263 264 *skbuf = skb; 265 return 0; 266 } 267 268 static int ath_tid_dequeue(struct ath_atx_tid *tid, 269 struct sk_buff **skb) 270 { 271 int ret = 0; 272 *skb = __skb_dequeue(&tid->retry_q); 273 if (!*skb) 274 ret = ath_tid_pull(tid, skb); 275 276 return ret; 277 } 278 279 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 280 { 281 struct ath_txq *txq = tid->txq; 282 struct sk_buff *skb; 283 struct ath_buf *bf; 284 struct list_head bf_head; 285 struct ath_tx_status ts; 286 struct ath_frame_info *fi; 287 bool sendbar = false; 288 289 INIT_LIST_HEAD(&bf_head); 290 291 memset(&ts, 0, sizeof(ts)); 292 293 while ((skb = __skb_dequeue(&tid->retry_q))) { 294 fi = get_frame_info(skb); 295 bf = fi->bf; 296 if (!bf) { 297 ath_txq_skb_done(sc, txq, skb); 298 ieee80211_free_txskb(sc->hw, skb); 299 continue; 300 } 301 302 if (fi->baw_tracked) { 303 ath_tx_update_baw(sc, tid, bf); 304 sendbar = true; 305 } 306 307 list_add_tail(&bf->list, &bf_head); 308 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 309 } 310 311 if (sendbar) { 312 ath_txq_unlock(sc, txq); 313 ath_send_bar(tid, tid->seq_start); 314 ath_txq_lock(sc, txq); 315 } 316 } 317 318 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 319 struct ath_buf *bf) 320 { 321 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 322 u16 seqno = bf->bf_state.seqno; 323 int index, cindex; 324 325 if (!fi->baw_tracked) 326 return; 327 328 index = ATH_BA_INDEX(tid->seq_start, seqno); 329 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 330 331 __clear_bit(cindex, tid->tx_buf); 332 333 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 334 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 335 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 336 if (tid->bar_index >= 0) 337 tid->bar_index--; 338 } 339 } 340 341 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 342 struct ath_buf *bf) 343 { 344 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 345 u16 seqno = bf->bf_state.seqno; 346 int index, cindex; 347 348 if (fi->baw_tracked) 349 return; 350 351 index = ATH_BA_INDEX(tid->seq_start, seqno); 352 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 353 __set_bit(cindex, tid->tx_buf); 354 fi->baw_tracked = 1; 355 356 if (index >= ((tid->baw_tail - tid->baw_head) & 357 (ATH_TID_MAX_BUFS - 1))) { 358 tid->baw_tail = cindex; 359 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 360 } 361 } 362 363 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 364 struct ath_atx_tid *tid) 365 366 { 367 struct sk_buff *skb; 368 struct ath_buf *bf; 369 struct list_head bf_head; 370 struct ath_tx_status ts; 371 struct ath_frame_info *fi; 372 373 memset(&ts, 0, sizeof(ts)); 374 INIT_LIST_HEAD(&bf_head); 375 376 while (ath_tid_dequeue(tid, &skb) == 0) { 377 fi = get_frame_info(skb); 378 bf = fi->bf; 379 380 if (!bf) { 381 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL); 382 continue; 383 } 384 385 list_add_tail(&bf->list, &bf_head); 386 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 387 } 388 } 389 390 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 391 struct sk_buff *skb, int count) 392 { 393 struct ath_frame_info *fi = get_frame_info(skb); 394 struct ath_buf *bf = fi->bf; 395 struct ieee80211_hdr *hdr; 396 int prev = fi->retries; 397 398 TX_STAT_INC(sc, txq->axq_qnum, a_retries); 399 fi->retries += count; 400 401 if (prev > 0) 402 return; 403 404 hdr = (struct ieee80211_hdr *)skb->data; 405 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 406 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 407 sizeof(*hdr), DMA_TO_DEVICE); 408 } 409 410 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 411 { 412 struct ath_buf *bf = NULL; 413 414 spin_lock_bh(&sc->tx.txbuflock); 415 416 if (unlikely(list_empty(&sc->tx.txbuf))) { 417 spin_unlock_bh(&sc->tx.txbuflock); 418 return NULL; 419 } 420 421 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 422 list_del(&bf->list); 423 424 spin_unlock_bh(&sc->tx.txbuflock); 425 426 return bf; 427 } 428 429 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 430 { 431 spin_lock_bh(&sc->tx.txbuflock); 432 list_add_tail(&bf->list, &sc->tx.txbuf); 433 spin_unlock_bh(&sc->tx.txbuflock); 434 } 435 436 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 437 { 438 struct ath_buf *tbf; 439 440 tbf = ath_tx_get_buffer(sc); 441 if (WARN_ON(!tbf)) 442 return NULL; 443 444 ATH_TXBUF_RESET(tbf); 445 446 tbf->bf_mpdu = bf->bf_mpdu; 447 tbf->bf_buf_addr = bf->bf_buf_addr; 448 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 449 tbf->bf_state = bf->bf_state; 450 tbf->bf_state.stale = false; 451 452 return tbf; 453 } 454 455 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 456 struct ath_tx_status *ts, int txok, 457 int *nframes, int *nbad) 458 { 459 u16 seq_st = 0; 460 u32 ba[WME_BA_BMP_SIZE >> 5]; 461 int ba_index; 462 int isaggr = 0; 463 464 *nbad = 0; 465 *nframes = 0; 466 467 isaggr = bf_isaggr(bf); 468 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 469 470 if (isaggr) { 471 seq_st = ts->ts_seqnum; 472 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3); 473 } 474 475 while (bf) { 476 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 477 478 (*nframes)++; 479 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 480 (*nbad)++; 481 482 bf = bf->bf_next; 483 } 484 } 485 486 487 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 488 struct ath_buf *bf, struct list_head *bf_q, 489 struct ieee80211_sta *sta, 490 struct ath_atx_tid *tid, 491 struct ath_tx_status *ts, int txok) 492 { 493 struct ath_node *an = NULL; 494 struct sk_buff *skb; 495 struct ieee80211_tx_info *tx_info; 496 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 497 struct list_head bf_head; 498 struct sk_buff_head bf_pending; 499 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 500 u32 ba[WME_BA_BMP_SIZE >> 5]; 501 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 502 bool rc_update = true, isba; 503 struct ieee80211_tx_rate rates[4]; 504 struct ath_frame_info *fi; 505 int nframes; 506 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 507 int i, retries; 508 int bar_index = -1; 509 510 skb = bf->bf_mpdu; 511 tx_info = IEEE80211_SKB_CB(skb); 512 513 memcpy(rates, bf->rates, sizeof(rates)); 514 515 retries = ts->ts_longretry + 1; 516 for (i = 0; i < ts->ts_rateindex; i++) 517 retries += rates[i].count; 518 519 if (!sta) { 520 INIT_LIST_HEAD(&bf_head); 521 while (bf) { 522 bf_next = bf->bf_next; 523 524 if (!bf->bf_state.stale || bf_next != NULL) 525 list_move_tail(&bf->list, &bf_head); 526 527 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); 528 529 bf = bf_next; 530 } 531 return; 532 } 533 534 an = (struct ath_node *)sta->drv_priv; 535 seq_first = tid->seq_start; 536 isba = ts->ts_flags & ATH9K_TX_BA; 537 538 /* 539 * The hardware occasionally sends a tx status for the wrong TID. 540 * In this case, the BA status cannot be considered valid and all 541 * subframes need to be retransmitted 542 * 543 * Only BlockAcks have a TID and therefore normal Acks cannot be 544 * checked 545 */ 546 if (isba && tid->tidno != ts->tid) 547 txok = false; 548 549 isaggr = bf_isaggr(bf); 550 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 551 552 if (isaggr && txok) { 553 if (ts->ts_flags & ATH9K_TX_BA) { 554 seq_st = ts->ts_seqnum; 555 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3); 556 } else { 557 /* 558 * AR5416 can become deaf/mute when BA 559 * issue happens. Chip needs to be reset. 560 * But AP code may have sychronization issues 561 * when perform internal reset in this routine. 562 * Only enable reset in STA mode for now. 563 */ 564 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 565 needreset = 1; 566 } 567 } 568 569 __skb_queue_head_init(&bf_pending); 570 571 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 572 while (bf) { 573 u16 seqno = bf->bf_state.seqno; 574 575 txfail = txpending = sendbar = 0; 576 bf_next = bf->bf_next; 577 578 skb = bf->bf_mpdu; 579 tx_info = IEEE80211_SKB_CB(skb); 580 fi = get_frame_info(skb); 581 582 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 583 !tid->active) { 584 /* 585 * Outside of the current BlockAck window, 586 * maybe part of a previous session 587 */ 588 txfail = 1; 589 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 590 /* transmit completion, subframe is 591 * acked by block ack */ 592 acked_cnt++; 593 } else if (!isaggr && txok) { 594 /* transmit completion */ 595 acked_cnt++; 596 } else if (flush) { 597 txpending = 1; 598 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 599 if (txok || !an->sleeping) 600 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 601 retries); 602 603 txpending = 1; 604 } else { 605 txfail = 1; 606 txfail_cnt++; 607 bar_index = max_t(int, bar_index, 608 ATH_BA_INDEX(seq_first, seqno)); 609 } 610 611 /* 612 * Make sure the last desc is reclaimed if it 613 * not a holding desc. 614 */ 615 INIT_LIST_HEAD(&bf_head); 616 if (bf_next != NULL || !bf_last->bf_state.stale) 617 list_move_tail(&bf->list, &bf_head); 618 619 if (!txpending) { 620 /* 621 * complete the acked-ones/xretried ones; update 622 * block-ack window 623 */ 624 ath_tx_update_baw(sc, tid, bf); 625 626 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 627 memcpy(tx_info->control.rates, rates, sizeof(rates)); 628 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 629 rc_update = false; 630 if (bf == bf->bf_lastbf) 631 ath_dynack_sample_tx_ts(sc->sc_ah, 632 bf->bf_mpdu, 633 ts, sta); 634 } 635 636 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts, 637 !txfail); 638 } else { 639 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 640 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 641 ieee80211_sta_eosp(sta); 642 } 643 /* retry the un-acked ones */ 644 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 645 struct ath_buf *tbf; 646 647 tbf = ath_clone_txbuf(sc, bf_last); 648 /* 649 * Update tx baw and complete the 650 * frame with failed status if we 651 * run out of tx buf. 652 */ 653 if (!tbf) { 654 ath_tx_update_baw(sc, tid, bf); 655 656 ath_tx_complete_buf(sc, bf, txq, 657 &bf_head, NULL, ts, 658 0); 659 bar_index = max_t(int, bar_index, 660 ATH_BA_INDEX(seq_first, seqno)); 661 break; 662 } 663 664 fi->bf = tbf; 665 } 666 667 /* 668 * Put this buffer to the temporary pending 669 * queue to retain ordering 670 */ 671 __skb_queue_tail(&bf_pending, skb); 672 } 673 674 bf = bf_next; 675 } 676 677 /* prepend un-acked frames to the beginning of the pending frame queue */ 678 if (!skb_queue_empty(&bf_pending)) { 679 if (an->sleeping) 680 ieee80211_sta_set_buffered(sta, tid->tidno, true); 681 682 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 683 if (!an->sleeping) { 684 ath_tx_queue_tid(sc, tid); 685 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 686 tid->clear_ps_filter = true; 687 } 688 } 689 690 if (bar_index >= 0) { 691 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 692 693 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 694 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 695 696 ath_txq_unlock(sc, txq); 697 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 698 ath_txq_lock(sc, txq); 699 } 700 701 if (needreset) 702 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 703 } 704 705 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 706 { 707 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 708 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 709 } 710 711 static void ath_tx_count_airtime(struct ath_softc *sc, 712 struct ieee80211_sta *sta, 713 struct ath_buf *bf, 714 struct ath_tx_status *ts, 715 u8 tid) 716 { 717 u32 airtime = 0; 718 int i; 719 720 airtime += ts->duration * (ts->ts_longretry + 1); 721 for(i = 0; i < ts->ts_rateindex; i++) { 722 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i); 723 airtime += rate_dur * bf->rates[i].count; 724 } 725 726 ieee80211_sta_register_airtime(sta, tid, airtime, 0); 727 } 728 729 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 730 struct ath_tx_status *ts, struct ath_buf *bf, 731 struct list_head *bf_head) 732 { 733 struct ieee80211_hw *hw = sc->hw; 734 struct ieee80211_tx_info *info; 735 struct ieee80211_sta *sta; 736 struct ieee80211_hdr *hdr; 737 struct ath_atx_tid *tid = NULL; 738 bool txok, flush; 739 740 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 741 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 742 txq->axq_tx_inprogress = false; 743 744 txq->axq_depth--; 745 if (bf_is_ampdu_not_probing(bf)) 746 txq->axq_ampdu_depth--; 747 748 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 749 ts->ts_rateindex); 750 751 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 752 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 753 if (sta) { 754 struct ath_node *an = (struct ath_node *)sta->drv_priv; 755 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu); 756 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno); 757 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 758 tid->clear_ps_filter = true; 759 } 760 761 if (!bf_isampdu(bf)) { 762 if (!flush) { 763 info = IEEE80211_SKB_CB(bf->bf_mpdu); 764 memcpy(info->control.rates, bf->rates, 765 sizeof(info->control.rates)); 766 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 767 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts, 768 sta); 769 } 770 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok); 771 } else 772 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok); 773 774 if (!flush) 775 ath_txq_schedule(sc, txq); 776 } 777 778 static bool ath_lookup_legacy(struct ath_buf *bf) 779 { 780 struct sk_buff *skb; 781 struct ieee80211_tx_info *tx_info; 782 struct ieee80211_tx_rate *rates; 783 int i; 784 785 skb = bf->bf_mpdu; 786 tx_info = IEEE80211_SKB_CB(skb); 787 rates = tx_info->control.rates; 788 789 for (i = 0; i < 4; i++) { 790 if (!rates[i].count || rates[i].idx < 0) 791 break; 792 793 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 794 return true; 795 } 796 797 return false; 798 } 799 800 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 801 struct ath_atx_tid *tid) 802 { 803 struct sk_buff *skb; 804 struct ieee80211_tx_info *tx_info; 805 struct ieee80211_tx_rate *rates; 806 u32 max_4ms_framelen, frmlen; 807 u16 aggr_limit, bt_aggr_limit, legacy = 0; 808 int q = tid->txq->mac80211_qnum; 809 int i; 810 811 skb = bf->bf_mpdu; 812 tx_info = IEEE80211_SKB_CB(skb); 813 rates = bf->rates; 814 815 /* 816 * Find the lowest frame length among the rate series that will have a 817 * 4ms (or TXOP limited) transmit duration. 818 */ 819 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 820 821 for (i = 0; i < 4; i++) { 822 int modeidx; 823 824 if (!rates[i].count) 825 continue; 826 827 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 828 legacy = 1; 829 break; 830 } 831 832 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 833 modeidx = MCS_HT40; 834 else 835 modeidx = MCS_HT20; 836 837 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 838 modeidx++; 839 840 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 841 max_4ms_framelen = min(max_4ms_framelen, frmlen); 842 } 843 844 /* 845 * limit aggregate size by the minimum rate if rate selected is 846 * not a probe rate, if rate selected is a probe rate then 847 * avoid aggregation of this packet. 848 */ 849 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 850 return 0; 851 852 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 853 854 /* 855 * Override the default aggregation limit for BTCOEX. 856 */ 857 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 858 if (bt_aggr_limit) 859 aggr_limit = bt_aggr_limit; 860 861 if (tid->an->maxampdu) 862 aggr_limit = min(aggr_limit, tid->an->maxampdu); 863 864 return aggr_limit; 865 } 866 867 /* 868 * Returns the number of delimiters to be added to 869 * meet the minimum required mpdudensity. 870 */ 871 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 872 struct ath_buf *bf, u16 frmlen, 873 bool first_subfrm) 874 { 875 #define FIRST_DESC_NDELIMS 60 876 u32 nsymbits, nsymbols; 877 u16 minlen; 878 u8 flags, rix; 879 int width, streams, half_gi, ndelim, mindelim; 880 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 881 882 /* Select standard number of delimiters based on frame length alone */ 883 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 884 885 /* 886 * If encryption enabled, hardware requires some more padding between 887 * subframes. 888 * TODO - this could be improved to be dependent on the rate. 889 * The hardware can keep up at lower rates, but not higher rates 890 */ 891 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 892 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 893 ndelim += ATH_AGGR_ENCRYPTDELIM; 894 895 /* 896 * Add delimiter when using RTS/CTS with aggregation 897 * and non enterprise AR9003 card 898 */ 899 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 900 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 901 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 902 903 /* 904 * Convert desired mpdu density from microeconds to bytes based 905 * on highest rate in rate series (i.e. first rate) to determine 906 * required minimum length for subframe. Take into account 907 * whether high rate is 20 or 40Mhz and half or full GI. 908 * 909 * If there is no mpdu density restriction, no further calculation 910 * is needed. 911 */ 912 913 if (tid->an->mpdudensity == 0) 914 return ndelim; 915 916 rix = bf->rates[0].idx; 917 flags = bf->rates[0].flags; 918 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 919 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 920 921 if (half_gi) 922 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 923 else 924 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 925 926 if (nsymbols == 0) 927 nsymbols = 1; 928 929 streams = HT_RC_2_STREAMS(rix); 930 nsymbits = bits_per_symbol[rix % 8][width] * streams; 931 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 932 933 if (frmlen < minlen) { 934 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 935 ndelim = max(mindelim, ndelim); 936 } 937 938 return ndelim; 939 } 940 941 static int 942 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 943 struct ath_atx_tid *tid, struct ath_buf **buf) 944 { 945 struct ieee80211_tx_info *tx_info; 946 struct ath_frame_info *fi; 947 struct ath_buf *bf; 948 struct sk_buff *skb, *first_skb = NULL; 949 u16 seqno; 950 int ret; 951 952 while (1) { 953 ret = ath_tid_dequeue(tid, &skb); 954 if (ret < 0) 955 return ret; 956 957 fi = get_frame_info(skb); 958 bf = fi->bf; 959 if (!fi->bf) 960 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 961 else 962 bf->bf_state.stale = false; 963 964 if (!bf) { 965 ath_txq_skb_done(sc, txq, skb); 966 ieee80211_free_txskb(sc->hw, skb); 967 continue; 968 } 969 970 bf->bf_next = NULL; 971 bf->bf_lastbf = bf; 972 973 tx_info = IEEE80211_SKB_CB(skb); 974 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 975 IEEE80211_TX_STATUS_EOSP); 976 977 /* 978 * No aggregation session is running, but there may be frames 979 * from a previous session or a failed attempt in the queue. 980 * Send them out as normal data frames 981 */ 982 if (!tid->active) 983 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 984 985 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 986 bf->bf_state.bf_type = 0; 987 break; 988 } 989 990 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 991 seqno = bf->bf_state.seqno; 992 993 /* do not step over block-ack window */ 994 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 995 __skb_queue_tail(&tid->retry_q, skb); 996 997 /* If there are other skbs in the retry q, they are 998 * probably within the BAW, so loop immediately to get 999 * one of them. Otherwise the queue can get stuck. */ 1000 if (!skb_queue_is_first(&tid->retry_q, skb) && 1001 !WARN_ON(skb == first_skb)) { 1002 if(!first_skb) /* infinite loop prevention */ 1003 first_skb = skb; 1004 continue; 1005 } 1006 return -EINPROGRESS; 1007 } 1008 1009 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 1010 struct ath_tx_status ts = {}; 1011 struct list_head bf_head; 1012 1013 INIT_LIST_HEAD(&bf_head); 1014 list_add(&bf->list, &bf_head); 1015 ath_tx_update_baw(sc, tid, bf); 1016 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 1017 continue; 1018 } 1019 1020 if (bf_isampdu(bf)) 1021 ath_tx_addto_baw(sc, tid, bf); 1022 1023 break; 1024 } 1025 1026 *buf = bf; 1027 return 0; 1028 } 1029 1030 static int 1031 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 1032 struct ath_atx_tid *tid, struct list_head *bf_q, 1033 struct ath_buf *bf_first) 1034 { 1035 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 1036 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1037 int nframes = 0, ndelim, ret; 1038 u16 aggr_limit = 0, al = 0, bpad = 0, 1039 al_delta, h_baw = tid->baw_size / 2; 1040 struct ieee80211_tx_info *tx_info; 1041 struct ath_frame_info *fi; 1042 struct sk_buff *skb; 1043 1044 1045 bf = bf_first; 1046 aggr_limit = ath_lookup_rate(sc, bf, tid); 1047 1048 while (bf) 1049 { 1050 skb = bf->bf_mpdu; 1051 fi = get_frame_info(skb); 1052 1053 /* do not exceed aggregation limit */ 1054 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 1055 if (nframes) { 1056 if (aggr_limit < al + bpad + al_delta || 1057 ath_lookup_legacy(bf) || nframes >= h_baw) 1058 goto stop; 1059 1060 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1061 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 1062 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 1063 goto stop; 1064 } 1065 1066 /* add padding for previous frame to aggregation length */ 1067 al += bpad + al_delta; 1068 1069 /* 1070 * Get the delimiters needed to meet the MPDU 1071 * density for this node. 1072 */ 1073 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 1074 !nframes); 1075 bpad = PADBYTES(al_delta) + (ndelim << 2); 1076 1077 nframes++; 1078 bf->bf_next = NULL; 1079 1080 /* link buffers of this frame to the aggregate */ 1081 bf->bf_state.ndelim = ndelim; 1082 1083 list_add_tail(&bf->list, bf_q); 1084 if (bf_prev) 1085 bf_prev->bf_next = bf; 1086 1087 bf_prev = bf; 1088 1089 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1090 if (ret < 0) 1091 break; 1092 } 1093 goto finish; 1094 stop: 1095 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1096 finish: 1097 bf = bf_first; 1098 bf->bf_lastbf = bf_prev; 1099 1100 if (bf == bf_prev) { 1101 al = get_frame_info(bf->bf_mpdu)->framelen; 1102 bf->bf_state.bf_type = BUF_AMPDU; 1103 } else { 1104 TX_STAT_INC(sc, txq->axq_qnum, a_aggr); 1105 } 1106 1107 return al; 1108 #undef PADBYTES 1109 } 1110 1111 /* 1112 * rix - rate index 1113 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1114 * width - 0 for 20 MHz, 1 for 40 MHz 1115 * half_gi - to use 4us v/s 3.6 us for symbol time 1116 */ 1117 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1118 int width, int half_gi, bool shortPreamble) 1119 { 1120 u32 nbits, nsymbits, duration, nsymbols; 1121 int streams; 1122 1123 /* find number of symbols: PLCP + data */ 1124 streams = HT_RC_2_STREAMS(rix); 1125 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1126 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1127 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1128 1129 if (!half_gi) 1130 duration = SYMBOL_TIME(nsymbols); 1131 else 1132 duration = SYMBOL_TIME_HALFGI(nsymbols); 1133 1134 /* addup duration for legacy/ht training and signal fields */ 1135 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1136 1137 return duration; 1138 } 1139 1140 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1141 { 1142 int streams = HT_RC_2_STREAMS(mcs); 1143 int symbols, bits; 1144 int bytes = 0; 1145 1146 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1147 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1148 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1149 bits -= OFDM_PLCP_BITS; 1150 bytes = bits / 8; 1151 if (bytes > 65532) 1152 bytes = 65532; 1153 1154 return bytes; 1155 } 1156 1157 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1158 { 1159 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1160 int mcs; 1161 1162 /* 4ms is the default (and maximum) duration */ 1163 if (!txop || txop > 4096) 1164 txop = 4096; 1165 1166 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1167 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1168 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1169 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1170 for (mcs = 0; mcs < 32; mcs++) { 1171 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1172 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1173 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1174 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1175 } 1176 } 1177 1178 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf, 1179 u8 rateidx, bool is_40, bool is_cck, bool is_mcs) 1180 { 1181 u8 max_power; 1182 struct sk_buff *skb; 1183 struct ath_frame_info *fi; 1184 struct ieee80211_tx_info *info; 1185 struct ath_hw *ah = sc->sc_ah; 1186 bool is_2ghz, is_5ghz, use_stbc; 1187 1188 if (sc->tx99_state || !ah->tpc_enabled) 1189 return MAX_RATE_POWER; 1190 1191 skb = bf->bf_mpdu; 1192 fi = get_frame_info(skb); 1193 info = IEEE80211_SKB_CB(skb); 1194 1195 is_2ghz = info->band == NL80211_BAND_2GHZ; 1196 is_5ghz = info->band == NL80211_BAND_5GHZ; 1197 use_stbc = is_mcs && rateidx < 8 && (info->flags & 1198 IEEE80211_TX_CTL_STBC); 1199 1200 if (is_mcs) 1201 rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT 1202 : ATH9K_PWRTBL_11NG_HT_SHIFT; 1203 else if (is_2ghz && !is_cck) 1204 rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT; 1205 else 1206 rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT; 1207 1208 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1209 int txpower = fi->tx_power; 1210 1211 if (is_40) { 1212 u8 power_ht40delta; 1213 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 1214 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah); 1215 1216 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) { 1217 struct modal_eep_header *pmodal; 1218 1219 pmodal = &eep->modalHeader[is_2ghz]; 1220 power_ht40delta = pmodal->ht40PowerIncForPdadc; 1221 } else { 1222 power_ht40delta = 2; 1223 } 1224 txpower += power_ht40delta; 1225 } 1226 1227 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) || 1228 AR_SREV_9271(ah)) { 1229 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB; 1230 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 1231 s8 power_offset; 1232 1233 power_offset = ah->eep_ops->get_eeprom(ah, 1234 EEP_PWR_TABLE_OFFSET); 1235 txpower -= 2 * power_offset; 1236 } 1237 1238 if (OLC_FOR_AR9280_20_LATER(ah) && is_cck) 1239 txpower -= 2; 1240 1241 txpower = max(txpower, 0); 1242 max_power = min_t(u8, ah->tx_power[rateidx], txpower); 1243 1244 /* XXX: clamp minimum TX power at 1 for AR9160 since if 1245 * max_power is set to 0, frames are transmitted at max 1246 * TX power 1247 */ 1248 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah)) 1249 max_power = 1; 1250 } else if (!bf->bf_state.bfs_paprd) { 1251 if (use_stbc) 1252 max_power = min_t(u8, ah->tx_power_stbc[rateidx], 1253 fi->tx_power); 1254 else 1255 max_power = min_t(u8, ah->tx_power[rateidx], 1256 fi->tx_power); 1257 } else { 1258 max_power = ah->paprd_training_power; 1259 } 1260 1261 return max_power; 1262 } 1263 1264 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1265 struct ath_tx_info *info, int len, bool rts) 1266 { 1267 struct ath_hw *ah = sc->sc_ah; 1268 struct ath_common *common = ath9k_hw_common(ah); 1269 struct sk_buff *skb; 1270 struct ieee80211_tx_info *tx_info; 1271 struct ieee80211_tx_rate *rates; 1272 const struct ieee80211_rate *rate; 1273 struct ieee80211_hdr *hdr; 1274 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1275 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1276 int i; 1277 u8 rix = 0; 1278 1279 skb = bf->bf_mpdu; 1280 tx_info = IEEE80211_SKB_CB(skb); 1281 rates = bf->rates; 1282 hdr = (struct ieee80211_hdr *)skb->data; 1283 1284 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1285 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1286 info->rtscts_rate = fi->rtscts_rate; 1287 1288 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1289 bool is_40, is_sgi, is_sp, is_cck; 1290 int phy; 1291 1292 if (!rates[i].count || (rates[i].idx < 0)) 1293 break; 1294 1295 rix = rates[i].idx; 1296 info->rates[i].Tries = rates[i].count; 1297 1298 /* 1299 * Handle RTS threshold for unaggregated HT frames. 1300 */ 1301 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1302 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1303 unlikely(rts_thresh != (u32) -1)) { 1304 if (!rts_thresh || (len > rts_thresh)) 1305 rts = true; 1306 } 1307 1308 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1309 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1310 info->flags |= ATH9K_TXDESC_RTSENA; 1311 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1312 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1313 info->flags |= ATH9K_TXDESC_CTSENA; 1314 } 1315 1316 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1317 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1318 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1319 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1320 1321 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1322 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1323 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1324 1325 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1326 /* MCS rates */ 1327 info->rates[i].Rate = rix | 0x80; 1328 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1329 ah->txchainmask, info->rates[i].Rate); 1330 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1331 is_40, is_sgi, is_sp); 1332 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1333 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1334 if (rix >= 8 && fi->dyn_smps) { 1335 info->rates[i].RateFlags |= 1336 ATH9K_RATESERIES_RTS_CTS; 1337 info->flags |= ATH9K_TXDESC_CTSENA; 1338 } 1339 1340 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, 1341 is_40, false, true); 1342 continue; 1343 } 1344 1345 /* legacy rates */ 1346 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1347 if ((tx_info->band == NL80211_BAND_2GHZ) && 1348 !(rate->flags & IEEE80211_RATE_ERP_G)) 1349 phy = WLAN_RC_PHY_CCK; 1350 else 1351 phy = WLAN_RC_PHY_OFDM; 1352 1353 info->rates[i].Rate = rate->hw_value; 1354 if (rate->hw_value_short) { 1355 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1356 info->rates[i].Rate |= rate->hw_value_short; 1357 } else { 1358 is_sp = false; 1359 } 1360 1361 if (bf->bf_state.bfs_paprd) 1362 info->rates[i].ChSel = ah->txchainmask; 1363 else 1364 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1365 ah->txchainmask, info->rates[i].Rate); 1366 1367 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1368 phy, rate->bitrate * 100, len, rix, is_sp); 1369 1370 is_cck = IS_CCK_RATE(info->rates[i].Rate); 1371 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false, 1372 is_cck, false); 1373 } 1374 1375 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1376 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1377 info->flags &= ~ATH9K_TXDESC_RTSENA; 1378 1379 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1380 if (info->flags & ATH9K_TXDESC_RTSENA) 1381 info->flags &= ~ATH9K_TXDESC_CTSENA; 1382 } 1383 1384 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1385 { 1386 struct ieee80211_hdr *hdr; 1387 enum ath9k_pkt_type htype; 1388 __le16 fc; 1389 1390 hdr = (struct ieee80211_hdr *)skb->data; 1391 fc = hdr->frame_control; 1392 1393 if (ieee80211_is_beacon(fc)) 1394 htype = ATH9K_PKT_TYPE_BEACON; 1395 else if (ieee80211_is_probe_resp(fc)) 1396 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1397 else if (ieee80211_is_atim(fc)) 1398 htype = ATH9K_PKT_TYPE_ATIM; 1399 else if (ieee80211_is_pspoll(fc)) 1400 htype = ATH9K_PKT_TYPE_PSPOLL; 1401 else 1402 htype = ATH9K_PKT_TYPE_NORMAL; 1403 1404 return htype; 1405 } 1406 1407 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1408 struct ath_txq *txq, int len) 1409 { 1410 struct ath_hw *ah = sc->sc_ah; 1411 struct ath_buf *bf_first = NULL; 1412 struct ath_tx_info info; 1413 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1414 bool rts = false; 1415 1416 memset(&info, 0, sizeof(info)); 1417 info.is_first = true; 1418 info.is_last = true; 1419 info.qcu = txq->axq_qnum; 1420 1421 while (bf) { 1422 struct sk_buff *skb = bf->bf_mpdu; 1423 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1424 struct ath_frame_info *fi = get_frame_info(skb); 1425 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1426 1427 info.type = get_hw_packet_type(skb); 1428 if (bf->bf_next) 1429 info.link = bf->bf_next->bf_daddr; 1430 else 1431 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1432 1433 if (!bf_first) { 1434 bf_first = bf; 1435 1436 if (!sc->tx99_state) 1437 info.flags = ATH9K_TXDESC_INTREQ; 1438 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1439 txq == sc->tx.uapsdq) 1440 info.flags |= ATH9K_TXDESC_CLRDMASK; 1441 1442 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1443 info.flags |= ATH9K_TXDESC_NOACK; 1444 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1445 info.flags |= ATH9K_TXDESC_LDPC; 1446 1447 if (bf->bf_state.bfs_paprd) 1448 info.flags |= (u32) bf->bf_state.bfs_paprd << 1449 ATH9K_TXDESC_PAPRD_S; 1450 1451 /* 1452 * mac80211 doesn't handle RTS threshold for HT because 1453 * the decision has to be taken based on AMPDU length 1454 * and aggregation is done entirely inside ath9k. 1455 * Set the RTS/CTS flag for the first subframe based 1456 * on the threshold. 1457 */ 1458 if (aggr && (bf == bf_first) && 1459 unlikely(rts_thresh != (u32) -1)) { 1460 /* 1461 * "len" is the size of the entire AMPDU. 1462 */ 1463 if (!rts_thresh || (len > rts_thresh)) 1464 rts = true; 1465 } 1466 1467 if (!aggr) 1468 len = fi->framelen; 1469 1470 ath_buf_set_rate(sc, bf, &info, len, rts); 1471 } 1472 1473 info.buf_addr[0] = bf->bf_buf_addr; 1474 info.buf_len[0] = skb->len; 1475 info.pkt_len = fi->framelen; 1476 info.keyix = fi->keyix; 1477 info.keytype = fi->keytype; 1478 1479 if (aggr) { 1480 if (bf == bf_first) 1481 info.aggr = AGGR_BUF_FIRST; 1482 else if (bf == bf_first->bf_lastbf) 1483 info.aggr = AGGR_BUF_LAST; 1484 else 1485 info.aggr = AGGR_BUF_MIDDLE; 1486 1487 info.ndelim = bf->bf_state.ndelim; 1488 info.aggr_len = len; 1489 } 1490 1491 if (bf == bf_first->bf_lastbf) 1492 bf_first = NULL; 1493 1494 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1495 bf = bf->bf_next; 1496 } 1497 } 1498 1499 static void 1500 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1501 struct ath_atx_tid *tid, struct list_head *bf_q, 1502 struct ath_buf *bf_first) 1503 { 1504 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1505 int nframes = 0, ret; 1506 1507 do { 1508 struct ieee80211_tx_info *tx_info; 1509 1510 nframes++; 1511 list_add_tail(&bf->list, bf_q); 1512 if (bf_prev) 1513 bf_prev->bf_next = bf; 1514 bf_prev = bf; 1515 1516 if (nframes >= 2) 1517 break; 1518 1519 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1520 if (ret < 0) 1521 break; 1522 1523 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1524 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 1525 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1526 break; 1527 } 1528 1529 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1530 } while (1); 1531 } 1532 1533 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1534 struct ath_atx_tid *tid) 1535 { 1536 struct ath_buf *bf = NULL; 1537 struct ieee80211_tx_info *tx_info; 1538 struct list_head bf_q; 1539 int aggr_len = 0, ret; 1540 bool aggr; 1541 1542 INIT_LIST_HEAD(&bf_q); 1543 1544 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1545 if (ret < 0) 1546 return ret; 1547 1548 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1549 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1550 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1551 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1552 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1553 return -EBUSY; 1554 } 1555 1556 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1557 if (aggr) 1558 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf); 1559 else 1560 ath_tx_form_burst(sc, txq, tid, &bf_q, bf); 1561 1562 if (list_empty(&bf_q)) 1563 return -EAGAIN; 1564 1565 if (tid->clear_ps_filter || tid->an->no_ps_filter) { 1566 tid->clear_ps_filter = false; 1567 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1568 } 1569 1570 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1571 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1572 return 0; 1573 } 1574 1575 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1576 u16 tid, u16 *ssn) 1577 { 1578 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1579 struct ath_atx_tid *txtid; 1580 struct ath_txq *txq; 1581 struct ath_node *an; 1582 u8 density; 1583 1584 ath_dbg(common, XMIT, "%s called\n", __func__); 1585 1586 an = (struct ath_node *)sta->drv_priv; 1587 txtid = ATH_AN_2_TID(an, tid); 1588 txq = txtid->txq; 1589 1590 ath_txq_lock(sc, txq); 1591 1592 /* update ampdu factor/density, they may have changed. This may happen 1593 * in HT IBSS when a beacon with HT-info is received after the station 1594 * has already been added. 1595 */ 1596 if (sta->deflink.ht_cap.ht_supported) { 1597 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1598 sta->deflink.ht_cap.ampdu_factor)) - 1; 1599 density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density); 1600 an->mpdudensity = density; 1601 } 1602 1603 txtid->active = true; 1604 *ssn = txtid->seq_start = txtid->seq_next; 1605 txtid->bar_index = -1; 1606 1607 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1608 txtid->baw_head = txtid->baw_tail = 0; 1609 1610 ath_txq_unlock_complete(sc, txq); 1611 1612 return 0; 1613 } 1614 1615 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1616 { 1617 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1618 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1619 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1620 struct ath_txq *txq = txtid->txq; 1621 1622 ath_dbg(common, XMIT, "%s called\n", __func__); 1623 1624 ath_txq_lock(sc, txq); 1625 txtid->active = false; 1626 ath_tx_flush_tid(sc, txtid); 1627 ath_txq_unlock_complete(sc, txq); 1628 } 1629 1630 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1631 struct ath_node *an) 1632 { 1633 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1634 struct ath_atx_tid *tid; 1635 int tidno; 1636 1637 ath_dbg(common, XMIT, "%s called\n", __func__); 1638 1639 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1640 tid = ath_node_to_tid(an, tidno); 1641 1642 if (!skb_queue_empty(&tid->retry_q)) 1643 ieee80211_sta_set_buffered(sta, tid->tidno, true); 1644 1645 } 1646 } 1647 1648 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1649 { 1650 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1651 struct ath_atx_tid *tid; 1652 struct ath_txq *txq; 1653 int tidno; 1654 1655 ath_dbg(common, XMIT, "%s called\n", __func__); 1656 1657 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1658 tid = ath_node_to_tid(an, tidno); 1659 txq = tid->txq; 1660 1661 ath_txq_lock(sc, txq); 1662 tid->clear_ps_filter = true; 1663 if (!skb_queue_empty(&tid->retry_q)) { 1664 ath_tx_queue_tid(sc, tid); 1665 ath_txq_schedule(sc, txq); 1666 } 1667 ath_txq_unlock_complete(sc, txq); 1668 1669 } 1670 } 1671 1672 1673 static void 1674 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val) 1675 { 1676 struct ieee80211_hdr *hdr; 1677 __le16 mask, mask_val; 1678 1679 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1680 1681 if (val) 1682 mask_val = mask; 1683 else 1684 mask_val = 0; 1685 1686 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 1687 if ((hdr->frame_control & mask) != mask_val) { 1688 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val; 1689 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 1690 sizeof(*hdr), DMA_TO_DEVICE); 1691 } 1692 } 1693 1694 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1695 struct ieee80211_sta *sta, 1696 u16 tids, int nframes, 1697 enum ieee80211_frame_release_type reason, 1698 bool more_data) 1699 { 1700 struct ath_softc *sc = hw->priv; 1701 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1702 struct ath_txq *txq = sc->tx.uapsdq; 1703 struct ieee80211_tx_info *info; 1704 struct list_head bf_q; 1705 struct ath_buf *bf_tail = NULL, *bf = NULL; 1706 int i, ret; 1707 1708 INIT_LIST_HEAD(&bf_q); 1709 for (i = 0; tids && nframes; i++, tids >>= 1) { 1710 struct ath_atx_tid *tid; 1711 1712 if (!(tids & 1)) 1713 continue; 1714 1715 tid = ATH_AN_2_TID(an, i); 1716 1717 ath_txq_lock(sc, tid->txq); 1718 while (nframes > 0) { 1719 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, 1720 tid, &bf); 1721 if (ret < 0) 1722 break; 1723 1724 ath9k_set_moredata(sc, bf, true); 1725 list_add_tail(&bf->list, &bf_q); 1726 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1727 if (bf_isampdu(bf)) 1728 bf->bf_state.bf_type &= ~BUF_AGGR; 1729 if (bf_tail) 1730 bf_tail->bf_next = bf; 1731 1732 bf_tail = bf; 1733 nframes--; 1734 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw); 1735 1736 if (an->sta && skb_queue_empty(&tid->retry_q)) 1737 ieee80211_sta_set_buffered(an->sta, i, false); 1738 } 1739 ath_txq_unlock_complete(sc, tid->txq); 1740 } 1741 1742 if (list_empty(&bf_q)) 1743 return; 1744 1745 if (!more_data) 1746 ath9k_set_moredata(sc, bf_tail, false); 1747 1748 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1749 info->flags |= IEEE80211_TX_STATUS_EOSP; 1750 1751 bf = list_first_entry(&bf_q, struct ath_buf, list); 1752 ath_txq_lock(sc, txq); 1753 ath_tx_fill_desc(sc, bf, txq, 0); 1754 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1755 ath_txq_unlock(sc, txq); 1756 } 1757 1758 /********************/ 1759 /* Queue Management */ 1760 /********************/ 1761 1762 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1763 { 1764 struct ath_hw *ah = sc->sc_ah; 1765 struct ath9k_tx_queue_info qi; 1766 static const int subtype_txq_to_hwq[] = { 1767 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1768 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1769 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1770 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1771 }; 1772 int axq_qnum, i; 1773 1774 memset(&qi, 0, sizeof(qi)); 1775 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1776 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1777 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1778 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1779 qi.tqi_physCompBuf = 0; 1780 1781 /* 1782 * Enable interrupts only for EOL and DESC conditions. 1783 * We mark tx descriptors to receive a DESC interrupt 1784 * when a tx queue gets deep; otherwise waiting for the 1785 * EOL to reap descriptors. Note that this is done to 1786 * reduce interrupt load and this only defers reaping 1787 * descriptors, never transmitting frames. Aside from 1788 * reducing interrupts this also permits more concurrency. 1789 * The only potential downside is if the tx queue backs 1790 * up in which case the top half of the kernel may backup 1791 * due to a lack of tx descriptors. 1792 * 1793 * The UAPSD queue is an exception, since we take a desc- 1794 * based intr on the EOSP frames. 1795 */ 1796 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1797 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1798 } else { 1799 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1800 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1801 else 1802 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1803 TXQ_FLAG_TXDESCINT_ENABLE; 1804 } 1805 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1806 if (axq_qnum == -1) { 1807 /* 1808 * NB: don't print a message, this happens 1809 * normally on parts with too few tx queues 1810 */ 1811 return NULL; 1812 } 1813 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1814 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1815 1816 txq->axq_qnum = axq_qnum; 1817 txq->mac80211_qnum = -1; 1818 txq->axq_link = NULL; 1819 __skb_queue_head_init(&txq->complete_q); 1820 INIT_LIST_HEAD(&txq->axq_q); 1821 spin_lock_init(&txq->axq_lock); 1822 txq->axq_depth = 0; 1823 txq->axq_ampdu_depth = 0; 1824 txq->axq_tx_inprogress = false; 1825 sc->tx.txqsetup |= 1<<axq_qnum; 1826 1827 txq->txq_headidx = txq->txq_tailidx = 0; 1828 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1829 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1830 } 1831 return &sc->tx.txq[axq_qnum]; 1832 } 1833 1834 int ath_txq_update(struct ath_softc *sc, int qnum, 1835 struct ath9k_tx_queue_info *qinfo) 1836 { 1837 struct ath_hw *ah = sc->sc_ah; 1838 int error = 0; 1839 struct ath9k_tx_queue_info qi; 1840 1841 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1842 1843 ath9k_hw_get_txq_props(ah, qnum, &qi); 1844 qi.tqi_aifs = qinfo->tqi_aifs; 1845 qi.tqi_cwmin = qinfo->tqi_cwmin; 1846 qi.tqi_cwmax = qinfo->tqi_cwmax; 1847 qi.tqi_burstTime = qinfo->tqi_burstTime; 1848 qi.tqi_readyTime = qinfo->tqi_readyTime; 1849 1850 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1851 ath_err(ath9k_hw_common(sc->sc_ah), 1852 "Unable to update hardware queue %u!\n", qnum); 1853 error = -EIO; 1854 } else { 1855 ath9k_hw_resettxqueue(ah, qnum); 1856 } 1857 1858 return error; 1859 } 1860 1861 int ath_cabq_update(struct ath_softc *sc) 1862 { 1863 struct ath9k_tx_queue_info qi; 1864 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1865 int qnum = sc->beacon.cabq->axq_qnum; 1866 1867 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1868 1869 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1870 ATH_CABQ_READY_TIME) / 100; 1871 ath_txq_update(sc, qnum, &qi); 1872 1873 return 0; 1874 } 1875 1876 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1877 struct list_head *list) 1878 { 1879 struct ath_buf *bf, *lastbf; 1880 struct list_head bf_head; 1881 struct ath_tx_status ts; 1882 1883 memset(&ts, 0, sizeof(ts)); 1884 ts.ts_status = ATH9K_TX_FLUSH; 1885 INIT_LIST_HEAD(&bf_head); 1886 1887 while (!list_empty(list)) { 1888 bf = list_first_entry(list, struct ath_buf, list); 1889 1890 if (bf->bf_state.stale) { 1891 list_del(&bf->list); 1892 1893 ath_tx_return_buffer(sc, bf); 1894 continue; 1895 } 1896 1897 lastbf = bf->bf_lastbf; 1898 list_cut_position(&bf_head, list, &lastbf->list); 1899 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1900 } 1901 } 1902 1903 /* 1904 * Drain a given TX queue (could be Beacon or Data) 1905 * 1906 * This assumes output has been stopped and 1907 * we do not need to block ath_tx_tasklet. 1908 */ 1909 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1910 { 1911 rcu_read_lock(); 1912 ath_txq_lock(sc, txq); 1913 1914 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1915 int idx = txq->txq_tailidx; 1916 1917 while (!list_empty(&txq->txq_fifo[idx])) { 1918 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1919 1920 INCR(idx, ATH_TXFIFO_DEPTH); 1921 } 1922 txq->txq_tailidx = idx; 1923 } 1924 1925 txq->axq_link = NULL; 1926 txq->axq_tx_inprogress = false; 1927 ath_drain_txq_list(sc, txq, &txq->axq_q); 1928 1929 ath_txq_unlock_complete(sc, txq); 1930 rcu_read_unlock(); 1931 } 1932 1933 bool ath_drain_all_txq(struct ath_softc *sc) 1934 { 1935 struct ath_hw *ah = sc->sc_ah; 1936 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1937 struct ath_txq *txq; 1938 int i; 1939 u32 npend = 0; 1940 1941 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1942 return true; 1943 1944 ath9k_hw_abort_tx_dma(ah); 1945 1946 /* Check if any queue remains active */ 1947 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1948 if (!ATH_TXQ_SETUP(sc, i)) 1949 continue; 1950 1951 if (!sc->tx.txq[i].axq_depth) 1952 continue; 1953 1954 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1955 npend |= BIT(i); 1956 } 1957 1958 if (npend) { 1959 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR); 1960 ath_dbg(common, RESET, 1961 "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1962 } 1963 1964 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1965 if (!ATH_TXQ_SETUP(sc, i)) 1966 continue; 1967 1968 txq = &sc->tx.txq[i]; 1969 ath_draintxq(sc, txq); 1970 } 1971 1972 return !npend; 1973 } 1974 1975 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1976 { 1977 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1978 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1979 } 1980 1981 /* For each acq entry, for each tid, try to schedule packets 1982 * for transmit until ampdu_depth has reached min Q depth. 1983 */ 1984 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1985 { 1986 struct ieee80211_hw *hw = sc->hw; 1987 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1988 struct ieee80211_txq *queue; 1989 struct ath_atx_tid *tid; 1990 int ret; 1991 1992 if (txq->mac80211_qnum < 0) 1993 return; 1994 1995 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1996 return; 1997 1998 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum); 1999 spin_lock_bh(&sc->chan_lock); 2000 rcu_read_lock(); 2001 2002 if (sc->cur_chan->stopped) 2003 goto out; 2004 2005 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) { 2006 bool force; 2007 2008 tid = (struct ath_atx_tid *)queue->drv_priv; 2009 2010 ret = ath_tx_sched_aggr(sc, txq, tid); 2011 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret); 2012 2013 force = !skb_queue_empty(&tid->retry_q); 2014 ieee80211_return_txq(hw, queue, force); 2015 } 2016 2017 out: 2018 rcu_read_unlock(); 2019 spin_unlock_bh(&sc->chan_lock); 2020 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum); 2021 } 2022 2023 void ath_txq_schedule_all(struct ath_softc *sc) 2024 { 2025 struct ath_txq *txq; 2026 int i; 2027 2028 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 2029 txq = sc->tx.txq_map[i]; 2030 2031 spin_lock_bh(&txq->axq_lock); 2032 ath_txq_schedule(sc, txq); 2033 spin_unlock_bh(&txq->axq_lock); 2034 } 2035 } 2036 2037 /***********/ 2038 /* TX, DMA */ 2039 /***********/ 2040 2041 /* 2042 * Insert a chain of ath_buf (descriptors) on a txq and 2043 * assume the descriptors are already chained together by caller. 2044 */ 2045 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 2046 struct list_head *head, bool internal) 2047 { 2048 struct ath_hw *ah = sc->sc_ah; 2049 struct ath_common *common = ath9k_hw_common(ah); 2050 struct ath_buf *bf, *bf_last; 2051 bool puttxbuf = false; 2052 bool edma; 2053 2054 /* 2055 * Insert the frame on the outbound list and 2056 * pass it on to the hardware. 2057 */ 2058 2059 if (list_empty(head)) 2060 return; 2061 2062 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 2063 bf = list_first_entry(head, struct ath_buf, list); 2064 bf_last = list_entry(head->prev, struct ath_buf, list); 2065 2066 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 2067 txq->axq_qnum, txq->axq_depth); 2068 2069 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 2070 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 2071 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 2072 puttxbuf = true; 2073 } else { 2074 list_splice_tail_init(head, &txq->axq_q); 2075 2076 if (txq->axq_link) { 2077 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 2078 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 2079 txq->axq_qnum, txq->axq_link, 2080 ito64(bf->bf_daddr), bf->bf_desc); 2081 } else if (!edma) 2082 puttxbuf = true; 2083 2084 txq->axq_link = bf_last->bf_desc; 2085 } 2086 2087 if (puttxbuf) { 2088 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf); 2089 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 2090 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 2091 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 2092 } 2093 2094 if (!edma || sc->tx99_state) { 2095 TX_STAT_INC(sc, txq->axq_qnum, txstart); 2096 ath9k_hw_txstart(ah, txq->axq_qnum); 2097 } 2098 2099 if (!internal) { 2100 while (bf) { 2101 txq->axq_depth++; 2102 if (bf_is_ampdu_not_probing(bf)) 2103 txq->axq_ampdu_depth++; 2104 2105 bf_last = bf->bf_lastbf; 2106 bf = bf_last->bf_next; 2107 bf_last->bf_next = NULL; 2108 } 2109 } 2110 } 2111 2112 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2113 struct ath_atx_tid *tid, struct sk_buff *skb) 2114 { 2115 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2116 struct ath_frame_info *fi = get_frame_info(skb); 2117 struct list_head bf_head; 2118 struct ath_buf *bf = fi->bf; 2119 2120 INIT_LIST_HEAD(&bf_head); 2121 list_add_tail(&bf->list, &bf_head); 2122 bf->bf_state.bf_type = 0; 2123 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2124 bf->bf_state.bf_type = BUF_AMPDU; 2125 ath_tx_addto_baw(sc, tid, bf); 2126 } 2127 2128 bf->bf_next = NULL; 2129 bf->bf_lastbf = bf; 2130 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2131 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2132 TX_STAT_INC(sc, txq->axq_qnum, queued); 2133 } 2134 2135 static void setup_frame_info(struct ieee80211_hw *hw, 2136 struct ieee80211_sta *sta, 2137 struct sk_buff *skb, 2138 int framelen) 2139 { 2140 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2141 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2142 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2143 const struct ieee80211_rate *rate; 2144 struct ath_frame_info *fi = get_frame_info(skb); 2145 struct ath_node *an = NULL; 2146 enum ath9k_key_type keytype; 2147 bool short_preamble = false; 2148 u8 txpower; 2149 2150 /* 2151 * We check if Short Preamble is needed for the CTS rate by 2152 * checking the BSS's global flag. 2153 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2154 */ 2155 if (tx_info->control.vif && 2156 tx_info->control.vif->bss_conf.use_short_preamble) 2157 short_preamble = true; 2158 2159 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2160 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2161 2162 if (sta) 2163 an = (struct ath_node *) sta->drv_priv; 2164 2165 if (tx_info->control.vif) { 2166 struct ieee80211_vif *vif = tx_info->control.vif; 2167 if (vif->bss_conf.txpower == INT_MIN) 2168 goto nonvifpower; 2169 txpower = 2 * vif->bss_conf.txpower; 2170 } else { 2171 struct ath_softc *sc; 2172 nonvifpower: 2173 sc = hw->priv; 2174 2175 txpower = sc->cur_chan->cur_txpower; 2176 } 2177 2178 memset(fi, 0, sizeof(*fi)); 2179 fi->txq = -1; 2180 if (hw_key) 2181 fi->keyix = hw_key->hw_key_idx; 2182 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2183 fi->keyix = an->ps_key; 2184 else 2185 fi->keyix = ATH9K_TXKEYIX_INVALID; 2186 fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC; 2187 fi->keytype = keytype; 2188 fi->framelen = framelen; 2189 fi->tx_power = txpower; 2190 2191 if (!rate) 2192 return; 2193 fi->rtscts_rate = rate->hw_value; 2194 if (short_preamble) 2195 fi->rtscts_rate |= rate->hw_value_short; 2196 } 2197 2198 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2199 { 2200 struct ath_hw *ah = sc->sc_ah; 2201 struct ath9k_channel *curchan = ah->curchan; 2202 2203 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2204 (chainmask == 0x7) && (rate < 0x90)) 2205 return 0x3; 2206 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2207 IS_CCK_RATE(rate)) 2208 return 0x2; 2209 else 2210 return chainmask; 2211 } 2212 2213 /* 2214 * Assign a descriptor (and sequence number if necessary, 2215 * and map buffer for DMA. Frees skb on error 2216 */ 2217 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2218 struct ath_txq *txq, 2219 struct ath_atx_tid *tid, 2220 struct sk_buff *skb) 2221 { 2222 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2223 struct ath_frame_info *fi = get_frame_info(skb); 2224 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2225 struct ath_buf *bf; 2226 int fragno; 2227 u16 seqno; 2228 2229 bf = ath_tx_get_buffer(sc); 2230 if (!bf) { 2231 ath_dbg(common, XMIT, "TX buffers are full\n"); 2232 return NULL; 2233 } 2234 2235 ATH_TXBUF_RESET(bf); 2236 2237 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2238 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2239 seqno = tid->seq_next; 2240 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2241 2242 if (fragno) 2243 hdr->seq_ctrl |= cpu_to_le16(fragno); 2244 2245 if (!ieee80211_has_morefrags(hdr->frame_control)) 2246 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2247 2248 bf->bf_state.seqno = seqno; 2249 } 2250 2251 bf->bf_mpdu = skb; 2252 2253 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2254 skb->len, DMA_TO_DEVICE); 2255 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2256 bf->bf_mpdu = NULL; 2257 bf->bf_buf_addr = 0; 2258 ath_err(ath9k_hw_common(sc->sc_ah), 2259 "dma_mapping_error() on TX\n"); 2260 ath_tx_return_buffer(sc, bf); 2261 return NULL; 2262 } 2263 2264 fi->bf = bf; 2265 2266 return bf; 2267 } 2268 2269 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2270 { 2271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2272 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2273 struct ieee80211_vif *vif = info->control.vif; 2274 struct ath_vif *avp; 2275 2276 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2277 return; 2278 2279 if (!vif) 2280 return; 2281 2282 avp = (struct ath_vif *)vif->drv_priv; 2283 2284 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2285 avp->seq_no += 0x10; 2286 2287 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2288 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2289 } 2290 2291 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2292 struct ath_tx_control *txctl) 2293 { 2294 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2295 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2296 struct ieee80211_sta *sta = txctl->sta; 2297 struct ieee80211_vif *vif = info->control.vif; 2298 struct ath_vif *avp; 2299 struct ath_softc *sc = hw->priv; 2300 int frmlen = skb->len + FCS_LEN; 2301 int padpos, padsize; 2302 2303 /* NOTE: sta can be NULL according to net/mac80211.h */ 2304 if (sta) 2305 txctl->an = (struct ath_node *)sta->drv_priv; 2306 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2307 avp = (void *)vif->drv_priv; 2308 txctl->an = &avp->mcast_node; 2309 } 2310 2311 if (info->control.hw_key) 2312 frmlen += info->control.hw_key->icv_len; 2313 2314 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2315 2316 if ((vif && vif->type != NL80211_IFTYPE_AP && 2317 vif->type != NL80211_IFTYPE_AP_VLAN) || 2318 !ieee80211_is_data(hdr->frame_control)) 2319 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2320 2321 /* Add the padding after the header if this is not already done */ 2322 padpos = ieee80211_hdrlen(hdr->frame_control); 2323 padsize = padpos & 3; 2324 if (padsize && skb->len > padpos) { 2325 if (skb_headroom(skb) < padsize) 2326 return -ENOMEM; 2327 2328 skb_push(skb, padsize); 2329 memmove(skb->data, skb->data + padsize, padpos); 2330 } 2331 2332 setup_frame_info(hw, sta, skb, frmlen); 2333 return 0; 2334 } 2335 2336 2337 /* Upon failure caller should free skb */ 2338 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2339 struct ath_tx_control *txctl) 2340 { 2341 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2342 struct ieee80211_sta *sta = txctl->sta; 2343 struct ieee80211_vif *vif = info->control.vif; 2344 struct ath_frame_info *fi = get_frame_info(skb); 2345 struct ath_softc *sc = hw->priv; 2346 struct ath_txq *txq = txctl->txq; 2347 struct ath_atx_tid *tid = NULL; 2348 struct ath_node *an = NULL; 2349 struct ath_buf *bf; 2350 bool ps_resp; 2351 int q, ret; 2352 2353 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE); 2354 2355 ret = ath_tx_prepare(hw, skb, txctl); 2356 if (ret) 2357 return ret; 2358 2359 /* 2360 * At this point, the vif, hw_key and sta pointers in the tx control 2361 * info are no longer valid (overwritten by the ath_frame_info data. 2362 */ 2363 2364 q = skb_get_queue_mapping(skb); 2365 2366 if (ps_resp) 2367 txq = sc->tx.uapsdq; 2368 2369 if (txctl->sta) { 2370 an = (struct ath_node *) sta->drv_priv; 2371 tid = ath_get_skb_tid(sc, an, skb); 2372 } 2373 2374 ath_txq_lock(sc, txq); 2375 if (txq == sc->tx.txq_map[q]) { 2376 fi->txq = q; 2377 ++txq->pending_frames; 2378 } 2379 2380 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2381 if (!bf) { 2382 ath_txq_skb_done(sc, txq, skb); 2383 if (txctl->paprd) 2384 dev_kfree_skb_any(skb); 2385 else 2386 ieee80211_free_txskb(sc->hw, skb); 2387 goto out; 2388 } 2389 2390 bf->bf_state.bfs_paprd = txctl->paprd; 2391 2392 if (txctl->paprd) 2393 bf->bf_state.bfs_paprd_timestamp = jiffies; 2394 2395 ath_set_rates(vif, sta, bf); 2396 ath_tx_send_normal(sc, txq, tid, skb); 2397 2398 out: 2399 ath_txq_unlock(sc, txq); 2400 2401 return 0; 2402 } 2403 2404 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2405 struct sk_buff *skb) 2406 { 2407 struct ath_softc *sc = hw->priv; 2408 struct ath_tx_control txctl = { 2409 .txq = sc->beacon.cabq 2410 }; 2411 struct ath_tx_info info = {}; 2412 struct ath_buf *bf_tail = NULL; 2413 struct ath_buf *bf; 2414 LIST_HEAD(bf_q); 2415 int duration = 0; 2416 int max_duration; 2417 2418 max_duration = 2419 sc->cur_chan->beacon.beacon_interval * 1000 * 2420 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2421 2422 do { 2423 struct ath_frame_info *fi = get_frame_info(skb); 2424 2425 if (ath_tx_prepare(hw, skb, &txctl)) 2426 break; 2427 2428 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2429 if (!bf) 2430 break; 2431 2432 bf->bf_lastbf = bf; 2433 ath_set_rates(vif, NULL, bf); 2434 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2435 duration += info.rates[0].PktDuration; 2436 if (bf_tail) 2437 bf_tail->bf_next = bf; 2438 2439 list_add_tail(&bf->list, &bf_q); 2440 bf_tail = bf; 2441 skb = NULL; 2442 2443 if (duration > max_duration) 2444 break; 2445 2446 skb = ieee80211_get_buffered_bc(hw, vif); 2447 } while(skb); 2448 2449 if (skb) 2450 ieee80211_free_txskb(hw, skb); 2451 2452 if (list_empty(&bf_q)) 2453 return; 2454 2455 bf = list_last_entry(&bf_q, struct ath_buf, list); 2456 ath9k_set_moredata(sc, bf, false); 2457 2458 bf = list_first_entry(&bf_q, struct ath_buf, list); 2459 ath_txq_lock(sc, txctl.txq); 2460 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2461 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2462 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued); 2463 ath_txq_unlock(sc, txctl.txq); 2464 } 2465 2466 /*****************/ 2467 /* TX Completion */ 2468 /*****************/ 2469 2470 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2471 int tx_flags, struct ath_txq *txq, 2472 struct ieee80211_sta *sta) 2473 { 2474 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2475 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2476 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2477 int padpos, padsize; 2478 unsigned long flags; 2479 2480 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2481 2482 if (sc->sc_ah->caldata) 2483 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2484 2485 if (!(tx_flags & ATH_TX_ERROR)) { 2486 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 2487 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 2488 else 2489 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2490 } 2491 2492 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 2493 padpos = ieee80211_hdrlen(hdr->frame_control); 2494 padsize = padpos & 3; 2495 if (padsize && skb->len>padpos+padsize) { 2496 /* 2497 * Remove MAC header padding before giving the frame back to 2498 * mac80211. 2499 */ 2500 memmove(skb->data + padsize, skb->data, padpos); 2501 skb_pull(skb, padsize); 2502 } 2503 } 2504 2505 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2506 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2507 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2508 ath_dbg(common, PS, 2509 "Going back to sleep after having received TX status (0x%lx)\n", 2510 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2511 PS_WAIT_FOR_CAB | 2512 PS_WAIT_FOR_PSPOLL_DATA | 2513 PS_WAIT_FOR_TX_ACK)); 2514 } 2515 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2516 2517 ath_txq_skb_done(sc, txq, skb); 2518 tx_info->status.status_driver_data[0] = sta; 2519 __skb_queue_tail(&txq->complete_q, skb); 2520 } 2521 2522 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2523 struct ath_txq *txq, struct list_head *bf_q, 2524 struct ieee80211_sta *sta, 2525 struct ath_tx_status *ts, int txok) 2526 { 2527 struct sk_buff *skb = bf->bf_mpdu; 2528 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2529 unsigned long flags; 2530 int tx_flags = 0; 2531 2532 if (!txok) 2533 tx_flags |= ATH_TX_ERROR; 2534 2535 if (ts->ts_status & ATH9K_TXERR_FILT) 2536 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2537 2538 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2539 bf->bf_buf_addr = 0; 2540 if (sc->tx99_state) 2541 goto skip_tx_complete; 2542 2543 if (bf->bf_state.bfs_paprd) { 2544 if (time_after(jiffies, 2545 bf->bf_state.bfs_paprd_timestamp + 2546 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2547 dev_kfree_skb_any(skb); 2548 else 2549 complete(&sc->paprd_complete); 2550 } else { 2551 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2552 ath_tx_complete(sc, skb, tx_flags, txq, sta); 2553 } 2554 skip_tx_complete: 2555 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2556 * accidentally reference it later. 2557 */ 2558 bf->bf_mpdu = NULL; 2559 2560 /* 2561 * Return the list of ath_buf of this mpdu to free queue 2562 */ 2563 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2564 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2565 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2566 } 2567 2568 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info) 2569 { 2570 void *ptr = &tx_info->status; 2571 2572 memset(ptr + sizeof(tx_info->status.rates), 0, 2573 sizeof(tx_info->status) - 2574 sizeof(tx_info->status.rates) - 2575 sizeof(tx_info->status.status_driver_data)); 2576 } 2577 2578 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2579 struct ath_tx_status *ts, int nframes, int nbad, 2580 int txok) 2581 { 2582 struct sk_buff *skb = bf->bf_mpdu; 2583 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2584 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2585 struct ieee80211_hw *hw = sc->hw; 2586 struct ath_hw *ah = sc->sc_ah; 2587 u8 i, tx_rateindex; 2588 2589 ath_clear_tx_status(tx_info); 2590 2591 if (txok) 2592 tx_info->status.ack_signal = ts->ts_rssi; 2593 2594 tx_rateindex = ts->ts_rateindex; 2595 WARN_ON(tx_rateindex >= hw->max_rates); 2596 2597 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2598 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2599 2600 BUG_ON(nbad > nframes); 2601 } 2602 tx_info->status.ampdu_len = nframes; 2603 tx_info->status.ampdu_ack_len = nframes - nbad; 2604 2605 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2606 2607 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2608 tx_info->status.rates[i].count = 0; 2609 tx_info->status.rates[i].idx = -1; 2610 } 2611 2612 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2613 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2614 /* 2615 * If an underrun error is seen assume it as an excessive 2616 * retry only if max frame trigger level has been reached 2617 * (2 KB for single stream, and 4 KB for dual stream). 2618 * Adjust the long retry as if the frame was tried 2619 * hw->max_rate_tries times to affect how rate control updates 2620 * PER for the failed rate. 2621 * In case of congestion on the bus penalizing this type of 2622 * underruns should help hardware actually transmit new frames 2623 * successfully by eventually preferring slower rates. 2624 * This itself should also alleviate congestion on the bus. 2625 */ 2626 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2627 ATH9K_TX_DELIM_UNDERRUN)) && 2628 ieee80211_is_data(hdr->frame_control) && 2629 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2630 tx_info->status.rates[tx_rateindex].count = 2631 hw->max_rate_tries; 2632 } 2633 } 2634 2635 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2636 { 2637 struct ath_hw *ah = sc->sc_ah; 2638 struct ath_common *common = ath9k_hw_common(ah); 2639 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2640 struct list_head bf_head; 2641 struct ath_desc *ds; 2642 struct ath_tx_status ts; 2643 int status; 2644 2645 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2646 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2647 txq->axq_link); 2648 2649 ath_txq_lock(sc, txq); 2650 for (;;) { 2651 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2652 break; 2653 2654 if (list_empty(&txq->axq_q)) { 2655 txq->axq_link = NULL; 2656 ath_txq_schedule(sc, txq); 2657 break; 2658 } 2659 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2660 2661 /* 2662 * There is a race condition that a BH gets scheduled 2663 * after sw writes TxE and before hw re-load the last 2664 * descriptor to get the newly chained one. 2665 * Software must keep the last DONE descriptor as a 2666 * holding descriptor - software does so by marking 2667 * it with the STALE flag. 2668 */ 2669 bf_held = NULL; 2670 if (bf->bf_state.stale) { 2671 bf_held = bf; 2672 if (list_is_last(&bf_held->list, &txq->axq_q)) 2673 break; 2674 2675 bf = list_entry(bf_held->list.next, struct ath_buf, 2676 list); 2677 } 2678 2679 lastbf = bf->bf_lastbf; 2680 ds = lastbf->bf_desc; 2681 2682 memset(&ts, 0, sizeof(ts)); 2683 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2684 if (status == -EINPROGRESS) 2685 break; 2686 2687 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2688 2689 /* 2690 * Remove ath_buf's of the same transmit unit from txq, 2691 * however leave the last descriptor back as the holding 2692 * descriptor for hw. 2693 */ 2694 lastbf->bf_state.stale = true; 2695 INIT_LIST_HEAD(&bf_head); 2696 if (!list_is_singular(&lastbf->list)) 2697 list_cut_position(&bf_head, 2698 &txq->axq_q, lastbf->list.prev); 2699 2700 if (bf_held) { 2701 list_del(&bf_held->list); 2702 ath_tx_return_buffer(sc, bf_held); 2703 } 2704 2705 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2706 } 2707 ath_txq_unlock_complete(sc, txq); 2708 } 2709 2710 void ath_tx_tasklet(struct ath_softc *sc) 2711 { 2712 struct ath_hw *ah = sc->sc_ah; 2713 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2714 int i; 2715 2716 rcu_read_lock(); 2717 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2718 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2719 ath_tx_processq(sc, &sc->tx.txq[i]); 2720 } 2721 rcu_read_unlock(); 2722 } 2723 2724 void ath_tx_edma_tasklet(struct ath_softc *sc) 2725 { 2726 struct ath_tx_status ts; 2727 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2728 struct ath_hw *ah = sc->sc_ah; 2729 struct ath_txq *txq; 2730 struct ath_buf *bf, *lastbf; 2731 struct list_head bf_head; 2732 struct list_head *fifo_list; 2733 int status; 2734 2735 rcu_read_lock(); 2736 for (;;) { 2737 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2738 break; 2739 2740 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2741 if (status == -EINPROGRESS) 2742 break; 2743 if (status == -EIO) { 2744 ath_dbg(common, XMIT, "Error processing tx status\n"); 2745 break; 2746 } 2747 2748 /* Process beacon completions separately */ 2749 if (ts.qid == sc->beacon.beaconq) { 2750 sc->beacon.tx_processed = true; 2751 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2752 2753 if (ath9k_is_chanctx_enabled()) { 2754 ath_chanctx_event(sc, NULL, 2755 ATH_CHANCTX_EVENT_BEACON_SENT); 2756 } 2757 2758 ath9k_csa_update(sc); 2759 continue; 2760 } 2761 2762 txq = &sc->tx.txq[ts.qid]; 2763 2764 ath_txq_lock(sc, txq); 2765 2766 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2767 2768 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2769 if (list_empty(fifo_list)) { 2770 ath_txq_unlock(sc, txq); 2771 break; 2772 } 2773 2774 bf = list_first_entry(fifo_list, struct ath_buf, list); 2775 if (bf->bf_state.stale) { 2776 list_del(&bf->list); 2777 ath_tx_return_buffer(sc, bf); 2778 bf = list_first_entry(fifo_list, struct ath_buf, list); 2779 } 2780 2781 lastbf = bf->bf_lastbf; 2782 2783 INIT_LIST_HEAD(&bf_head); 2784 if (list_is_last(&lastbf->list, fifo_list)) { 2785 list_splice_tail_init(fifo_list, &bf_head); 2786 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2787 2788 if (!list_empty(&txq->axq_q)) { 2789 struct list_head bf_q; 2790 2791 INIT_LIST_HEAD(&bf_q); 2792 txq->axq_link = NULL; 2793 list_splice_tail_init(&txq->axq_q, &bf_q); 2794 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2795 } 2796 } else { 2797 lastbf->bf_state.stale = true; 2798 if (bf != lastbf) 2799 list_cut_position(&bf_head, fifo_list, 2800 lastbf->list.prev); 2801 } 2802 2803 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2804 ath_txq_unlock_complete(sc, txq); 2805 } 2806 rcu_read_unlock(); 2807 } 2808 2809 /*****************/ 2810 /* Init, Cleanup */ 2811 /*****************/ 2812 2813 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2814 { 2815 struct ath_descdma *dd = &sc->txsdma; 2816 u8 txs_len = sc->sc_ah->caps.txs_len; 2817 2818 dd->dd_desc_len = size * txs_len; 2819 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2820 &dd->dd_desc_paddr, GFP_KERNEL); 2821 if (!dd->dd_desc) 2822 return -ENOMEM; 2823 2824 return 0; 2825 } 2826 2827 static int ath_tx_edma_init(struct ath_softc *sc) 2828 { 2829 int err; 2830 2831 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2832 if (!err) 2833 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2834 sc->txsdma.dd_desc_paddr, 2835 ATH_TXSTATUS_RING_SIZE); 2836 2837 return err; 2838 } 2839 2840 int ath_tx_init(struct ath_softc *sc, int nbufs) 2841 { 2842 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2843 int error = 0; 2844 2845 spin_lock_init(&sc->tx.txbuflock); 2846 2847 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2848 "tx", nbufs, 1, 1); 2849 if (error != 0) { 2850 ath_err(common, 2851 "Failed to allocate tx descriptors: %d\n", error); 2852 return error; 2853 } 2854 2855 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2856 "beacon", ATH_BCBUF, 1, 1); 2857 if (error != 0) { 2858 ath_err(common, 2859 "Failed to allocate beacon descriptors: %d\n", error); 2860 return error; 2861 } 2862 2863 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2864 error = ath_tx_edma_init(sc); 2865 2866 return error; 2867 } 2868 2869 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2870 { 2871 struct ath_atx_tid *tid; 2872 int tidno, acno; 2873 2874 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2875 tid = ath_node_to_tid(an, tidno); 2876 tid->an = an; 2877 tid->tidno = tidno; 2878 tid->seq_start = tid->seq_next = 0; 2879 tid->baw_size = WME_MAX_BA; 2880 tid->baw_head = tid->baw_tail = 0; 2881 tid->active = false; 2882 tid->clear_ps_filter = true; 2883 __skb_queue_head_init(&tid->retry_q); 2884 INIT_LIST_HEAD(&tid->list); 2885 acno = TID_TO_WME_AC(tidno); 2886 tid->txq = sc->tx.txq_map[acno]; 2887 2888 if (!an->sta) 2889 break; /* just one multicast ath_atx_tid */ 2890 } 2891 } 2892 2893 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2894 { 2895 struct ath_atx_tid *tid; 2896 struct ath_txq *txq; 2897 int tidno; 2898 2899 rcu_read_lock(); 2900 2901 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2902 tid = ath_node_to_tid(an, tidno); 2903 txq = tid->txq; 2904 2905 ath_txq_lock(sc, txq); 2906 2907 if (!list_empty(&tid->list)) 2908 list_del_init(&tid->list); 2909 2910 ath_tid_drain(sc, txq, tid); 2911 tid->active = false; 2912 2913 ath_txq_unlock(sc, txq); 2914 2915 if (!an->sta) 2916 break; /* just one multicast ath_atx_tid */ 2917 } 2918 2919 rcu_read_unlock(); 2920 } 2921 2922 #ifdef CONFIG_ATH9K_TX99 2923 2924 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2925 struct ath_tx_control *txctl) 2926 { 2927 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2928 struct ath_frame_info *fi = get_frame_info(skb); 2929 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2930 struct ath_buf *bf; 2931 int padpos, padsize; 2932 2933 padpos = ieee80211_hdrlen(hdr->frame_control); 2934 padsize = padpos & 3; 2935 2936 if (padsize && skb->len > padpos) { 2937 if (skb_headroom(skb) < padsize) { 2938 ath_dbg(common, XMIT, 2939 "tx99 padding failed\n"); 2940 return -EINVAL; 2941 } 2942 2943 skb_push(skb, padsize); 2944 memmove(skb->data, skb->data + padsize, padpos); 2945 } 2946 2947 fi->keyix = ATH9K_TXKEYIX_INVALID; 2948 fi->framelen = skb->len + FCS_LEN; 2949 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2950 2951 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2952 if (!bf) { 2953 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2954 return -EINVAL; 2955 } 2956 2957 ath_set_rates(sc->tx99_vif, NULL, bf); 2958 2959 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2960 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2961 2962 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2963 2964 return 0; 2965 } 2966 2967 #endif /* CONFIG_ATH9K_TX99 */ 2968