1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */
38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT 0
39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT 4
40 #define ATH9K_PWRTBL_11NA_HT_SHIFT 8
41 #define ATH9K_PWRTBL_11NG_HT_SHIFT 12
42
43
44 static u16 bits_per_symbol[][2] = {
45 /* 20MHz 40MHz */
46 { 26, 54 }, /* 0: BPSK */
47 { 52, 108 }, /* 1: QPSK 1/2 */
48 { 78, 162 }, /* 2: QPSK 3/4 */
49 { 104, 216 }, /* 3: 16-QAM 1/2 */
50 { 156, 324 }, /* 4: 16-QAM 3/4 */
51 { 208, 432 }, /* 5: 64-QAM 2/3 */
52 { 234, 486 }, /* 6: 64-QAM 3/4 */
53 { 260, 540 }, /* 7: 64-QAM 5/6 */
54 };
55
56 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
57 struct ath_atx_tid *tid, struct sk_buff *skb);
58 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
59 int tx_flags, struct ath_txq *txq,
60 struct ieee80211_sta *sta);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_txq *txq, struct list_head *bf_q,
63 struct ieee80211_sta *sta,
64 struct ath_tx_status *ts, int txok);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 struct list_head *head, bool internal);
67 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
68 struct ath_tx_status *ts, int nframes, int nbad,
69 int txok);
70 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
71 struct ath_buf *bf);
72 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
73 struct ath_txq *txq,
74 struct ath_atx_tid *tid,
75 struct sk_buff *skb);
76 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
77 struct ath_tx_control *txctl);
78
79 enum {
80 MCS_HT20,
81 MCS_HT20_SGI,
82 MCS_HT40,
83 MCS_HT40_SGI,
84 };
85
86 /*********************/
87 /* Aggregation logic */
88 /*********************/
89
ath_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb)90 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
91 {
92 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
93 struct ieee80211_sta *sta = info->status.status_driver_data[0];
94
95 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
96 IEEE80211_TX_STATUS_EOSP)) {
97 ieee80211_tx_status_skb(hw, skb);
98 return;
99 }
100
101 if (sta)
102 ieee80211_tx_status_noskb(hw, sta, info);
103
104 dev_kfree_skb(skb);
105 }
106
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)107 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
108 __releases(&txq->axq_lock)
109 {
110 struct ieee80211_hw *hw = sc->hw;
111 struct sk_buff_head q;
112 struct sk_buff *skb;
113
114 __skb_queue_head_init(&q);
115 skb_queue_splice_init(&txq->complete_q, &q);
116 spin_unlock_bh(&txq->axq_lock);
117
118 while ((skb = __skb_dequeue(&q)))
119 ath_tx_status(hw, skb);
120 }
121
ath_tx_queue_tid(struct ath_softc * sc,struct ath_atx_tid * tid)122 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
123 {
124 struct ieee80211_txq *queue =
125 container_of((void *)tid, struct ieee80211_txq, drv_priv);
126
127 ieee80211_schedule_txq(sc->hw, queue);
128 }
129
ath9k_wake_tx_queue(struct ieee80211_hw * hw,struct ieee80211_txq * queue)130 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
131 {
132 struct ath_softc *sc = hw->priv;
133 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
134 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
135 struct ath_txq *txq = tid->txq;
136
137 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
138 queue->sta ? queue->sta->addr : queue->vif->addr,
139 tid->tidno);
140
141 ath_txq_lock(sc, txq);
142 ath_txq_schedule(sc, txq);
143 ath_txq_unlock(sc, txq);
144 }
145
get_frame_info(struct sk_buff * skb)146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 sizeof(tx_info->status.status_driver_data));
151 return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
152 }
153
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 if (!tid->an->sta)
157 return;
158
159 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
160 seqno << IEEE80211_SEQ_SEQ_SHIFT);
161 }
162
ath_merge_ratetbl(struct ieee80211_sta * sta,struct ath_buf * bf,struct ieee80211_tx_info * tx_info)163 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
164 struct ieee80211_tx_info *tx_info)
165 {
166 struct ieee80211_sta_rates *ratetbl;
167 u8 i;
168
169 if (!sta)
170 return false;
171
172 ratetbl = rcu_dereference(sta->rates);
173 if (!ratetbl)
174 return false;
175
176 if (tx_info->control.rates[0].idx < 0 ||
177 tx_info->control.rates[0].count == 0)
178 {
179 i = 0;
180 } else {
181 bf->rates[0] = tx_info->control.rates[0];
182 i = 1;
183 }
184
185 for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
186 bf->rates[i].idx = ratetbl->rate[i].idx;
187 bf->rates[i].flags = ratetbl->rate[i].flags;
188 if (tx_info->control.use_rts)
189 bf->rates[i].count = ratetbl->rate[i].count_rts;
190 else if (tx_info->control.use_cts_prot)
191 bf->rates[i].count = ratetbl->rate[i].count_cts;
192 else
193 bf->rates[i].count = ratetbl->rate[i].count;
194 }
195
196 return true;
197 }
198
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)199 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
200 struct ath_buf *bf)
201 {
202 struct ieee80211_tx_info *tx_info;
203
204 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
205
206 if (!ath_merge_ratetbl(sta, bf, tx_info))
207 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
208 ARRAY_SIZE(bf->rates));
209 }
210
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)211 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
212 struct sk_buff *skb)
213 {
214 struct ath_frame_info *fi = get_frame_info(skb);
215 int q = fi->txq;
216
217 if (q < 0)
218 return;
219
220 txq = sc->tx.txq_map[q];
221 if (WARN_ON(--txq->pending_frames < 0))
222 txq->pending_frames = 0;
223
224 }
225
226 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)227 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
228 {
229 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
230 return ATH_AN_2_TID(an, tidno);
231 }
232
233 static int
ath_tid_pull(struct ath_atx_tid * tid,struct sk_buff ** skbuf)234 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
235 {
236 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
237 struct ath_softc *sc = tid->an->sc;
238 struct ieee80211_hw *hw = sc->hw;
239 struct ath_tx_control txctl = {
240 .txq = tid->txq,
241 .sta = tid->an->sta,
242 };
243 struct sk_buff *skb;
244 struct ath_frame_info *fi;
245 int q, ret;
246
247 skb = ieee80211_tx_dequeue(hw, txq);
248 if (!skb)
249 return -ENOENT;
250
251 ret = ath_tx_prepare(hw, skb, &txctl);
252 if (ret) {
253 ieee80211_free_txskb(hw, skb);
254 return ret;
255 }
256
257 q = skb_get_queue_mapping(skb);
258 if (tid->txq == sc->tx.txq_map[q]) {
259 fi = get_frame_info(skb);
260 fi->txq = q;
261 ++tid->txq->pending_frames;
262 }
263
264 *skbuf = skb;
265 return 0;
266 }
267
ath_tid_dequeue(struct ath_atx_tid * tid,struct sk_buff ** skb)268 static int ath_tid_dequeue(struct ath_atx_tid *tid,
269 struct sk_buff **skb)
270 {
271 int ret = 0;
272 *skb = __skb_dequeue(&tid->retry_q);
273 if (!*skb)
274 ret = ath_tid_pull(tid, skb);
275
276 return ret;
277 }
278
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)279 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
280 {
281 struct ath_txq *txq = tid->txq;
282 struct sk_buff *skb;
283 struct ath_buf *bf;
284 struct list_head bf_head;
285 struct ath_tx_status ts;
286 struct ath_frame_info *fi;
287 bool sendbar = false;
288
289 INIT_LIST_HEAD(&bf_head);
290
291 memset(&ts, 0, sizeof(ts));
292
293 while ((skb = __skb_dequeue(&tid->retry_q))) {
294 fi = get_frame_info(skb);
295 bf = fi->bf;
296 if (!bf) {
297 ath_txq_skb_done(sc, txq, skb);
298 ieee80211_free_txskb(sc->hw, skb);
299 continue;
300 }
301
302 if (fi->baw_tracked) {
303 ath_tx_update_baw(sc, tid, bf);
304 sendbar = true;
305 }
306
307 list_add_tail(&bf->list, &bf_head);
308 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
309 }
310
311 if (sendbar) {
312 ath_txq_unlock(sc, txq);
313 ath_send_bar(tid, tid->seq_start);
314 ath_txq_lock(sc, txq);
315 }
316 }
317
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)318 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
319 struct ath_buf *bf)
320 {
321 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
322 u16 seqno = bf->bf_state.seqno;
323 int index, cindex;
324
325 if (!fi->baw_tracked)
326 return;
327
328 index = ATH_BA_INDEX(tid->seq_start, seqno);
329 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
330
331 __clear_bit(cindex, tid->tx_buf);
332
333 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
334 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
335 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
336 if (tid->bar_index >= 0)
337 tid->bar_index--;
338 }
339 }
340
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)341 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
342 struct ath_buf *bf)
343 {
344 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
345 u16 seqno = bf->bf_state.seqno;
346 int index, cindex;
347
348 if (fi->baw_tracked)
349 return;
350
351 index = ATH_BA_INDEX(tid->seq_start, seqno);
352 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
353 __set_bit(cindex, tid->tx_buf);
354 fi->baw_tracked = 1;
355
356 if (index >= ((tid->baw_tail - tid->baw_head) &
357 (ATH_TID_MAX_BUFS - 1))) {
358 tid->baw_tail = cindex;
359 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
360 }
361 }
362
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)363 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
364 struct ath_atx_tid *tid)
365
366 {
367 struct sk_buff *skb;
368 struct ath_buf *bf;
369 struct list_head bf_head;
370 struct ath_tx_status ts;
371 struct ath_frame_info *fi;
372
373 memset(&ts, 0, sizeof(ts));
374 INIT_LIST_HEAD(&bf_head);
375
376 while (ath_tid_dequeue(tid, &skb) == 0) {
377 fi = get_frame_info(skb);
378 bf = fi->bf;
379
380 if (!bf) {
381 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
382 continue;
383 }
384
385 list_add_tail(&bf->list, &bf_head);
386 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
387 }
388 }
389
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)390 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
391 struct sk_buff *skb, int count)
392 {
393 struct ath_frame_info *fi = get_frame_info(skb);
394 struct ath_buf *bf = fi->bf;
395 struct ieee80211_hdr *hdr;
396 int prev = fi->retries;
397
398 TX_STAT_INC(sc, txq->axq_qnum, a_retries);
399 fi->retries += count;
400
401 if (prev > 0)
402 return;
403
404 hdr = (struct ieee80211_hdr *)skb->data;
405 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
406 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
407 sizeof(*hdr), DMA_TO_DEVICE);
408 }
409
ath_tx_get_buffer(struct ath_softc * sc)410 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
411 {
412 struct ath_buf *bf = NULL;
413
414 spin_lock_bh(&sc->tx.txbuflock);
415
416 if (unlikely(list_empty(&sc->tx.txbuf))) {
417 spin_unlock_bh(&sc->tx.txbuflock);
418 return NULL;
419 }
420
421 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
422 list_del(&bf->list);
423
424 spin_unlock_bh(&sc->tx.txbuflock);
425
426 return bf;
427 }
428
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)429 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
430 {
431 spin_lock_bh(&sc->tx.txbuflock);
432 list_add_tail(&bf->list, &sc->tx.txbuf);
433 spin_unlock_bh(&sc->tx.txbuflock);
434 }
435
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)436 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
437 {
438 struct ath_buf *tbf;
439
440 tbf = ath_tx_get_buffer(sc);
441 if (WARN_ON(!tbf))
442 return NULL;
443
444 ATH_TXBUF_RESET(tbf);
445
446 tbf->bf_mpdu = bf->bf_mpdu;
447 tbf->bf_buf_addr = bf->bf_buf_addr;
448 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
449 tbf->bf_state = bf->bf_state;
450 tbf->bf_state.stale = false;
451
452 return tbf;
453 }
454
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)455 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
456 struct ath_tx_status *ts, int txok,
457 int *nframes, int *nbad)
458 {
459 u16 seq_st = 0;
460 u32 ba[WME_BA_BMP_SIZE >> 5];
461 int ba_index;
462 int isaggr = 0;
463
464 *nbad = 0;
465 *nframes = 0;
466
467 isaggr = bf_isaggr(bf);
468 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
469
470 if (isaggr) {
471 seq_st = ts->ts_seqnum;
472 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
473 }
474
475 while (bf) {
476 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
477
478 (*nframes)++;
479 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
480 (*nbad)++;
481
482 bf = bf->bf_next;
483 }
484 }
485
486
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_atx_tid * tid,struct ath_tx_status * ts,int txok)487 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
488 struct ath_buf *bf, struct list_head *bf_q,
489 struct ieee80211_sta *sta,
490 struct ath_atx_tid *tid,
491 struct ath_tx_status *ts, int txok)
492 {
493 struct ath_node *an = NULL;
494 struct sk_buff *skb;
495 struct ieee80211_tx_info *tx_info;
496 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
497 struct list_head bf_head;
498 struct sk_buff_head bf_pending;
499 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
500 u32 ba[WME_BA_BMP_SIZE >> 5];
501 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
502 bool rc_update = true, isba;
503 struct ieee80211_tx_rate rates[4];
504 struct ath_frame_info *fi;
505 int nframes;
506 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
507 int i, retries;
508 int bar_index = -1;
509
510 skb = bf->bf_mpdu;
511 tx_info = IEEE80211_SKB_CB(skb);
512
513 memcpy(rates, bf->rates, sizeof(rates));
514
515 retries = ts->ts_longretry + 1;
516 for (i = 0; i < ts->ts_rateindex; i++)
517 retries += rates[i].count;
518
519 if (!sta) {
520 INIT_LIST_HEAD(&bf_head);
521 while (bf) {
522 bf_next = bf->bf_next;
523
524 if (!bf->bf_state.stale || bf_next != NULL)
525 list_move_tail(&bf->list, &bf_head);
526
527 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
528
529 bf = bf_next;
530 }
531 return;
532 }
533
534 an = (struct ath_node *)sta->drv_priv;
535 seq_first = tid->seq_start;
536 isba = ts->ts_flags & ATH9K_TX_BA;
537
538 /*
539 * The hardware occasionally sends a tx status for the wrong TID.
540 * In this case, the BA status cannot be considered valid and all
541 * subframes need to be retransmitted
542 *
543 * Only BlockAcks have a TID and therefore normal Acks cannot be
544 * checked
545 */
546 if (isba && tid->tidno != ts->tid)
547 txok = false;
548
549 isaggr = bf_isaggr(bf);
550 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
551
552 if (isaggr && txok) {
553 if (ts->ts_flags & ATH9K_TX_BA) {
554 seq_st = ts->ts_seqnum;
555 memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
556 } else {
557 /*
558 * AR5416 can become deaf/mute when BA
559 * issue happens. Chip needs to be reset.
560 * But AP code may have sychronization issues
561 * when perform internal reset in this routine.
562 * Only enable reset in STA mode for now.
563 */
564 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
565 needreset = 1;
566 }
567 }
568
569 __skb_queue_head_init(&bf_pending);
570
571 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
572 while (bf) {
573 u16 seqno = bf->bf_state.seqno;
574
575 txfail = txpending = sendbar = 0;
576 bf_next = bf->bf_next;
577
578 skb = bf->bf_mpdu;
579 tx_info = IEEE80211_SKB_CB(skb);
580 fi = get_frame_info(skb);
581
582 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
583 !tid->active) {
584 /*
585 * Outside of the current BlockAck window,
586 * maybe part of a previous session
587 */
588 txfail = 1;
589 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
590 /* transmit completion, subframe is
591 * acked by block ack */
592 acked_cnt++;
593 } else if (!isaggr && txok) {
594 /* transmit completion */
595 acked_cnt++;
596 } else if (flush) {
597 txpending = 1;
598 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
599 if (txok || !an->sleeping)
600 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
601 retries);
602
603 txpending = 1;
604 } else {
605 txfail = 1;
606 txfail_cnt++;
607 bar_index = max_t(int, bar_index,
608 ATH_BA_INDEX(seq_first, seqno));
609 }
610
611 /*
612 * Make sure the last desc is reclaimed if it
613 * not a holding desc.
614 */
615 INIT_LIST_HEAD(&bf_head);
616 if (bf_next != NULL || !bf_last->bf_state.stale)
617 list_move_tail(&bf->list, &bf_head);
618
619 if (!txpending) {
620 /*
621 * complete the acked-ones/xretried ones; update
622 * block-ack window
623 */
624 ath_tx_update_baw(sc, tid, bf);
625
626 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
627 memcpy(tx_info->control.rates, rates, sizeof(rates));
628 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
629 rc_update = false;
630 if (bf == bf->bf_lastbf)
631 ath_dynack_sample_tx_ts(sc->sc_ah,
632 bf->bf_mpdu,
633 ts, sta);
634 }
635
636 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
637 !txfail);
638 } else {
639 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
640 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
641 ieee80211_sta_eosp(sta);
642 }
643 /* retry the un-acked ones */
644 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
645 struct ath_buf *tbf;
646
647 tbf = ath_clone_txbuf(sc, bf_last);
648 /*
649 * Update tx baw and complete the
650 * frame with failed status if we
651 * run out of tx buf.
652 */
653 if (!tbf) {
654 ath_tx_update_baw(sc, tid, bf);
655
656 ath_tx_complete_buf(sc, bf, txq,
657 &bf_head, NULL, ts,
658 0);
659 bar_index = max_t(int, bar_index,
660 ATH_BA_INDEX(seq_first, seqno));
661 break;
662 }
663
664 fi->bf = tbf;
665 }
666
667 /*
668 * Put this buffer to the temporary pending
669 * queue to retain ordering
670 */
671 __skb_queue_tail(&bf_pending, skb);
672 }
673
674 bf = bf_next;
675 }
676
677 /* prepend un-acked frames to the beginning of the pending frame queue */
678 if (!skb_queue_empty(&bf_pending)) {
679 if (an->sleeping)
680 ieee80211_sta_set_buffered(sta, tid->tidno, true);
681
682 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
683 if (!an->sleeping) {
684 ath_tx_queue_tid(sc, tid);
685 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
686 tid->clear_ps_filter = true;
687 }
688 }
689
690 if (bar_index >= 0) {
691 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
692
693 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
694 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
695
696 ath_txq_unlock(sc, txq);
697 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
698 ath_txq_lock(sc, txq);
699 }
700
701 if (needreset)
702 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
703 }
704
bf_is_ampdu_not_probing(struct ath_buf * bf)705 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
706 {
707 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
708 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
709 }
710
ath_tx_count_airtime(struct ath_softc * sc,struct ieee80211_sta * sta,struct ath_buf * bf,struct ath_tx_status * ts,u8 tid)711 static void ath_tx_count_airtime(struct ath_softc *sc,
712 struct ieee80211_sta *sta,
713 struct ath_buf *bf,
714 struct ath_tx_status *ts,
715 u8 tid)
716 {
717 u32 airtime = 0;
718 int i;
719
720 airtime += ts->duration * (ts->ts_longretry + 1);
721 for(i = 0; i < ts->ts_rateindex; i++) {
722 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
723 airtime += rate_dur * bf->rates[i].count;
724 }
725
726 ieee80211_sta_register_airtime(sta, tid, airtime, 0);
727 }
728
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)729 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
730 struct ath_tx_status *ts, struct ath_buf *bf,
731 struct list_head *bf_head)
732 {
733 struct ieee80211_hw *hw = sc->hw;
734 struct ieee80211_tx_info *info;
735 struct ieee80211_sta *sta;
736 struct ieee80211_hdr *hdr;
737 struct ath_atx_tid *tid = NULL;
738 bool txok, flush;
739
740 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
741 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
742 txq->axq_tx_inprogress = false;
743
744 txq->axq_depth--;
745 if (bf_is_ampdu_not_probing(bf))
746 txq->axq_ampdu_depth--;
747
748 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
749 ts->ts_rateindex);
750
751 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
752 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
753 if (sta) {
754 struct ath_node *an = (struct ath_node *)sta->drv_priv;
755 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
756 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
757 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
758 tid->clear_ps_filter = true;
759 }
760
761 if (!bf_isampdu(bf)) {
762 if (!flush) {
763 info = IEEE80211_SKB_CB(bf->bf_mpdu);
764 memcpy(info->control.rates, bf->rates,
765 sizeof(info->control.rates));
766 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
767 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
768 sta);
769 }
770 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
771 } else
772 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
773
774 if (!flush)
775 ath_txq_schedule(sc, txq);
776 }
777
ath_lookup_legacy(struct ath_buf * bf)778 static bool ath_lookup_legacy(struct ath_buf *bf)
779 {
780 struct sk_buff *skb;
781 struct ieee80211_tx_info *tx_info;
782 struct ieee80211_tx_rate *rates;
783 int i;
784
785 skb = bf->bf_mpdu;
786 tx_info = IEEE80211_SKB_CB(skb);
787 rates = tx_info->control.rates;
788
789 for (i = 0; i < 4; i++) {
790 if (!rates[i].count || rates[i].idx < 0)
791 break;
792
793 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
794 return true;
795 }
796
797 return false;
798 }
799
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)800 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
801 struct ath_atx_tid *tid)
802 {
803 struct sk_buff *skb;
804 struct ieee80211_tx_info *tx_info;
805 struct ieee80211_tx_rate *rates;
806 u32 max_4ms_framelen, frmlen;
807 u16 aggr_limit, bt_aggr_limit, legacy = 0;
808 int q = tid->txq->mac80211_qnum;
809 int i;
810
811 skb = bf->bf_mpdu;
812 tx_info = IEEE80211_SKB_CB(skb);
813 rates = bf->rates;
814
815 /*
816 * Find the lowest frame length among the rate series that will have a
817 * 4ms (or TXOP limited) transmit duration.
818 */
819 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
820
821 for (i = 0; i < 4; i++) {
822 int modeidx;
823
824 if (!rates[i].count)
825 continue;
826
827 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
828 legacy = 1;
829 break;
830 }
831
832 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
833 modeidx = MCS_HT40;
834 else
835 modeidx = MCS_HT20;
836
837 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
838 modeidx++;
839
840 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
841 max_4ms_framelen = min(max_4ms_framelen, frmlen);
842 }
843
844 /*
845 * limit aggregate size by the minimum rate if rate selected is
846 * not a probe rate, if rate selected is a probe rate then
847 * avoid aggregation of this packet.
848 */
849 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
850 return 0;
851
852 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
853
854 /*
855 * Override the default aggregation limit for BTCOEX.
856 */
857 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
858 if (bt_aggr_limit)
859 aggr_limit = bt_aggr_limit;
860
861 if (tid->an->maxampdu)
862 aggr_limit = min(aggr_limit, tid->an->maxampdu);
863
864 return aggr_limit;
865 }
866
867 /*
868 * Returns the number of delimiters to be added to
869 * meet the minimum required mpdudensity.
870 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)871 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
872 struct ath_buf *bf, u16 frmlen,
873 bool first_subfrm)
874 {
875 #define FIRST_DESC_NDELIMS 60
876 u32 nsymbits, nsymbols;
877 u16 minlen;
878 u8 flags, rix;
879 int width, streams, half_gi, ndelim, mindelim;
880 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
881
882 /* Select standard number of delimiters based on frame length alone */
883 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
884
885 /*
886 * If encryption enabled, hardware requires some more padding between
887 * subframes.
888 * TODO - this could be improved to be dependent on the rate.
889 * The hardware can keep up at lower rates, but not higher rates
890 */
891 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
892 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
893 ndelim += ATH_AGGR_ENCRYPTDELIM;
894
895 /*
896 * Add delimiter when using RTS/CTS with aggregation
897 * and non enterprise AR9003 card
898 */
899 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
900 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
901 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
902
903 /*
904 * Convert desired mpdu density from microeconds to bytes based
905 * on highest rate in rate series (i.e. first rate) to determine
906 * required minimum length for subframe. Take into account
907 * whether high rate is 20 or 40Mhz and half or full GI.
908 *
909 * If there is no mpdu density restriction, no further calculation
910 * is needed.
911 */
912
913 if (tid->an->mpdudensity == 0)
914 return ndelim;
915
916 rix = bf->rates[0].idx;
917 flags = bf->rates[0].flags;
918 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
919 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
920
921 if (half_gi)
922 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
923 else
924 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
925
926 if (nsymbols == 0)
927 nsymbols = 1;
928
929 streams = HT_RC_2_STREAMS(rix);
930 nsymbits = bits_per_symbol[rix % 8][width] * streams;
931 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
932
933 if (frmlen < minlen) {
934 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
935 ndelim = max(mindelim, ndelim);
936 }
937
938 return ndelim;
939 }
940
941 static int
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct ath_buf ** buf)942 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
943 struct ath_atx_tid *tid, struct ath_buf **buf)
944 {
945 struct ieee80211_tx_info *tx_info;
946 struct ath_frame_info *fi;
947 struct ath_buf *bf;
948 struct sk_buff *skb, *first_skb = NULL;
949 u16 seqno;
950 int ret;
951
952 while (1) {
953 ret = ath_tid_dequeue(tid, &skb);
954 if (ret < 0)
955 return ret;
956
957 fi = get_frame_info(skb);
958 bf = fi->bf;
959 if (!fi->bf)
960 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
961 else
962 bf->bf_state.stale = false;
963
964 if (!bf) {
965 ath_txq_skb_done(sc, txq, skb);
966 ieee80211_free_txskb(sc->hw, skb);
967 continue;
968 }
969
970 bf->bf_next = NULL;
971 bf->bf_lastbf = bf;
972
973 tx_info = IEEE80211_SKB_CB(skb);
974 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
975 IEEE80211_TX_STATUS_EOSP);
976
977 /*
978 * No aggregation session is running, but there may be frames
979 * from a previous session or a failed attempt in the queue.
980 * Send them out as normal data frames
981 */
982 if (!tid->active)
983 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
984
985 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
986 bf->bf_state.bf_type = 0;
987 break;
988 }
989
990 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
991 seqno = bf->bf_state.seqno;
992
993 /* do not step over block-ack window */
994 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
995 __skb_queue_tail(&tid->retry_q, skb);
996
997 /* If there are other skbs in the retry q, they are
998 * probably within the BAW, so loop immediately to get
999 * one of them. Otherwise the queue can get stuck. */
1000 if (!skb_queue_is_first(&tid->retry_q, skb) &&
1001 !WARN_ON(skb == first_skb)) {
1002 if(!first_skb) /* infinite loop prevention */
1003 first_skb = skb;
1004 continue;
1005 }
1006 return -EINPROGRESS;
1007 }
1008
1009 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1010 struct ath_tx_status ts = {};
1011 struct list_head bf_head;
1012
1013 INIT_LIST_HEAD(&bf_head);
1014 list_add(&bf->list, &bf_head);
1015 ath_tx_update_baw(sc, tid, bf);
1016 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1017 continue;
1018 }
1019
1020 if (bf_isampdu(bf))
1021 ath_tx_addto_baw(sc, tid, bf);
1022
1023 break;
1024 }
1025
1026 *buf = bf;
1027 return 0;
1028 }
1029
1030 static int
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1031 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1032 struct ath_atx_tid *tid, struct list_head *bf_q,
1033 struct ath_buf *bf_first)
1034 {
1035 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1036 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1037 int nframes = 0, ndelim, ret;
1038 u16 aggr_limit = 0, al = 0, bpad = 0,
1039 al_delta, h_baw = tid->baw_size / 2;
1040 struct ieee80211_tx_info *tx_info;
1041 struct ath_frame_info *fi;
1042 struct sk_buff *skb;
1043
1044
1045 bf = bf_first;
1046 aggr_limit = ath_lookup_rate(sc, bf, tid);
1047
1048 while (bf)
1049 {
1050 skb = bf->bf_mpdu;
1051 fi = get_frame_info(skb);
1052
1053 /* do not exceed aggregation limit */
1054 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1055 if (nframes) {
1056 if (aggr_limit < al + bpad + al_delta ||
1057 ath_lookup_legacy(bf) || nframes >= h_baw)
1058 goto stop;
1059
1060 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1061 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1062 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1063 goto stop;
1064 }
1065
1066 /* add padding for previous frame to aggregation length */
1067 al += bpad + al_delta;
1068
1069 /*
1070 * Get the delimiters needed to meet the MPDU
1071 * density for this node.
1072 */
1073 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1074 !nframes);
1075 bpad = PADBYTES(al_delta) + (ndelim << 2);
1076
1077 nframes++;
1078 bf->bf_next = NULL;
1079
1080 /* link buffers of this frame to the aggregate */
1081 bf->bf_state.ndelim = ndelim;
1082
1083 list_add_tail(&bf->list, bf_q);
1084 if (bf_prev)
1085 bf_prev->bf_next = bf;
1086
1087 bf_prev = bf;
1088
1089 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1090 if (ret < 0)
1091 break;
1092 }
1093 goto finish;
1094 stop:
1095 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1096 finish:
1097 bf = bf_first;
1098 bf->bf_lastbf = bf_prev;
1099
1100 if (bf == bf_prev) {
1101 al = get_frame_info(bf->bf_mpdu)->framelen;
1102 bf->bf_state.bf_type = BUF_AMPDU;
1103 } else {
1104 TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1105 }
1106
1107 return al;
1108 #undef PADBYTES
1109 }
1110
1111 /*
1112 * rix - rate index
1113 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1114 * width - 0 for 20 MHz, 1 for 40 MHz
1115 * half_gi - to use 4us v/s 3.6 us for symbol time
1116 */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1117 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1118 int width, int half_gi, bool shortPreamble)
1119 {
1120 u32 nbits, nsymbits, duration, nsymbols;
1121 int streams;
1122
1123 /* find number of symbols: PLCP + data */
1124 streams = HT_RC_2_STREAMS(rix);
1125 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1126 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1127 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1128
1129 if (!half_gi)
1130 duration = SYMBOL_TIME(nsymbols);
1131 else
1132 duration = SYMBOL_TIME_HALFGI(nsymbols);
1133
1134 /* addup duration for legacy/ht training and signal fields */
1135 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1136
1137 return duration;
1138 }
1139
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1140 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1141 {
1142 int streams = HT_RC_2_STREAMS(mcs);
1143 int symbols, bits;
1144 int bytes = 0;
1145
1146 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1147 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1148 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1149 bits -= OFDM_PLCP_BITS;
1150 bytes = bits / 8;
1151 if (bytes > 65532)
1152 bytes = 65532;
1153
1154 return bytes;
1155 }
1156
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1157 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1158 {
1159 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1160 int mcs;
1161
1162 /* 4ms is the default (and maximum) duration */
1163 if (!txop || txop > 4096)
1164 txop = 4096;
1165
1166 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1167 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1168 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1169 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1170 for (mcs = 0; mcs < 32; mcs++) {
1171 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1172 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1173 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1174 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1175 }
1176 }
1177
ath_get_rate_txpower(struct ath_softc * sc,struct ath_buf * bf,u8 rateidx,bool is_40,bool is_cck,bool is_mcs)1178 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1179 u8 rateidx, bool is_40, bool is_cck, bool is_mcs)
1180 {
1181 u8 max_power;
1182 struct sk_buff *skb;
1183 struct ath_frame_info *fi;
1184 struct ieee80211_tx_info *info;
1185 struct ath_hw *ah = sc->sc_ah;
1186 bool is_2ghz, is_5ghz, use_stbc;
1187
1188 if (sc->tx99_state || !ah->tpc_enabled)
1189 return MAX_RATE_POWER;
1190
1191 skb = bf->bf_mpdu;
1192 fi = get_frame_info(skb);
1193 info = IEEE80211_SKB_CB(skb);
1194
1195 is_2ghz = info->band == NL80211_BAND_2GHZ;
1196 is_5ghz = info->band == NL80211_BAND_5GHZ;
1197 use_stbc = is_mcs && rateidx < 8 && (info->flags &
1198 IEEE80211_TX_CTL_STBC);
1199
1200 if (is_mcs)
1201 rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT
1202 : ATH9K_PWRTBL_11NG_HT_SHIFT;
1203 else if (is_2ghz && !is_cck)
1204 rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT;
1205 else
1206 rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT;
1207
1208 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1209 int txpower = fi->tx_power;
1210
1211 if (is_40) {
1212 u8 power_ht40delta;
1213 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1214 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1215
1216 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1217 struct modal_eep_header *pmodal;
1218
1219 pmodal = &eep->modalHeader[is_2ghz];
1220 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1221 } else {
1222 power_ht40delta = 2;
1223 }
1224 txpower += power_ht40delta;
1225 }
1226
1227 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1228 AR_SREV_9271(ah)) {
1229 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1230 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1231 s8 power_offset;
1232
1233 power_offset = ah->eep_ops->get_eeprom(ah,
1234 EEP_PWR_TABLE_OFFSET);
1235 txpower -= 2 * power_offset;
1236 }
1237
1238 if (OLC_FOR_AR9280_20_LATER(ah) && is_cck)
1239 txpower -= 2;
1240
1241 txpower = max(txpower, 0);
1242 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1243
1244 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1245 * max_power is set to 0, frames are transmitted at max
1246 * TX power
1247 */
1248 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1249 max_power = 1;
1250 } else if (!bf->bf_state.bfs_paprd) {
1251 if (use_stbc)
1252 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1253 fi->tx_power);
1254 else
1255 max_power = min_t(u8, ah->tx_power[rateidx],
1256 fi->tx_power);
1257 } else {
1258 max_power = ah->paprd_training_power;
1259 }
1260
1261 return max_power;
1262 }
1263
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1264 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1265 struct ath_tx_info *info, int len, bool rts)
1266 {
1267 struct ath_hw *ah = sc->sc_ah;
1268 struct ath_common *common = ath9k_hw_common(ah);
1269 struct sk_buff *skb;
1270 struct ieee80211_tx_info *tx_info;
1271 struct ieee80211_tx_rate *rates;
1272 const struct ieee80211_rate *rate;
1273 struct ieee80211_hdr *hdr;
1274 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1275 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1276 int i;
1277 u8 rix = 0;
1278
1279 skb = bf->bf_mpdu;
1280 tx_info = IEEE80211_SKB_CB(skb);
1281 rates = bf->rates;
1282 hdr = (struct ieee80211_hdr *)skb->data;
1283
1284 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1285 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1286 info->rtscts_rate = fi->rtscts_rate;
1287
1288 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1289 bool is_40, is_sgi, is_sp, is_cck;
1290 int phy;
1291
1292 if (!rates[i].count || (rates[i].idx < 0))
1293 break;
1294
1295 rix = rates[i].idx;
1296 info->rates[i].Tries = rates[i].count;
1297
1298 /*
1299 * Handle RTS threshold for unaggregated HT frames.
1300 */
1301 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1302 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1303 unlikely(rts_thresh != (u32) -1)) {
1304 if (!rts_thresh || (len > rts_thresh))
1305 rts = true;
1306 }
1307
1308 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1309 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1310 info->flags |= ATH9K_TXDESC_RTSENA;
1311 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1312 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1313 info->flags |= ATH9K_TXDESC_CTSENA;
1314 }
1315
1316 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1317 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1318 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1319 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1320
1321 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1322 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1323 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1324
1325 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1326 /* MCS rates */
1327 info->rates[i].Rate = rix | 0x80;
1328 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1329 ah->txchainmask, info->rates[i].Rate);
1330 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1331 is_40, is_sgi, is_sp);
1332 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1333 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1334 if (rix >= 8 && fi->dyn_smps) {
1335 info->rates[i].RateFlags |=
1336 ATH9K_RATESERIES_RTS_CTS;
1337 info->flags |= ATH9K_TXDESC_CTSENA;
1338 }
1339
1340 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1341 is_40, false, true);
1342 continue;
1343 }
1344
1345 /* legacy rates */
1346 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1347 if ((tx_info->band == NL80211_BAND_2GHZ) &&
1348 !(rate->flags & IEEE80211_RATE_ERP_G))
1349 phy = WLAN_RC_PHY_CCK;
1350 else
1351 phy = WLAN_RC_PHY_OFDM;
1352
1353 info->rates[i].Rate = rate->hw_value;
1354 if (rate->hw_value_short) {
1355 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1356 info->rates[i].Rate |= rate->hw_value_short;
1357 } else {
1358 is_sp = false;
1359 }
1360
1361 if (bf->bf_state.bfs_paprd)
1362 info->rates[i].ChSel = ah->txchainmask;
1363 else
1364 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1365 ah->txchainmask, info->rates[i].Rate);
1366
1367 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1368 phy, rate->bitrate * 100, len, rix, is_sp);
1369
1370 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1371 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1372 is_cck, false);
1373 }
1374
1375 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1376 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1377 info->flags &= ~ATH9K_TXDESC_RTSENA;
1378
1379 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1380 if (info->flags & ATH9K_TXDESC_RTSENA)
1381 info->flags &= ~ATH9K_TXDESC_CTSENA;
1382 }
1383
get_hw_packet_type(struct sk_buff * skb)1384 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1385 {
1386 struct ieee80211_hdr *hdr;
1387 enum ath9k_pkt_type htype;
1388 __le16 fc;
1389
1390 hdr = (struct ieee80211_hdr *)skb->data;
1391 fc = hdr->frame_control;
1392
1393 if (ieee80211_is_beacon(fc))
1394 htype = ATH9K_PKT_TYPE_BEACON;
1395 else if (ieee80211_is_probe_resp(fc))
1396 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1397 else if (ieee80211_is_atim(fc))
1398 htype = ATH9K_PKT_TYPE_ATIM;
1399 else if (ieee80211_is_pspoll(fc))
1400 htype = ATH9K_PKT_TYPE_PSPOLL;
1401 else
1402 htype = ATH9K_PKT_TYPE_NORMAL;
1403
1404 return htype;
1405 }
1406
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1407 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1408 struct ath_txq *txq, int len)
1409 {
1410 struct ath_hw *ah = sc->sc_ah;
1411 struct ath_buf *bf_first = NULL;
1412 struct ath_tx_info info;
1413 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1414 bool rts = false;
1415
1416 memset(&info, 0, sizeof(info));
1417 info.is_first = true;
1418 info.is_last = true;
1419 info.qcu = txq->axq_qnum;
1420
1421 while (bf) {
1422 struct sk_buff *skb = bf->bf_mpdu;
1423 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1424 struct ath_frame_info *fi = get_frame_info(skb);
1425 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1426
1427 info.type = get_hw_packet_type(skb);
1428 if (bf->bf_next)
1429 info.link = bf->bf_next->bf_daddr;
1430 else
1431 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1432
1433 if (!bf_first) {
1434 bf_first = bf;
1435
1436 if (!sc->tx99_state)
1437 info.flags = ATH9K_TXDESC_INTREQ;
1438 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1439 txq == sc->tx.uapsdq)
1440 info.flags |= ATH9K_TXDESC_CLRDMASK;
1441
1442 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1443 info.flags |= ATH9K_TXDESC_NOACK;
1444 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1445 info.flags |= ATH9K_TXDESC_LDPC;
1446
1447 if (bf->bf_state.bfs_paprd)
1448 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1449 ATH9K_TXDESC_PAPRD_S;
1450
1451 /*
1452 * mac80211 doesn't handle RTS threshold for HT because
1453 * the decision has to be taken based on AMPDU length
1454 * and aggregation is done entirely inside ath9k.
1455 * Set the RTS/CTS flag for the first subframe based
1456 * on the threshold.
1457 */
1458 if (aggr && (bf == bf_first) &&
1459 unlikely(rts_thresh != (u32) -1)) {
1460 /*
1461 * "len" is the size of the entire AMPDU.
1462 */
1463 if (!rts_thresh || (len > rts_thresh))
1464 rts = true;
1465 }
1466
1467 if (!aggr)
1468 len = fi->framelen;
1469
1470 ath_buf_set_rate(sc, bf, &info, len, rts);
1471 }
1472
1473 info.buf_addr[0] = bf->bf_buf_addr;
1474 info.buf_len[0] = skb->len;
1475 info.pkt_len = fi->framelen;
1476 info.keyix = fi->keyix;
1477 info.keytype = fi->keytype;
1478
1479 if (aggr) {
1480 if (bf == bf_first)
1481 info.aggr = AGGR_BUF_FIRST;
1482 else if (bf == bf_first->bf_lastbf)
1483 info.aggr = AGGR_BUF_LAST;
1484 else
1485 info.aggr = AGGR_BUF_MIDDLE;
1486
1487 info.ndelim = bf->bf_state.ndelim;
1488 info.aggr_len = len;
1489 }
1490
1491 if (bf == bf_first->bf_lastbf)
1492 bf_first = NULL;
1493
1494 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1495 bf = bf->bf_next;
1496 }
1497 }
1498
1499 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1500 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1501 struct ath_atx_tid *tid, struct list_head *bf_q,
1502 struct ath_buf *bf_first)
1503 {
1504 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1505 int nframes = 0, ret;
1506
1507 do {
1508 struct ieee80211_tx_info *tx_info;
1509
1510 nframes++;
1511 list_add_tail(&bf->list, bf_q);
1512 if (bf_prev)
1513 bf_prev->bf_next = bf;
1514 bf_prev = bf;
1515
1516 if (nframes >= 2)
1517 break;
1518
1519 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1520 if (ret < 0)
1521 break;
1522
1523 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1524 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1525 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1526 break;
1527 }
1528
1529 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1530 } while (1);
1531 }
1532
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)1533 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1534 struct ath_atx_tid *tid)
1535 {
1536 struct ath_buf *bf = NULL;
1537 struct ieee80211_tx_info *tx_info;
1538 struct list_head bf_q;
1539 int aggr_len = 0, ret;
1540 bool aggr;
1541
1542 INIT_LIST_HEAD(&bf_q);
1543
1544 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1545 if (ret < 0)
1546 return ret;
1547
1548 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1549 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1550 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1551 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1552 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1553 return -EBUSY;
1554 }
1555
1556 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1557 if (aggr)
1558 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1559 else
1560 ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1561
1562 if (list_empty(&bf_q))
1563 return -EAGAIN;
1564
1565 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1566 tid->clear_ps_filter = false;
1567 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1568 }
1569
1570 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1571 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1572 return 0;
1573 }
1574
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1575 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1576 u16 tid, u16 *ssn)
1577 {
1578 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1579 struct ath_atx_tid *txtid;
1580 struct ath_txq *txq;
1581 struct ath_node *an;
1582 u8 density;
1583
1584 ath_dbg(common, XMIT, "%s called\n", __func__);
1585
1586 an = (struct ath_node *)sta->drv_priv;
1587 txtid = ATH_AN_2_TID(an, tid);
1588 txq = txtid->txq;
1589
1590 ath_txq_lock(sc, txq);
1591
1592 /* update ampdu factor/density, they may have changed. This may happen
1593 * in HT IBSS when a beacon with HT-info is received after the station
1594 * has already been added.
1595 */
1596 if (sta->deflink.ht_cap.ht_supported) {
1597 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1598 sta->deflink.ht_cap.ampdu_factor)) - 1;
1599 density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
1600 an->mpdudensity = density;
1601 }
1602
1603 txtid->active = true;
1604 *ssn = txtid->seq_start = txtid->seq_next;
1605 txtid->bar_index = -1;
1606
1607 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1608 txtid->baw_head = txtid->baw_tail = 0;
1609
1610 ath_txq_unlock_complete(sc, txq);
1611
1612 return 0;
1613 }
1614
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1615 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1616 {
1617 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1618 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1619 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1620 struct ath_txq *txq = txtid->txq;
1621
1622 ath_dbg(common, XMIT, "%s called\n", __func__);
1623
1624 ath_txq_lock(sc, txq);
1625 txtid->active = false;
1626 ath_tx_flush_tid(sc, txtid);
1627 ath_txq_unlock_complete(sc, txq);
1628 }
1629
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1630 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1631 struct ath_node *an)
1632 {
1633 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1634 struct ath_atx_tid *tid;
1635 int tidno;
1636
1637 ath_dbg(common, XMIT, "%s called\n", __func__);
1638
1639 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1640 tid = ath_node_to_tid(an, tidno);
1641
1642 if (!skb_queue_empty(&tid->retry_q))
1643 ieee80211_sta_set_buffered(sta, tid->tidno, true);
1644
1645 }
1646 }
1647
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1648 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1649 {
1650 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1651 struct ath_atx_tid *tid;
1652 struct ath_txq *txq;
1653 int tidno;
1654
1655 ath_dbg(common, XMIT, "%s called\n", __func__);
1656
1657 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1658 tid = ath_node_to_tid(an, tidno);
1659 txq = tid->txq;
1660
1661 ath_txq_lock(sc, txq);
1662 tid->clear_ps_filter = true;
1663 if (!skb_queue_empty(&tid->retry_q)) {
1664 ath_tx_queue_tid(sc, tid);
1665 ath_txq_schedule(sc, txq);
1666 }
1667 ath_txq_unlock_complete(sc, txq);
1668
1669 }
1670 }
1671
1672
1673 static void
ath9k_set_moredata(struct ath_softc * sc,struct ath_buf * bf,bool val)1674 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1675 {
1676 struct ieee80211_hdr *hdr;
1677 __le16 mask, mask_val;
1678
1679 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1680
1681 if (val)
1682 mask_val = mask;
1683 else
1684 mask_val = 0;
1685
1686 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1687 if ((hdr->frame_control & mask) != mask_val) {
1688 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1689 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1690 sizeof(*hdr), DMA_TO_DEVICE);
1691 }
1692 }
1693
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1694 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1695 struct ieee80211_sta *sta,
1696 u16 tids, int nframes,
1697 enum ieee80211_frame_release_type reason,
1698 bool more_data)
1699 {
1700 struct ath_softc *sc = hw->priv;
1701 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1702 struct ath_txq *txq = sc->tx.uapsdq;
1703 struct ieee80211_tx_info *info;
1704 struct list_head bf_q;
1705 struct ath_buf *bf_tail = NULL, *bf = NULL;
1706 int i, ret;
1707
1708 INIT_LIST_HEAD(&bf_q);
1709 for (i = 0; tids && nframes; i++, tids >>= 1) {
1710 struct ath_atx_tid *tid;
1711
1712 if (!(tids & 1))
1713 continue;
1714
1715 tid = ATH_AN_2_TID(an, i);
1716
1717 ath_txq_lock(sc, tid->txq);
1718 while (nframes > 0) {
1719 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1720 tid, &bf);
1721 if (ret < 0)
1722 break;
1723
1724 ath9k_set_moredata(sc, bf, true);
1725 list_add_tail(&bf->list, &bf_q);
1726 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1727 if (bf_isampdu(bf))
1728 bf->bf_state.bf_type &= ~BUF_AGGR;
1729 if (bf_tail)
1730 bf_tail->bf_next = bf;
1731
1732 bf_tail = bf;
1733 nframes--;
1734 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1735
1736 if (an->sta && skb_queue_empty(&tid->retry_q))
1737 ieee80211_sta_set_buffered(an->sta, i, false);
1738 }
1739 ath_txq_unlock_complete(sc, tid->txq);
1740 }
1741
1742 if (list_empty(&bf_q))
1743 return;
1744
1745 if (!more_data)
1746 ath9k_set_moredata(sc, bf_tail, false);
1747
1748 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1749 info->flags |= IEEE80211_TX_STATUS_EOSP;
1750
1751 bf = list_first_entry(&bf_q, struct ath_buf, list);
1752 ath_txq_lock(sc, txq);
1753 ath_tx_fill_desc(sc, bf, txq, 0);
1754 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1755 ath_txq_unlock(sc, txq);
1756 }
1757
1758 /********************/
1759 /* Queue Management */
1760 /********************/
1761
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1762 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1763 {
1764 struct ath_hw *ah = sc->sc_ah;
1765 struct ath9k_tx_queue_info qi;
1766 static const int subtype_txq_to_hwq[] = {
1767 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1768 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1769 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1770 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1771 };
1772 int axq_qnum, i;
1773
1774 memset(&qi, 0, sizeof(qi));
1775 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1776 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1777 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1778 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1779 qi.tqi_physCompBuf = 0;
1780
1781 /*
1782 * Enable interrupts only for EOL and DESC conditions.
1783 * We mark tx descriptors to receive a DESC interrupt
1784 * when a tx queue gets deep; otherwise waiting for the
1785 * EOL to reap descriptors. Note that this is done to
1786 * reduce interrupt load and this only defers reaping
1787 * descriptors, never transmitting frames. Aside from
1788 * reducing interrupts this also permits more concurrency.
1789 * The only potential downside is if the tx queue backs
1790 * up in which case the top half of the kernel may backup
1791 * due to a lack of tx descriptors.
1792 *
1793 * The UAPSD queue is an exception, since we take a desc-
1794 * based intr on the EOSP frames.
1795 */
1796 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1797 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1798 } else {
1799 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1800 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1801 else
1802 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1803 TXQ_FLAG_TXDESCINT_ENABLE;
1804 }
1805 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1806 if (axq_qnum == -1) {
1807 /*
1808 * NB: don't print a message, this happens
1809 * normally on parts with too few tx queues
1810 */
1811 return NULL;
1812 }
1813 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1814 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1815
1816 txq->axq_qnum = axq_qnum;
1817 txq->mac80211_qnum = -1;
1818 txq->axq_link = NULL;
1819 __skb_queue_head_init(&txq->complete_q);
1820 INIT_LIST_HEAD(&txq->axq_q);
1821 spin_lock_init(&txq->axq_lock);
1822 txq->axq_depth = 0;
1823 txq->axq_ampdu_depth = 0;
1824 txq->axq_tx_inprogress = false;
1825 sc->tx.txqsetup |= 1<<axq_qnum;
1826
1827 txq->txq_headidx = txq->txq_tailidx = 0;
1828 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1829 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1830 }
1831 return &sc->tx.txq[axq_qnum];
1832 }
1833
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1834 int ath_txq_update(struct ath_softc *sc, int qnum,
1835 struct ath9k_tx_queue_info *qinfo)
1836 {
1837 struct ath_hw *ah = sc->sc_ah;
1838 int error = 0;
1839 struct ath9k_tx_queue_info qi;
1840
1841 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1842
1843 ath9k_hw_get_txq_props(ah, qnum, &qi);
1844 qi.tqi_aifs = qinfo->tqi_aifs;
1845 qi.tqi_cwmin = qinfo->tqi_cwmin;
1846 qi.tqi_cwmax = qinfo->tqi_cwmax;
1847 qi.tqi_burstTime = qinfo->tqi_burstTime;
1848 qi.tqi_readyTime = qinfo->tqi_readyTime;
1849
1850 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1851 ath_err(ath9k_hw_common(sc->sc_ah),
1852 "Unable to update hardware queue %u!\n", qnum);
1853 error = -EIO;
1854 } else {
1855 ath9k_hw_resettxqueue(ah, qnum);
1856 }
1857
1858 return error;
1859 }
1860
ath_cabq_update(struct ath_softc * sc)1861 int ath_cabq_update(struct ath_softc *sc)
1862 {
1863 struct ath9k_tx_queue_info qi;
1864 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1865 int qnum = sc->beacon.cabq->axq_qnum;
1866
1867 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1868
1869 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1870 ATH_CABQ_READY_TIME) / 100;
1871 ath_txq_update(sc, qnum, &qi);
1872
1873 return 0;
1874 }
1875
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1876 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1877 struct list_head *list)
1878 {
1879 struct ath_buf *bf, *lastbf;
1880 struct list_head bf_head;
1881 struct ath_tx_status ts;
1882
1883 memset(&ts, 0, sizeof(ts));
1884 ts.ts_status = ATH9K_TX_FLUSH;
1885 INIT_LIST_HEAD(&bf_head);
1886
1887 while (!list_empty(list)) {
1888 bf = list_first_entry(list, struct ath_buf, list);
1889
1890 if (bf->bf_state.stale) {
1891 list_del(&bf->list);
1892
1893 ath_tx_return_buffer(sc, bf);
1894 continue;
1895 }
1896
1897 lastbf = bf->bf_lastbf;
1898 list_cut_position(&bf_head, list, &lastbf->list);
1899 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1900 }
1901 }
1902
1903 /*
1904 * Drain a given TX queue (could be Beacon or Data)
1905 *
1906 * This assumes output has been stopped and
1907 * we do not need to block ath_tx_tasklet.
1908 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1909 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1910 {
1911 rcu_read_lock();
1912 ath_txq_lock(sc, txq);
1913
1914 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1915 int idx = txq->txq_tailidx;
1916
1917 while (!list_empty(&txq->txq_fifo[idx])) {
1918 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1919
1920 INCR(idx, ATH_TXFIFO_DEPTH);
1921 }
1922 txq->txq_tailidx = idx;
1923 }
1924
1925 txq->axq_link = NULL;
1926 txq->axq_tx_inprogress = false;
1927 ath_drain_txq_list(sc, txq, &txq->axq_q);
1928
1929 ath_txq_unlock_complete(sc, txq);
1930 rcu_read_unlock();
1931 }
1932
ath_drain_all_txq(struct ath_softc * sc)1933 bool ath_drain_all_txq(struct ath_softc *sc)
1934 {
1935 struct ath_hw *ah = sc->sc_ah;
1936 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1937 struct ath_txq *txq;
1938 int i;
1939 u32 npend = 0;
1940
1941 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1942 return true;
1943
1944 ath9k_hw_abort_tx_dma(ah);
1945
1946 /* Check if any queue remains active */
1947 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1948 if (!ATH_TXQ_SETUP(sc, i))
1949 continue;
1950
1951 if (!sc->tx.txq[i].axq_depth)
1952 continue;
1953
1954 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1955 npend |= BIT(i);
1956 }
1957
1958 if (npend) {
1959 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1960 ath_dbg(common, RESET,
1961 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1962 }
1963
1964 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1965 if (!ATH_TXQ_SETUP(sc, i))
1966 continue;
1967
1968 txq = &sc->tx.txq[i];
1969 ath_draintxq(sc, txq);
1970 }
1971
1972 return !npend;
1973 }
1974
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1975 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1976 {
1977 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1978 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1979 }
1980
1981 /* For each acq entry, for each tid, try to schedule packets
1982 * for transmit until ampdu_depth has reached min Q depth.
1983 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1984 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1985 {
1986 struct ieee80211_hw *hw = sc->hw;
1987 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1988 struct ieee80211_txq *queue;
1989 struct ath_atx_tid *tid;
1990 int ret;
1991
1992 if (txq->mac80211_qnum < 0)
1993 return;
1994
1995 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1996 return;
1997
1998 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1999 spin_lock_bh(&sc->chan_lock);
2000 rcu_read_lock();
2001
2002 if (sc->cur_chan->stopped)
2003 goto out;
2004
2005 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
2006 bool force;
2007
2008 tid = (struct ath_atx_tid *)queue->drv_priv;
2009
2010 ret = ath_tx_sched_aggr(sc, txq, tid);
2011 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
2012
2013 force = !skb_queue_empty(&tid->retry_q);
2014 ieee80211_return_txq(hw, queue, force);
2015 }
2016
2017 out:
2018 rcu_read_unlock();
2019 spin_unlock_bh(&sc->chan_lock);
2020 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
2021 }
2022
ath_txq_schedule_all(struct ath_softc * sc)2023 void ath_txq_schedule_all(struct ath_softc *sc)
2024 {
2025 struct ath_txq *txq;
2026 int i;
2027
2028 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2029 txq = sc->tx.txq_map[i];
2030
2031 spin_lock_bh(&txq->axq_lock);
2032 ath_txq_schedule(sc, txq);
2033 spin_unlock_bh(&txq->axq_lock);
2034 }
2035 }
2036
2037 /***********/
2038 /* TX, DMA */
2039 /***********/
2040
2041 /*
2042 * Insert a chain of ath_buf (descriptors) on a txq and
2043 * assume the descriptors are already chained together by caller.
2044 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)2045 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2046 struct list_head *head, bool internal)
2047 {
2048 struct ath_hw *ah = sc->sc_ah;
2049 struct ath_common *common = ath9k_hw_common(ah);
2050 struct ath_buf *bf, *bf_last;
2051 bool puttxbuf = false;
2052 bool edma;
2053
2054 /*
2055 * Insert the frame on the outbound list and
2056 * pass it on to the hardware.
2057 */
2058
2059 if (list_empty(head))
2060 return;
2061
2062 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2063 bf = list_first_entry(head, struct ath_buf, list);
2064 bf_last = list_entry(head->prev, struct ath_buf, list);
2065
2066 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2067 txq->axq_qnum, txq->axq_depth);
2068
2069 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2070 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2071 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2072 puttxbuf = true;
2073 } else {
2074 list_splice_tail_init(head, &txq->axq_q);
2075
2076 if (txq->axq_link) {
2077 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2078 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2079 txq->axq_qnum, txq->axq_link,
2080 ito64(bf->bf_daddr), bf->bf_desc);
2081 } else if (!edma)
2082 puttxbuf = true;
2083
2084 txq->axq_link = bf_last->bf_desc;
2085 }
2086
2087 if (puttxbuf) {
2088 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2089 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2090 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2091 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2092 }
2093
2094 if (!edma || sc->tx99_state) {
2095 TX_STAT_INC(sc, txq->axq_qnum, txstart);
2096 ath9k_hw_txstart(ah, txq->axq_qnum);
2097 }
2098
2099 if (!internal) {
2100 while (bf) {
2101 txq->axq_depth++;
2102 if (bf_is_ampdu_not_probing(bf))
2103 txq->axq_ampdu_depth++;
2104
2105 bf_last = bf->bf_lastbf;
2106 bf = bf_last->bf_next;
2107 bf_last->bf_next = NULL;
2108 }
2109 }
2110 }
2111
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2112 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2113 struct ath_atx_tid *tid, struct sk_buff *skb)
2114 {
2115 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2116 struct ath_frame_info *fi = get_frame_info(skb);
2117 struct list_head bf_head;
2118 struct ath_buf *bf = fi->bf;
2119
2120 INIT_LIST_HEAD(&bf_head);
2121 list_add_tail(&bf->list, &bf_head);
2122 bf->bf_state.bf_type = 0;
2123 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2124 bf->bf_state.bf_type = BUF_AMPDU;
2125 ath_tx_addto_baw(sc, tid, bf);
2126 }
2127
2128 bf->bf_next = NULL;
2129 bf->bf_lastbf = bf;
2130 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2131 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2132 TX_STAT_INC(sc, txq->axq_qnum, queued);
2133 }
2134
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2135 static void setup_frame_info(struct ieee80211_hw *hw,
2136 struct ieee80211_sta *sta,
2137 struct sk_buff *skb,
2138 int framelen)
2139 {
2140 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2141 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2142 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2143 const struct ieee80211_rate *rate;
2144 struct ath_frame_info *fi = get_frame_info(skb);
2145 struct ath_node *an = NULL;
2146 enum ath9k_key_type keytype;
2147 bool short_preamble = false;
2148 u8 txpower;
2149
2150 /*
2151 * We check if Short Preamble is needed for the CTS rate by
2152 * checking the BSS's global flag.
2153 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2154 */
2155 if (tx_info->control.vif &&
2156 tx_info->control.vif->bss_conf.use_short_preamble)
2157 short_preamble = true;
2158
2159 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2160 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2161
2162 if (sta)
2163 an = (struct ath_node *) sta->drv_priv;
2164
2165 if (tx_info->control.vif) {
2166 struct ieee80211_vif *vif = tx_info->control.vif;
2167 if (vif->bss_conf.txpower == INT_MIN)
2168 goto nonvifpower;
2169 txpower = 2 * vif->bss_conf.txpower;
2170 } else {
2171 struct ath_softc *sc;
2172 nonvifpower:
2173 sc = hw->priv;
2174
2175 txpower = sc->cur_chan->cur_txpower;
2176 }
2177
2178 memset(fi, 0, sizeof(*fi));
2179 fi->txq = -1;
2180 if (hw_key)
2181 fi->keyix = hw_key->hw_key_idx;
2182 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2183 fi->keyix = an->ps_key;
2184 else
2185 fi->keyix = ATH9K_TXKEYIX_INVALID;
2186 fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
2187 fi->keytype = keytype;
2188 fi->framelen = framelen;
2189 fi->tx_power = txpower;
2190
2191 if (!rate)
2192 return;
2193 fi->rtscts_rate = rate->hw_value;
2194 if (short_preamble)
2195 fi->rtscts_rate |= rate->hw_value_short;
2196 }
2197
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2198 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2199 {
2200 struct ath_hw *ah = sc->sc_ah;
2201 struct ath9k_channel *curchan = ah->curchan;
2202
2203 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2204 (chainmask == 0x7) && (rate < 0x90))
2205 return 0x3;
2206 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2207 IS_CCK_RATE(rate))
2208 return 0x2;
2209 else
2210 return chainmask;
2211 }
2212
2213 /*
2214 * Assign a descriptor (and sequence number if necessary,
2215 * and map buffer for DMA. Frees skb on error
2216 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2217 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2218 struct ath_txq *txq,
2219 struct ath_atx_tid *tid,
2220 struct sk_buff *skb)
2221 {
2222 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2223 struct ath_frame_info *fi = get_frame_info(skb);
2224 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2225 struct ath_buf *bf;
2226 int fragno;
2227 u16 seqno;
2228
2229 bf = ath_tx_get_buffer(sc);
2230 if (!bf) {
2231 ath_dbg(common, XMIT, "TX buffers are full\n");
2232 return NULL;
2233 }
2234
2235 ATH_TXBUF_RESET(bf);
2236
2237 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2238 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2239 seqno = tid->seq_next;
2240 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2241
2242 if (fragno)
2243 hdr->seq_ctrl |= cpu_to_le16(fragno);
2244
2245 if (!ieee80211_has_morefrags(hdr->frame_control))
2246 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2247
2248 bf->bf_state.seqno = seqno;
2249 }
2250
2251 bf->bf_mpdu = skb;
2252
2253 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2254 skb->len, DMA_TO_DEVICE);
2255 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2256 bf->bf_mpdu = NULL;
2257 bf->bf_buf_addr = 0;
2258 ath_err(ath9k_hw_common(sc->sc_ah),
2259 "dma_mapping_error() on TX\n");
2260 ath_tx_return_buffer(sc, bf);
2261 return NULL;
2262 }
2263
2264 fi->bf = bf;
2265
2266 return bf;
2267 }
2268
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2269 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2270 {
2271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2272 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2273 struct ieee80211_vif *vif = info->control.vif;
2274 struct ath_vif *avp;
2275
2276 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2277 return;
2278
2279 if (!vif)
2280 return;
2281
2282 avp = (struct ath_vif *)vif->drv_priv;
2283
2284 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2285 avp->seq_no += 0x10;
2286
2287 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2288 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2289 }
2290
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2291 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2292 struct ath_tx_control *txctl)
2293 {
2294 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2295 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2296 struct ieee80211_sta *sta = txctl->sta;
2297 struct ieee80211_vif *vif = info->control.vif;
2298 struct ath_vif *avp;
2299 struct ath_softc *sc = hw->priv;
2300 int frmlen = skb->len + FCS_LEN;
2301 int padpos, padsize;
2302
2303 /* NOTE: sta can be NULL according to net/mac80211.h */
2304 if (sta)
2305 txctl->an = (struct ath_node *)sta->drv_priv;
2306 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2307 avp = (void *)vif->drv_priv;
2308 txctl->an = &avp->mcast_node;
2309 }
2310
2311 if (info->control.hw_key)
2312 frmlen += info->control.hw_key->icv_len;
2313
2314 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2315
2316 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2317 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2318 !ieee80211_is_data(hdr->frame_control))
2319 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2320
2321 /* Add the padding after the header if this is not already done */
2322 padpos = ieee80211_hdrlen(hdr->frame_control);
2323 padsize = padpos & 3;
2324 if (padsize && skb->len > padpos) {
2325 if (skb_headroom(skb) < padsize)
2326 return -ENOMEM;
2327
2328 skb_push(skb, padsize);
2329 memmove(skb->data, skb->data + padsize, padpos);
2330 }
2331
2332 setup_frame_info(hw, sta, skb, frmlen);
2333 return 0;
2334 }
2335
2336
2337 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2338 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2339 struct ath_tx_control *txctl)
2340 {
2341 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2342 struct ieee80211_sta *sta = txctl->sta;
2343 struct ieee80211_vif *vif = info->control.vif;
2344 struct ath_frame_info *fi = get_frame_info(skb);
2345 struct ath_softc *sc = hw->priv;
2346 struct ath_txq *txq = txctl->txq;
2347 struct ath_atx_tid *tid = NULL;
2348 struct ath_node *an = NULL;
2349 struct ath_buf *bf;
2350 bool ps_resp;
2351 int q, ret;
2352
2353 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2354
2355 ret = ath_tx_prepare(hw, skb, txctl);
2356 if (ret)
2357 return ret;
2358
2359 /*
2360 * At this point, the vif, hw_key and sta pointers in the tx control
2361 * info are no longer valid (overwritten by the ath_frame_info data.
2362 */
2363
2364 q = skb_get_queue_mapping(skb);
2365
2366 if (ps_resp)
2367 txq = sc->tx.uapsdq;
2368
2369 if (txctl->sta) {
2370 an = (struct ath_node *) sta->drv_priv;
2371 tid = ath_get_skb_tid(sc, an, skb);
2372 }
2373
2374 ath_txq_lock(sc, txq);
2375 if (txq == sc->tx.txq_map[q]) {
2376 fi->txq = q;
2377 ++txq->pending_frames;
2378 }
2379
2380 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2381 if (!bf) {
2382 ath_txq_skb_done(sc, txq, skb);
2383 if (txctl->paprd)
2384 dev_kfree_skb_any(skb);
2385 else
2386 ieee80211_free_txskb(sc->hw, skb);
2387 goto out;
2388 }
2389
2390 bf->bf_state.bfs_paprd = txctl->paprd;
2391
2392 if (txctl->paprd)
2393 bf->bf_state.bfs_paprd_timestamp = jiffies;
2394
2395 ath_set_rates(vif, sta, bf);
2396 ath_tx_send_normal(sc, txq, tid, skb);
2397
2398 out:
2399 ath_txq_unlock(sc, txq);
2400
2401 return 0;
2402 }
2403
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2404 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2405 struct sk_buff *skb)
2406 {
2407 struct ath_softc *sc = hw->priv;
2408 struct ath_tx_control txctl = {
2409 .txq = sc->beacon.cabq
2410 };
2411 struct ath_tx_info info = {};
2412 struct ath_buf *bf_tail = NULL;
2413 struct ath_buf *bf;
2414 LIST_HEAD(bf_q);
2415 int duration = 0;
2416 int max_duration;
2417
2418 max_duration =
2419 sc->cur_chan->beacon.beacon_interval * 1000 *
2420 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2421
2422 do {
2423 struct ath_frame_info *fi = get_frame_info(skb);
2424
2425 if (ath_tx_prepare(hw, skb, &txctl))
2426 break;
2427
2428 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2429 if (!bf)
2430 break;
2431
2432 bf->bf_lastbf = bf;
2433 ath_set_rates(vif, NULL, bf);
2434 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2435 duration += info.rates[0].PktDuration;
2436 if (bf_tail)
2437 bf_tail->bf_next = bf;
2438
2439 list_add_tail(&bf->list, &bf_q);
2440 bf_tail = bf;
2441 skb = NULL;
2442
2443 if (duration > max_duration)
2444 break;
2445
2446 skb = ieee80211_get_buffered_bc(hw, vif);
2447 } while(skb);
2448
2449 if (skb)
2450 ieee80211_free_txskb(hw, skb);
2451
2452 if (list_empty(&bf_q))
2453 return;
2454
2455 bf = list_last_entry(&bf_q, struct ath_buf, list);
2456 ath9k_set_moredata(sc, bf, false);
2457
2458 bf = list_first_entry(&bf_q, struct ath_buf, list);
2459 ath_txq_lock(sc, txctl.txq);
2460 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2461 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2462 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2463 ath_txq_unlock(sc, txctl.txq);
2464 }
2465
2466 /*****************/
2467 /* TX Completion */
2468 /*****************/
2469
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq,struct ieee80211_sta * sta)2470 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2471 int tx_flags, struct ath_txq *txq,
2472 struct ieee80211_sta *sta)
2473 {
2474 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2475 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2476 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2477 int padpos, padsize;
2478 unsigned long flags;
2479
2480 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2481
2482 if (sc->sc_ah->caldata)
2483 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2484
2485 if (!(tx_flags & ATH_TX_ERROR)) {
2486 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2487 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2488 else
2489 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2490 }
2491
2492 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2493 padpos = ieee80211_hdrlen(hdr->frame_control);
2494 padsize = padpos & 3;
2495 if (padsize && skb->len>padpos+padsize) {
2496 /*
2497 * Remove MAC header padding before giving the frame back to
2498 * mac80211.
2499 */
2500 memmove(skb->data + padsize, skb->data, padpos);
2501 skb_pull(skb, padsize);
2502 }
2503 }
2504
2505 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2506 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2507 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2508 ath_dbg(common, PS,
2509 "Going back to sleep after having received TX status (0x%lx)\n",
2510 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2511 PS_WAIT_FOR_CAB |
2512 PS_WAIT_FOR_PSPOLL_DATA |
2513 PS_WAIT_FOR_TX_ACK));
2514 }
2515 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2516
2517 ath_txq_skb_done(sc, txq, skb);
2518 tx_info->status.status_driver_data[0] = sta;
2519 __skb_queue_tail(&txq->complete_q, skb);
2520 }
2521
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_tx_status * ts,int txok)2522 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2523 struct ath_txq *txq, struct list_head *bf_q,
2524 struct ieee80211_sta *sta,
2525 struct ath_tx_status *ts, int txok)
2526 {
2527 struct sk_buff *skb = bf->bf_mpdu;
2528 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2529 unsigned long flags;
2530 int tx_flags = 0;
2531
2532 if (!txok)
2533 tx_flags |= ATH_TX_ERROR;
2534
2535 if (ts->ts_status & ATH9K_TXERR_FILT)
2536 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2537
2538 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2539 bf->bf_buf_addr = 0;
2540 if (sc->tx99_state)
2541 goto skip_tx_complete;
2542
2543 if (bf->bf_state.bfs_paprd) {
2544 if (time_after(jiffies,
2545 bf->bf_state.bfs_paprd_timestamp +
2546 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2547 dev_kfree_skb_any(skb);
2548 else
2549 complete(&sc->paprd_complete);
2550 } else {
2551 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2552 ath_tx_complete(sc, skb, tx_flags, txq, sta);
2553 }
2554 skip_tx_complete:
2555 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2556 * accidentally reference it later.
2557 */
2558 bf->bf_mpdu = NULL;
2559
2560 /*
2561 * Return the list of ath_buf of this mpdu to free queue
2562 */
2563 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2564 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2565 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2566 }
2567
ath_clear_tx_status(struct ieee80211_tx_info * tx_info)2568 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
2569 {
2570 void *ptr = &tx_info->status;
2571
2572 memset(ptr + sizeof(tx_info->status.rates), 0,
2573 sizeof(tx_info->status) -
2574 sizeof(tx_info->status.rates) -
2575 sizeof(tx_info->status.status_driver_data));
2576 }
2577
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2578 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2579 struct ath_tx_status *ts, int nframes, int nbad,
2580 int txok)
2581 {
2582 struct sk_buff *skb = bf->bf_mpdu;
2583 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2584 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2585 struct ieee80211_hw *hw = sc->hw;
2586 struct ath_hw *ah = sc->sc_ah;
2587 u8 i, tx_rateindex;
2588
2589 ath_clear_tx_status(tx_info);
2590
2591 if (txok)
2592 tx_info->status.ack_signal = ts->ts_rssi;
2593
2594 tx_rateindex = ts->ts_rateindex;
2595 WARN_ON(tx_rateindex >= hw->max_rates);
2596
2597 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2598 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2599
2600 BUG_ON(nbad > nframes);
2601 }
2602 tx_info->status.ampdu_len = nframes;
2603 tx_info->status.ampdu_ack_len = nframes - nbad;
2604
2605 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2606
2607 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2608 tx_info->status.rates[i].count = 0;
2609 tx_info->status.rates[i].idx = -1;
2610 }
2611
2612 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2613 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2614 /*
2615 * If an underrun error is seen assume it as an excessive
2616 * retry only if max frame trigger level has been reached
2617 * (2 KB for single stream, and 4 KB for dual stream).
2618 * Adjust the long retry as if the frame was tried
2619 * hw->max_rate_tries times to affect how rate control updates
2620 * PER for the failed rate.
2621 * In case of congestion on the bus penalizing this type of
2622 * underruns should help hardware actually transmit new frames
2623 * successfully by eventually preferring slower rates.
2624 * This itself should also alleviate congestion on the bus.
2625 */
2626 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2627 ATH9K_TX_DELIM_UNDERRUN)) &&
2628 ieee80211_is_data(hdr->frame_control) &&
2629 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2630 tx_info->status.rates[tx_rateindex].count =
2631 hw->max_rate_tries;
2632 }
2633 }
2634
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2635 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2636 {
2637 struct ath_hw *ah = sc->sc_ah;
2638 struct ath_common *common = ath9k_hw_common(ah);
2639 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2640 struct list_head bf_head;
2641 struct ath_desc *ds;
2642 struct ath_tx_status ts;
2643 int status;
2644
2645 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2646 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2647 txq->axq_link);
2648
2649 ath_txq_lock(sc, txq);
2650 for (;;) {
2651 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2652 break;
2653
2654 if (list_empty(&txq->axq_q)) {
2655 txq->axq_link = NULL;
2656 ath_txq_schedule(sc, txq);
2657 break;
2658 }
2659 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2660
2661 /*
2662 * There is a race condition that a BH gets scheduled
2663 * after sw writes TxE and before hw re-load the last
2664 * descriptor to get the newly chained one.
2665 * Software must keep the last DONE descriptor as a
2666 * holding descriptor - software does so by marking
2667 * it with the STALE flag.
2668 */
2669 bf_held = NULL;
2670 if (bf->bf_state.stale) {
2671 bf_held = bf;
2672 if (list_is_last(&bf_held->list, &txq->axq_q))
2673 break;
2674
2675 bf = list_entry(bf_held->list.next, struct ath_buf,
2676 list);
2677 }
2678
2679 lastbf = bf->bf_lastbf;
2680 ds = lastbf->bf_desc;
2681
2682 memset(&ts, 0, sizeof(ts));
2683 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2684 if (status == -EINPROGRESS)
2685 break;
2686
2687 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2688
2689 /*
2690 * Remove ath_buf's of the same transmit unit from txq,
2691 * however leave the last descriptor back as the holding
2692 * descriptor for hw.
2693 */
2694 lastbf->bf_state.stale = true;
2695 INIT_LIST_HEAD(&bf_head);
2696 if (!list_is_singular(&lastbf->list))
2697 list_cut_position(&bf_head,
2698 &txq->axq_q, lastbf->list.prev);
2699
2700 if (bf_held) {
2701 list_del(&bf_held->list);
2702 ath_tx_return_buffer(sc, bf_held);
2703 }
2704
2705 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2706 }
2707 ath_txq_unlock_complete(sc, txq);
2708 }
2709
ath_tx_tasklet(struct ath_softc * sc)2710 void ath_tx_tasklet(struct ath_softc *sc)
2711 {
2712 struct ath_hw *ah = sc->sc_ah;
2713 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2714 int i;
2715
2716 rcu_read_lock();
2717 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2718 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2719 ath_tx_processq(sc, &sc->tx.txq[i]);
2720 }
2721 rcu_read_unlock();
2722 }
2723
ath_tx_edma_tasklet(struct ath_softc * sc)2724 void ath_tx_edma_tasklet(struct ath_softc *sc)
2725 {
2726 struct ath_tx_status ts;
2727 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2728 struct ath_hw *ah = sc->sc_ah;
2729 struct ath_txq *txq;
2730 struct ath_buf *bf, *lastbf;
2731 struct list_head bf_head;
2732 struct list_head *fifo_list;
2733 int status;
2734
2735 rcu_read_lock();
2736 for (;;) {
2737 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2738 break;
2739
2740 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2741 if (status == -EINPROGRESS)
2742 break;
2743 if (status == -EIO) {
2744 ath_dbg(common, XMIT, "Error processing tx status\n");
2745 break;
2746 }
2747
2748 /* Process beacon completions separately */
2749 if (ts.qid == sc->beacon.beaconq) {
2750 sc->beacon.tx_processed = true;
2751 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2752
2753 if (ath9k_is_chanctx_enabled()) {
2754 ath_chanctx_event(sc, NULL,
2755 ATH_CHANCTX_EVENT_BEACON_SENT);
2756 }
2757
2758 ath9k_csa_update(sc);
2759 continue;
2760 }
2761
2762 txq = &sc->tx.txq[ts.qid];
2763
2764 ath_txq_lock(sc, txq);
2765
2766 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2767
2768 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2769 if (list_empty(fifo_list)) {
2770 ath_txq_unlock(sc, txq);
2771 break;
2772 }
2773
2774 bf = list_first_entry(fifo_list, struct ath_buf, list);
2775 if (bf->bf_state.stale) {
2776 list_del(&bf->list);
2777 ath_tx_return_buffer(sc, bf);
2778 bf = list_first_entry(fifo_list, struct ath_buf, list);
2779 }
2780
2781 lastbf = bf->bf_lastbf;
2782
2783 INIT_LIST_HEAD(&bf_head);
2784 if (list_is_last(&lastbf->list, fifo_list)) {
2785 list_splice_tail_init(fifo_list, &bf_head);
2786 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2787
2788 if (!list_empty(&txq->axq_q)) {
2789 struct list_head bf_q;
2790
2791 INIT_LIST_HEAD(&bf_q);
2792 txq->axq_link = NULL;
2793 list_splice_tail_init(&txq->axq_q, &bf_q);
2794 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2795 }
2796 } else {
2797 lastbf->bf_state.stale = true;
2798 if (bf != lastbf)
2799 list_cut_position(&bf_head, fifo_list,
2800 lastbf->list.prev);
2801 }
2802
2803 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2804 ath_txq_unlock_complete(sc, txq);
2805 }
2806 rcu_read_unlock();
2807 }
2808
2809 /*****************/
2810 /* Init, Cleanup */
2811 /*****************/
2812
ath_txstatus_setup(struct ath_softc * sc,int size)2813 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2814 {
2815 struct ath_descdma *dd = &sc->txsdma;
2816 u8 txs_len = sc->sc_ah->caps.txs_len;
2817
2818 dd->dd_desc_len = size * txs_len;
2819 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2820 &dd->dd_desc_paddr, GFP_KERNEL);
2821 if (!dd->dd_desc)
2822 return -ENOMEM;
2823
2824 return 0;
2825 }
2826
ath_tx_edma_init(struct ath_softc * sc)2827 static int ath_tx_edma_init(struct ath_softc *sc)
2828 {
2829 int err;
2830
2831 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2832 if (!err)
2833 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2834 sc->txsdma.dd_desc_paddr,
2835 ATH_TXSTATUS_RING_SIZE);
2836
2837 return err;
2838 }
2839
ath_tx_init(struct ath_softc * sc,int nbufs)2840 int ath_tx_init(struct ath_softc *sc, int nbufs)
2841 {
2842 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2843 int error = 0;
2844
2845 spin_lock_init(&sc->tx.txbuflock);
2846
2847 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2848 "tx", nbufs, 1, 1);
2849 if (error != 0) {
2850 ath_err(common,
2851 "Failed to allocate tx descriptors: %d\n", error);
2852 return error;
2853 }
2854
2855 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2856 "beacon", ATH_BCBUF, 1, 1);
2857 if (error != 0) {
2858 ath_err(common,
2859 "Failed to allocate beacon descriptors: %d\n", error);
2860 return error;
2861 }
2862
2863 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2864 error = ath_tx_edma_init(sc);
2865
2866 return error;
2867 }
2868
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2869 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2870 {
2871 struct ath_atx_tid *tid;
2872 int tidno, acno;
2873
2874 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2875 tid = ath_node_to_tid(an, tidno);
2876 tid->an = an;
2877 tid->tidno = tidno;
2878 tid->seq_start = tid->seq_next = 0;
2879 tid->baw_size = WME_MAX_BA;
2880 tid->baw_head = tid->baw_tail = 0;
2881 tid->active = false;
2882 tid->clear_ps_filter = true;
2883 __skb_queue_head_init(&tid->retry_q);
2884 INIT_LIST_HEAD(&tid->list);
2885 acno = TID_TO_WME_AC(tidno);
2886 tid->txq = sc->tx.txq_map[acno];
2887
2888 if (!an->sta)
2889 break; /* just one multicast ath_atx_tid */
2890 }
2891 }
2892
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2893 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2894 {
2895 struct ath_atx_tid *tid;
2896 struct ath_txq *txq;
2897 int tidno;
2898
2899 rcu_read_lock();
2900
2901 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2902 tid = ath_node_to_tid(an, tidno);
2903 txq = tid->txq;
2904
2905 ath_txq_lock(sc, txq);
2906
2907 if (!list_empty(&tid->list))
2908 list_del_init(&tid->list);
2909
2910 ath_tid_drain(sc, txq, tid);
2911 tid->active = false;
2912
2913 ath_txq_unlock(sc, txq);
2914
2915 if (!an->sta)
2916 break; /* just one multicast ath_atx_tid */
2917 }
2918
2919 rcu_read_unlock();
2920 }
2921
2922 #ifdef CONFIG_ATH9K_TX99
2923
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2924 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2925 struct ath_tx_control *txctl)
2926 {
2927 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2928 struct ath_frame_info *fi = get_frame_info(skb);
2929 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2930 struct ath_buf *bf;
2931 int padpos, padsize;
2932
2933 padpos = ieee80211_hdrlen(hdr->frame_control);
2934 padsize = padpos & 3;
2935
2936 if (padsize && skb->len > padpos) {
2937 if (skb_headroom(skb) < padsize) {
2938 ath_dbg(common, XMIT,
2939 "tx99 padding failed\n");
2940 return -EINVAL;
2941 }
2942
2943 skb_push(skb, padsize);
2944 memmove(skb->data, skb->data + padsize, padpos);
2945 }
2946
2947 fi->keyix = ATH9K_TXKEYIX_INVALID;
2948 fi->framelen = skb->len + FCS_LEN;
2949 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2950
2951 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2952 if (!bf) {
2953 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2954 return -EINVAL;
2955 }
2956
2957 ath_set_rates(sc->tx99_vif, NULL, bf);
2958
2959 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2960 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2961
2962 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2963
2964 return 0;
2965 }
2966
2967 #endif /* CONFIG_ATH9K_TX99 */
2968