xref: /linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 988b0c541ed8b1c633c4d4df7169010635942e18)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79 
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 	__acquires(&txq->axq_lock)
82 {
83 	spin_lock_bh(&txq->axq_lock);
84 }
85 
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 	__releases(&txq->axq_lock)
88 {
89 	spin_unlock_bh(&txq->axq_lock);
90 }
91 
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 	__releases(&txq->axq_lock)
94 {
95 	struct sk_buff_head q;
96 	struct sk_buff *skb;
97 
98 	__skb_queue_head_init(&q);
99 	skb_queue_splice_init(&txq->complete_q, &q);
100 	spin_unlock_bh(&txq->axq_lock);
101 
102 	while ((skb = __skb_dequeue(&q)))
103 		ieee80211_tx_status(sc->hw, skb);
104 }
105 
106 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
107 {
108 	struct ath_atx_ac *ac = tid->ac;
109 
110 	if (tid->sched)
111 		return;
112 
113 	tid->sched = true;
114 	list_add_tail(&tid->list, &ac->tid_q);
115 
116 	if (ac->sched)
117 		return;
118 
119 	ac->sched = true;
120 	list_add_tail(&ac->list, &txq->axq_acq);
121 }
122 
123 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
124 {
125 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
126 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
127 		     sizeof(tx_info->rate_driver_data));
128 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
129 }
130 
131 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
132 {
133 	if (!tid->an->sta)
134 		return;
135 
136 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
137 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
138 }
139 
140 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
141 			  struct ath_buf *bf)
142 {
143 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
144 			       ARRAY_SIZE(bf->rates));
145 }
146 
147 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
148 			     struct sk_buff *skb)
149 {
150 	int q;
151 
152 	q = skb_get_queue_mapping(skb);
153 	if (txq == sc->tx.uapsdq)
154 		txq = sc->tx.txq_map[q];
155 
156 	if (txq != sc->tx.txq_map[q])
157 		return;
158 
159 	if (WARN_ON(--txq->pending_frames < 0))
160 		txq->pending_frames = 0;
161 
162 	if (txq->stopped &&
163 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
164 		ieee80211_wake_queue(sc->hw, q);
165 		txq->stopped = false;
166 	}
167 }
168 
169 static struct ath_atx_tid *
170 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
171 {
172 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
173 	return ATH_AN_2_TID(an, tidno);
174 }
175 
176 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
177 {
178 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
179 }
180 
181 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
182 {
183 	struct sk_buff *skb;
184 
185 	skb = __skb_dequeue(&tid->retry_q);
186 	if (!skb)
187 		skb = __skb_dequeue(&tid->buf_q);
188 
189 	return skb;
190 }
191 
192 /*
193  * ath_tx_tid_change_state:
194  * - clears a-mpdu flag of previous session
195  * - force sequence number allocation to fix next BlockAck Window
196  */
197 static void
198 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
199 {
200 	struct ath_txq *txq = tid->ac->txq;
201 	struct ieee80211_tx_info *tx_info;
202 	struct sk_buff *skb, *tskb;
203 	struct ath_buf *bf;
204 	struct ath_frame_info *fi;
205 
206 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
207 		fi = get_frame_info(skb);
208 		bf = fi->bf;
209 
210 		tx_info = IEEE80211_SKB_CB(skb);
211 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
212 
213 		if (bf)
214 			continue;
215 
216 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
217 		if (!bf) {
218 			__skb_unlink(skb, &tid->buf_q);
219 			ath_txq_skb_done(sc, txq, skb);
220 			ieee80211_free_txskb(sc->hw, skb);
221 			continue;
222 		}
223 	}
224 
225 }
226 
227 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
228 {
229 	struct ath_txq *txq = tid->ac->txq;
230 	struct sk_buff *skb;
231 	struct ath_buf *bf;
232 	struct list_head bf_head;
233 	struct ath_tx_status ts;
234 	struct ath_frame_info *fi;
235 	bool sendbar = false;
236 
237 	INIT_LIST_HEAD(&bf_head);
238 
239 	memset(&ts, 0, sizeof(ts));
240 
241 	while ((skb = __skb_dequeue(&tid->retry_q))) {
242 		fi = get_frame_info(skb);
243 		bf = fi->bf;
244 		if (!bf) {
245 			ath_txq_skb_done(sc, txq, skb);
246 			ieee80211_free_txskb(sc->hw, skb);
247 			continue;
248 		}
249 
250 		if (fi->baw_tracked) {
251 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
252 			sendbar = true;
253 		}
254 
255 		list_add_tail(&bf->list, &bf_head);
256 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
257 	}
258 
259 	if (sendbar) {
260 		ath_txq_unlock(sc, txq);
261 		ath_send_bar(tid, tid->seq_start);
262 		ath_txq_lock(sc, txq);
263 	}
264 }
265 
266 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
267 			      int seqno)
268 {
269 	int index, cindex;
270 
271 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
272 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
273 
274 	__clear_bit(cindex, tid->tx_buf);
275 
276 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
277 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
278 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
279 		if (tid->bar_index >= 0)
280 			tid->bar_index--;
281 	}
282 }
283 
284 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
285 			     struct ath_buf *bf)
286 {
287 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
288 	u16 seqno = bf->bf_state.seqno;
289 	int index, cindex;
290 
291 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
292 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
293 	__set_bit(cindex, tid->tx_buf);
294 	fi->baw_tracked = 1;
295 
296 	if (index >= ((tid->baw_tail - tid->baw_head) &
297 		(ATH_TID_MAX_BUFS - 1))) {
298 		tid->baw_tail = cindex;
299 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
300 	}
301 }
302 
303 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
304 			  struct ath_atx_tid *tid)
305 
306 {
307 	struct sk_buff *skb;
308 	struct ath_buf *bf;
309 	struct list_head bf_head;
310 	struct ath_tx_status ts;
311 	struct ath_frame_info *fi;
312 
313 	memset(&ts, 0, sizeof(ts));
314 	INIT_LIST_HEAD(&bf_head);
315 
316 	while ((skb = ath_tid_dequeue(tid))) {
317 		fi = get_frame_info(skb);
318 		bf = fi->bf;
319 
320 		if (!bf) {
321 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
322 			continue;
323 		}
324 
325 		list_add_tail(&bf->list, &bf_head);
326 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
327 	}
328 }
329 
330 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
331 			     struct sk_buff *skb, int count)
332 {
333 	struct ath_frame_info *fi = get_frame_info(skb);
334 	struct ath_buf *bf = fi->bf;
335 	struct ieee80211_hdr *hdr;
336 	int prev = fi->retries;
337 
338 	TX_STAT_INC(txq->axq_qnum, a_retries);
339 	fi->retries += count;
340 
341 	if (prev > 0)
342 		return;
343 
344 	hdr = (struct ieee80211_hdr *)skb->data;
345 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
346 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
347 		sizeof(*hdr), DMA_TO_DEVICE);
348 }
349 
350 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
351 {
352 	struct ath_buf *bf = NULL;
353 
354 	spin_lock_bh(&sc->tx.txbuflock);
355 
356 	if (unlikely(list_empty(&sc->tx.txbuf))) {
357 		spin_unlock_bh(&sc->tx.txbuflock);
358 		return NULL;
359 	}
360 
361 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
362 	list_del(&bf->list);
363 
364 	spin_unlock_bh(&sc->tx.txbuflock);
365 
366 	return bf;
367 }
368 
369 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
370 {
371 	spin_lock_bh(&sc->tx.txbuflock);
372 	list_add_tail(&bf->list, &sc->tx.txbuf);
373 	spin_unlock_bh(&sc->tx.txbuflock);
374 }
375 
376 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
377 {
378 	struct ath_buf *tbf;
379 
380 	tbf = ath_tx_get_buffer(sc);
381 	if (WARN_ON(!tbf))
382 		return NULL;
383 
384 	ATH_TXBUF_RESET(tbf);
385 
386 	tbf->bf_mpdu = bf->bf_mpdu;
387 	tbf->bf_buf_addr = bf->bf_buf_addr;
388 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
389 	tbf->bf_state = bf->bf_state;
390 	tbf->bf_state.stale = false;
391 
392 	return tbf;
393 }
394 
395 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
396 			        struct ath_tx_status *ts, int txok,
397 			        int *nframes, int *nbad)
398 {
399 	struct ath_frame_info *fi;
400 	u16 seq_st = 0;
401 	u32 ba[WME_BA_BMP_SIZE >> 5];
402 	int ba_index;
403 	int isaggr = 0;
404 
405 	*nbad = 0;
406 	*nframes = 0;
407 
408 	isaggr = bf_isaggr(bf);
409 	if (isaggr) {
410 		seq_st = ts->ts_seqnum;
411 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
412 	}
413 
414 	while (bf) {
415 		fi = get_frame_info(bf->bf_mpdu);
416 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
417 
418 		(*nframes)++;
419 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
420 			(*nbad)++;
421 
422 		bf = bf->bf_next;
423 	}
424 }
425 
426 
427 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
428 				 struct ath_buf *bf, struct list_head *bf_q,
429 				 struct ath_tx_status *ts, int txok)
430 {
431 	struct ath_node *an = NULL;
432 	struct sk_buff *skb;
433 	struct ieee80211_sta *sta;
434 	struct ieee80211_hw *hw = sc->hw;
435 	struct ieee80211_hdr *hdr;
436 	struct ieee80211_tx_info *tx_info;
437 	struct ath_atx_tid *tid = NULL;
438 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
439 	struct list_head bf_head;
440 	struct sk_buff_head bf_pending;
441 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
442 	u32 ba[WME_BA_BMP_SIZE >> 5];
443 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
444 	bool rc_update = true, isba;
445 	struct ieee80211_tx_rate rates[4];
446 	struct ath_frame_info *fi;
447 	int nframes;
448 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
449 	int i, retries;
450 	int bar_index = -1;
451 
452 	skb = bf->bf_mpdu;
453 	hdr = (struct ieee80211_hdr *)skb->data;
454 
455 	tx_info = IEEE80211_SKB_CB(skb);
456 
457 	memcpy(rates, bf->rates, sizeof(rates));
458 
459 	retries = ts->ts_longretry + 1;
460 	for (i = 0; i < ts->ts_rateindex; i++)
461 		retries += rates[i].count;
462 
463 	rcu_read_lock();
464 
465 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
466 	if (!sta) {
467 		rcu_read_unlock();
468 
469 		INIT_LIST_HEAD(&bf_head);
470 		while (bf) {
471 			bf_next = bf->bf_next;
472 
473 			if (!bf->bf_state.stale || bf_next != NULL)
474 				list_move_tail(&bf->list, &bf_head);
475 
476 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
477 
478 			bf = bf_next;
479 		}
480 		return;
481 	}
482 
483 	an = (struct ath_node *)sta->drv_priv;
484 	tid = ath_get_skb_tid(sc, an, skb);
485 	seq_first = tid->seq_start;
486 	isba = ts->ts_flags & ATH9K_TX_BA;
487 
488 	/*
489 	 * The hardware occasionally sends a tx status for the wrong TID.
490 	 * In this case, the BA status cannot be considered valid and all
491 	 * subframes need to be retransmitted
492 	 *
493 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
494 	 * checked
495 	 */
496 	if (isba && tid->tidno != ts->tid)
497 		txok = false;
498 
499 	isaggr = bf_isaggr(bf);
500 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
501 
502 	if (isaggr && txok) {
503 		if (ts->ts_flags & ATH9K_TX_BA) {
504 			seq_st = ts->ts_seqnum;
505 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
506 		} else {
507 			/*
508 			 * AR5416 can become deaf/mute when BA
509 			 * issue happens. Chip needs to be reset.
510 			 * But AP code may have sychronization issues
511 			 * when perform internal reset in this routine.
512 			 * Only enable reset in STA mode for now.
513 			 */
514 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
515 				needreset = 1;
516 		}
517 	}
518 
519 	__skb_queue_head_init(&bf_pending);
520 
521 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
522 	while (bf) {
523 		u16 seqno = bf->bf_state.seqno;
524 
525 		txfail = txpending = sendbar = 0;
526 		bf_next = bf->bf_next;
527 
528 		skb = bf->bf_mpdu;
529 		tx_info = IEEE80211_SKB_CB(skb);
530 		fi = get_frame_info(skb);
531 
532 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
533 		    !tid->active) {
534 			/*
535 			 * Outside of the current BlockAck window,
536 			 * maybe part of a previous session
537 			 */
538 			txfail = 1;
539 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
540 			/* transmit completion, subframe is
541 			 * acked by block ack */
542 			acked_cnt++;
543 		} else if (!isaggr && txok) {
544 			/* transmit completion */
545 			acked_cnt++;
546 		} else if (flush) {
547 			txpending = 1;
548 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
549 			if (txok || !an->sleeping)
550 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
551 						 retries);
552 
553 			txpending = 1;
554 		} else {
555 			txfail = 1;
556 			txfail_cnt++;
557 			bar_index = max_t(int, bar_index,
558 				ATH_BA_INDEX(seq_first, seqno));
559 		}
560 
561 		/*
562 		 * Make sure the last desc is reclaimed if it
563 		 * not a holding desc.
564 		 */
565 		INIT_LIST_HEAD(&bf_head);
566 		if (bf_next != NULL || !bf_last->bf_state.stale)
567 			list_move_tail(&bf->list, &bf_head);
568 
569 		if (!txpending) {
570 			/*
571 			 * complete the acked-ones/xretried ones; update
572 			 * block-ack window
573 			 */
574 			ath_tx_update_baw(sc, tid, seqno);
575 
576 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
577 				memcpy(tx_info->control.rates, rates, sizeof(rates));
578 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
579 				rc_update = false;
580 			}
581 
582 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
583 				!txfail);
584 		} else {
585 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
586 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
587 				ieee80211_sta_eosp(sta);
588 			}
589 			/* retry the un-acked ones */
590 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
591 				struct ath_buf *tbf;
592 
593 				tbf = ath_clone_txbuf(sc, bf_last);
594 				/*
595 				 * Update tx baw and complete the
596 				 * frame with failed status if we
597 				 * run out of tx buf.
598 				 */
599 				if (!tbf) {
600 					ath_tx_update_baw(sc, tid, seqno);
601 
602 					ath_tx_complete_buf(sc, bf, txq,
603 							    &bf_head, ts, 0);
604 					bar_index = max_t(int, bar_index,
605 						ATH_BA_INDEX(seq_first, seqno));
606 					break;
607 				}
608 
609 				fi->bf = tbf;
610 			}
611 
612 			/*
613 			 * Put this buffer to the temporary pending
614 			 * queue to retain ordering
615 			 */
616 			__skb_queue_tail(&bf_pending, skb);
617 		}
618 
619 		bf = bf_next;
620 	}
621 
622 	/* prepend un-acked frames to the beginning of the pending frame queue */
623 	if (!skb_queue_empty(&bf_pending)) {
624 		if (an->sleeping)
625 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
626 
627 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
628 		if (!an->sleeping) {
629 			ath_tx_queue_tid(txq, tid);
630 
631 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
632 				tid->ac->clear_ps_filter = true;
633 		}
634 	}
635 
636 	if (bar_index >= 0) {
637 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
638 
639 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
640 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
641 
642 		ath_txq_unlock(sc, txq);
643 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
644 		ath_txq_lock(sc, txq);
645 	}
646 
647 	rcu_read_unlock();
648 
649 	if (needreset)
650 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
651 }
652 
653 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
654 {
655     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
656     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
657 }
658 
659 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
660 				  struct ath_tx_status *ts, struct ath_buf *bf,
661 				  struct list_head *bf_head)
662 {
663 	struct ieee80211_tx_info *info;
664 	bool txok, flush;
665 
666 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
667 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
668 	txq->axq_tx_inprogress = false;
669 
670 	txq->axq_depth--;
671 	if (bf_is_ampdu_not_probing(bf))
672 		txq->axq_ampdu_depth--;
673 
674 	if (!bf_isampdu(bf)) {
675 		if (!flush) {
676 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
677 			memcpy(info->control.rates, bf->rates,
678 			       sizeof(info->control.rates));
679 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
680 		}
681 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
682 	} else
683 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
684 
685 	if (!flush)
686 		ath_txq_schedule(sc, txq);
687 }
688 
689 static bool ath_lookup_legacy(struct ath_buf *bf)
690 {
691 	struct sk_buff *skb;
692 	struct ieee80211_tx_info *tx_info;
693 	struct ieee80211_tx_rate *rates;
694 	int i;
695 
696 	skb = bf->bf_mpdu;
697 	tx_info = IEEE80211_SKB_CB(skb);
698 	rates = tx_info->control.rates;
699 
700 	for (i = 0; i < 4; i++) {
701 		if (!rates[i].count || rates[i].idx < 0)
702 			break;
703 
704 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
705 			return true;
706 	}
707 
708 	return false;
709 }
710 
711 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
712 			   struct ath_atx_tid *tid)
713 {
714 	struct sk_buff *skb;
715 	struct ieee80211_tx_info *tx_info;
716 	struct ieee80211_tx_rate *rates;
717 	u32 max_4ms_framelen, frmlen;
718 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
719 	int q = tid->ac->txq->mac80211_qnum;
720 	int i;
721 
722 	skb = bf->bf_mpdu;
723 	tx_info = IEEE80211_SKB_CB(skb);
724 	rates = bf->rates;
725 
726 	/*
727 	 * Find the lowest frame length among the rate series that will have a
728 	 * 4ms (or TXOP limited) transmit duration.
729 	 */
730 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
731 
732 	for (i = 0; i < 4; i++) {
733 		int modeidx;
734 
735 		if (!rates[i].count)
736 			continue;
737 
738 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
739 			legacy = 1;
740 			break;
741 		}
742 
743 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
744 			modeidx = MCS_HT40;
745 		else
746 			modeidx = MCS_HT20;
747 
748 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
749 			modeidx++;
750 
751 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
752 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
753 	}
754 
755 	/*
756 	 * limit aggregate size by the minimum rate if rate selected is
757 	 * not a probe rate, if rate selected is a probe rate then
758 	 * avoid aggregation of this packet.
759 	 */
760 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
761 		return 0;
762 
763 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
764 
765 	/*
766 	 * Override the default aggregation limit for BTCOEX.
767 	 */
768 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
769 	if (bt_aggr_limit)
770 		aggr_limit = bt_aggr_limit;
771 
772 	if (tid->an->maxampdu)
773 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
774 
775 	return aggr_limit;
776 }
777 
778 /*
779  * Returns the number of delimiters to be added to
780  * meet the minimum required mpdudensity.
781  */
782 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
783 				  struct ath_buf *bf, u16 frmlen,
784 				  bool first_subfrm)
785 {
786 #define FIRST_DESC_NDELIMS 60
787 	u32 nsymbits, nsymbols;
788 	u16 minlen;
789 	u8 flags, rix;
790 	int width, streams, half_gi, ndelim, mindelim;
791 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
792 
793 	/* Select standard number of delimiters based on frame length alone */
794 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
795 
796 	/*
797 	 * If encryption enabled, hardware requires some more padding between
798 	 * subframes.
799 	 * TODO - this could be improved to be dependent on the rate.
800 	 *      The hardware can keep up at lower rates, but not higher rates
801 	 */
802 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
803 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
804 		ndelim += ATH_AGGR_ENCRYPTDELIM;
805 
806 	/*
807 	 * Add delimiter when using RTS/CTS with aggregation
808 	 * and non enterprise AR9003 card
809 	 */
810 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
811 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
812 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
813 
814 	/*
815 	 * Convert desired mpdu density from microeconds to bytes based
816 	 * on highest rate in rate series (i.e. first rate) to determine
817 	 * required minimum length for subframe. Take into account
818 	 * whether high rate is 20 or 40Mhz and half or full GI.
819 	 *
820 	 * If there is no mpdu density restriction, no further calculation
821 	 * is needed.
822 	 */
823 
824 	if (tid->an->mpdudensity == 0)
825 		return ndelim;
826 
827 	rix = bf->rates[0].idx;
828 	flags = bf->rates[0].flags;
829 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
830 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
831 
832 	if (half_gi)
833 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
834 	else
835 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
836 
837 	if (nsymbols == 0)
838 		nsymbols = 1;
839 
840 	streams = HT_RC_2_STREAMS(rix);
841 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
842 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
843 
844 	if (frmlen < minlen) {
845 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
846 		ndelim = max(mindelim, ndelim);
847 	}
848 
849 	return ndelim;
850 }
851 
852 static struct ath_buf *
853 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
854 			struct ath_atx_tid *tid, struct sk_buff_head **q)
855 {
856 	struct ieee80211_tx_info *tx_info;
857 	struct ath_frame_info *fi;
858 	struct sk_buff *skb;
859 	struct ath_buf *bf;
860 	u16 seqno;
861 
862 	while (1) {
863 		*q = &tid->retry_q;
864 		if (skb_queue_empty(*q))
865 			*q = &tid->buf_q;
866 
867 		skb = skb_peek(*q);
868 		if (!skb)
869 			break;
870 
871 		fi = get_frame_info(skb);
872 		bf = fi->bf;
873 		if (!fi->bf)
874 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
875 		else
876 			bf->bf_state.stale = false;
877 
878 		if (!bf) {
879 			__skb_unlink(skb, *q);
880 			ath_txq_skb_done(sc, txq, skb);
881 			ieee80211_free_txskb(sc->hw, skb);
882 			continue;
883 		}
884 
885 		bf->bf_next = NULL;
886 		bf->bf_lastbf = bf;
887 
888 		tx_info = IEEE80211_SKB_CB(skb);
889 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
890 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
891 			bf->bf_state.bf_type = 0;
892 			return bf;
893 		}
894 
895 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
896 		seqno = bf->bf_state.seqno;
897 
898 		/* do not step over block-ack window */
899 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
900 			break;
901 
902 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
903 			struct ath_tx_status ts = {};
904 			struct list_head bf_head;
905 
906 			INIT_LIST_HEAD(&bf_head);
907 			list_add(&bf->list, &bf_head);
908 			__skb_unlink(skb, *q);
909 			ath_tx_update_baw(sc, tid, seqno);
910 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
911 			continue;
912 		}
913 
914 		return bf;
915 	}
916 
917 	return NULL;
918 }
919 
920 static bool
921 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
922 		 struct ath_atx_tid *tid, struct list_head *bf_q,
923 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
924 		 int *aggr_len)
925 {
926 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
927 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
928 	int nframes = 0, ndelim;
929 	u16 aggr_limit = 0, al = 0, bpad = 0,
930 	    al_delta, h_baw = tid->baw_size / 2;
931 	struct ieee80211_tx_info *tx_info;
932 	struct ath_frame_info *fi;
933 	struct sk_buff *skb;
934 	bool closed = false;
935 
936 	bf = bf_first;
937 	aggr_limit = ath_lookup_rate(sc, bf, tid);
938 
939 	do {
940 		skb = bf->bf_mpdu;
941 		fi = get_frame_info(skb);
942 
943 		/* do not exceed aggregation limit */
944 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
945 		if (nframes) {
946 			if (aggr_limit < al + bpad + al_delta ||
947 			    ath_lookup_legacy(bf) || nframes >= h_baw)
948 				break;
949 
950 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
951 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
952 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
953 				break;
954 		}
955 
956 		/* add padding for previous frame to aggregation length */
957 		al += bpad + al_delta;
958 
959 		/*
960 		 * Get the delimiters needed to meet the MPDU
961 		 * density for this node.
962 		 */
963 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
964 						!nframes);
965 		bpad = PADBYTES(al_delta) + (ndelim << 2);
966 
967 		nframes++;
968 		bf->bf_next = NULL;
969 
970 		/* link buffers of this frame to the aggregate */
971 		if (!fi->baw_tracked)
972 			ath_tx_addto_baw(sc, tid, bf);
973 		bf->bf_state.ndelim = ndelim;
974 
975 		__skb_unlink(skb, tid_q);
976 		list_add_tail(&bf->list, bf_q);
977 		if (bf_prev)
978 			bf_prev->bf_next = bf;
979 
980 		bf_prev = bf;
981 
982 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
983 		if (!bf) {
984 			closed = true;
985 			break;
986 		}
987 	} while (ath_tid_has_buffered(tid));
988 
989 	bf = bf_first;
990 	bf->bf_lastbf = bf_prev;
991 
992 	if (bf == bf_prev) {
993 		al = get_frame_info(bf->bf_mpdu)->framelen;
994 		bf->bf_state.bf_type = BUF_AMPDU;
995 	} else {
996 		TX_STAT_INC(txq->axq_qnum, a_aggr);
997 	}
998 
999 	*aggr_len = al;
1000 
1001 	return closed;
1002 #undef PADBYTES
1003 }
1004 
1005 /*
1006  * rix - rate index
1007  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1008  * width  - 0 for 20 MHz, 1 for 40 MHz
1009  * half_gi - to use 4us v/s 3.6 us for symbol time
1010  */
1011 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1012 			    int width, int half_gi, bool shortPreamble)
1013 {
1014 	u32 nbits, nsymbits, duration, nsymbols;
1015 	int streams;
1016 
1017 	/* find number of symbols: PLCP + data */
1018 	streams = HT_RC_2_STREAMS(rix);
1019 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1020 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1021 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1022 
1023 	if (!half_gi)
1024 		duration = SYMBOL_TIME(nsymbols);
1025 	else
1026 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1027 
1028 	/* addup duration for legacy/ht training and signal fields */
1029 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1030 
1031 	return duration;
1032 }
1033 
1034 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1035 {
1036 	int streams = HT_RC_2_STREAMS(mcs);
1037 	int symbols, bits;
1038 	int bytes = 0;
1039 
1040 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1041 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1042 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1043 	bits -= OFDM_PLCP_BITS;
1044 	bytes = bits / 8;
1045 	if (bytes > 65532)
1046 		bytes = 65532;
1047 
1048 	return bytes;
1049 }
1050 
1051 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1052 {
1053 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1054 	int mcs;
1055 
1056 	/* 4ms is the default (and maximum) duration */
1057 	if (!txop || txop > 4096)
1058 		txop = 4096;
1059 
1060 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1061 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1062 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1063 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1064 	for (mcs = 0; mcs < 32; mcs++) {
1065 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1066 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1067 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1068 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1069 	}
1070 }
1071 
1072 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1073 			     struct ath_tx_info *info, int len, bool rts)
1074 {
1075 	struct ath_hw *ah = sc->sc_ah;
1076 	struct ath_common *common = ath9k_hw_common(ah);
1077 	struct sk_buff *skb;
1078 	struct ieee80211_tx_info *tx_info;
1079 	struct ieee80211_tx_rate *rates;
1080 	const struct ieee80211_rate *rate;
1081 	struct ieee80211_hdr *hdr;
1082 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1083 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1084 	int i;
1085 	u8 rix = 0;
1086 
1087 	skb = bf->bf_mpdu;
1088 	tx_info = IEEE80211_SKB_CB(skb);
1089 	rates = bf->rates;
1090 	hdr = (struct ieee80211_hdr *)skb->data;
1091 
1092 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1093 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1094 	info->rtscts_rate = fi->rtscts_rate;
1095 
1096 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1097 		bool is_40, is_sgi, is_sp;
1098 		int phy;
1099 
1100 		if (!rates[i].count || (rates[i].idx < 0))
1101 			continue;
1102 
1103 		rix = rates[i].idx;
1104 		info->rates[i].Tries = rates[i].count;
1105 
1106 		/*
1107 		 * Handle RTS threshold for unaggregated HT frames.
1108 		 */
1109 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1110 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1111 		    unlikely(rts_thresh != (u32) -1)) {
1112 			if (!rts_thresh || (len > rts_thresh))
1113 				rts = true;
1114 		}
1115 
1116 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1117 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1118 			info->flags |= ATH9K_TXDESC_RTSENA;
1119 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1120 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1121 			info->flags |= ATH9K_TXDESC_CTSENA;
1122 		}
1123 
1124 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1125 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1126 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1127 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1128 
1129 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1130 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1131 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1132 
1133 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1134 			/* MCS rates */
1135 			info->rates[i].Rate = rix | 0x80;
1136 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1137 					ah->txchainmask, info->rates[i].Rate);
1138 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1139 				 is_40, is_sgi, is_sp);
1140 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1141 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1142 			continue;
1143 		}
1144 
1145 		/* legacy rates */
1146 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1147 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1148 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1149 			phy = WLAN_RC_PHY_CCK;
1150 		else
1151 			phy = WLAN_RC_PHY_OFDM;
1152 
1153 		info->rates[i].Rate = rate->hw_value;
1154 		if (rate->hw_value_short) {
1155 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1156 				info->rates[i].Rate |= rate->hw_value_short;
1157 		} else {
1158 			is_sp = false;
1159 		}
1160 
1161 		if (bf->bf_state.bfs_paprd)
1162 			info->rates[i].ChSel = ah->txchainmask;
1163 		else
1164 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1165 					ah->txchainmask, info->rates[i].Rate);
1166 
1167 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1168 			phy, rate->bitrate * 100, len, rix, is_sp);
1169 	}
1170 
1171 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1172 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1173 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1174 
1175 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1176 	if (info->flags & ATH9K_TXDESC_RTSENA)
1177 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1178 }
1179 
1180 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1181 {
1182 	struct ieee80211_hdr *hdr;
1183 	enum ath9k_pkt_type htype;
1184 	__le16 fc;
1185 
1186 	hdr = (struct ieee80211_hdr *)skb->data;
1187 	fc = hdr->frame_control;
1188 
1189 	if (ieee80211_is_beacon(fc))
1190 		htype = ATH9K_PKT_TYPE_BEACON;
1191 	else if (ieee80211_is_probe_resp(fc))
1192 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1193 	else if (ieee80211_is_atim(fc))
1194 		htype = ATH9K_PKT_TYPE_ATIM;
1195 	else if (ieee80211_is_pspoll(fc))
1196 		htype = ATH9K_PKT_TYPE_PSPOLL;
1197 	else
1198 		htype = ATH9K_PKT_TYPE_NORMAL;
1199 
1200 	return htype;
1201 }
1202 
1203 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1204 			     struct ath_txq *txq, int len)
1205 {
1206 	struct ath_hw *ah = sc->sc_ah;
1207 	struct ath_buf *bf_first = NULL;
1208 	struct ath_tx_info info;
1209 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1210 	bool rts = false;
1211 
1212 	memset(&info, 0, sizeof(info));
1213 	info.is_first = true;
1214 	info.is_last = true;
1215 	info.txpower = MAX_RATE_POWER;
1216 	info.qcu = txq->axq_qnum;
1217 
1218 	while (bf) {
1219 		struct sk_buff *skb = bf->bf_mpdu;
1220 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1221 		struct ath_frame_info *fi = get_frame_info(skb);
1222 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1223 
1224 		info.type = get_hw_packet_type(skb);
1225 		if (bf->bf_next)
1226 			info.link = bf->bf_next->bf_daddr;
1227 		else
1228 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1229 
1230 		if (!bf_first) {
1231 			bf_first = bf;
1232 
1233 			if (!sc->tx99_state)
1234 				info.flags = ATH9K_TXDESC_INTREQ;
1235 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1236 			    txq == sc->tx.uapsdq)
1237 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1238 
1239 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1240 				info.flags |= ATH9K_TXDESC_NOACK;
1241 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1242 				info.flags |= ATH9K_TXDESC_LDPC;
1243 
1244 			if (bf->bf_state.bfs_paprd)
1245 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1246 					      ATH9K_TXDESC_PAPRD_S;
1247 
1248 			/*
1249 			 * mac80211 doesn't handle RTS threshold for HT because
1250 			 * the decision has to be taken based on AMPDU length
1251 			 * and aggregation is done entirely inside ath9k.
1252 			 * Set the RTS/CTS flag for the first subframe based
1253 			 * on the threshold.
1254 			 */
1255 			if (aggr && (bf == bf_first) &&
1256 			    unlikely(rts_thresh != (u32) -1)) {
1257 				/*
1258 				 * "len" is the size of the entire AMPDU.
1259 				 */
1260 				if (!rts_thresh || (len > rts_thresh))
1261 					rts = true;
1262 			}
1263 
1264 			if (!aggr)
1265 				len = fi->framelen;
1266 
1267 			ath_buf_set_rate(sc, bf, &info, len, rts);
1268 		}
1269 
1270 		info.buf_addr[0] = bf->bf_buf_addr;
1271 		info.buf_len[0] = skb->len;
1272 		info.pkt_len = fi->framelen;
1273 		info.keyix = fi->keyix;
1274 		info.keytype = fi->keytype;
1275 
1276 		if (aggr) {
1277 			if (bf == bf_first)
1278 				info.aggr = AGGR_BUF_FIRST;
1279 			else if (bf == bf_first->bf_lastbf)
1280 				info.aggr = AGGR_BUF_LAST;
1281 			else
1282 				info.aggr = AGGR_BUF_MIDDLE;
1283 
1284 			info.ndelim = bf->bf_state.ndelim;
1285 			info.aggr_len = len;
1286 		}
1287 
1288 		if (bf == bf_first->bf_lastbf)
1289 			bf_first = NULL;
1290 
1291 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1292 		bf = bf->bf_next;
1293 	}
1294 }
1295 
1296 static void
1297 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1298 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1299 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1300 {
1301 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1302 	struct sk_buff *skb;
1303 	int nframes = 0;
1304 
1305 	do {
1306 		struct ieee80211_tx_info *tx_info;
1307 		skb = bf->bf_mpdu;
1308 
1309 		nframes++;
1310 		__skb_unlink(skb, tid_q);
1311 		list_add_tail(&bf->list, bf_q);
1312 		if (bf_prev)
1313 			bf_prev->bf_next = bf;
1314 		bf_prev = bf;
1315 
1316 		if (nframes >= 2)
1317 			break;
1318 
1319 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1320 		if (!bf)
1321 			break;
1322 
1323 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1324 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1325 			break;
1326 
1327 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1328 	} while (1);
1329 }
1330 
1331 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1332 			      struct ath_atx_tid *tid, bool *stop)
1333 {
1334 	struct ath_buf *bf;
1335 	struct ieee80211_tx_info *tx_info;
1336 	struct sk_buff_head *tid_q;
1337 	struct list_head bf_q;
1338 	int aggr_len = 0;
1339 	bool aggr, last = true;
1340 
1341 	if (!ath_tid_has_buffered(tid))
1342 		return false;
1343 
1344 	INIT_LIST_HEAD(&bf_q);
1345 
1346 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1347 	if (!bf)
1348 		return false;
1349 
1350 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1351 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1352 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1353 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1354 		*stop = true;
1355 		return false;
1356 	}
1357 
1358 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1359 	if (aggr)
1360 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1361 					tid_q, &aggr_len);
1362 	else
1363 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1364 
1365 	if (list_empty(&bf_q))
1366 		return false;
1367 
1368 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1369 		tid->ac->clear_ps_filter = false;
1370 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1371 	}
1372 
1373 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1374 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1375 	return true;
1376 }
1377 
1378 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1379 		      u16 tid, u16 *ssn)
1380 {
1381 	struct ath_atx_tid *txtid;
1382 	struct ath_txq *txq;
1383 	struct ath_node *an;
1384 	u8 density;
1385 
1386 	an = (struct ath_node *)sta->drv_priv;
1387 	txtid = ATH_AN_2_TID(an, tid);
1388 	txq = txtid->ac->txq;
1389 
1390 	ath_txq_lock(sc, txq);
1391 
1392 	/* update ampdu factor/density, they may have changed. This may happen
1393 	 * in HT IBSS when a beacon with HT-info is received after the station
1394 	 * has already been added.
1395 	 */
1396 	if (sta->ht_cap.ht_supported) {
1397 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1398 				      sta->ht_cap.ampdu_factor)) - 1;
1399 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1400 		an->mpdudensity = density;
1401 	}
1402 
1403 	/* force sequence number allocation for pending frames */
1404 	ath_tx_tid_change_state(sc, txtid);
1405 
1406 	txtid->active = true;
1407 	*ssn = txtid->seq_start = txtid->seq_next;
1408 	txtid->bar_index = -1;
1409 
1410 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1411 	txtid->baw_head = txtid->baw_tail = 0;
1412 
1413 	ath_txq_unlock_complete(sc, txq);
1414 
1415 	return 0;
1416 }
1417 
1418 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1419 {
1420 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1421 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1422 	struct ath_txq *txq = txtid->ac->txq;
1423 
1424 	ath_txq_lock(sc, txq);
1425 	txtid->active = false;
1426 	ath_tx_flush_tid(sc, txtid);
1427 	ath_tx_tid_change_state(sc, txtid);
1428 	ath_txq_unlock_complete(sc, txq);
1429 }
1430 
1431 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1432 		       struct ath_node *an)
1433 {
1434 	struct ath_atx_tid *tid;
1435 	struct ath_atx_ac *ac;
1436 	struct ath_txq *txq;
1437 	bool buffered;
1438 	int tidno;
1439 
1440 	for (tidno = 0, tid = &an->tid[tidno];
1441 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1442 
1443 		ac = tid->ac;
1444 		txq = ac->txq;
1445 
1446 		ath_txq_lock(sc, txq);
1447 
1448 		if (!tid->sched) {
1449 			ath_txq_unlock(sc, txq);
1450 			continue;
1451 		}
1452 
1453 		buffered = ath_tid_has_buffered(tid);
1454 
1455 		tid->sched = false;
1456 		list_del(&tid->list);
1457 
1458 		if (ac->sched) {
1459 			ac->sched = false;
1460 			list_del(&ac->list);
1461 		}
1462 
1463 		ath_txq_unlock(sc, txq);
1464 
1465 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1466 	}
1467 }
1468 
1469 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1470 {
1471 	struct ath_atx_tid *tid;
1472 	struct ath_atx_ac *ac;
1473 	struct ath_txq *txq;
1474 	int tidno;
1475 
1476 	for (tidno = 0, tid = &an->tid[tidno];
1477 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1478 
1479 		ac = tid->ac;
1480 		txq = ac->txq;
1481 
1482 		ath_txq_lock(sc, txq);
1483 		ac->clear_ps_filter = true;
1484 
1485 		if (ath_tid_has_buffered(tid)) {
1486 			ath_tx_queue_tid(txq, tid);
1487 			ath_txq_schedule(sc, txq);
1488 		}
1489 
1490 		ath_txq_unlock_complete(sc, txq);
1491 	}
1492 }
1493 
1494 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1495 			u16 tidno)
1496 {
1497 	struct ath_atx_tid *tid;
1498 	struct ath_node *an;
1499 	struct ath_txq *txq;
1500 
1501 	an = (struct ath_node *)sta->drv_priv;
1502 	tid = ATH_AN_2_TID(an, tidno);
1503 	txq = tid->ac->txq;
1504 
1505 	ath_txq_lock(sc, txq);
1506 
1507 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1508 
1509 	if (ath_tid_has_buffered(tid)) {
1510 		ath_tx_queue_tid(txq, tid);
1511 		ath_txq_schedule(sc, txq);
1512 	}
1513 
1514 	ath_txq_unlock_complete(sc, txq);
1515 }
1516 
1517 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1518 				   struct ieee80211_sta *sta,
1519 				   u16 tids, int nframes,
1520 				   enum ieee80211_frame_release_type reason,
1521 				   bool more_data)
1522 {
1523 	struct ath_softc *sc = hw->priv;
1524 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1525 	struct ath_txq *txq = sc->tx.uapsdq;
1526 	struct ieee80211_tx_info *info;
1527 	struct list_head bf_q;
1528 	struct ath_buf *bf_tail = NULL, *bf;
1529 	struct sk_buff_head *tid_q;
1530 	int sent = 0;
1531 	int i;
1532 
1533 	INIT_LIST_HEAD(&bf_q);
1534 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1535 		struct ath_atx_tid *tid;
1536 
1537 		if (!(tids & 1))
1538 			continue;
1539 
1540 		tid = ATH_AN_2_TID(an, i);
1541 
1542 		ath_txq_lock(sc, tid->ac->txq);
1543 		while (nframes > 0) {
1544 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1545 			if (!bf)
1546 				break;
1547 
1548 			__skb_unlink(bf->bf_mpdu, tid_q);
1549 			list_add_tail(&bf->list, &bf_q);
1550 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1551 			if (bf_isampdu(bf)) {
1552 				ath_tx_addto_baw(sc, tid, bf);
1553 				bf->bf_state.bf_type &= ~BUF_AGGR;
1554 			}
1555 			if (bf_tail)
1556 				bf_tail->bf_next = bf;
1557 
1558 			bf_tail = bf;
1559 			nframes--;
1560 			sent++;
1561 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1562 
1563 			if (an->sta && !ath_tid_has_buffered(tid))
1564 				ieee80211_sta_set_buffered(an->sta, i, false);
1565 		}
1566 		ath_txq_unlock_complete(sc, tid->ac->txq);
1567 	}
1568 
1569 	if (list_empty(&bf_q))
1570 		return;
1571 
1572 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1573 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1574 
1575 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1576 	ath_txq_lock(sc, txq);
1577 	ath_tx_fill_desc(sc, bf, txq, 0);
1578 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1579 	ath_txq_unlock(sc, txq);
1580 }
1581 
1582 /********************/
1583 /* Queue Management */
1584 /********************/
1585 
1586 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1587 {
1588 	struct ath_hw *ah = sc->sc_ah;
1589 	struct ath9k_tx_queue_info qi;
1590 	static const int subtype_txq_to_hwq[] = {
1591 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1592 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1593 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1594 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1595 	};
1596 	int axq_qnum, i;
1597 
1598 	memset(&qi, 0, sizeof(qi));
1599 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1600 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1601 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1602 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1603 	qi.tqi_physCompBuf = 0;
1604 
1605 	/*
1606 	 * Enable interrupts only for EOL and DESC conditions.
1607 	 * We mark tx descriptors to receive a DESC interrupt
1608 	 * when a tx queue gets deep; otherwise waiting for the
1609 	 * EOL to reap descriptors.  Note that this is done to
1610 	 * reduce interrupt load and this only defers reaping
1611 	 * descriptors, never transmitting frames.  Aside from
1612 	 * reducing interrupts this also permits more concurrency.
1613 	 * The only potential downside is if the tx queue backs
1614 	 * up in which case the top half of the kernel may backup
1615 	 * due to a lack of tx descriptors.
1616 	 *
1617 	 * The UAPSD queue is an exception, since we take a desc-
1618 	 * based intr on the EOSP frames.
1619 	 */
1620 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1621 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1622 	} else {
1623 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1624 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1625 		else
1626 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1627 					TXQ_FLAG_TXDESCINT_ENABLE;
1628 	}
1629 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1630 	if (axq_qnum == -1) {
1631 		/*
1632 		 * NB: don't print a message, this happens
1633 		 * normally on parts with too few tx queues
1634 		 */
1635 		return NULL;
1636 	}
1637 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1638 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1639 
1640 		txq->axq_qnum = axq_qnum;
1641 		txq->mac80211_qnum = -1;
1642 		txq->axq_link = NULL;
1643 		__skb_queue_head_init(&txq->complete_q);
1644 		INIT_LIST_HEAD(&txq->axq_q);
1645 		INIT_LIST_HEAD(&txq->axq_acq);
1646 		spin_lock_init(&txq->axq_lock);
1647 		txq->axq_depth = 0;
1648 		txq->axq_ampdu_depth = 0;
1649 		txq->axq_tx_inprogress = false;
1650 		sc->tx.txqsetup |= 1<<axq_qnum;
1651 
1652 		txq->txq_headidx = txq->txq_tailidx = 0;
1653 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1654 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1655 	}
1656 	return &sc->tx.txq[axq_qnum];
1657 }
1658 
1659 int ath_txq_update(struct ath_softc *sc, int qnum,
1660 		   struct ath9k_tx_queue_info *qinfo)
1661 {
1662 	struct ath_hw *ah = sc->sc_ah;
1663 	int error = 0;
1664 	struct ath9k_tx_queue_info qi;
1665 
1666 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1667 
1668 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1669 	qi.tqi_aifs = qinfo->tqi_aifs;
1670 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1671 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1672 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1673 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1674 
1675 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1676 		ath_err(ath9k_hw_common(sc->sc_ah),
1677 			"Unable to update hardware queue %u!\n", qnum);
1678 		error = -EIO;
1679 	} else {
1680 		ath9k_hw_resettxqueue(ah, qnum);
1681 	}
1682 
1683 	return error;
1684 }
1685 
1686 int ath_cabq_update(struct ath_softc *sc)
1687 {
1688 	struct ath9k_tx_queue_info qi;
1689 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1690 	int qnum = sc->beacon.cabq->axq_qnum;
1691 
1692 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1693 
1694 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1695 			    ATH_CABQ_READY_TIME) / 100;
1696 	ath_txq_update(sc, qnum, &qi);
1697 
1698 	return 0;
1699 }
1700 
1701 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1702 			       struct list_head *list)
1703 {
1704 	struct ath_buf *bf, *lastbf;
1705 	struct list_head bf_head;
1706 	struct ath_tx_status ts;
1707 
1708 	memset(&ts, 0, sizeof(ts));
1709 	ts.ts_status = ATH9K_TX_FLUSH;
1710 	INIT_LIST_HEAD(&bf_head);
1711 
1712 	while (!list_empty(list)) {
1713 		bf = list_first_entry(list, struct ath_buf, list);
1714 
1715 		if (bf->bf_state.stale) {
1716 			list_del(&bf->list);
1717 
1718 			ath_tx_return_buffer(sc, bf);
1719 			continue;
1720 		}
1721 
1722 		lastbf = bf->bf_lastbf;
1723 		list_cut_position(&bf_head, list, &lastbf->list);
1724 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1725 	}
1726 }
1727 
1728 /*
1729  * Drain a given TX queue (could be Beacon or Data)
1730  *
1731  * This assumes output has been stopped and
1732  * we do not need to block ath_tx_tasklet.
1733  */
1734 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1735 {
1736 	ath_txq_lock(sc, txq);
1737 
1738 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1739 		int idx = txq->txq_tailidx;
1740 
1741 		while (!list_empty(&txq->txq_fifo[idx])) {
1742 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1743 
1744 			INCR(idx, ATH_TXFIFO_DEPTH);
1745 		}
1746 		txq->txq_tailidx = idx;
1747 	}
1748 
1749 	txq->axq_link = NULL;
1750 	txq->axq_tx_inprogress = false;
1751 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1752 
1753 	ath_txq_unlock_complete(sc, txq);
1754 }
1755 
1756 bool ath_drain_all_txq(struct ath_softc *sc)
1757 {
1758 	struct ath_hw *ah = sc->sc_ah;
1759 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1760 	struct ath_txq *txq;
1761 	int i;
1762 	u32 npend = 0;
1763 
1764 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1765 		return true;
1766 
1767 	ath9k_hw_abort_tx_dma(ah);
1768 
1769 	/* Check if any queue remains active */
1770 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1771 		if (!ATH_TXQ_SETUP(sc, i))
1772 			continue;
1773 
1774 		if (!sc->tx.txq[i].axq_depth)
1775 			continue;
1776 
1777 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1778 			npend |= BIT(i);
1779 	}
1780 
1781 	if (npend)
1782 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1783 
1784 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1785 		if (!ATH_TXQ_SETUP(sc, i))
1786 			continue;
1787 
1788 		/*
1789 		 * The caller will resume queues with ieee80211_wake_queues.
1790 		 * Mark the queue as not stopped to prevent ath_tx_complete
1791 		 * from waking the queue too early.
1792 		 */
1793 		txq = &sc->tx.txq[i];
1794 		txq->stopped = false;
1795 		ath_draintxq(sc, txq);
1796 	}
1797 
1798 	return !npend;
1799 }
1800 
1801 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1802 {
1803 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1804 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1805 }
1806 
1807 /* For each axq_acq entry, for each tid, try to schedule packets
1808  * for transmit until ampdu_depth has reached min Q depth.
1809  */
1810 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1811 {
1812 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1813 	struct ath_atx_ac *ac, *last_ac;
1814 	struct ath_atx_tid *tid, *last_tid;
1815 	bool sent = false;
1816 
1817 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags) ||
1818 	    list_empty(&txq->axq_acq))
1819 		return;
1820 
1821 	rcu_read_lock();
1822 
1823 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1824 	while (!list_empty(&txq->axq_acq)) {
1825 		bool stop = false;
1826 
1827 		ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1828 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1829 		list_del(&ac->list);
1830 		ac->sched = false;
1831 
1832 		while (!list_empty(&ac->tid_q)) {
1833 
1834 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1835 					       list);
1836 			list_del(&tid->list);
1837 			tid->sched = false;
1838 
1839 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1840 				sent = true;
1841 
1842 			/*
1843 			 * add tid to round-robin queue if more frames
1844 			 * are pending for the tid
1845 			 */
1846 			if (ath_tid_has_buffered(tid))
1847 				ath_tx_queue_tid(txq, tid);
1848 
1849 			if (stop || tid == last_tid)
1850 				break;
1851 		}
1852 
1853 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1854 			ac->sched = true;
1855 			list_add_tail(&ac->list, &txq->axq_acq);
1856 		}
1857 
1858 		if (stop)
1859 			break;
1860 
1861 		if (ac == last_ac) {
1862 			if (!sent)
1863 				break;
1864 
1865 			sent = false;
1866 			last_ac = list_entry(txq->axq_acq.prev,
1867 					     struct ath_atx_ac, list);
1868 		}
1869 	}
1870 
1871 	rcu_read_unlock();
1872 }
1873 
1874 /***********/
1875 /* TX, DMA */
1876 /***********/
1877 
1878 /*
1879  * Insert a chain of ath_buf (descriptors) on a txq and
1880  * assume the descriptors are already chained together by caller.
1881  */
1882 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1883 			     struct list_head *head, bool internal)
1884 {
1885 	struct ath_hw *ah = sc->sc_ah;
1886 	struct ath_common *common = ath9k_hw_common(ah);
1887 	struct ath_buf *bf, *bf_last;
1888 	bool puttxbuf = false;
1889 	bool edma;
1890 
1891 	/*
1892 	 * Insert the frame on the outbound list and
1893 	 * pass it on to the hardware.
1894 	 */
1895 
1896 	if (list_empty(head))
1897 		return;
1898 
1899 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1900 	bf = list_first_entry(head, struct ath_buf, list);
1901 	bf_last = list_entry(head->prev, struct ath_buf, list);
1902 
1903 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1904 		txq->axq_qnum, txq->axq_depth);
1905 
1906 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1907 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1908 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1909 		puttxbuf = true;
1910 	} else {
1911 		list_splice_tail_init(head, &txq->axq_q);
1912 
1913 		if (txq->axq_link) {
1914 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1915 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1916 				txq->axq_qnum, txq->axq_link,
1917 				ito64(bf->bf_daddr), bf->bf_desc);
1918 		} else if (!edma)
1919 			puttxbuf = true;
1920 
1921 		txq->axq_link = bf_last->bf_desc;
1922 	}
1923 
1924 	if (puttxbuf) {
1925 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1926 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1927 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1928 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1929 	}
1930 
1931 	if (!edma || sc->tx99_state) {
1932 		TX_STAT_INC(txq->axq_qnum, txstart);
1933 		ath9k_hw_txstart(ah, txq->axq_qnum);
1934 	}
1935 
1936 	if (!internal) {
1937 		while (bf) {
1938 			txq->axq_depth++;
1939 			if (bf_is_ampdu_not_probing(bf))
1940 				txq->axq_ampdu_depth++;
1941 
1942 			bf_last = bf->bf_lastbf;
1943 			bf = bf_last->bf_next;
1944 			bf_last->bf_next = NULL;
1945 		}
1946 	}
1947 }
1948 
1949 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1950 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1951 {
1952 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1953 	struct ath_frame_info *fi = get_frame_info(skb);
1954 	struct list_head bf_head;
1955 	struct ath_buf *bf = fi->bf;
1956 
1957 	INIT_LIST_HEAD(&bf_head);
1958 	list_add_tail(&bf->list, &bf_head);
1959 	bf->bf_state.bf_type = 0;
1960 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
1961 		bf->bf_state.bf_type = BUF_AMPDU;
1962 		ath_tx_addto_baw(sc, tid, bf);
1963 	}
1964 
1965 	bf->bf_next = NULL;
1966 	bf->bf_lastbf = bf;
1967 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1968 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1969 	TX_STAT_INC(txq->axq_qnum, queued);
1970 }
1971 
1972 static void setup_frame_info(struct ieee80211_hw *hw,
1973 			     struct ieee80211_sta *sta,
1974 			     struct sk_buff *skb,
1975 			     int framelen)
1976 {
1977 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1978 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1979 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1980 	const struct ieee80211_rate *rate;
1981 	struct ath_frame_info *fi = get_frame_info(skb);
1982 	struct ath_node *an = NULL;
1983 	enum ath9k_key_type keytype;
1984 	bool short_preamble = false;
1985 
1986 	/*
1987 	 * We check if Short Preamble is needed for the CTS rate by
1988 	 * checking the BSS's global flag.
1989 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1990 	 */
1991 	if (tx_info->control.vif &&
1992 	    tx_info->control.vif->bss_conf.use_short_preamble)
1993 		short_preamble = true;
1994 
1995 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1996 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1997 
1998 	if (sta)
1999 		an = (struct ath_node *) sta->drv_priv;
2000 
2001 	memset(fi, 0, sizeof(*fi));
2002 	if (hw_key)
2003 		fi->keyix = hw_key->hw_key_idx;
2004 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2005 		fi->keyix = an->ps_key;
2006 	else
2007 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2008 	fi->keytype = keytype;
2009 	fi->framelen = framelen;
2010 
2011 	if (!rate)
2012 		return;
2013 	fi->rtscts_rate = rate->hw_value;
2014 	if (short_preamble)
2015 		fi->rtscts_rate |= rate->hw_value_short;
2016 }
2017 
2018 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2019 {
2020 	struct ath_hw *ah = sc->sc_ah;
2021 	struct ath9k_channel *curchan = ah->curchan;
2022 
2023 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2024 	    (chainmask == 0x7) && (rate < 0x90))
2025 		return 0x3;
2026 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2027 		 IS_CCK_RATE(rate))
2028 		return 0x2;
2029 	else
2030 		return chainmask;
2031 }
2032 
2033 /*
2034  * Assign a descriptor (and sequence number if necessary,
2035  * and map buffer for DMA. Frees skb on error
2036  */
2037 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2038 					   struct ath_txq *txq,
2039 					   struct ath_atx_tid *tid,
2040 					   struct sk_buff *skb)
2041 {
2042 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2043 	struct ath_frame_info *fi = get_frame_info(skb);
2044 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2045 	struct ath_buf *bf;
2046 	int fragno;
2047 	u16 seqno;
2048 
2049 	bf = ath_tx_get_buffer(sc);
2050 	if (!bf) {
2051 		ath_dbg(common, XMIT, "TX buffers are full\n");
2052 		return NULL;
2053 	}
2054 
2055 	ATH_TXBUF_RESET(bf);
2056 
2057 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2058 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2059 		seqno = tid->seq_next;
2060 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2061 
2062 		if (fragno)
2063 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2064 
2065 		if (!ieee80211_has_morefrags(hdr->frame_control))
2066 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2067 
2068 		bf->bf_state.seqno = seqno;
2069 	}
2070 
2071 	bf->bf_mpdu = skb;
2072 
2073 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2074 					 skb->len, DMA_TO_DEVICE);
2075 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2076 		bf->bf_mpdu = NULL;
2077 		bf->bf_buf_addr = 0;
2078 		ath_err(ath9k_hw_common(sc->sc_ah),
2079 			"dma_mapping_error() on TX\n");
2080 		ath_tx_return_buffer(sc, bf);
2081 		return NULL;
2082 	}
2083 
2084 	fi->bf = bf;
2085 
2086 	return bf;
2087 }
2088 
2089 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2090 			  struct ath_tx_control *txctl)
2091 {
2092 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2093 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2094 	struct ieee80211_sta *sta = txctl->sta;
2095 	struct ieee80211_vif *vif = info->control.vif;
2096 	struct ath_vif *avp;
2097 	struct ath_softc *sc = hw->priv;
2098 	int frmlen = skb->len + FCS_LEN;
2099 	int padpos, padsize;
2100 
2101 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2102 	if (sta)
2103 		txctl->an = (struct ath_node *)sta->drv_priv;
2104 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2105 		avp = (void *)vif->drv_priv;
2106 		txctl->an = &avp->mcast_node;
2107 	}
2108 
2109 	if (info->control.hw_key)
2110 		frmlen += info->control.hw_key->icv_len;
2111 
2112 	/*
2113 	 * As a temporary workaround, assign seq# here; this will likely need
2114 	 * to be cleaned up to work better with Beacon transmission and virtual
2115 	 * BSSes.
2116 	 */
2117 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2118 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2119 			sc->tx.seq_no += 0x10;
2120 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2121 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2122 	}
2123 
2124 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2125 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2126 	    !ieee80211_is_data(hdr->frame_control))
2127 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2128 
2129 	/* Add the padding after the header if this is not already done */
2130 	padpos = ieee80211_hdrlen(hdr->frame_control);
2131 	padsize = padpos & 3;
2132 	if (padsize && skb->len > padpos) {
2133 		if (skb_headroom(skb) < padsize)
2134 			return -ENOMEM;
2135 
2136 		skb_push(skb, padsize);
2137 		memmove(skb->data, skb->data + padsize, padpos);
2138 	}
2139 
2140 	setup_frame_info(hw, sta, skb, frmlen);
2141 	return 0;
2142 }
2143 
2144 
2145 /* Upon failure caller should free skb */
2146 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2147 		 struct ath_tx_control *txctl)
2148 {
2149 	struct ieee80211_hdr *hdr;
2150 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2151 	struct ieee80211_sta *sta = txctl->sta;
2152 	struct ieee80211_vif *vif = info->control.vif;
2153 	struct ath_softc *sc = hw->priv;
2154 	struct ath_txq *txq = txctl->txq;
2155 	struct ath_atx_tid *tid = NULL;
2156 	struct ath_buf *bf;
2157 	int q;
2158 	int ret;
2159 
2160 	ret = ath_tx_prepare(hw, skb, txctl);
2161 	if (ret)
2162 	    return ret;
2163 
2164 	hdr = (struct ieee80211_hdr *) skb->data;
2165 	/*
2166 	 * At this point, the vif, hw_key and sta pointers in the tx control
2167 	 * info are no longer valid (overwritten by the ath_frame_info data.
2168 	 */
2169 
2170 	q = skb_get_queue_mapping(skb);
2171 
2172 	ath_txq_lock(sc, txq);
2173 	if (txq == sc->tx.txq_map[q] &&
2174 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2175 	    !txq->stopped) {
2176 		ieee80211_stop_queue(sc->hw, q);
2177 		txq->stopped = true;
2178 	}
2179 
2180 	if (txctl->an && ieee80211_is_data_present(hdr->frame_control))
2181 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2182 
2183 	if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2184 		ath_txq_unlock(sc, txq);
2185 		txq = sc->tx.uapsdq;
2186 		ath_txq_lock(sc, txq);
2187 	} else if (txctl->an &&
2188 		   ieee80211_is_data_present(hdr->frame_control)) {
2189 		WARN_ON(tid->ac->txq != txctl->txq);
2190 
2191 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2192 			tid->ac->clear_ps_filter = true;
2193 
2194 		/*
2195 		 * Add this frame to software queue for scheduling later
2196 		 * for aggregation.
2197 		 */
2198 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2199 		__skb_queue_tail(&tid->buf_q, skb);
2200 		if (!txctl->an->sleeping)
2201 			ath_tx_queue_tid(txq, tid);
2202 
2203 		ath_txq_schedule(sc, txq);
2204 		goto out;
2205 	}
2206 
2207 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2208 	if (!bf) {
2209 		ath_txq_skb_done(sc, txq, skb);
2210 		if (txctl->paprd)
2211 			dev_kfree_skb_any(skb);
2212 		else
2213 			ieee80211_free_txskb(sc->hw, skb);
2214 		goto out;
2215 	}
2216 
2217 	bf->bf_state.bfs_paprd = txctl->paprd;
2218 
2219 	if (txctl->paprd)
2220 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2221 
2222 	ath_set_rates(vif, sta, bf);
2223 	ath_tx_send_normal(sc, txq, tid, skb);
2224 
2225 out:
2226 	ath_txq_unlock(sc, txq);
2227 
2228 	return 0;
2229 }
2230 
2231 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2232 		 struct sk_buff *skb)
2233 {
2234 	struct ath_softc *sc = hw->priv;
2235 	struct ath_tx_control txctl = {
2236 		.txq = sc->beacon.cabq
2237 	};
2238 	struct ath_tx_info info = {};
2239 	struct ieee80211_hdr *hdr;
2240 	struct ath_buf *bf_tail = NULL;
2241 	struct ath_buf *bf;
2242 	LIST_HEAD(bf_q);
2243 	int duration = 0;
2244 	int max_duration;
2245 
2246 	max_duration =
2247 		sc->cur_beacon_conf.beacon_interval * 1000 *
2248 		sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2249 
2250 	do {
2251 		struct ath_frame_info *fi = get_frame_info(skb);
2252 
2253 		if (ath_tx_prepare(hw, skb, &txctl))
2254 			break;
2255 
2256 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2257 		if (!bf)
2258 			break;
2259 
2260 		bf->bf_lastbf = bf;
2261 		ath_set_rates(vif, NULL, bf);
2262 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2263 		duration += info.rates[0].PktDuration;
2264 		if (bf_tail)
2265 			bf_tail->bf_next = bf;
2266 
2267 		list_add_tail(&bf->list, &bf_q);
2268 		bf_tail = bf;
2269 		skb = NULL;
2270 
2271 		if (duration > max_duration)
2272 			break;
2273 
2274 		skb = ieee80211_get_buffered_bc(hw, vif);
2275 	} while(skb);
2276 
2277 	if (skb)
2278 		ieee80211_free_txskb(hw, skb);
2279 
2280 	if (list_empty(&bf_q))
2281 		return;
2282 
2283 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2284 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2285 
2286 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2287 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2288 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2289 			sizeof(*hdr), DMA_TO_DEVICE);
2290 	}
2291 
2292 	ath_txq_lock(sc, txctl.txq);
2293 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2294 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2295 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2296 	ath_txq_unlock(sc, txctl.txq);
2297 }
2298 
2299 /*****************/
2300 /* TX Completion */
2301 /*****************/
2302 
2303 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2304 			    int tx_flags, struct ath_txq *txq)
2305 {
2306 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2307 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2308 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2309 	int padpos, padsize;
2310 	unsigned long flags;
2311 
2312 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2313 
2314 	if (sc->sc_ah->caldata)
2315 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2316 
2317 	if (!(tx_flags & ATH_TX_ERROR))
2318 		/* Frame was ACKed */
2319 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2320 
2321 	padpos = ieee80211_hdrlen(hdr->frame_control);
2322 	padsize = padpos & 3;
2323 	if (padsize && skb->len>padpos+padsize) {
2324 		/*
2325 		 * Remove MAC header padding before giving the frame back to
2326 		 * mac80211.
2327 		 */
2328 		memmove(skb->data + padsize, skb->data, padpos);
2329 		skb_pull(skb, padsize);
2330 	}
2331 
2332 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2333 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2334 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2335 		ath_dbg(common, PS,
2336 			"Going back to sleep after having received TX status (0x%lx)\n",
2337 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2338 					PS_WAIT_FOR_CAB |
2339 					PS_WAIT_FOR_PSPOLL_DATA |
2340 					PS_WAIT_FOR_TX_ACK));
2341 	}
2342 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2343 
2344 	__skb_queue_tail(&txq->complete_q, skb);
2345 	ath_txq_skb_done(sc, txq, skb);
2346 }
2347 
2348 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2349 				struct ath_txq *txq, struct list_head *bf_q,
2350 				struct ath_tx_status *ts, int txok)
2351 {
2352 	struct sk_buff *skb = bf->bf_mpdu;
2353 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2354 	unsigned long flags;
2355 	int tx_flags = 0;
2356 
2357 	if (!txok)
2358 		tx_flags |= ATH_TX_ERROR;
2359 
2360 	if (ts->ts_status & ATH9K_TXERR_FILT)
2361 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2362 
2363 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2364 	bf->bf_buf_addr = 0;
2365 	if (sc->tx99_state)
2366 		goto skip_tx_complete;
2367 
2368 	if (bf->bf_state.bfs_paprd) {
2369 		if (time_after(jiffies,
2370 				bf->bf_state.bfs_paprd_timestamp +
2371 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2372 			dev_kfree_skb_any(skb);
2373 		else
2374 			complete(&sc->paprd_complete);
2375 	} else {
2376 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2377 		ath_tx_complete(sc, skb, tx_flags, txq);
2378 	}
2379 skip_tx_complete:
2380 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2381 	 * accidentally reference it later.
2382 	 */
2383 	bf->bf_mpdu = NULL;
2384 
2385 	/*
2386 	 * Return the list of ath_buf of this mpdu to free queue
2387 	 */
2388 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2389 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2390 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2391 }
2392 
2393 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2394 			     struct ath_tx_status *ts, int nframes, int nbad,
2395 			     int txok)
2396 {
2397 	struct sk_buff *skb = bf->bf_mpdu;
2398 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2399 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2400 	struct ieee80211_hw *hw = sc->hw;
2401 	struct ath_hw *ah = sc->sc_ah;
2402 	u8 i, tx_rateindex;
2403 
2404 	if (txok)
2405 		tx_info->status.ack_signal = ts->ts_rssi;
2406 
2407 	tx_rateindex = ts->ts_rateindex;
2408 	WARN_ON(tx_rateindex >= hw->max_rates);
2409 
2410 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2411 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2412 
2413 		BUG_ON(nbad > nframes);
2414 	}
2415 	tx_info->status.ampdu_len = nframes;
2416 	tx_info->status.ampdu_ack_len = nframes - nbad;
2417 
2418 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2419 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2420 		/*
2421 		 * If an underrun error is seen assume it as an excessive
2422 		 * retry only if max frame trigger level has been reached
2423 		 * (2 KB for single stream, and 4 KB for dual stream).
2424 		 * Adjust the long retry as if the frame was tried
2425 		 * hw->max_rate_tries times to affect how rate control updates
2426 		 * PER for the failed rate.
2427 		 * In case of congestion on the bus penalizing this type of
2428 		 * underruns should help hardware actually transmit new frames
2429 		 * successfully by eventually preferring slower rates.
2430 		 * This itself should also alleviate congestion on the bus.
2431 		 */
2432 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2433 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2434 		    ieee80211_is_data(hdr->frame_control) &&
2435 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2436 			tx_info->status.rates[tx_rateindex].count =
2437 				hw->max_rate_tries;
2438 	}
2439 
2440 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2441 		tx_info->status.rates[i].count = 0;
2442 		tx_info->status.rates[i].idx = -1;
2443 	}
2444 
2445 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2446 }
2447 
2448 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2449 {
2450 	struct ath_hw *ah = sc->sc_ah;
2451 	struct ath_common *common = ath9k_hw_common(ah);
2452 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2453 	struct list_head bf_head;
2454 	struct ath_desc *ds;
2455 	struct ath_tx_status ts;
2456 	int status;
2457 
2458 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2459 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2460 		txq->axq_link);
2461 
2462 	ath_txq_lock(sc, txq);
2463 	for (;;) {
2464 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2465 			break;
2466 
2467 		if (list_empty(&txq->axq_q)) {
2468 			txq->axq_link = NULL;
2469 			ath_txq_schedule(sc, txq);
2470 			break;
2471 		}
2472 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2473 
2474 		/*
2475 		 * There is a race condition that a BH gets scheduled
2476 		 * after sw writes TxE and before hw re-load the last
2477 		 * descriptor to get the newly chained one.
2478 		 * Software must keep the last DONE descriptor as a
2479 		 * holding descriptor - software does so by marking
2480 		 * it with the STALE flag.
2481 		 */
2482 		bf_held = NULL;
2483 		if (bf->bf_state.stale) {
2484 			bf_held = bf;
2485 			if (list_is_last(&bf_held->list, &txq->axq_q))
2486 				break;
2487 
2488 			bf = list_entry(bf_held->list.next, struct ath_buf,
2489 					list);
2490 		}
2491 
2492 		lastbf = bf->bf_lastbf;
2493 		ds = lastbf->bf_desc;
2494 
2495 		memset(&ts, 0, sizeof(ts));
2496 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2497 		if (status == -EINPROGRESS)
2498 			break;
2499 
2500 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2501 
2502 		/*
2503 		 * Remove ath_buf's of the same transmit unit from txq,
2504 		 * however leave the last descriptor back as the holding
2505 		 * descriptor for hw.
2506 		 */
2507 		lastbf->bf_state.stale = true;
2508 		INIT_LIST_HEAD(&bf_head);
2509 		if (!list_is_singular(&lastbf->list))
2510 			list_cut_position(&bf_head,
2511 				&txq->axq_q, lastbf->list.prev);
2512 
2513 		if (bf_held) {
2514 			list_del(&bf_held->list);
2515 			ath_tx_return_buffer(sc, bf_held);
2516 		}
2517 
2518 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2519 	}
2520 	ath_txq_unlock_complete(sc, txq);
2521 }
2522 
2523 void ath_tx_tasklet(struct ath_softc *sc)
2524 {
2525 	struct ath_hw *ah = sc->sc_ah;
2526 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2527 	int i;
2528 
2529 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2530 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2531 			ath_tx_processq(sc, &sc->tx.txq[i]);
2532 	}
2533 }
2534 
2535 void ath_tx_edma_tasklet(struct ath_softc *sc)
2536 {
2537 	struct ath_tx_status ts;
2538 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2539 	struct ath_hw *ah = sc->sc_ah;
2540 	struct ath_txq *txq;
2541 	struct ath_buf *bf, *lastbf;
2542 	struct list_head bf_head;
2543 	struct list_head *fifo_list;
2544 	int status;
2545 
2546 	for (;;) {
2547 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2548 			break;
2549 
2550 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2551 		if (status == -EINPROGRESS)
2552 			break;
2553 		if (status == -EIO) {
2554 			ath_dbg(common, XMIT, "Error processing tx status\n");
2555 			break;
2556 		}
2557 
2558 		/* Process beacon completions separately */
2559 		if (ts.qid == sc->beacon.beaconq) {
2560 			sc->beacon.tx_processed = true;
2561 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2562 
2563 			ath9k_csa_update(sc);
2564 			continue;
2565 		}
2566 
2567 		txq = &sc->tx.txq[ts.qid];
2568 
2569 		ath_txq_lock(sc, txq);
2570 
2571 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2572 
2573 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2574 		if (list_empty(fifo_list)) {
2575 			ath_txq_unlock(sc, txq);
2576 			return;
2577 		}
2578 
2579 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2580 		if (bf->bf_state.stale) {
2581 			list_del(&bf->list);
2582 			ath_tx_return_buffer(sc, bf);
2583 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2584 		}
2585 
2586 		lastbf = bf->bf_lastbf;
2587 
2588 		INIT_LIST_HEAD(&bf_head);
2589 		if (list_is_last(&lastbf->list, fifo_list)) {
2590 			list_splice_tail_init(fifo_list, &bf_head);
2591 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2592 
2593 			if (!list_empty(&txq->axq_q)) {
2594 				struct list_head bf_q;
2595 
2596 				INIT_LIST_HEAD(&bf_q);
2597 				txq->axq_link = NULL;
2598 				list_splice_tail_init(&txq->axq_q, &bf_q);
2599 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2600 			}
2601 		} else {
2602 			lastbf->bf_state.stale = true;
2603 			if (bf != lastbf)
2604 				list_cut_position(&bf_head, fifo_list,
2605 						  lastbf->list.prev);
2606 		}
2607 
2608 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2609 		ath_txq_unlock_complete(sc, txq);
2610 	}
2611 }
2612 
2613 /*****************/
2614 /* Init, Cleanup */
2615 /*****************/
2616 
2617 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2618 {
2619 	struct ath_descdma *dd = &sc->txsdma;
2620 	u8 txs_len = sc->sc_ah->caps.txs_len;
2621 
2622 	dd->dd_desc_len = size * txs_len;
2623 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2624 					  &dd->dd_desc_paddr, GFP_KERNEL);
2625 	if (!dd->dd_desc)
2626 		return -ENOMEM;
2627 
2628 	return 0;
2629 }
2630 
2631 static int ath_tx_edma_init(struct ath_softc *sc)
2632 {
2633 	int err;
2634 
2635 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2636 	if (!err)
2637 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2638 					  sc->txsdma.dd_desc_paddr,
2639 					  ATH_TXSTATUS_RING_SIZE);
2640 
2641 	return err;
2642 }
2643 
2644 int ath_tx_init(struct ath_softc *sc, int nbufs)
2645 {
2646 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2647 	int error = 0;
2648 
2649 	spin_lock_init(&sc->tx.txbuflock);
2650 
2651 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2652 				  "tx", nbufs, 1, 1);
2653 	if (error != 0) {
2654 		ath_err(common,
2655 			"Failed to allocate tx descriptors: %d\n", error);
2656 		return error;
2657 	}
2658 
2659 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2660 				  "beacon", ATH_BCBUF, 1, 1);
2661 	if (error != 0) {
2662 		ath_err(common,
2663 			"Failed to allocate beacon descriptors: %d\n", error);
2664 		return error;
2665 	}
2666 
2667 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2668 
2669 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2670 		error = ath_tx_edma_init(sc);
2671 
2672 	return error;
2673 }
2674 
2675 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2676 {
2677 	struct ath_atx_tid *tid;
2678 	struct ath_atx_ac *ac;
2679 	int tidno, acno;
2680 
2681 	for (tidno = 0, tid = &an->tid[tidno];
2682 	     tidno < IEEE80211_NUM_TIDS;
2683 	     tidno++, tid++) {
2684 		tid->an        = an;
2685 		tid->tidno     = tidno;
2686 		tid->seq_start = tid->seq_next = 0;
2687 		tid->baw_size  = WME_MAX_BA;
2688 		tid->baw_head  = tid->baw_tail = 0;
2689 		tid->sched     = false;
2690 		tid->active	   = false;
2691 		__skb_queue_head_init(&tid->buf_q);
2692 		__skb_queue_head_init(&tid->retry_q);
2693 		acno = TID_TO_WME_AC(tidno);
2694 		tid->ac = &an->ac[acno];
2695 	}
2696 
2697 	for (acno = 0, ac = &an->ac[acno];
2698 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2699 		ac->sched    = false;
2700 		ac->clear_ps_filter = true;
2701 		ac->txq = sc->tx.txq_map[acno];
2702 		INIT_LIST_HEAD(&ac->tid_q);
2703 	}
2704 }
2705 
2706 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2707 {
2708 	struct ath_atx_ac *ac;
2709 	struct ath_atx_tid *tid;
2710 	struct ath_txq *txq;
2711 	int tidno;
2712 
2713 	for (tidno = 0, tid = &an->tid[tidno];
2714 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2715 
2716 		ac = tid->ac;
2717 		txq = ac->txq;
2718 
2719 		ath_txq_lock(sc, txq);
2720 
2721 		if (tid->sched) {
2722 			list_del(&tid->list);
2723 			tid->sched = false;
2724 		}
2725 
2726 		if (ac->sched) {
2727 			list_del(&ac->list);
2728 			tid->ac->sched = false;
2729 		}
2730 
2731 		ath_tid_drain(sc, txq, tid);
2732 		tid->active = false;
2733 
2734 		ath_txq_unlock(sc, txq);
2735 	}
2736 }
2737 
2738 #ifdef CONFIG_ATH9K_TX99
2739 
2740 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2741 		    struct ath_tx_control *txctl)
2742 {
2743 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2744 	struct ath_frame_info *fi = get_frame_info(skb);
2745 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2746 	struct ath_buf *bf;
2747 	int padpos, padsize;
2748 
2749 	padpos = ieee80211_hdrlen(hdr->frame_control);
2750 	padsize = padpos & 3;
2751 
2752 	if (padsize && skb->len > padpos) {
2753 		if (skb_headroom(skb) < padsize) {
2754 			ath_dbg(common, XMIT,
2755 				"tx99 padding failed\n");
2756 		return -EINVAL;
2757 		}
2758 
2759 		skb_push(skb, padsize);
2760 		memmove(skb->data, skb->data + padsize, padpos);
2761 	}
2762 
2763 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2764 	fi->framelen = skb->len + FCS_LEN;
2765 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2766 
2767 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2768 	if (!bf) {
2769 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2770 		return -EINVAL;
2771 	}
2772 
2773 	ath_set_rates(sc->tx99_vif, NULL, bf);
2774 
2775 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2776 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2777 
2778 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2779 
2780 	return 0;
2781 }
2782 
2783 #endif /* CONFIG_ATH9K_TX99 */
2784