1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq); 54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 55 struct ath_txq *txq, struct list_head *bf_q, 56 struct ath_tx_status *ts, int txok); 57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 58 struct list_head *head, bool internal); 59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 60 struct ath_tx_status *ts, int nframes, int nbad, 61 int txok); 62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 63 int seqno); 64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 65 struct ath_txq *txq, 66 struct ath_atx_tid *tid, 67 struct sk_buff *skb); 68 69 enum { 70 MCS_HT20, 71 MCS_HT20_SGI, 72 MCS_HT40, 73 MCS_HT40_SGI, 74 }; 75 76 /*********************/ 77 /* Aggregation logic */ 78 /*********************/ 79 80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 81 __acquires(&txq->axq_lock) 82 { 83 spin_lock_bh(&txq->axq_lock); 84 } 85 86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 87 __releases(&txq->axq_lock) 88 { 89 spin_unlock_bh(&txq->axq_lock); 90 } 91 92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 93 __releases(&txq->axq_lock) 94 { 95 struct sk_buff_head q; 96 struct sk_buff *skb; 97 98 __skb_queue_head_init(&q); 99 skb_queue_splice_init(&txq->complete_q, &q); 100 spin_unlock_bh(&txq->axq_lock); 101 102 while ((skb = __skb_dequeue(&q))) 103 ieee80211_tx_status(sc->hw, skb); 104 } 105 106 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 107 { 108 struct ath_atx_ac *ac = tid->ac; 109 110 if (tid->sched) 111 return; 112 113 tid->sched = true; 114 list_add_tail(&tid->list, &ac->tid_q); 115 116 if (ac->sched) 117 return; 118 119 ac->sched = true; 120 list_add_tail(&ac->list, &txq->axq_acq); 121 } 122 123 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 124 { 125 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 126 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 127 sizeof(tx_info->rate_driver_data)); 128 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 129 } 130 131 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 132 { 133 if (!tid->an->sta) 134 return; 135 136 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 137 seqno << IEEE80211_SEQ_SEQ_SHIFT); 138 } 139 140 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 141 struct ath_buf *bf) 142 { 143 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 144 ARRAY_SIZE(bf->rates)); 145 } 146 147 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 148 struct sk_buff *skb) 149 { 150 int q; 151 152 q = skb_get_queue_mapping(skb); 153 if (txq == sc->tx.uapsdq) 154 txq = sc->tx.txq_map[q]; 155 156 if (txq != sc->tx.txq_map[q]) 157 return; 158 159 if (WARN_ON(--txq->pending_frames < 0)) 160 txq->pending_frames = 0; 161 162 if (txq->stopped && 163 txq->pending_frames < sc->tx.txq_max_pending[q]) { 164 ieee80211_wake_queue(sc->hw, q); 165 txq->stopped = false; 166 } 167 } 168 169 static struct ath_atx_tid * 170 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 171 { 172 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 173 return ATH_AN_2_TID(an, tidno); 174 } 175 176 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 177 { 178 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q); 179 } 180 181 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 182 { 183 struct sk_buff *skb; 184 185 skb = __skb_dequeue(&tid->retry_q); 186 if (!skb) 187 skb = __skb_dequeue(&tid->buf_q); 188 189 return skb; 190 } 191 192 /* 193 * ath_tx_tid_change_state: 194 * - clears a-mpdu flag of previous session 195 * - force sequence number allocation to fix next BlockAck Window 196 */ 197 static void 198 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid) 199 { 200 struct ath_txq *txq = tid->ac->txq; 201 struct ieee80211_tx_info *tx_info; 202 struct sk_buff *skb, *tskb; 203 struct ath_buf *bf; 204 struct ath_frame_info *fi; 205 206 skb_queue_walk_safe(&tid->buf_q, skb, tskb) { 207 fi = get_frame_info(skb); 208 bf = fi->bf; 209 210 tx_info = IEEE80211_SKB_CB(skb); 211 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 212 213 if (bf) 214 continue; 215 216 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 217 if (!bf) { 218 __skb_unlink(skb, &tid->buf_q); 219 ath_txq_skb_done(sc, txq, skb); 220 ieee80211_free_txskb(sc->hw, skb); 221 continue; 222 } 223 } 224 225 } 226 227 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 228 { 229 struct ath_txq *txq = tid->ac->txq; 230 struct sk_buff *skb; 231 struct ath_buf *bf; 232 struct list_head bf_head; 233 struct ath_tx_status ts; 234 struct ath_frame_info *fi; 235 bool sendbar = false; 236 237 INIT_LIST_HEAD(&bf_head); 238 239 memset(&ts, 0, sizeof(ts)); 240 241 while ((skb = __skb_dequeue(&tid->retry_q))) { 242 fi = get_frame_info(skb); 243 bf = fi->bf; 244 if (!bf) { 245 ath_txq_skb_done(sc, txq, skb); 246 ieee80211_free_txskb(sc->hw, skb); 247 continue; 248 } 249 250 if (fi->baw_tracked) { 251 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 252 sendbar = true; 253 } 254 255 list_add_tail(&bf->list, &bf_head); 256 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 257 } 258 259 if (sendbar) { 260 ath_txq_unlock(sc, txq); 261 ath_send_bar(tid, tid->seq_start); 262 ath_txq_lock(sc, txq); 263 } 264 } 265 266 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 267 int seqno) 268 { 269 int index, cindex; 270 271 index = ATH_BA_INDEX(tid->seq_start, seqno); 272 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 273 274 __clear_bit(cindex, tid->tx_buf); 275 276 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 277 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 278 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 279 if (tid->bar_index >= 0) 280 tid->bar_index--; 281 } 282 } 283 284 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 285 struct ath_buf *bf) 286 { 287 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 288 u16 seqno = bf->bf_state.seqno; 289 int index, cindex; 290 291 index = ATH_BA_INDEX(tid->seq_start, seqno); 292 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 293 __set_bit(cindex, tid->tx_buf); 294 fi->baw_tracked = 1; 295 296 if (index >= ((tid->baw_tail - tid->baw_head) & 297 (ATH_TID_MAX_BUFS - 1))) { 298 tid->baw_tail = cindex; 299 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 300 } 301 } 302 303 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 304 struct ath_atx_tid *tid) 305 306 { 307 struct sk_buff *skb; 308 struct ath_buf *bf; 309 struct list_head bf_head; 310 struct ath_tx_status ts; 311 struct ath_frame_info *fi; 312 313 memset(&ts, 0, sizeof(ts)); 314 INIT_LIST_HEAD(&bf_head); 315 316 while ((skb = ath_tid_dequeue(tid))) { 317 fi = get_frame_info(skb); 318 bf = fi->bf; 319 320 if (!bf) { 321 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 322 continue; 323 } 324 325 list_add_tail(&bf->list, &bf_head); 326 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 327 } 328 } 329 330 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 331 struct sk_buff *skb, int count) 332 { 333 struct ath_frame_info *fi = get_frame_info(skb); 334 struct ath_buf *bf = fi->bf; 335 struct ieee80211_hdr *hdr; 336 int prev = fi->retries; 337 338 TX_STAT_INC(txq->axq_qnum, a_retries); 339 fi->retries += count; 340 341 if (prev > 0) 342 return; 343 344 hdr = (struct ieee80211_hdr *)skb->data; 345 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 346 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 347 sizeof(*hdr), DMA_TO_DEVICE); 348 } 349 350 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 351 { 352 struct ath_buf *bf = NULL; 353 354 spin_lock_bh(&sc->tx.txbuflock); 355 356 if (unlikely(list_empty(&sc->tx.txbuf))) { 357 spin_unlock_bh(&sc->tx.txbuflock); 358 return NULL; 359 } 360 361 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 362 list_del(&bf->list); 363 364 spin_unlock_bh(&sc->tx.txbuflock); 365 366 return bf; 367 } 368 369 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 370 { 371 spin_lock_bh(&sc->tx.txbuflock); 372 list_add_tail(&bf->list, &sc->tx.txbuf); 373 spin_unlock_bh(&sc->tx.txbuflock); 374 } 375 376 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 377 { 378 struct ath_buf *tbf; 379 380 tbf = ath_tx_get_buffer(sc); 381 if (WARN_ON(!tbf)) 382 return NULL; 383 384 ATH_TXBUF_RESET(tbf); 385 386 tbf->bf_mpdu = bf->bf_mpdu; 387 tbf->bf_buf_addr = bf->bf_buf_addr; 388 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 389 tbf->bf_state = bf->bf_state; 390 tbf->bf_state.stale = false; 391 392 return tbf; 393 } 394 395 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 396 struct ath_tx_status *ts, int txok, 397 int *nframes, int *nbad) 398 { 399 struct ath_frame_info *fi; 400 u16 seq_st = 0; 401 u32 ba[WME_BA_BMP_SIZE >> 5]; 402 int ba_index; 403 int isaggr = 0; 404 405 *nbad = 0; 406 *nframes = 0; 407 408 isaggr = bf_isaggr(bf); 409 if (isaggr) { 410 seq_st = ts->ts_seqnum; 411 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 412 } 413 414 while (bf) { 415 fi = get_frame_info(bf->bf_mpdu); 416 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 417 418 (*nframes)++; 419 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 420 (*nbad)++; 421 422 bf = bf->bf_next; 423 } 424 } 425 426 427 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 428 struct ath_buf *bf, struct list_head *bf_q, 429 struct ath_tx_status *ts, int txok) 430 { 431 struct ath_node *an = NULL; 432 struct sk_buff *skb; 433 struct ieee80211_sta *sta; 434 struct ieee80211_hw *hw = sc->hw; 435 struct ieee80211_hdr *hdr; 436 struct ieee80211_tx_info *tx_info; 437 struct ath_atx_tid *tid = NULL; 438 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 439 struct list_head bf_head; 440 struct sk_buff_head bf_pending; 441 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 442 u32 ba[WME_BA_BMP_SIZE >> 5]; 443 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 444 bool rc_update = true, isba; 445 struct ieee80211_tx_rate rates[4]; 446 struct ath_frame_info *fi; 447 int nframes; 448 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 449 int i, retries; 450 int bar_index = -1; 451 452 skb = bf->bf_mpdu; 453 hdr = (struct ieee80211_hdr *)skb->data; 454 455 tx_info = IEEE80211_SKB_CB(skb); 456 457 memcpy(rates, bf->rates, sizeof(rates)); 458 459 retries = ts->ts_longretry + 1; 460 for (i = 0; i < ts->ts_rateindex; i++) 461 retries += rates[i].count; 462 463 rcu_read_lock(); 464 465 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 466 if (!sta) { 467 rcu_read_unlock(); 468 469 INIT_LIST_HEAD(&bf_head); 470 while (bf) { 471 bf_next = bf->bf_next; 472 473 if (!bf->bf_state.stale || bf_next != NULL) 474 list_move_tail(&bf->list, &bf_head); 475 476 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 477 478 bf = bf_next; 479 } 480 return; 481 } 482 483 an = (struct ath_node *)sta->drv_priv; 484 tid = ath_get_skb_tid(sc, an, skb); 485 seq_first = tid->seq_start; 486 isba = ts->ts_flags & ATH9K_TX_BA; 487 488 /* 489 * The hardware occasionally sends a tx status for the wrong TID. 490 * In this case, the BA status cannot be considered valid and all 491 * subframes need to be retransmitted 492 * 493 * Only BlockAcks have a TID and therefore normal Acks cannot be 494 * checked 495 */ 496 if (isba && tid->tidno != ts->tid) 497 txok = false; 498 499 isaggr = bf_isaggr(bf); 500 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 501 502 if (isaggr && txok) { 503 if (ts->ts_flags & ATH9K_TX_BA) { 504 seq_st = ts->ts_seqnum; 505 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 506 } else { 507 /* 508 * AR5416 can become deaf/mute when BA 509 * issue happens. Chip needs to be reset. 510 * But AP code may have sychronization issues 511 * when perform internal reset in this routine. 512 * Only enable reset in STA mode for now. 513 */ 514 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 515 needreset = 1; 516 } 517 } 518 519 __skb_queue_head_init(&bf_pending); 520 521 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 522 while (bf) { 523 u16 seqno = bf->bf_state.seqno; 524 525 txfail = txpending = sendbar = 0; 526 bf_next = bf->bf_next; 527 528 skb = bf->bf_mpdu; 529 tx_info = IEEE80211_SKB_CB(skb); 530 fi = get_frame_info(skb); 531 532 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 533 !tid->active) { 534 /* 535 * Outside of the current BlockAck window, 536 * maybe part of a previous session 537 */ 538 txfail = 1; 539 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 540 /* transmit completion, subframe is 541 * acked by block ack */ 542 acked_cnt++; 543 } else if (!isaggr && txok) { 544 /* transmit completion */ 545 acked_cnt++; 546 } else if (flush) { 547 txpending = 1; 548 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 549 if (txok || !an->sleeping) 550 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 551 retries); 552 553 txpending = 1; 554 } else { 555 txfail = 1; 556 txfail_cnt++; 557 bar_index = max_t(int, bar_index, 558 ATH_BA_INDEX(seq_first, seqno)); 559 } 560 561 /* 562 * Make sure the last desc is reclaimed if it 563 * not a holding desc. 564 */ 565 INIT_LIST_HEAD(&bf_head); 566 if (bf_next != NULL || !bf_last->bf_state.stale) 567 list_move_tail(&bf->list, &bf_head); 568 569 if (!txpending) { 570 /* 571 * complete the acked-ones/xretried ones; update 572 * block-ack window 573 */ 574 ath_tx_update_baw(sc, tid, seqno); 575 576 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 577 memcpy(tx_info->control.rates, rates, sizeof(rates)); 578 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 579 rc_update = false; 580 } 581 582 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 583 !txfail); 584 } else { 585 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 586 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 587 ieee80211_sta_eosp(sta); 588 } 589 /* retry the un-acked ones */ 590 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 591 struct ath_buf *tbf; 592 593 tbf = ath_clone_txbuf(sc, bf_last); 594 /* 595 * Update tx baw and complete the 596 * frame with failed status if we 597 * run out of tx buf. 598 */ 599 if (!tbf) { 600 ath_tx_update_baw(sc, tid, seqno); 601 602 ath_tx_complete_buf(sc, bf, txq, 603 &bf_head, ts, 0); 604 bar_index = max_t(int, bar_index, 605 ATH_BA_INDEX(seq_first, seqno)); 606 break; 607 } 608 609 fi->bf = tbf; 610 } 611 612 /* 613 * Put this buffer to the temporary pending 614 * queue to retain ordering 615 */ 616 __skb_queue_tail(&bf_pending, skb); 617 } 618 619 bf = bf_next; 620 } 621 622 /* prepend un-acked frames to the beginning of the pending frame queue */ 623 if (!skb_queue_empty(&bf_pending)) { 624 if (an->sleeping) 625 ieee80211_sta_set_buffered(sta, tid->tidno, true); 626 627 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 628 if (!an->sleeping) { 629 ath_tx_queue_tid(txq, tid); 630 631 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 632 tid->ac->clear_ps_filter = true; 633 } 634 } 635 636 if (bar_index >= 0) { 637 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 638 639 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 640 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 641 642 ath_txq_unlock(sc, txq); 643 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 644 ath_txq_lock(sc, txq); 645 } 646 647 rcu_read_unlock(); 648 649 if (needreset) 650 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 651 } 652 653 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 654 { 655 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 656 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 657 } 658 659 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 660 struct ath_tx_status *ts, struct ath_buf *bf, 661 struct list_head *bf_head) 662 { 663 struct ieee80211_tx_info *info; 664 bool txok, flush; 665 666 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 667 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 668 txq->axq_tx_inprogress = false; 669 670 txq->axq_depth--; 671 if (bf_is_ampdu_not_probing(bf)) 672 txq->axq_ampdu_depth--; 673 674 if (!bf_isampdu(bf)) { 675 if (!flush) { 676 info = IEEE80211_SKB_CB(bf->bf_mpdu); 677 memcpy(info->control.rates, bf->rates, 678 sizeof(info->control.rates)); 679 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 680 } 681 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 682 } else 683 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 684 685 if (!flush) 686 ath_txq_schedule(sc, txq); 687 } 688 689 static bool ath_lookup_legacy(struct ath_buf *bf) 690 { 691 struct sk_buff *skb; 692 struct ieee80211_tx_info *tx_info; 693 struct ieee80211_tx_rate *rates; 694 int i; 695 696 skb = bf->bf_mpdu; 697 tx_info = IEEE80211_SKB_CB(skb); 698 rates = tx_info->control.rates; 699 700 for (i = 0; i < 4; i++) { 701 if (!rates[i].count || rates[i].idx < 0) 702 break; 703 704 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 705 return true; 706 } 707 708 return false; 709 } 710 711 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 712 struct ath_atx_tid *tid) 713 { 714 struct sk_buff *skb; 715 struct ieee80211_tx_info *tx_info; 716 struct ieee80211_tx_rate *rates; 717 u32 max_4ms_framelen, frmlen; 718 u16 aggr_limit, bt_aggr_limit, legacy = 0; 719 int q = tid->ac->txq->mac80211_qnum; 720 int i; 721 722 skb = bf->bf_mpdu; 723 tx_info = IEEE80211_SKB_CB(skb); 724 rates = bf->rates; 725 726 /* 727 * Find the lowest frame length among the rate series that will have a 728 * 4ms (or TXOP limited) transmit duration. 729 */ 730 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 731 732 for (i = 0; i < 4; i++) { 733 int modeidx; 734 735 if (!rates[i].count) 736 continue; 737 738 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 739 legacy = 1; 740 break; 741 } 742 743 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 744 modeidx = MCS_HT40; 745 else 746 modeidx = MCS_HT20; 747 748 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 749 modeidx++; 750 751 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 752 max_4ms_framelen = min(max_4ms_framelen, frmlen); 753 } 754 755 /* 756 * limit aggregate size by the minimum rate if rate selected is 757 * not a probe rate, if rate selected is a probe rate then 758 * avoid aggregation of this packet. 759 */ 760 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 761 return 0; 762 763 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 764 765 /* 766 * Override the default aggregation limit for BTCOEX. 767 */ 768 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 769 if (bt_aggr_limit) 770 aggr_limit = bt_aggr_limit; 771 772 if (tid->an->maxampdu) 773 aggr_limit = min(aggr_limit, tid->an->maxampdu); 774 775 return aggr_limit; 776 } 777 778 /* 779 * Returns the number of delimiters to be added to 780 * meet the minimum required mpdudensity. 781 */ 782 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 783 struct ath_buf *bf, u16 frmlen, 784 bool first_subfrm) 785 { 786 #define FIRST_DESC_NDELIMS 60 787 u32 nsymbits, nsymbols; 788 u16 minlen; 789 u8 flags, rix; 790 int width, streams, half_gi, ndelim, mindelim; 791 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 792 793 /* Select standard number of delimiters based on frame length alone */ 794 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 795 796 /* 797 * If encryption enabled, hardware requires some more padding between 798 * subframes. 799 * TODO - this could be improved to be dependent on the rate. 800 * The hardware can keep up at lower rates, but not higher rates 801 */ 802 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 803 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 804 ndelim += ATH_AGGR_ENCRYPTDELIM; 805 806 /* 807 * Add delimiter when using RTS/CTS with aggregation 808 * and non enterprise AR9003 card 809 */ 810 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 811 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 812 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 813 814 /* 815 * Convert desired mpdu density from microeconds to bytes based 816 * on highest rate in rate series (i.e. first rate) to determine 817 * required minimum length for subframe. Take into account 818 * whether high rate is 20 or 40Mhz and half or full GI. 819 * 820 * If there is no mpdu density restriction, no further calculation 821 * is needed. 822 */ 823 824 if (tid->an->mpdudensity == 0) 825 return ndelim; 826 827 rix = bf->rates[0].idx; 828 flags = bf->rates[0].flags; 829 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 830 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 831 832 if (half_gi) 833 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 834 else 835 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 836 837 if (nsymbols == 0) 838 nsymbols = 1; 839 840 streams = HT_RC_2_STREAMS(rix); 841 nsymbits = bits_per_symbol[rix % 8][width] * streams; 842 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 843 844 if (frmlen < minlen) { 845 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 846 ndelim = max(mindelim, ndelim); 847 } 848 849 return ndelim; 850 } 851 852 static struct ath_buf * 853 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 854 struct ath_atx_tid *tid, struct sk_buff_head **q) 855 { 856 struct ieee80211_tx_info *tx_info; 857 struct ath_frame_info *fi; 858 struct sk_buff *skb; 859 struct ath_buf *bf; 860 u16 seqno; 861 862 while (1) { 863 *q = &tid->retry_q; 864 if (skb_queue_empty(*q)) 865 *q = &tid->buf_q; 866 867 skb = skb_peek(*q); 868 if (!skb) 869 break; 870 871 fi = get_frame_info(skb); 872 bf = fi->bf; 873 if (!fi->bf) 874 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 875 else 876 bf->bf_state.stale = false; 877 878 if (!bf) { 879 __skb_unlink(skb, *q); 880 ath_txq_skb_done(sc, txq, skb); 881 ieee80211_free_txskb(sc->hw, skb); 882 continue; 883 } 884 885 bf->bf_next = NULL; 886 bf->bf_lastbf = bf; 887 888 tx_info = IEEE80211_SKB_CB(skb); 889 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 890 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 891 bf->bf_state.bf_type = 0; 892 return bf; 893 } 894 895 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 896 seqno = bf->bf_state.seqno; 897 898 /* do not step over block-ack window */ 899 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) 900 break; 901 902 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 903 struct ath_tx_status ts = {}; 904 struct list_head bf_head; 905 906 INIT_LIST_HEAD(&bf_head); 907 list_add(&bf->list, &bf_head); 908 __skb_unlink(skb, *q); 909 ath_tx_update_baw(sc, tid, seqno); 910 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 911 continue; 912 } 913 914 return bf; 915 } 916 917 return NULL; 918 } 919 920 static bool 921 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 922 struct ath_atx_tid *tid, struct list_head *bf_q, 923 struct ath_buf *bf_first, struct sk_buff_head *tid_q, 924 int *aggr_len) 925 { 926 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 927 struct ath_buf *bf = bf_first, *bf_prev = NULL; 928 int nframes = 0, ndelim; 929 u16 aggr_limit = 0, al = 0, bpad = 0, 930 al_delta, h_baw = tid->baw_size / 2; 931 struct ieee80211_tx_info *tx_info; 932 struct ath_frame_info *fi; 933 struct sk_buff *skb; 934 bool closed = false; 935 936 bf = bf_first; 937 aggr_limit = ath_lookup_rate(sc, bf, tid); 938 939 do { 940 skb = bf->bf_mpdu; 941 fi = get_frame_info(skb); 942 943 /* do not exceed aggregation limit */ 944 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 945 if (nframes) { 946 if (aggr_limit < al + bpad + al_delta || 947 ath_lookup_legacy(bf) || nframes >= h_baw) 948 break; 949 950 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 951 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 952 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 953 break; 954 } 955 956 /* add padding for previous frame to aggregation length */ 957 al += bpad + al_delta; 958 959 /* 960 * Get the delimiters needed to meet the MPDU 961 * density for this node. 962 */ 963 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 964 !nframes); 965 bpad = PADBYTES(al_delta) + (ndelim << 2); 966 967 nframes++; 968 bf->bf_next = NULL; 969 970 /* link buffers of this frame to the aggregate */ 971 if (!fi->baw_tracked) 972 ath_tx_addto_baw(sc, tid, bf); 973 bf->bf_state.ndelim = ndelim; 974 975 __skb_unlink(skb, tid_q); 976 list_add_tail(&bf->list, bf_q); 977 if (bf_prev) 978 bf_prev->bf_next = bf; 979 980 bf_prev = bf; 981 982 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 983 if (!bf) { 984 closed = true; 985 break; 986 } 987 } while (ath_tid_has_buffered(tid)); 988 989 bf = bf_first; 990 bf->bf_lastbf = bf_prev; 991 992 if (bf == bf_prev) { 993 al = get_frame_info(bf->bf_mpdu)->framelen; 994 bf->bf_state.bf_type = BUF_AMPDU; 995 } else { 996 TX_STAT_INC(txq->axq_qnum, a_aggr); 997 } 998 999 *aggr_len = al; 1000 1001 return closed; 1002 #undef PADBYTES 1003 } 1004 1005 /* 1006 * rix - rate index 1007 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1008 * width - 0 for 20 MHz, 1 for 40 MHz 1009 * half_gi - to use 4us v/s 3.6 us for symbol time 1010 */ 1011 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1012 int width, int half_gi, bool shortPreamble) 1013 { 1014 u32 nbits, nsymbits, duration, nsymbols; 1015 int streams; 1016 1017 /* find number of symbols: PLCP + data */ 1018 streams = HT_RC_2_STREAMS(rix); 1019 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1020 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1021 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1022 1023 if (!half_gi) 1024 duration = SYMBOL_TIME(nsymbols); 1025 else 1026 duration = SYMBOL_TIME_HALFGI(nsymbols); 1027 1028 /* addup duration for legacy/ht training and signal fields */ 1029 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1030 1031 return duration; 1032 } 1033 1034 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1035 { 1036 int streams = HT_RC_2_STREAMS(mcs); 1037 int symbols, bits; 1038 int bytes = 0; 1039 1040 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1041 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1042 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1043 bits -= OFDM_PLCP_BITS; 1044 bytes = bits / 8; 1045 if (bytes > 65532) 1046 bytes = 65532; 1047 1048 return bytes; 1049 } 1050 1051 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1052 { 1053 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1054 int mcs; 1055 1056 /* 4ms is the default (and maximum) duration */ 1057 if (!txop || txop > 4096) 1058 txop = 4096; 1059 1060 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1061 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1062 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1063 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1064 for (mcs = 0; mcs < 32; mcs++) { 1065 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1066 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1067 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1068 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1069 } 1070 } 1071 1072 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1073 struct ath_tx_info *info, int len, bool rts) 1074 { 1075 struct ath_hw *ah = sc->sc_ah; 1076 struct ath_common *common = ath9k_hw_common(ah); 1077 struct sk_buff *skb; 1078 struct ieee80211_tx_info *tx_info; 1079 struct ieee80211_tx_rate *rates; 1080 const struct ieee80211_rate *rate; 1081 struct ieee80211_hdr *hdr; 1082 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1083 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1084 int i; 1085 u8 rix = 0; 1086 1087 skb = bf->bf_mpdu; 1088 tx_info = IEEE80211_SKB_CB(skb); 1089 rates = bf->rates; 1090 hdr = (struct ieee80211_hdr *)skb->data; 1091 1092 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1093 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1094 info->rtscts_rate = fi->rtscts_rate; 1095 1096 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1097 bool is_40, is_sgi, is_sp; 1098 int phy; 1099 1100 if (!rates[i].count || (rates[i].idx < 0)) 1101 continue; 1102 1103 rix = rates[i].idx; 1104 info->rates[i].Tries = rates[i].count; 1105 1106 /* 1107 * Handle RTS threshold for unaggregated HT frames. 1108 */ 1109 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1110 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1111 unlikely(rts_thresh != (u32) -1)) { 1112 if (!rts_thresh || (len > rts_thresh)) 1113 rts = true; 1114 } 1115 1116 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1117 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1118 info->flags |= ATH9K_TXDESC_RTSENA; 1119 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1120 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1121 info->flags |= ATH9K_TXDESC_CTSENA; 1122 } 1123 1124 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1125 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1126 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1127 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1128 1129 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1130 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1131 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1132 1133 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1134 /* MCS rates */ 1135 info->rates[i].Rate = rix | 0x80; 1136 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1137 ah->txchainmask, info->rates[i].Rate); 1138 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1139 is_40, is_sgi, is_sp); 1140 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1141 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1142 continue; 1143 } 1144 1145 /* legacy rates */ 1146 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1147 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1148 !(rate->flags & IEEE80211_RATE_ERP_G)) 1149 phy = WLAN_RC_PHY_CCK; 1150 else 1151 phy = WLAN_RC_PHY_OFDM; 1152 1153 info->rates[i].Rate = rate->hw_value; 1154 if (rate->hw_value_short) { 1155 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1156 info->rates[i].Rate |= rate->hw_value_short; 1157 } else { 1158 is_sp = false; 1159 } 1160 1161 if (bf->bf_state.bfs_paprd) 1162 info->rates[i].ChSel = ah->txchainmask; 1163 else 1164 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1165 ah->txchainmask, info->rates[i].Rate); 1166 1167 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1168 phy, rate->bitrate * 100, len, rix, is_sp); 1169 } 1170 1171 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1172 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1173 info->flags &= ~ATH9K_TXDESC_RTSENA; 1174 1175 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1176 if (info->flags & ATH9K_TXDESC_RTSENA) 1177 info->flags &= ~ATH9K_TXDESC_CTSENA; 1178 } 1179 1180 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1181 { 1182 struct ieee80211_hdr *hdr; 1183 enum ath9k_pkt_type htype; 1184 __le16 fc; 1185 1186 hdr = (struct ieee80211_hdr *)skb->data; 1187 fc = hdr->frame_control; 1188 1189 if (ieee80211_is_beacon(fc)) 1190 htype = ATH9K_PKT_TYPE_BEACON; 1191 else if (ieee80211_is_probe_resp(fc)) 1192 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1193 else if (ieee80211_is_atim(fc)) 1194 htype = ATH9K_PKT_TYPE_ATIM; 1195 else if (ieee80211_is_pspoll(fc)) 1196 htype = ATH9K_PKT_TYPE_PSPOLL; 1197 else 1198 htype = ATH9K_PKT_TYPE_NORMAL; 1199 1200 return htype; 1201 } 1202 1203 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1204 struct ath_txq *txq, int len) 1205 { 1206 struct ath_hw *ah = sc->sc_ah; 1207 struct ath_buf *bf_first = NULL; 1208 struct ath_tx_info info; 1209 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1210 bool rts = false; 1211 1212 memset(&info, 0, sizeof(info)); 1213 info.is_first = true; 1214 info.is_last = true; 1215 info.txpower = MAX_RATE_POWER; 1216 info.qcu = txq->axq_qnum; 1217 1218 while (bf) { 1219 struct sk_buff *skb = bf->bf_mpdu; 1220 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1221 struct ath_frame_info *fi = get_frame_info(skb); 1222 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1223 1224 info.type = get_hw_packet_type(skb); 1225 if (bf->bf_next) 1226 info.link = bf->bf_next->bf_daddr; 1227 else 1228 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1229 1230 if (!bf_first) { 1231 bf_first = bf; 1232 1233 if (!sc->tx99_state) 1234 info.flags = ATH9K_TXDESC_INTREQ; 1235 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1236 txq == sc->tx.uapsdq) 1237 info.flags |= ATH9K_TXDESC_CLRDMASK; 1238 1239 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1240 info.flags |= ATH9K_TXDESC_NOACK; 1241 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1242 info.flags |= ATH9K_TXDESC_LDPC; 1243 1244 if (bf->bf_state.bfs_paprd) 1245 info.flags |= (u32) bf->bf_state.bfs_paprd << 1246 ATH9K_TXDESC_PAPRD_S; 1247 1248 /* 1249 * mac80211 doesn't handle RTS threshold for HT because 1250 * the decision has to be taken based on AMPDU length 1251 * and aggregation is done entirely inside ath9k. 1252 * Set the RTS/CTS flag for the first subframe based 1253 * on the threshold. 1254 */ 1255 if (aggr && (bf == bf_first) && 1256 unlikely(rts_thresh != (u32) -1)) { 1257 /* 1258 * "len" is the size of the entire AMPDU. 1259 */ 1260 if (!rts_thresh || (len > rts_thresh)) 1261 rts = true; 1262 } 1263 1264 if (!aggr) 1265 len = fi->framelen; 1266 1267 ath_buf_set_rate(sc, bf, &info, len, rts); 1268 } 1269 1270 info.buf_addr[0] = bf->bf_buf_addr; 1271 info.buf_len[0] = skb->len; 1272 info.pkt_len = fi->framelen; 1273 info.keyix = fi->keyix; 1274 info.keytype = fi->keytype; 1275 1276 if (aggr) { 1277 if (bf == bf_first) 1278 info.aggr = AGGR_BUF_FIRST; 1279 else if (bf == bf_first->bf_lastbf) 1280 info.aggr = AGGR_BUF_LAST; 1281 else 1282 info.aggr = AGGR_BUF_MIDDLE; 1283 1284 info.ndelim = bf->bf_state.ndelim; 1285 info.aggr_len = len; 1286 } 1287 1288 if (bf == bf_first->bf_lastbf) 1289 bf_first = NULL; 1290 1291 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1292 bf = bf->bf_next; 1293 } 1294 } 1295 1296 static void 1297 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1298 struct ath_atx_tid *tid, struct list_head *bf_q, 1299 struct ath_buf *bf_first, struct sk_buff_head *tid_q) 1300 { 1301 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1302 struct sk_buff *skb; 1303 int nframes = 0; 1304 1305 do { 1306 struct ieee80211_tx_info *tx_info; 1307 skb = bf->bf_mpdu; 1308 1309 nframes++; 1310 __skb_unlink(skb, tid_q); 1311 list_add_tail(&bf->list, bf_q); 1312 if (bf_prev) 1313 bf_prev->bf_next = bf; 1314 bf_prev = bf; 1315 1316 if (nframes >= 2) 1317 break; 1318 1319 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1320 if (!bf) 1321 break; 1322 1323 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1324 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1325 break; 1326 1327 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1328 } while (1); 1329 } 1330 1331 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1332 struct ath_atx_tid *tid, bool *stop) 1333 { 1334 struct ath_buf *bf; 1335 struct ieee80211_tx_info *tx_info; 1336 struct sk_buff_head *tid_q; 1337 struct list_head bf_q; 1338 int aggr_len = 0; 1339 bool aggr, last = true; 1340 1341 if (!ath_tid_has_buffered(tid)) 1342 return false; 1343 1344 INIT_LIST_HEAD(&bf_q); 1345 1346 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1347 if (!bf) 1348 return false; 1349 1350 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1351 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1352 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1353 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1354 *stop = true; 1355 return false; 1356 } 1357 1358 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1359 if (aggr) 1360 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf, 1361 tid_q, &aggr_len); 1362 else 1363 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q); 1364 1365 if (list_empty(&bf_q)) 1366 return false; 1367 1368 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) { 1369 tid->ac->clear_ps_filter = false; 1370 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1371 } 1372 1373 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1374 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1375 return true; 1376 } 1377 1378 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1379 u16 tid, u16 *ssn) 1380 { 1381 struct ath_atx_tid *txtid; 1382 struct ath_txq *txq; 1383 struct ath_node *an; 1384 u8 density; 1385 1386 an = (struct ath_node *)sta->drv_priv; 1387 txtid = ATH_AN_2_TID(an, tid); 1388 txq = txtid->ac->txq; 1389 1390 ath_txq_lock(sc, txq); 1391 1392 /* update ampdu factor/density, they may have changed. This may happen 1393 * in HT IBSS when a beacon with HT-info is received after the station 1394 * has already been added. 1395 */ 1396 if (sta->ht_cap.ht_supported) { 1397 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1398 sta->ht_cap.ampdu_factor)) - 1; 1399 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1400 an->mpdudensity = density; 1401 } 1402 1403 /* force sequence number allocation for pending frames */ 1404 ath_tx_tid_change_state(sc, txtid); 1405 1406 txtid->active = true; 1407 *ssn = txtid->seq_start = txtid->seq_next; 1408 txtid->bar_index = -1; 1409 1410 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1411 txtid->baw_head = txtid->baw_tail = 0; 1412 1413 ath_txq_unlock_complete(sc, txq); 1414 1415 return 0; 1416 } 1417 1418 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1419 { 1420 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1421 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1422 struct ath_txq *txq = txtid->ac->txq; 1423 1424 ath_txq_lock(sc, txq); 1425 txtid->active = false; 1426 ath_tx_flush_tid(sc, txtid); 1427 ath_tx_tid_change_state(sc, txtid); 1428 ath_txq_unlock_complete(sc, txq); 1429 } 1430 1431 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1432 struct ath_node *an) 1433 { 1434 struct ath_atx_tid *tid; 1435 struct ath_atx_ac *ac; 1436 struct ath_txq *txq; 1437 bool buffered; 1438 int tidno; 1439 1440 for (tidno = 0, tid = &an->tid[tidno]; 1441 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1442 1443 ac = tid->ac; 1444 txq = ac->txq; 1445 1446 ath_txq_lock(sc, txq); 1447 1448 if (!tid->sched) { 1449 ath_txq_unlock(sc, txq); 1450 continue; 1451 } 1452 1453 buffered = ath_tid_has_buffered(tid); 1454 1455 tid->sched = false; 1456 list_del(&tid->list); 1457 1458 if (ac->sched) { 1459 ac->sched = false; 1460 list_del(&ac->list); 1461 } 1462 1463 ath_txq_unlock(sc, txq); 1464 1465 ieee80211_sta_set_buffered(sta, tidno, buffered); 1466 } 1467 } 1468 1469 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1470 { 1471 struct ath_atx_tid *tid; 1472 struct ath_atx_ac *ac; 1473 struct ath_txq *txq; 1474 int tidno; 1475 1476 for (tidno = 0, tid = &an->tid[tidno]; 1477 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1478 1479 ac = tid->ac; 1480 txq = ac->txq; 1481 1482 ath_txq_lock(sc, txq); 1483 ac->clear_ps_filter = true; 1484 1485 if (ath_tid_has_buffered(tid)) { 1486 ath_tx_queue_tid(txq, tid); 1487 ath_txq_schedule(sc, txq); 1488 } 1489 1490 ath_txq_unlock_complete(sc, txq); 1491 } 1492 } 1493 1494 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1495 u16 tidno) 1496 { 1497 struct ath_atx_tid *tid; 1498 struct ath_node *an; 1499 struct ath_txq *txq; 1500 1501 an = (struct ath_node *)sta->drv_priv; 1502 tid = ATH_AN_2_TID(an, tidno); 1503 txq = tid->ac->txq; 1504 1505 ath_txq_lock(sc, txq); 1506 1507 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1508 1509 if (ath_tid_has_buffered(tid)) { 1510 ath_tx_queue_tid(txq, tid); 1511 ath_txq_schedule(sc, txq); 1512 } 1513 1514 ath_txq_unlock_complete(sc, txq); 1515 } 1516 1517 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1518 struct ieee80211_sta *sta, 1519 u16 tids, int nframes, 1520 enum ieee80211_frame_release_type reason, 1521 bool more_data) 1522 { 1523 struct ath_softc *sc = hw->priv; 1524 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1525 struct ath_txq *txq = sc->tx.uapsdq; 1526 struct ieee80211_tx_info *info; 1527 struct list_head bf_q; 1528 struct ath_buf *bf_tail = NULL, *bf; 1529 struct sk_buff_head *tid_q; 1530 int sent = 0; 1531 int i; 1532 1533 INIT_LIST_HEAD(&bf_q); 1534 for (i = 0; tids && nframes; i++, tids >>= 1) { 1535 struct ath_atx_tid *tid; 1536 1537 if (!(tids & 1)) 1538 continue; 1539 1540 tid = ATH_AN_2_TID(an, i); 1541 1542 ath_txq_lock(sc, tid->ac->txq); 1543 while (nframes > 0) { 1544 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q); 1545 if (!bf) 1546 break; 1547 1548 __skb_unlink(bf->bf_mpdu, tid_q); 1549 list_add_tail(&bf->list, &bf_q); 1550 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1551 if (bf_isampdu(bf)) { 1552 ath_tx_addto_baw(sc, tid, bf); 1553 bf->bf_state.bf_type &= ~BUF_AGGR; 1554 } 1555 if (bf_tail) 1556 bf_tail->bf_next = bf; 1557 1558 bf_tail = bf; 1559 nframes--; 1560 sent++; 1561 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1562 1563 if (an->sta && !ath_tid_has_buffered(tid)) 1564 ieee80211_sta_set_buffered(an->sta, i, false); 1565 } 1566 ath_txq_unlock_complete(sc, tid->ac->txq); 1567 } 1568 1569 if (list_empty(&bf_q)) 1570 return; 1571 1572 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1573 info->flags |= IEEE80211_TX_STATUS_EOSP; 1574 1575 bf = list_first_entry(&bf_q, struct ath_buf, list); 1576 ath_txq_lock(sc, txq); 1577 ath_tx_fill_desc(sc, bf, txq, 0); 1578 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1579 ath_txq_unlock(sc, txq); 1580 } 1581 1582 /********************/ 1583 /* Queue Management */ 1584 /********************/ 1585 1586 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1587 { 1588 struct ath_hw *ah = sc->sc_ah; 1589 struct ath9k_tx_queue_info qi; 1590 static const int subtype_txq_to_hwq[] = { 1591 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1592 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1593 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1594 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1595 }; 1596 int axq_qnum, i; 1597 1598 memset(&qi, 0, sizeof(qi)); 1599 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1600 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1601 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1602 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1603 qi.tqi_physCompBuf = 0; 1604 1605 /* 1606 * Enable interrupts only for EOL and DESC conditions. 1607 * We mark tx descriptors to receive a DESC interrupt 1608 * when a tx queue gets deep; otherwise waiting for the 1609 * EOL to reap descriptors. Note that this is done to 1610 * reduce interrupt load and this only defers reaping 1611 * descriptors, never transmitting frames. Aside from 1612 * reducing interrupts this also permits more concurrency. 1613 * The only potential downside is if the tx queue backs 1614 * up in which case the top half of the kernel may backup 1615 * due to a lack of tx descriptors. 1616 * 1617 * The UAPSD queue is an exception, since we take a desc- 1618 * based intr on the EOSP frames. 1619 */ 1620 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1621 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1622 } else { 1623 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1624 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1625 else 1626 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1627 TXQ_FLAG_TXDESCINT_ENABLE; 1628 } 1629 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1630 if (axq_qnum == -1) { 1631 /* 1632 * NB: don't print a message, this happens 1633 * normally on parts with too few tx queues 1634 */ 1635 return NULL; 1636 } 1637 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1638 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1639 1640 txq->axq_qnum = axq_qnum; 1641 txq->mac80211_qnum = -1; 1642 txq->axq_link = NULL; 1643 __skb_queue_head_init(&txq->complete_q); 1644 INIT_LIST_HEAD(&txq->axq_q); 1645 INIT_LIST_HEAD(&txq->axq_acq); 1646 spin_lock_init(&txq->axq_lock); 1647 txq->axq_depth = 0; 1648 txq->axq_ampdu_depth = 0; 1649 txq->axq_tx_inprogress = false; 1650 sc->tx.txqsetup |= 1<<axq_qnum; 1651 1652 txq->txq_headidx = txq->txq_tailidx = 0; 1653 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1654 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1655 } 1656 return &sc->tx.txq[axq_qnum]; 1657 } 1658 1659 int ath_txq_update(struct ath_softc *sc, int qnum, 1660 struct ath9k_tx_queue_info *qinfo) 1661 { 1662 struct ath_hw *ah = sc->sc_ah; 1663 int error = 0; 1664 struct ath9k_tx_queue_info qi; 1665 1666 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1667 1668 ath9k_hw_get_txq_props(ah, qnum, &qi); 1669 qi.tqi_aifs = qinfo->tqi_aifs; 1670 qi.tqi_cwmin = qinfo->tqi_cwmin; 1671 qi.tqi_cwmax = qinfo->tqi_cwmax; 1672 qi.tqi_burstTime = qinfo->tqi_burstTime; 1673 qi.tqi_readyTime = qinfo->tqi_readyTime; 1674 1675 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1676 ath_err(ath9k_hw_common(sc->sc_ah), 1677 "Unable to update hardware queue %u!\n", qnum); 1678 error = -EIO; 1679 } else { 1680 ath9k_hw_resettxqueue(ah, qnum); 1681 } 1682 1683 return error; 1684 } 1685 1686 int ath_cabq_update(struct ath_softc *sc) 1687 { 1688 struct ath9k_tx_queue_info qi; 1689 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; 1690 int qnum = sc->beacon.cabq->axq_qnum; 1691 1692 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1693 1694 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1695 ATH_CABQ_READY_TIME) / 100; 1696 ath_txq_update(sc, qnum, &qi); 1697 1698 return 0; 1699 } 1700 1701 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1702 struct list_head *list) 1703 { 1704 struct ath_buf *bf, *lastbf; 1705 struct list_head bf_head; 1706 struct ath_tx_status ts; 1707 1708 memset(&ts, 0, sizeof(ts)); 1709 ts.ts_status = ATH9K_TX_FLUSH; 1710 INIT_LIST_HEAD(&bf_head); 1711 1712 while (!list_empty(list)) { 1713 bf = list_first_entry(list, struct ath_buf, list); 1714 1715 if (bf->bf_state.stale) { 1716 list_del(&bf->list); 1717 1718 ath_tx_return_buffer(sc, bf); 1719 continue; 1720 } 1721 1722 lastbf = bf->bf_lastbf; 1723 list_cut_position(&bf_head, list, &lastbf->list); 1724 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1725 } 1726 } 1727 1728 /* 1729 * Drain a given TX queue (could be Beacon or Data) 1730 * 1731 * This assumes output has been stopped and 1732 * we do not need to block ath_tx_tasklet. 1733 */ 1734 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1735 { 1736 ath_txq_lock(sc, txq); 1737 1738 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1739 int idx = txq->txq_tailidx; 1740 1741 while (!list_empty(&txq->txq_fifo[idx])) { 1742 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1743 1744 INCR(idx, ATH_TXFIFO_DEPTH); 1745 } 1746 txq->txq_tailidx = idx; 1747 } 1748 1749 txq->axq_link = NULL; 1750 txq->axq_tx_inprogress = false; 1751 ath_drain_txq_list(sc, txq, &txq->axq_q); 1752 1753 ath_txq_unlock_complete(sc, txq); 1754 } 1755 1756 bool ath_drain_all_txq(struct ath_softc *sc) 1757 { 1758 struct ath_hw *ah = sc->sc_ah; 1759 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1760 struct ath_txq *txq; 1761 int i; 1762 u32 npend = 0; 1763 1764 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1765 return true; 1766 1767 ath9k_hw_abort_tx_dma(ah); 1768 1769 /* Check if any queue remains active */ 1770 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1771 if (!ATH_TXQ_SETUP(sc, i)) 1772 continue; 1773 1774 if (!sc->tx.txq[i].axq_depth) 1775 continue; 1776 1777 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1778 npend |= BIT(i); 1779 } 1780 1781 if (npend) 1782 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1783 1784 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1785 if (!ATH_TXQ_SETUP(sc, i)) 1786 continue; 1787 1788 /* 1789 * The caller will resume queues with ieee80211_wake_queues. 1790 * Mark the queue as not stopped to prevent ath_tx_complete 1791 * from waking the queue too early. 1792 */ 1793 txq = &sc->tx.txq[i]; 1794 txq->stopped = false; 1795 ath_draintxq(sc, txq); 1796 } 1797 1798 return !npend; 1799 } 1800 1801 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1802 { 1803 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1804 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1805 } 1806 1807 /* For each axq_acq entry, for each tid, try to schedule packets 1808 * for transmit until ampdu_depth has reached min Q depth. 1809 */ 1810 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1811 { 1812 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1813 struct ath_atx_ac *ac, *last_ac; 1814 struct ath_atx_tid *tid, *last_tid; 1815 bool sent = false; 1816 1817 if (test_bit(ATH_OP_HW_RESET, &common->op_flags) || 1818 list_empty(&txq->axq_acq)) 1819 return; 1820 1821 rcu_read_lock(); 1822 1823 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); 1824 while (!list_empty(&txq->axq_acq)) { 1825 bool stop = false; 1826 1827 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); 1828 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1829 list_del(&ac->list); 1830 ac->sched = false; 1831 1832 while (!list_empty(&ac->tid_q)) { 1833 1834 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1835 list); 1836 list_del(&tid->list); 1837 tid->sched = false; 1838 1839 if (ath_tx_sched_aggr(sc, txq, tid, &stop)) 1840 sent = true; 1841 1842 /* 1843 * add tid to round-robin queue if more frames 1844 * are pending for the tid 1845 */ 1846 if (ath_tid_has_buffered(tid)) 1847 ath_tx_queue_tid(txq, tid); 1848 1849 if (stop || tid == last_tid) 1850 break; 1851 } 1852 1853 if (!list_empty(&ac->tid_q) && !ac->sched) { 1854 ac->sched = true; 1855 list_add_tail(&ac->list, &txq->axq_acq); 1856 } 1857 1858 if (stop) 1859 break; 1860 1861 if (ac == last_ac) { 1862 if (!sent) 1863 break; 1864 1865 sent = false; 1866 last_ac = list_entry(txq->axq_acq.prev, 1867 struct ath_atx_ac, list); 1868 } 1869 } 1870 1871 rcu_read_unlock(); 1872 } 1873 1874 /***********/ 1875 /* TX, DMA */ 1876 /***********/ 1877 1878 /* 1879 * Insert a chain of ath_buf (descriptors) on a txq and 1880 * assume the descriptors are already chained together by caller. 1881 */ 1882 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1883 struct list_head *head, bool internal) 1884 { 1885 struct ath_hw *ah = sc->sc_ah; 1886 struct ath_common *common = ath9k_hw_common(ah); 1887 struct ath_buf *bf, *bf_last; 1888 bool puttxbuf = false; 1889 bool edma; 1890 1891 /* 1892 * Insert the frame on the outbound list and 1893 * pass it on to the hardware. 1894 */ 1895 1896 if (list_empty(head)) 1897 return; 1898 1899 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1900 bf = list_first_entry(head, struct ath_buf, list); 1901 bf_last = list_entry(head->prev, struct ath_buf, list); 1902 1903 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1904 txq->axq_qnum, txq->axq_depth); 1905 1906 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1907 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1908 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1909 puttxbuf = true; 1910 } else { 1911 list_splice_tail_init(head, &txq->axq_q); 1912 1913 if (txq->axq_link) { 1914 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1915 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1916 txq->axq_qnum, txq->axq_link, 1917 ito64(bf->bf_daddr), bf->bf_desc); 1918 } else if (!edma) 1919 puttxbuf = true; 1920 1921 txq->axq_link = bf_last->bf_desc; 1922 } 1923 1924 if (puttxbuf) { 1925 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1926 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1927 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1928 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1929 } 1930 1931 if (!edma || sc->tx99_state) { 1932 TX_STAT_INC(txq->axq_qnum, txstart); 1933 ath9k_hw_txstart(ah, txq->axq_qnum); 1934 } 1935 1936 if (!internal) { 1937 while (bf) { 1938 txq->axq_depth++; 1939 if (bf_is_ampdu_not_probing(bf)) 1940 txq->axq_ampdu_depth++; 1941 1942 bf_last = bf->bf_lastbf; 1943 bf = bf_last->bf_next; 1944 bf_last->bf_next = NULL; 1945 } 1946 } 1947 } 1948 1949 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1950 struct ath_atx_tid *tid, struct sk_buff *skb) 1951 { 1952 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1953 struct ath_frame_info *fi = get_frame_info(skb); 1954 struct list_head bf_head; 1955 struct ath_buf *bf = fi->bf; 1956 1957 INIT_LIST_HEAD(&bf_head); 1958 list_add_tail(&bf->list, &bf_head); 1959 bf->bf_state.bf_type = 0; 1960 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 1961 bf->bf_state.bf_type = BUF_AMPDU; 1962 ath_tx_addto_baw(sc, tid, bf); 1963 } 1964 1965 bf->bf_next = NULL; 1966 bf->bf_lastbf = bf; 1967 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 1968 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 1969 TX_STAT_INC(txq->axq_qnum, queued); 1970 } 1971 1972 static void setup_frame_info(struct ieee80211_hw *hw, 1973 struct ieee80211_sta *sta, 1974 struct sk_buff *skb, 1975 int framelen) 1976 { 1977 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1978 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 1979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1980 const struct ieee80211_rate *rate; 1981 struct ath_frame_info *fi = get_frame_info(skb); 1982 struct ath_node *an = NULL; 1983 enum ath9k_key_type keytype; 1984 bool short_preamble = false; 1985 1986 /* 1987 * We check if Short Preamble is needed for the CTS rate by 1988 * checking the BSS's global flag. 1989 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 1990 */ 1991 if (tx_info->control.vif && 1992 tx_info->control.vif->bss_conf.use_short_preamble) 1993 short_preamble = true; 1994 1995 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 1996 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 1997 1998 if (sta) 1999 an = (struct ath_node *) sta->drv_priv; 2000 2001 memset(fi, 0, sizeof(*fi)); 2002 if (hw_key) 2003 fi->keyix = hw_key->hw_key_idx; 2004 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2005 fi->keyix = an->ps_key; 2006 else 2007 fi->keyix = ATH9K_TXKEYIX_INVALID; 2008 fi->keytype = keytype; 2009 fi->framelen = framelen; 2010 2011 if (!rate) 2012 return; 2013 fi->rtscts_rate = rate->hw_value; 2014 if (short_preamble) 2015 fi->rtscts_rate |= rate->hw_value_short; 2016 } 2017 2018 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2019 { 2020 struct ath_hw *ah = sc->sc_ah; 2021 struct ath9k_channel *curchan = ah->curchan; 2022 2023 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2024 (chainmask == 0x7) && (rate < 0x90)) 2025 return 0x3; 2026 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2027 IS_CCK_RATE(rate)) 2028 return 0x2; 2029 else 2030 return chainmask; 2031 } 2032 2033 /* 2034 * Assign a descriptor (and sequence number if necessary, 2035 * and map buffer for DMA. Frees skb on error 2036 */ 2037 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2038 struct ath_txq *txq, 2039 struct ath_atx_tid *tid, 2040 struct sk_buff *skb) 2041 { 2042 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2043 struct ath_frame_info *fi = get_frame_info(skb); 2044 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2045 struct ath_buf *bf; 2046 int fragno; 2047 u16 seqno; 2048 2049 bf = ath_tx_get_buffer(sc); 2050 if (!bf) { 2051 ath_dbg(common, XMIT, "TX buffers are full\n"); 2052 return NULL; 2053 } 2054 2055 ATH_TXBUF_RESET(bf); 2056 2057 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2058 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2059 seqno = tid->seq_next; 2060 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2061 2062 if (fragno) 2063 hdr->seq_ctrl |= cpu_to_le16(fragno); 2064 2065 if (!ieee80211_has_morefrags(hdr->frame_control)) 2066 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2067 2068 bf->bf_state.seqno = seqno; 2069 } 2070 2071 bf->bf_mpdu = skb; 2072 2073 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2074 skb->len, DMA_TO_DEVICE); 2075 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2076 bf->bf_mpdu = NULL; 2077 bf->bf_buf_addr = 0; 2078 ath_err(ath9k_hw_common(sc->sc_ah), 2079 "dma_mapping_error() on TX\n"); 2080 ath_tx_return_buffer(sc, bf); 2081 return NULL; 2082 } 2083 2084 fi->bf = bf; 2085 2086 return bf; 2087 } 2088 2089 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2090 struct ath_tx_control *txctl) 2091 { 2092 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2093 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2094 struct ieee80211_sta *sta = txctl->sta; 2095 struct ieee80211_vif *vif = info->control.vif; 2096 struct ath_vif *avp; 2097 struct ath_softc *sc = hw->priv; 2098 int frmlen = skb->len + FCS_LEN; 2099 int padpos, padsize; 2100 2101 /* NOTE: sta can be NULL according to net/mac80211.h */ 2102 if (sta) 2103 txctl->an = (struct ath_node *)sta->drv_priv; 2104 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2105 avp = (void *)vif->drv_priv; 2106 txctl->an = &avp->mcast_node; 2107 } 2108 2109 if (info->control.hw_key) 2110 frmlen += info->control.hw_key->icv_len; 2111 2112 /* 2113 * As a temporary workaround, assign seq# here; this will likely need 2114 * to be cleaned up to work better with Beacon transmission and virtual 2115 * BSSes. 2116 */ 2117 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 2118 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2119 sc->tx.seq_no += 0x10; 2120 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2121 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 2122 } 2123 2124 if ((vif && vif->type != NL80211_IFTYPE_AP && 2125 vif->type != NL80211_IFTYPE_AP_VLAN) || 2126 !ieee80211_is_data(hdr->frame_control)) 2127 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2128 2129 /* Add the padding after the header if this is not already done */ 2130 padpos = ieee80211_hdrlen(hdr->frame_control); 2131 padsize = padpos & 3; 2132 if (padsize && skb->len > padpos) { 2133 if (skb_headroom(skb) < padsize) 2134 return -ENOMEM; 2135 2136 skb_push(skb, padsize); 2137 memmove(skb->data, skb->data + padsize, padpos); 2138 } 2139 2140 setup_frame_info(hw, sta, skb, frmlen); 2141 return 0; 2142 } 2143 2144 2145 /* Upon failure caller should free skb */ 2146 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2147 struct ath_tx_control *txctl) 2148 { 2149 struct ieee80211_hdr *hdr; 2150 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2151 struct ieee80211_sta *sta = txctl->sta; 2152 struct ieee80211_vif *vif = info->control.vif; 2153 struct ath_softc *sc = hw->priv; 2154 struct ath_txq *txq = txctl->txq; 2155 struct ath_atx_tid *tid = NULL; 2156 struct ath_buf *bf; 2157 int q; 2158 int ret; 2159 2160 ret = ath_tx_prepare(hw, skb, txctl); 2161 if (ret) 2162 return ret; 2163 2164 hdr = (struct ieee80211_hdr *) skb->data; 2165 /* 2166 * At this point, the vif, hw_key and sta pointers in the tx control 2167 * info are no longer valid (overwritten by the ath_frame_info data. 2168 */ 2169 2170 q = skb_get_queue_mapping(skb); 2171 2172 ath_txq_lock(sc, txq); 2173 if (txq == sc->tx.txq_map[q] && 2174 ++txq->pending_frames > sc->tx.txq_max_pending[q] && 2175 !txq->stopped) { 2176 ieee80211_stop_queue(sc->hw, q); 2177 txq->stopped = true; 2178 } 2179 2180 if (txctl->an && ieee80211_is_data_present(hdr->frame_control)) 2181 tid = ath_get_skb_tid(sc, txctl->an, skb); 2182 2183 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) { 2184 ath_txq_unlock(sc, txq); 2185 txq = sc->tx.uapsdq; 2186 ath_txq_lock(sc, txq); 2187 } else if (txctl->an && 2188 ieee80211_is_data_present(hdr->frame_control)) { 2189 WARN_ON(tid->ac->txq != txctl->txq); 2190 2191 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 2192 tid->ac->clear_ps_filter = true; 2193 2194 /* 2195 * Add this frame to software queue for scheduling later 2196 * for aggregation. 2197 */ 2198 TX_STAT_INC(txq->axq_qnum, a_queued_sw); 2199 __skb_queue_tail(&tid->buf_q, skb); 2200 if (!txctl->an->sleeping) 2201 ath_tx_queue_tid(txq, tid); 2202 2203 ath_txq_schedule(sc, txq); 2204 goto out; 2205 } 2206 2207 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2208 if (!bf) { 2209 ath_txq_skb_done(sc, txq, skb); 2210 if (txctl->paprd) 2211 dev_kfree_skb_any(skb); 2212 else 2213 ieee80211_free_txskb(sc->hw, skb); 2214 goto out; 2215 } 2216 2217 bf->bf_state.bfs_paprd = txctl->paprd; 2218 2219 if (txctl->paprd) 2220 bf->bf_state.bfs_paprd_timestamp = jiffies; 2221 2222 ath_set_rates(vif, sta, bf); 2223 ath_tx_send_normal(sc, txq, tid, skb); 2224 2225 out: 2226 ath_txq_unlock(sc, txq); 2227 2228 return 0; 2229 } 2230 2231 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2232 struct sk_buff *skb) 2233 { 2234 struct ath_softc *sc = hw->priv; 2235 struct ath_tx_control txctl = { 2236 .txq = sc->beacon.cabq 2237 }; 2238 struct ath_tx_info info = {}; 2239 struct ieee80211_hdr *hdr; 2240 struct ath_buf *bf_tail = NULL; 2241 struct ath_buf *bf; 2242 LIST_HEAD(bf_q); 2243 int duration = 0; 2244 int max_duration; 2245 2246 max_duration = 2247 sc->cur_beacon_conf.beacon_interval * 1000 * 2248 sc->cur_beacon_conf.dtim_period / ATH_BCBUF; 2249 2250 do { 2251 struct ath_frame_info *fi = get_frame_info(skb); 2252 2253 if (ath_tx_prepare(hw, skb, &txctl)) 2254 break; 2255 2256 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2257 if (!bf) 2258 break; 2259 2260 bf->bf_lastbf = bf; 2261 ath_set_rates(vif, NULL, bf); 2262 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2263 duration += info.rates[0].PktDuration; 2264 if (bf_tail) 2265 bf_tail->bf_next = bf; 2266 2267 list_add_tail(&bf->list, &bf_q); 2268 bf_tail = bf; 2269 skb = NULL; 2270 2271 if (duration > max_duration) 2272 break; 2273 2274 skb = ieee80211_get_buffered_bc(hw, vif); 2275 } while(skb); 2276 2277 if (skb) 2278 ieee80211_free_txskb(hw, skb); 2279 2280 if (list_empty(&bf_q)) 2281 return; 2282 2283 bf = list_first_entry(&bf_q, struct ath_buf, list); 2284 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2285 2286 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) { 2287 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA; 2288 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2289 sizeof(*hdr), DMA_TO_DEVICE); 2290 } 2291 2292 ath_txq_lock(sc, txctl.txq); 2293 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2294 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2295 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2296 ath_txq_unlock(sc, txctl.txq); 2297 } 2298 2299 /*****************/ 2300 /* TX Completion */ 2301 /*****************/ 2302 2303 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2304 int tx_flags, struct ath_txq *txq) 2305 { 2306 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2307 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2308 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2309 int padpos, padsize; 2310 unsigned long flags; 2311 2312 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2313 2314 if (sc->sc_ah->caldata) 2315 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2316 2317 if (!(tx_flags & ATH_TX_ERROR)) 2318 /* Frame was ACKed */ 2319 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2320 2321 padpos = ieee80211_hdrlen(hdr->frame_control); 2322 padsize = padpos & 3; 2323 if (padsize && skb->len>padpos+padsize) { 2324 /* 2325 * Remove MAC header padding before giving the frame back to 2326 * mac80211. 2327 */ 2328 memmove(skb->data + padsize, skb->data, padpos); 2329 skb_pull(skb, padsize); 2330 } 2331 2332 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2333 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2334 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2335 ath_dbg(common, PS, 2336 "Going back to sleep after having received TX status (0x%lx)\n", 2337 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2338 PS_WAIT_FOR_CAB | 2339 PS_WAIT_FOR_PSPOLL_DATA | 2340 PS_WAIT_FOR_TX_ACK)); 2341 } 2342 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2343 2344 __skb_queue_tail(&txq->complete_q, skb); 2345 ath_txq_skb_done(sc, txq, skb); 2346 } 2347 2348 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2349 struct ath_txq *txq, struct list_head *bf_q, 2350 struct ath_tx_status *ts, int txok) 2351 { 2352 struct sk_buff *skb = bf->bf_mpdu; 2353 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2354 unsigned long flags; 2355 int tx_flags = 0; 2356 2357 if (!txok) 2358 tx_flags |= ATH_TX_ERROR; 2359 2360 if (ts->ts_status & ATH9K_TXERR_FILT) 2361 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2362 2363 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2364 bf->bf_buf_addr = 0; 2365 if (sc->tx99_state) 2366 goto skip_tx_complete; 2367 2368 if (bf->bf_state.bfs_paprd) { 2369 if (time_after(jiffies, 2370 bf->bf_state.bfs_paprd_timestamp + 2371 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2372 dev_kfree_skb_any(skb); 2373 else 2374 complete(&sc->paprd_complete); 2375 } else { 2376 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2377 ath_tx_complete(sc, skb, tx_flags, txq); 2378 } 2379 skip_tx_complete: 2380 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2381 * accidentally reference it later. 2382 */ 2383 bf->bf_mpdu = NULL; 2384 2385 /* 2386 * Return the list of ath_buf of this mpdu to free queue 2387 */ 2388 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2389 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2390 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2391 } 2392 2393 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2394 struct ath_tx_status *ts, int nframes, int nbad, 2395 int txok) 2396 { 2397 struct sk_buff *skb = bf->bf_mpdu; 2398 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2399 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2400 struct ieee80211_hw *hw = sc->hw; 2401 struct ath_hw *ah = sc->sc_ah; 2402 u8 i, tx_rateindex; 2403 2404 if (txok) 2405 tx_info->status.ack_signal = ts->ts_rssi; 2406 2407 tx_rateindex = ts->ts_rateindex; 2408 WARN_ON(tx_rateindex >= hw->max_rates); 2409 2410 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2411 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2412 2413 BUG_ON(nbad > nframes); 2414 } 2415 tx_info->status.ampdu_len = nframes; 2416 tx_info->status.ampdu_ack_len = nframes - nbad; 2417 2418 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2419 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2420 /* 2421 * If an underrun error is seen assume it as an excessive 2422 * retry only if max frame trigger level has been reached 2423 * (2 KB for single stream, and 4 KB for dual stream). 2424 * Adjust the long retry as if the frame was tried 2425 * hw->max_rate_tries times to affect how rate control updates 2426 * PER for the failed rate. 2427 * In case of congestion on the bus penalizing this type of 2428 * underruns should help hardware actually transmit new frames 2429 * successfully by eventually preferring slower rates. 2430 * This itself should also alleviate congestion on the bus. 2431 */ 2432 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2433 ATH9K_TX_DELIM_UNDERRUN)) && 2434 ieee80211_is_data(hdr->frame_control) && 2435 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2436 tx_info->status.rates[tx_rateindex].count = 2437 hw->max_rate_tries; 2438 } 2439 2440 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2441 tx_info->status.rates[i].count = 0; 2442 tx_info->status.rates[i].idx = -1; 2443 } 2444 2445 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2446 } 2447 2448 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2449 { 2450 struct ath_hw *ah = sc->sc_ah; 2451 struct ath_common *common = ath9k_hw_common(ah); 2452 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2453 struct list_head bf_head; 2454 struct ath_desc *ds; 2455 struct ath_tx_status ts; 2456 int status; 2457 2458 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2459 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2460 txq->axq_link); 2461 2462 ath_txq_lock(sc, txq); 2463 for (;;) { 2464 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2465 break; 2466 2467 if (list_empty(&txq->axq_q)) { 2468 txq->axq_link = NULL; 2469 ath_txq_schedule(sc, txq); 2470 break; 2471 } 2472 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2473 2474 /* 2475 * There is a race condition that a BH gets scheduled 2476 * after sw writes TxE and before hw re-load the last 2477 * descriptor to get the newly chained one. 2478 * Software must keep the last DONE descriptor as a 2479 * holding descriptor - software does so by marking 2480 * it with the STALE flag. 2481 */ 2482 bf_held = NULL; 2483 if (bf->bf_state.stale) { 2484 bf_held = bf; 2485 if (list_is_last(&bf_held->list, &txq->axq_q)) 2486 break; 2487 2488 bf = list_entry(bf_held->list.next, struct ath_buf, 2489 list); 2490 } 2491 2492 lastbf = bf->bf_lastbf; 2493 ds = lastbf->bf_desc; 2494 2495 memset(&ts, 0, sizeof(ts)); 2496 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2497 if (status == -EINPROGRESS) 2498 break; 2499 2500 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2501 2502 /* 2503 * Remove ath_buf's of the same transmit unit from txq, 2504 * however leave the last descriptor back as the holding 2505 * descriptor for hw. 2506 */ 2507 lastbf->bf_state.stale = true; 2508 INIT_LIST_HEAD(&bf_head); 2509 if (!list_is_singular(&lastbf->list)) 2510 list_cut_position(&bf_head, 2511 &txq->axq_q, lastbf->list.prev); 2512 2513 if (bf_held) { 2514 list_del(&bf_held->list); 2515 ath_tx_return_buffer(sc, bf_held); 2516 } 2517 2518 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2519 } 2520 ath_txq_unlock_complete(sc, txq); 2521 } 2522 2523 void ath_tx_tasklet(struct ath_softc *sc) 2524 { 2525 struct ath_hw *ah = sc->sc_ah; 2526 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2527 int i; 2528 2529 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2530 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2531 ath_tx_processq(sc, &sc->tx.txq[i]); 2532 } 2533 } 2534 2535 void ath_tx_edma_tasklet(struct ath_softc *sc) 2536 { 2537 struct ath_tx_status ts; 2538 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2539 struct ath_hw *ah = sc->sc_ah; 2540 struct ath_txq *txq; 2541 struct ath_buf *bf, *lastbf; 2542 struct list_head bf_head; 2543 struct list_head *fifo_list; 2544 int status; 2545 2546 for (;;) { 2547 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2548 break; 2549 2550 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2551 if (status == -EINPROGRESS) 2552 break; 2553 if (status == -EIO) { 2554 ath_dbg(common, XMIT, "Error processing tx status\n"); 2555 break; 2556 } 2557 2558 /* Process beacon completions separately */ 2559 if (ts.qid == sc->beacon.beaconq) { 2560 sc->beacon.tx_processed = true; 2561 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2562 2563 ath9k_csa_update(sc); 2564 continue; 2565 } 2566 2567 txq = &sc->tx.txq[ts.qid]; 2568 2569 ath_txq_lock(sc, txq); 2570 2571 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2572 2573 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2574 if (list_empty(fifo_list)) { 2575 ath_txq_unlock(sc, txq); 2576 return; 2577 } 2578 2579 bf = list_first_entry(fifo_list, struct ath_buf, list); 2580 if (bf->bf_state.stale) { 2581 list_del(&bf->list); 2582 ath_tx_return_buffer(sc, bf); 2583 bf = list_first_entry(fifo_list, struct ath_buf, list); 2584 } 2585 2586 lastbf = bf->bf_lastbf; 2587 2588 INIT_LIST_HEAD(&bf_head); 2589 if (list_is_last(&lastbf->list, fifo_list)) { 2590 list_splice_tail_init(fifo_list, &bf_head); 2591 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2592 2593 if (!list_empty(&txq->axq_q)) { 2594 struct list_head bf_q; 2595 2596 INIT_LIST_HEAD(&bf_q); 2597 txq->axq_link = NULL; 2598 list_splice_tail_init(&txq->axq_q, &bf_q); 2599 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2600 } 2601 } else { 2602 lastbf->bf_state.stale = true; 2603 if (bf != lastbf) 2604 list_cut_position(&bf_head, fifo_list, 2605 lastbf->list.prev); 2606 } 2607 2608 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2609 ath_txq_unlock_complete(sc, txq); 2610 } 2611 } 2612 2613 /*****************/ 2614 /* Init, Cleanup */ 2615 /*****************/ 2616 2617 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2618 { 2619 struct ath_descdma *dd = &sc->txsdma; 2620 u8 txs_len = sc->sc_ah->caps.txs_len; 2621 2622 dd->dd_desc_len = size * txs_len; 2623 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2624 &dd->dd_desc_paddr, GFP_KERNEL); 2625 if (!dd->dd_desc) 2626 return -ENOMEM; 2627 2628 return 0; 2629 } 2630 2631 static int ath_tx_edma_init(struct ath_softc *sc) 2632 { 2633 int err; 2634 2635 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2636 if (!err) 2637 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2638 sc->txsdma.dd_desc_paddr, 2639 ATH_TXSTATUS_RING_SIZE); 2640 2641 return err; 2642 } 2643 2644 int ath_tx_init(struct ath_softc *sc, int nbufs) 2645 { 2646 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2647 int error = 0; 2648 2649 spin_lock_init(&sc->tx.txbuflock); 2650 2651 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2652 "tx", nbufs, 1, 1); 2653 if (error != 0) { 2654 ath_err(common, 2655 "Failed to allocate tx descriptors: %d\n", error); 2656 return error; 2657 } 2658 2659 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2660 "beacon", ATH_BCBUF, 1, 1); 2661 if (error != 0) { 2662 ath_err(common, 2663 "Failed to allocate beacon descriptors: %d\n", error); 2664 return error; 2665 } 2666 2667 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2668 2669 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2670 error = ath_tx_edma_init(sc); 2671 2672 return error; 2673 } 2674 2675 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2676 { 2677 struct ath_atx_tid *tid; 2678 struct ath_atx_ac *ac; 2679 int tidno, acno; 2680 2681 for (tidno = 0, tid = &an->tid[tidno]; 2682 tidno < IEEE80211_NUM_TIDS; 2683 tidno++, tid++) { 2684 tid->an = an; 2685 tid->tidno = tidno; 2686 tid->seq_start = tid->seq_next = 0; 2687 tid->baw_size = WME_MAX_BA; 2688 tid->baw_head = tid->baw_tail = 0; 2689 tid->sched = false; 2690 tid->active = false; 2691 __skb_queue_head_init(&tid->buf_q); 2692 __skb_queue_head_init(&tid->retry_q); 2693 acno = TID_TO_WME_AC(tidno); 2694 tid->ac = &an->ac[acno]; 2695 } 2696 2697 for (acno = 0, ac = &an->ac[acno]; 2698 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2699 ac->sched = false; 2700 ac->clear_ps_filter = true; 2701 ac->txq = sc->tx.txq_map[acno]; 2702 INIT_LIST_HEAD(&ac->tid_q); 2703 } 2704 } 2705 2706 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2707 { 2708 struct ath_atx_ac *ac; 2709 struct ath_atx_tid *tid; 2710 struct ath_txq *txq; 2711 int tidno; 2712 2713 for (tidno = 0, tid = &an->tid[tidno]; 2714 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2715 2716 ac = tid->ac; 2717 txq = ac->txq; 2718 2719 ath_txq_lock(sc, txq); 2720 2721 if (tid->sched) { 2722 list_del(&tid->list); 2723 tid->sched = false; 2724 } 2725 2726 if (ac->sched) { 2727 list_del(&ac->list); 2728 tid->ac->sched = false; 2729 } 2730 2731 ath_tid_drain(sc, txq, tid); 2732 tid->active = false; 2733 2734 ath_txq_unlock(sc, txq); 2735 } 2736 } 2737 2738 #ifdef CONFIG_ATH9K_TX99 2739 2740 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2741 struct ath_tx_control *txctl) 2742 { 2743 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2744 struct ath_frame_info *fi = get_frame_info(skb); 2745 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2746 struct ath_buf *bf; 2747 int padpos, padsize; 2748 2749 padpos = ieee80211_hdrlen(hdr->frame_control); 2750 padsize = padpos & 3; 2751 2752 if (padsize && skb->len > padpos) { 2753 if (skb_headroom(skb) < padsize) { 2754 ath_dbg(common, XMIT, 2755 "tx99 padding failed\n"); 2756 return -EINVAL; 2757 } 2758 2759 skb_push(skb, padsize); 2760 memmove(skb->data, skb->data + padsize, padpos); 2761 } 2762 2763 fi->keyix = ATH9K_TXKEYIX_INVALID; 2764 fi->framelen = skb->len + FCS_LEN; 2765 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2766 2767 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2768 if (!bf) { 2769 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2770 return -EINVAL; 2771 } 2772 2773 ath_set_rates(sc->tx99_vif, NULL, bf); 2774 2775 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2776 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2777 2778 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2779 2780 return 0; 2781 } 2782 2783 #endif /* CONFIG_ATH9K_TX99 */ 2784