xref: /linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq,
54 			    struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 				struct ath_txq *txq, struct list_head *bf_q,
57 				struct ieee80211_sta *sta,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 			  struct ath_tx_control *txctl);
72 
73 enum {
74 	MCS_HT20,
75 	MCS_HT20_SGI,
76 	MCS_HT40,
77 	MCS_HT40_SGI,
78 };
79 
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
83 
84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
85 {
86 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
88 
89 	if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
90 		ieee80211_tx_status(hw, skb);
91 		return;
92 	}
93 
94 	if (sta)
95 		ieee80211_tx_status_noskb(hw, sta, info);
96 
97 	dev_kfree_skb(skb);
98 }
99 
100 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
101 	__releases(&txq->axq_lock)
102 {
103 	struct ieee80211_hw *hw = sc->hw;
104 	struct sk_buff_head q;
105 	struct sk_buff *skb;
106 
107 	__skb_queue_head_init(&q);
108 	skb_queue_splice_init(&txq->complete_q, &q);
109 	spin_unlock_bh(&txq->axq_lock);
110 
111 	while ((skb = __skb_dequeue(&q)))
112 		ath_tx_status(hw, skb);
113 }
114 
115 void __ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
116 {
117 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
118 	struct ath_chanctx *ctx = avp->chanctx;
119 	struct ath_acq *acq;
120 	struct list_head *tid_list;
121 	u8 acno = TID_TO_WME_AC(tid->tidno);
122 
123 	if (!ctx || !list_empty(&tid->list))
124 		return;
125 
126 
127 	acq = &ctx->acq[acno];
128 	if ((sc->airtime_flags & AIRTIME_USE_NEW_QUEUES) &&
129 	    tid->an->airtime_deficit[acno] > 0)
130 		tid_list = &acq->acq_new;
131 	else
132 		tid_list = &acq->acq_old;
133 
134 	list_add_tail(&tid->list, tid_list);
135 }
136 
137 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
138 {
139 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
140 	struct ath_chanctx *ctx = avp->chanctx;
141 	struct ath_acq *acq;
142 
143 	if (!ctx || !list_empty(&tid->list))
144 		return;
145 
146 	acq = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
147 	spin_lock_bh(&acq->lock);
148 	__ath_tx_queue_tid(sc, tid);
149 	spin_unlock_bh(&acq->lock);
150 }
151 
152 
153 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
154 {
155 	struct ath_softc *sc = hw->priv;
156 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
157 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
158 	struct ath_txq *txq = tid->txq;
159 
160 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
161 		queue->sta ? queue->sta->addr : queue->vif->addr,
162 		tid->tidno);
163 
164 	ath_txq_lock(sc, txq);
165 
166 	tid->has_queued = true;
167 	ath_tx_queue_tid(sc, tid);
168 	ath_txq_schedule(sc, txq);
169 
170 	ath_txq_unlock(sc, txq);
171 }
172 
173 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
174 {
175 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
176 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
177 		     sizeof(tx_info->rate_driver_data));
178 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
179 }
180 
181 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
182 {
183 	if (!tid->an->sta)
184 		return;
185 
186 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
187 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
188 }
189 
190 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
191 			  struct ath_buf *bf)
192 {
193 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
194 			       ARRAY_SIZE(bf->rates));
195 }
196 
197 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
198 			     struct sk_buff *skb)
199 {
200 	struct ath_frame_info *fi = get_frame_info(skb);
201 	int q = fi->txq;
202 
203 	if (q < 0)
204 		return;
205 
206 	txq = sc->tx.txq_map[q];
207 	if (WARN_ON(--txq->pending_frames < 0))
208 		txq->pending_frames = 0;
209 
210 }
211 
212 static struct ath_atx_tid *
213 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
214 {
215 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
216 	return ATH_AN_2_TID(an, tidno);
217 }
218 
219 static struct sk_buff *
220 ath_tid_pull(struct ath_atx_tid *tid)
221 {
222 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
223 	struct ath_softc *sc = tid->an->sc;
224 	struct ieee80211_hw *hw = sc->hw;
225 	struct ath_tx_control txctl = {
226 		.txq = tid->txq,
227 		.sta = tid->an->sta,
228 	};
229 	struct sk_buff *skb;
230 	struct ath_frame_info *fi;
231 	int q;
232 
233 	if (!tid->has_queued)
234 		return NULL;
235 
236 	skb = ieee80211_tx_dequeue(hw, txq);
237 	if (!skb) {
238 		tid->has_queued = false;
239 		return NULL;
240 	}
241 
242 	if (ath_tx_prepare(hw, skb, &txctl)) {
243 		ieee80211_free_txskb(hw, skb);
244 		return NULL;
245 	}
246 
247 	q = skb_get_queue_mapping(skb);
248 	if (tid->txq == sc->tx.txq_map[q]) {
249 		fi = get_frame_info(skb);
250 		fi->txq = q;
251 		++tid->txq->pending_frames;
252 	}
253 
254 	return skb;
255 }
256 
257 
258 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
259 {
260 	return !skb_queue_empty(&tid->retry_q) || tid->has_queued;
261 }
262 
263 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
264 {
265 	struct sk_buff *skb;
266 
267 	skb = __skb_dequeue(&tid->retry_q);
268 	if (!skb)
269 		skb = ath_tid_pull(tid);
270 
271 	return skb;
272 }
273 
274 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
275 {
276 	struct ath_txq *txq = tid->txq;
277 	struct sk_buff *skb;
278 	struct ath_buf *bf;
279 	struct list_head bf_head;
280 	struct ath_tx_status ts;
281 	struct ath_frame_info *fi;
282 	bool sendbar = false;
283 
284 	INIT_LIST_HEAD(&bf_head);
285 
286 	memset(&ts, 0, sizeof(ts));
287 
288 	while ((skb = __skb_dequeue(&tid->retry_q))) {
289 		fi = get_frame_info(skb);
290 		bf = fi->bf;
291 		if (!bf) {
292 			ath_txq_skb_done(sc, txq, skb);
293 			ieee80211_free_txskb(sc->hw, skb);
294 			continue;
295 		}
296 
297 		if (fi->baw_tracked) {
298 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
299 			sendbar = true;
300 		}
301 
302 		list_add_tail(&bf->list, &bf_head);
303 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
304 	}
305 
306 	if (sendbar) {
307 		ath_txq_unlock(sc, txq);
308 		ath_send_bar(tid, tid->seq_start);
309 		ath_txq_lock(sc, txq);
310 	}
311 }
312 
313 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
314 			      int seqno)
315 {
316 	int index, cindex;
317 
318 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
319 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
320 
321 	__clear_bit(cindex, tid->tx_buf);
322 
323 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
324 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
325 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
326 		if (tid->bar_index >= 0)
327 			tid->bar_index--;
328 	}
329 }
330 
331 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
332 			     struct ath_buf *bf)
333 {
334 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
335 	u16 seqno = bf->bf_state.seqno;
336 	int index, cindex;
337 
338 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
339 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
340 	__set_bit(cindex, tid->tx_buf);
341 	fi->baw_tracked = 1;
342 
343 	if (index >= ((tid->baw_tail - tid->baw_head) &
344 		(ATH_TID_MAX_BUFS - 1))) {
345 		tid->baw_tail = cindex;
346 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
347 	}
348 }
349 
350 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
351 			  struct ath_atx_tid *tid)
352 
353 {
354 	struct sk_buff *skb;
355 	struct ath_buf *bf;
356 	struct list_head bf_head;
357 	struct ath_tx_status ts;
358 	struct ath_frame_info *fi;
359 
360 	memset(&ts, 0, sizeof(ts));
361 	INIT_LIST_HEAD(&bf_head);
362 
363 	while ((skb = ath_tid_dequeue(tid))) {
364 		fi = get_frame_info(skb);
365 		bf = fi->bf;
366 
367 		if (!bf) {
368 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
369 			continue;
370 		}
371 
372 		list_add_tail(&bf->list, &bf_head);
373 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
374 	}
375 }
376 
377 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
378 			     struct sk_buff *skb, int count)
379 {
380 	struct ath_frame_info *fi = get_frame_info(skb);
381 	struct ath_buf *bf = fi->bf;
382 	struct ieee80211_hdr *hdr;
383 	int prev = fi->retries;
384 
385 	TX_STAT_INC(txq->axq_qnum, a_retries);
386 	fi->retries += count;
387 
388 	if (prev > 0)
389 		return;
390 
391 	hdr = (struct ieee80211_hdr *)skb->data;
392 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
393 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
394 		sizeof(*hdr), DMA_TO_DEVICE);
395 }
396 
397 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
398 {
399 	struct ath_buf *bf = NULL;
400 
401 	spin_lock_bh(&sc->tx.txbuflock);
402 
403 	if (unlikely(list_empty(&sc->tx.txbuf))) {
404 		spin_unlock_bh(&sc->tx.txbuflock);
405 		return NULL;
406 	}
407 
408 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
409 	list_del(&bf->list);
410 
411 	spin_unlock_bh(&sc->tx.txbuflock);
412 
413 	return bf;
414 }
415 
416 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
417 {
418 	spin_lock_bh(&sc->tx.txbuflock);
419 	list_add_tail(&bf->list, &sc->tx.txbuf);
420 	spin_unlock_bh(&sc->tx.txbuflock);
421 }
422 
423 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
424 {
425 	struct ath_buf *tbf;
426 
427 	tbf = ath_tx_get_buffer(sc);
428 	if (WARN_ON(!tbf))
429 		return NULL;
430 
431 	ATH_TXBUF_RESET(tbf);
432 
433 	tbf->bf_mpdu = bf->bf_mpdu;
434 	tbf->bf_buf_addr = bf->bf_buf_addr;
435 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
436 	tbf->bf_state = bf->bf_state;
437 	tbf->bf_state.stale = false;
438 
439 	return tbf;
440 }
441 
442 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
443 			        struct ath_tx_status *ts, int txok,
444 			        int *nframes, int *nbad)
445 {
446 	struct ath_frame_info *fi;
447 	u16 seq_st = 0;
448 	u32 ba[WME_BA_BMP_SIZE >> 5];
449 	int ba_index;
450 	int isaggr = 0;
451 
452 	*nbad = 0;
453 	*nframes = 0;
454 
455 	isaggr = bf_isaggr(bf);
456 	if (isaggr) {
457 		seq_st = ts->ts_seqnum;
458 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
459 	}
460 
461 	while (bf) {
462 		fi = get_frame_info(bf->bf_mpdu);
463 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
464 
465 		(*nframes)++;
466 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
467 			(*nbad)++;
468 
469 		bf = bf->bf_next;
470 	}
471 }
472 
473 
474 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
475 				 struct ath_buf *bf, struct list_head *bf_q,
476 				 struct ieee80211_sta *sta,
477 				 struct ath_atx_tid *tid,
478 				 struct ath_tx_status *ts, int txok)
479 {
480 	struct ath_node *an = NULL;
481 	struct sk_buff *skb;
482 	struct ieee80211_hdr *hdr;
483 	struct ieee80211_tx_info *tx_info;
484 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
485 	struct list_head bf_head;
486 	struct sk_buff_head bf_pending;
487 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
488 	u32 ba[WME_BA_BMP_SIZE >> 5];
489 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
490 	bool rc_update = true, isba;
491 	struct ieee80211_tx_rate rates[4];
492 	struct ath_frame_info *fi;
493 	int nframes;
494 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
495 	int i, retries;
496 	int bar_index = -1;
497 
498 	skb = bf->bf_mpdu;
499 	hdr = (struct ieee80211_hdr *)skb->data;
500 
501 	tx_info = IEEE80211_SKB_CB(skb);
502 
503 	memcpy(rates, bf->rates, sizeof(rates));
504 
505 	retries = ts->ts_longretry + 1;
506 	for (i = 0; i < ts->ts_rateindex; i++)
507 		retries += rates[i].count;
508 
509 	if (!sta) {
510 		INIT_LIST_HEAD(&bf_head);
511 		while (bf) {
512 			bf_next = bf->bf_next;
513 
514 			if (!bf->bf_state.stale || bf_next != NULL)
515 				list_move_tail(&bf->list, &bf_head);
516 
517 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
518 
519 			bf = bf_next;
520 		}
521 		return;
522 	}
523 
524 	an = (struct ath_node *)sta->drv_priv;
525 	seq_first = tid->seq_start;
526 	isba = ts->ts_flags & ATH9K_TX_BA;
527 
528 	/*
529 	 * The hardware occasionally sends a tx status for the wrong TID.
530 	 * In this case, the BA status cannot be considered valid and all
531 	 * subframes need to be retransmitted
532 	 *
533 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
534 	 * checked
535 	 */
536 	if (isba && tid->tidno != ts->tid)
537 		txok = false;
538 
539 	isaggr = bf_isaggr(bf);
540 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
541 
542 	if (isaggr && txok) {
543 		if (ts->ts_flags & ATH9K_TX_BA) {
544 			seq_st = ts->ts_seqnum;
545 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
546 		} else {
547 			/*
548 			 * AR5416 can become deaf/mute when BA
549 			 * issue happens. Chip needs to be reset.
550 			 * But AP code may have sychronization issues
551 			 * when perform internal reset in this routine.
552 			 * Only enable reset in STA mode for now.
553 			 */
554 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
555 				needreset = 1;
556 		}
557 	}
558 
559 	__skb_queue_head_init(&bf_pending);
560 
561 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
562 	while (bf) {
563 		u16 seqno = bf->bf_state.seqno;
564 
565 		txfail = txpending = sendbar = 0;
566 		bf_next = bf->bf_next;
567 
568 		skb = bf->bf_mpdu;
569 		tx_info = IEEE80211_SKB_CB(skb);
570 		fi = get_frame_info(skb);
571 
572 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
573 		    !tid->active) {
574 			/*
575 			 * Outside of the current BlockAck window,
576 			 * maybe part of a previous session
577 			 */
578 			txfail = 1;
579 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
580 			/* transmit completion, subframe is
581 			 * acked by block ack */
582 			acked_cnt++;
583 		} else if (!isaggr && txok) {
584 			/* transmit completion */
585 			acked_cnt++;
586 		} else if (flush) {
587 			txpending = 1;
588 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
589 			if (txok || !an->sleeping)
590 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
591 						 retries);
592 
593 			txpending = 1;
594 		} else {
595 			txfail = 1;
596 			txfail_cnt++;
597 			bar_index = max_t(int, bar_index,
598 				ATH_BA_INDEX(seq_first, seqno));
599 		}
600 
601 		/*
602 		 * Make sure the last desc is reclaimed if it
603 		 * not a holding desc.
604 		 */
605 		INIT_LIST_HEAD(&bf_head);
606 		if (bf_next != NULL || !bf_last->bf_state.stale)
607 			list_move_tail(&bf->list, &bf_head);
608 
609 		if (!txpending) {
610 			/*
611 			 * complete the acked-ones/xretried ones; update
612 			 * block-ack window
613 			 */
614 			ath_tx_update_baw(sc, tid, seqno);
615 
616 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
617 				memcpy(tx_info->control.rates, rates, sizeof(rates));
618 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
619 				rc_update = false;
620 				if (bf == bf->bf_lastbf)
621 					ath_dynack_sample_tx_ts(sc->sc_ah,
622 								bf->bf_mpdu,
623 								ts);
624 			}
625 
626 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
627 				!txfail);
628 		} else {
629 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
630 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
631 				ieee80211_sta_eosp(sta);
632 			}
633 			/* retry the un-acked ones */
634 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
635 				struct ath_buf *tbf;
636 
637 				tbf = ath_clone_txbuf(sc, bf_last);
638 				/*
639 				 * Update tx baw and complete the
640 				 * frame with failed status if we
641 				 * run out of tx buf.
642 				 */
643 				if (!tbf) {
644 					ath_tx_update_baw(sc, tid, seqno);
645 
646 					ath_tx_complete_buf(sc, bf, txq,
647 							    &bf_head, NULL, ts,
648 							    0);
649 					bar_index = max_t(int, bar_index,
650 						ATH_BA_INDEX(seq_first, seqno));
651 					break;
652 				}
653 
654 				fi->bf = tbf;
655 			}
656 
657 			/*
658 			 * Put this buffer to the temporary pending
659 			 * queue to retain ordering
660 			 */
661 			__skb_queue_tail(&bf_pending, skb);
662 		}
663 
664 		bf = bf_next;
665 	}
666 
667 	/* prepend un-acked frames to the beginning of the pending frame queue */
668 	if (!skb_queue_empty(&bf_pending)) {
669 		if (an->sleeping)
670 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
671 
672 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
673 		if (!an->sleeping) {
674 			ath_tx_queue_tid(sc, tid);
675 
676 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
677 				tid->clear_ps_filter = true;
678 		}
679 	}
680 
681 	if (bar_index >= 0) {
682 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
683 
684 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
685 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
686 
687 		ath_txq_unlock(sc, txq);
688 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
689 		ath_txq_lock(sc, txq);
690 	}
691 
692 	if (needreset)
693 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
694 }
695 
696 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
697 {
698     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
699     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
700 }
701 
702 static void ath_tx_count_airtime(struct ath_softc *sc, struct ath_node *an,
703 				 struct ath_atx_tid *tid, struct ath_buf *bf,
704 				 struct ath_tx_status *ts)
705 {
706 	struct ath_txq *txq = tid->txq;
707 	u32 airtime = 0;
708 	int i;
709 
710 	airtime += ts->duration * (ts->ts_longretry + 1);
711 	for(i = 0; i < ts->ts_rateindex; i++) {
712 		int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
713 		airtime += rate_dur * bf->rates[i].count;
714 	}
715 
716 	if (sc->airtime_flags & AIRTIME_USE_TX) {
717 		int q = txq->mac80211_qnum;
718 		struct ath_acq *acq = &sc->cur_chan->acq[q];
719 
720 		spin_lock_bh(&acq->lock);
721 		an->airtime_deficit[q] -= airtime;
722 		if (an->airtime_deficit[q] <= 0)
723 			__ath_tx_queue_tid(sc, tid);
724 		spin_unlock_bh(&acq->lock);
725 	}
726 	ath_debug_airtime(sc, an, 0, airtime);
727 }
728 
729 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
730 				  struct ath_tx_status *ts, struct ath_buf *bf,
731 				  struct list_head *bf_head)
732 {
733 	struct ieee80211_hw *hw = sc->hw;
734 	struct ieee80211_tx_info *info;
735 	struct ieee80211_sta *sta;
736 	struct ieee80211_hdr *hdr;
737 	struct ath_atx_tid *tid = NULL;
738 	bool txok, flush;
739 
740 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
741 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
742 	txq->axq_tx_inprogress = false;
743 
744 	txq->axq_depth--;
745 	if (bf_is_ampdu_not_probing(bf))
746 		txq->axq_ampdu_depth--;
747 
748 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
749 					     ts->ts_rateindex);
750 
751 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
752 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
753 	if (sta) {
754 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
755 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
756 		ath_tx_count_airtime(sc, an, tid, bf, ts);
757 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
758 			tid->clear_ps_filter = true;
759 	}
760 
761 	if (!bf_isampdu(bf)) {
762 		if (!flush) {
763 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
764 			memcpy(info->control.rates, bf->rates,
765 			       sizeof(info->control.rates));
766 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
767 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
768 		}
769 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
770 	} else
771 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
772 
773 	if (!flush)
774 		ath_txq_schedule(sc, txq);
775 }
776 
777 static bool ath_lookup_legacy(struct ath_buf *bf)
778 {
779 	struct sk_buff *skb;
780 	struct ieee80211_tx_info *tx_info;
781 	struct ieee80211_tx_rate *rates;
782 	int i;
783 
784 	skb = bf->bf_mpdu;
785 	tx_info = IEEE80211_SKB_CB(skb);
786 	rates = tx_info->control.rates;
787 
788 	for (i = 0; i < 4; i++) {
789 		if (!rates[i].count || rates[i].idx < 0)
790 			break;
791 
792 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
793 			return true;
794 	}
795 
796 	return false;
797 }
798 
799 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
800 			   struct ath_atx_tid *tid)
801 {
802 	struct sk_buff *skb;
803 	struct ieee80211_tx_info *tx_info;
804 	struct ieee80211_tx_rate *rates;
805 	u32 max_4ms_framelen, frmlen;
806 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
807 	int q = tid->txq->mac80211_qnum;
808 	int i;
809 
810 	skb = bf->bf_mpdu;
811 	tx_info = IEEE80211_SKB_CB(skb);
812 	rates = bf->rates;
813 
814 	/*
815 	 * Find the lowest frame length among the rate series that will have a
816 	 * 4ms (or TXOP limited) transmit duration.
817 	 */
818 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
819 
820 	for (i = 0; i < 4; i++) {
821 		int modeidx;
822 
823 		if (!rates[i].count)
824 			continue;
825 
826 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
827 			legacy = 1;
828 			break;
829 		}
830 
831 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
832 			modeidx = MCS_HT40;
833 		else
834 			modeidx = MCS_HT20;
835 
836 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
837 			modeidx++;
838 
839 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
840 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
841 	}
842 
843 	/*
844 	 * limit aggregate size by the minimum rate if rate selected is
845 	 * not a probe rate, if rate selected is a probe rate then
846 	 * avoid aggregation of this packet.
847 	 */
848 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
849 		return 0;
850 
851 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
852 
853 	/*
854 	 * Override the default aggregation limit for BTCOEX.
855 	 */
856 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
857 	if (bt_aggr_limit)
858 		aggr_limit = bt_aggr_limit;
859 
860 	if (tid->an->maxampdu)
861 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
862 
863 	return aggr_limit;
864 }
865 
866 /*
867  * Returns the number of delimiters to be added to
868  * meet the minimum required mpdudensity.
869  */
870 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
871 				  struct ath_buf *bf, u16 frmlen,
872 				  bool first_subfrm)
873 {
874 #define FIRST_DESC_NDELIMS 60
875 	u32 nsymbits, nsymbols;
876 	u16 minlen;
877 	u8 flags, rix;
878 	int width, streams, half_gi, ndelim, mindelim;
879 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
880 
881 	/* Select standard number of delimiters based on frame length alone */
882 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
883 
884 	/*
885 	 * If encryption enabled, hardware requires some more padding between
886 	 * subframes.
887 	 * TODO - this could be improved to be dependent on the rate.
888 	 *      The hardware can keep up at lower rates, but not higher rates
889 	 */
890 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
891 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
892 		ndelim += ATH_AGGR_ENCRYPTDELIM;
893 
894 	/*
895 	 * Add delimiter when using RTS/CTS with aggregation
896 	 * and non enterprise AR9003 card
897 	 */
898 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
899 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
900 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
901 
902 	/*
903 	 * Convert desired mpdu density from microeconds to bytes based
904 	 * on highest rate in rate series (i.e. first rate) to determine
905 	 * required minimum length for subframe. Take into account
906 	 * whether high rate is 20 or 40Mhz and half or full GI.
907 	 *
908 	 * If there is no mpdu density restriction, no further calculation
909 	 * is needed.
910 	 */
911 
912 	if (tid->an->mpdudensity == 0)
913 		return ndelim;
914 
915 	rix = bf->rates[0].idx;
916 	flags = bf->rates[0].flags;
917 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
918 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
919 
920 	if (half_gi)
921 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
922 	else
923 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
924 
925 	if (nsymbols == 0)
926 		nsymbols = 1;
927 
928 	streams = HT_RC_2_STREAMS(rix);
929 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
930 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
931 
932 	if (frmlen < minlen) {
933 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
934 		ndelim = max(mindelim, ndelim);
935 	}
936 
937 	return ndelim;
938 }
939 
940 static struct ath_buf *
941 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
942 			struct ath_atx_tid *tid)
943 {
944 	struct ieee80211_tx_info *tx_info;
945 	struct ath_frame_info *fi;
946 	struct sk_buff *skb, *first_skb = NULL;
947 	struct ath_buf *bf;
948 	u16 seqno;
949 
950 	while (1) {
951 		skb = ath_tid_dequeue(tid);
952 		if (!skb)
953 			break;
954 
955 		fi = get_frame_info(skb);
956 		bf = fi->bf;
957 		if (!fi->bf)
958 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
959 		else
960 			bf->bf_state.stale = false;
961 
962 		if (!bf) {
963 			ath_txq_skb_done(sc, txq, skb);
964 			ieee80211_free_txskb(sc->hw, skb);
965 			continue;
966 		}
967 
968 		bf->bf_next = NULL;
969 		bf->bf_lastbf = bf;
970 
971 		tx_info = IEEE80211_SKB_CB(skb);
972 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
973 
974 		/*
975 		 * No aggregation session is running, but there may be frames
976 		 * from a previous session or a failed attempt in the queue.
977 		 * Send them out as normal data frames
978 		 */
979 		if (!tid->active)
980 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
981 
982 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
983 			bf->bf_state.bf_type = 0;
984 			return bf;
985 		}
986 
987 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
988 		seqno = bf->bf_state.seqno;
989 
990 		/* do not step over block-ack window */
991 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
992 			__skb_queue_tail(&tid->retry_q, skb);
993 
994 			/* If there are other skbs in the retry q, they are
995 			 * probably within the BAW, so loop immediately to get
996 			 * one of them. Otherwise the queue can get stuck. */
997 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
998 			    !WARN_ON(skb == first_skb)) {
999 				if(!first_skb) /* infinite loop prevention */
1000 					first_skb = skb;
1001 				continue;
1002 			}
1003 			break;
1004 		}
1005 
1006 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1007 			struct ath_tx_status ts = {};
1008 			struct list_head bf_head;
1009 
1010 			INIT_LIST_HEAD(&bf_head);
1011 			list_add(&bf->list, &bf_head);
1012 			ath_tx_update_baw(sc, tid, seqno);
1013 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1014 			continue;
1015 		}
1016 
1017 		return bf;
1018 	}
1019 
1020 	return NULL;
1021 }
1022 
1023 static int
1024 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1025 		 struct ath_atx_tid *tid, struct list_head *bf_q,
1026 		 struct ath_buf *bf_first)
1027 {
1028 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1029 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1030 	int nframes = 0, ndelim;
1031 	u16 aggr_limit = 0, al = 0, bpad = 0,
1032 	    al_delta, h_baw = tid->baw_size / 2;
1033 	struct ieee80211_tx_info *tx_info;
1034 	struct ath_frame_info *fi;
1035 	struct sk_buff *skb;
1036 
1037 
1038 	bf = bf_first;
1039 	aggr_limit = ath_lookup_rate(sc, bf, tid);
1040 
1041 	while (bf)
1042 	{
1043 		skb = bf->bf_mpdu;
1044 		fi = get_frame_info(skb);
1045 
1046 		/* do not exceed aggregation limit */
1047 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1048 		if (nframes) {
1049 			if (aggr_limit < al + bpad + al_delta ||
1050 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1051 				goto stop;
1052 
1053 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1054 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1055 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1056 				goto stop;
1057 		}
1058 
1059 		/* add padding for previous frame to aggregation length */
1060 		al += bpad + al_delta;
1061 
1062 		/*
1063 		 * Get the delimiters needed to meet the MPDU
1064 		 * density for this node.
1065 		 */
1066 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1067 						!nframes);
1068 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1069 
1070 		nframes++;
1071 		bf->bf_next = NULL;
1072 
1073 		/* link buffers of this frame to the aggregate */
1074 		if (!fi->baw_tracked)
1075 			ath_tx_addto_baw(sc, tid, bf);
1076 		bf->bf_state.ndelim = ndelim;
1077 
1078 		list_add_tail(&bf->list, bf_q);
1079 		if (bf_prev)
1080 			bf_prev->bf_next = bf;
1081 
1082 		bf_prev = bf;
1083 
1084 		bf = ath_tx_get_tid_subframe(sc, txq, tid);
1085 	}
1086 	goto finish;
1087 stop:
1088 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1089 finish:
1090 	bf = bf_first;
1091 	bf->bf_lastbf = bf_prev;
1092 
1093 	if (bf == bf_prev) {
1094 		al = get_frame_info(bf->bf_mpdu)->framelen;
1095 		bf->bf_state.bf_type = BUF_AMPDU;
1096 	} else {
1097 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1098 	}
1099 
1100 	return al;
1101 #undef PADBYTES
1102 }
1103 
1104 /*
1105  * rix - rate index
1106  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1107  * width  - 0 for 20 MHz, 1 for 40 MHz
1108  * half_gi - to use 4us v/s 3.6 us for symbol time
1109  */
1110 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1111 		     int width, int half_gi, bool shortPreamble)
1112 {
1113 	u32 nbits, nsymbits, duration, nsymbols;
1114 	int streams;
1115 
1116 	/* find number of symbols: PLCP + data */
1117 	streams = HT_RC_2_STREAMS(rix);
1118 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1119 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1120 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1121 
1122 	if (!half_gi)
1123 		duration = SYMBOL_TIME(nsymbols);
1124 	else
1125 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1126 
1127 	/* addup duration for legacy/ht training and signal fields */
1128 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1129 
1130 	return duration;
1131 }
1132 
1133 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1134 {
1135 	int streams = HT_RC_2_STREAMS(mcs);
1136 	int symbols, bits;
1137 	int bytes = 0;
1138 
1139 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1140 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1141 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1142 	bits -= OFDM_PLCP_BITS;
1143 	bytes = bits / 8;
1144 	if (bytes > 65532)
1145 		bytes = 65532;
1146 
1147 	return bytes;
1148 }
1149 
1150 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1151 {
1152 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1153 	int mcs;
1154 
1155 	/* 4ms is the default (and maximum) duration */
1156 	if (!txop || txop > 4096)
1157 		txop = 4096;
1158 
1159 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1160 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1161 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1162 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1163 	for (mcs = 0; mcs < 32; mcs++) {
1164 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1165 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1166 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1167 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1168 	}
1169 }
1170 
1171 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1172 			       u8 rateidx, bool is_40, bool is_cck)
1173 {
1174 	u8 max_power;
1175 	struct sk_buff *skb;
1176 	struct ath_frame_info *fi;
1177 	struct ieee80211_tx_info *info;
1178 	struct ath_hw *ah = sc->sc_ah;
1179 
1180 	if (sc->tx99_state || !ah->tpc_enabled)
1181 		return MAX_RATE_POWER;
1182 
1183 	skb = bf->bf_mpdu;
1184 	fi = get_frame_info(skb);
1185 	info = IEEE80211_SKB_CB(skb);
1186 
1187 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1188 		int txpower = fi->tx_power;
1189 
1190 		if (is_40) {
1191 			u8 power_ht40delta;
1192 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1193 			u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1194 
1195 			if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1196 				bool is_2ghz;
1197 				struct modal_eep_header *pmodal;
1198 
1199 				is_2ghz = info->band == NL80211_BAND_2GHZ;
1200 				pmodal = &eep->modalHeader[is_2ghz];
1201 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1202 			} else {
1203 				power_ht40delta = 2;
1204 			}
1205 			txpower += power_ht40delta;
1206 		}
1207 
1208 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1209 		    AR_SREV_9271(ah)) {
1210 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1211 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1212 			s8 power_offset;
1213 
1214 			power_offset = ah->eep_ops->get_eeprom(ah,
1215 							EEP_PWR_TABLE_OFFSET);
1216 			txpower -= 2 * power_offset;
1217 		}
1218 
1219 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1220 			txpower -= 2;
1221 
1222 		txpower = max(txpower, 0);
1223 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1224 
1225 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1226 		 * max_power is set to 0, frames are transmitted at max
1227 		 * TX power
1228 		 */
1229 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1230 			max_power = 1;
1231 	} else if (!bf->bf_state.bfs_paprd) {
1232 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1233 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1234 					  fi->tx_power);
1235 		else
1236 			max_power = min_t(u8, ah->tx_power[rateidx],
1237 					  fi->tx_power);
1238 	} else {
1239 		max_power = ah->paprd_training_power;
1240 	}
1241 
1242 	return max_power;
1243 }
1244 
1245 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1246 			     struct ath_tx_info *info, int len, bool rts)
1247 {
1248 	struct ath_hw *ah = sc->sc_ah;
1249 	struct ath_common *common = ath9k_hw_common(ah);
1250 	struct sk_buff *skb;
1251 	struct ieee80211_tx_info *tx_info;
1252 	struct ieee80211_tx_rate *rates;
1253 	const struct ieee80211_rate *rate;
1254 	struct ieee80211_hdr *hdr;
1255 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1256 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1257 	int i;
1258 	u8 rix = 0;
1259 
1260 	skb = bf->bf_mpdu;
1261 	tx_info = IEEE80211_SKB_CB(skb);
1262 	rates = bf->rates;
1263 	hdr = (struct ieee80211_hdr *)skb->data;
1264 
1265 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1266 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1267 	info->rtscts_rate = fi->rtscts_rate;
1268 
1269 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1270 		bool is_40, is_sgi, is_sp, is_cck;
1271 		int phy;
1272 
1273 		if (!rates[i].count || (rates[i].idx < 0))
1274 			continue;
1275 
1276 		rix = rates[i].idx;
1277 		info->rates[i].Tries = rates[i].count;
1278 
1279 		/*
1280 		 * Handle RTS threshold for unaggregated HT frames.
1281 		 */
1282 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1283 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1284 		    unlikely(rts_thresh != (u32) -1)) {
1285 			if (!rts_thresh || (len > rts_thresh))
1286 				rts = true;
1287 		}
1288 
1289 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1290 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1291 			info->flags |= ATH9K_TXDESC_RTSENA;
1292 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1293 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1294 			info->flags |= ATH9K_TXDESC_CTSENA;
1295 		}
1296 
1297 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1298 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1299 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1300 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1301 
1302 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1303 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1304 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1305 
1306 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1307 			/* MCS rates */
1308 			info->rates[i].Rate = rix | 0x80;
1309 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1310 					ah->txchainmask, info->rates[i].Rate);
1311 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1312 				 is_40, is_sgi, is_sp);
1313 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1314 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1315 
1316 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1317 								is_40, false);
1318 			continue;
1319 		}
1320 
1321 		/* legacy rates */
1322 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1323 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1324 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1325 			phy = WLAN_RC_PHY_CCK;
1326 		else
1327 			phy = WLAN_RC_PHY_OFDM;
1328 
1329 		info->rates[i].Rate = rate->hw_value;
1330 		if (rate->hw_value_short) {
1331 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1332 				info->rates[i].Rate |= rate->hw_value_short;
1333 		} else {
1334 			is_sp = false;
1335 		}
1336 
1337 		if (bf->bf_state.bfs_paprd)
1338 			info->rates[i].ChSel = ah->txchainmask;
1339 		else
1340 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1341 					ah->txchainmask, info->rates[i].Rate);
1342 
1343 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1344 			phy, rate->bitrate * 100, len, rix, is_sp);
1345 
1346 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1347 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1348 							is_cck);
1349 	}
1350 
1351 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1352 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1353 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1354 
1355 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1356 	if (info->flags & ATH9K_TXDESC_RTSENA)
1357 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1358 }
1359 
1360 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1361 {
1362 	struct ieee80211_hdr *hdr;
1363 	enum ath9k_pkt_type htype;
1364 	__le16 fc;
1365 
1366 	hdr = (struct ieee80211_hdr *)skb->data;
1367 	fc = hdr->frame_control;
1368 
1369 	if (ieee80211_is_beacon(fc))
1370 		htype = ATH9K_PKT_TYPE_BEACON;
1371 	else if (ieee80211_is_probe_resp(fc))
1372 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1373 	else if (ieee80211_is_atim(fc))
1374 		htype = ATH9K_PKT_TYPE_ATIM;
1375 	else if (ieee80211_is_pspoll(fc))
1376 		htype = ATH9K_PKT_TYPE_PSPOLL;
1377 	else
1378 		htype = ATH9K_PKT_TYPE_NORMAL;
1379 
1380 	return htype;
1381 }
1382 
1383 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1384 			     struct ath_txq *txq, int len)
1385 {
1386 	struct ath_hw *ah = sc->sc_ah;
1387 	struct ath_buf *bf_first = NULL;
1388 	struct ath_tx_info info;
1389 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1390 	bool rts = false;
1391 
1392 	memset(&info, 0, sizeof(info));
1393 	info.is_first = true;
1394 	info.is_last = true;
1395 	info.qcu = txq->axq_qnum;
1396 
1397 	while (bf) {
1398 		struct sk_buff *skb = bf->bf_mpdu;
1399 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1400 		struct ath_frame_info *fi = get_frame_info(skb);
1401 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1402 
1403 		info.type = get_hw_packet_type(skb);
1404 		if (bf->bf_next)
1405 			info.link = bf->bf_next->bf_daddr;
1406 		else
1407 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1408 
1409 		if (!bf_first) {
1410 			bf_first = bf;
1411 
1412 			if (!sc->tx99_state)
1413 				info.flags = ATH9K_TXDESC_INTREQ;
1414 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1415 			    txq == sc->tx.uapsdq)
1416 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1417 
1418 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1419 				info.flags |= ATH9K_TXDESC_NOACK;
1420 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1421 				info.flags |= ATH9K_TXDESC_LDPC;
1422 
1423 			if (bf->bf_state.bfs_paprd)
1424 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1425 					      ATH9K_TXDESC_PAPRD_S;
1426 
1427 			/*
1428 			 * mac80211 doesn't handle RTS threshold for HT because
1429 			 * the decision has to be taken based on AMPDU length
1430 			 * and aggregation is done entirely inside ath9k.
1431 			 * Set the RTS/CTS flag for the first subframe based
1432 			 * on the threshold.
1433 			 */
1434 			if (aggr && (bf == bf_first) &&
1435 			    unlikely(rts_thresh != (u32) -1)) {
1436 				/*
1437 				 * "len" is the size of the entire AMPDU.
1438 				 */
1439 				if (!rts_thresh || (len > rts_thresh))
1440 					rts = true;
1441 			}
1442 
1443 			if (!aggr)
1444 				len = fi->framelen;
1445 
1446 			ath_buf_set_rate(sc, bf, &info, len, rts);
1447 		}
1448 
1449 		info.buf_addr[0] = bf->bf_buf_addr;
1450 		info.buf_len[0] = skb->len;
1451 		info.pkt_len = fi->framelen;
1452 		info.keyix = fi->keyix;
1453 		info.keytype = fi->keytype;
1454 
1455 		if (aggr) {
1456 			if (bf == bf_first)
1457 				info.aggr = AGGR_BUF_FIRST;
1458 			else if (bf == bf_first->bf_lastbf)
1459 				info.aggr = AGGR_BUF_LAST;
1460 			else
1461 				info.aggr = AGGR_BUF_MIDDLE;
1462 
1463 			info.ndelim = bf->bf_state.ndelim;
1464 			info.aggr_len = len;
1465 		}
1466 
1467 		if (bf == bf_first->bf_lastbf)
1468 			bf_first = NULL;
1469 
1470 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1471 		bf = bf->bf_next;
1472 	}
1473 }
1474 
1475 static void
1476 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1477 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1478 		  struct ath_buf *bf_first)
1479 {
1480 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1481 	int nframes = 0;
1482 
1483 	do {
1484 		struct ieee80211_tx_info *tx_info;
1485 
1486 		nframes++;
1487 		list_add_tail(&bf->list, bf_q);
1488 		if (bf_prev)
1489 			bf_prev->bf_next = bf;
1490 		bf_prev = bf;
1491 
1492 		if (nframes >= 2)
1493 			break;
1494 
1495 		bf = ath_tx_get_tid_subframe(sc, txq, tid);
1496 		if (!bf)
1497 			break;
1498 
1499 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1500 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1501 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1502 			break;
1503 		}
1504 
1505 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1506 	} while (1);
1507 }
1508 
1509 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1510 			      struct ath_atx_tid *tid)
1511 {
1512 	struct ath_buf *bf;
1513 	struct ieee80211_tx_info *tx_info;
1514 	struct list_head bf_q;
1515 	int aggr_len = 0;
1516 	bool aggr;
1517 
1518 	if (!ath_tid_has_buffered(tid))
1519 		return false;
1520 
1521 	INIT_LIST_HEAD(&bf_q);
1522 
1523 	bf = ath_tx_get_tid_subframe(sc, txq, tid);
1524 	if (!bf)
1525 		return false;
1526 
1527 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1528 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1529 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1530 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1531 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1532 		return false;
1533 	}
1534 
1535 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1536 	if (aggr)
1537 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1538 	else
1539 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1540 
1541 	if (list_empty(&bf_q))
1542 		return false;
1543 
1544 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1545 		tid->clear_ps_filter = false;
1546 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1547 	}
1548 
1549 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1550 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1551 	return true;
1552 }
1553 
1554 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1555 		      u16 tid, u16 *ssn)
1556 {
1557 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1558 	struct ath_atx_tid *txtid;
1559 	struct ath_txq *txq;
1560 	struct ath_node *an;
1561 	u8 density;
1562 
1563 	ath_dbg(common, XMIT, "%s called\n", __func__);
1564 
1565 	an = (struct ath_node *)sta->drv_priv;
1566 	txtid = ATH_AN_2_TID(an, tid);
1567 	txq = txtid->txq;
1568 
1569 	ath_txq_lock(sc, txq);
1570 
1571 	/* update ampdu factor/density, they may have changed. This may happen
1572 	 * in HT IBSS when a beacon with HT-info is received after the station
1573 	 * has already been added.
1574 	 */
1575 	if (sta->ht_cap.ht_supported) {
1576 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1577 				      sta->ht_cap.ampdu_factor)) - 1;
1578 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1579 		an->mpdudensity = density;
1580 	}
1581 
1582 	txtid->active = true;
1583 	*ssn = txtid->seq_start = txtid->seq_next;
1584 	txtid->bar_index = -1;
1585 
1586 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1587 	txtid->baw_head = txtid->baw_tail = 0;
1588 
1589 	ath_txq_unlock_complete(sc, txq);
1590 
1591 	return 0;
1592 }
1593 
1594 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1595 {
1596 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1597 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1598 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1599 	struct ath_txq *txq = txtid->txq;
1600 
1601 	ath_dbg(common, XMIT, "%s called\n", __func__);
1602 
1603 	ath_txq_lock(sc, txq);
1604 	txtid->active = false;
1605 	ath_tx_flush_tid(sc, txtid);
1606 	ath_txq_unlock_complete(sc, txq);
1607 }
1608 
1609 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1610 		       struct ath_node *an)
1611 {
1612 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1613 	struct ath_atx_tid *tid;
1614 	struct ath_txq *txq;
1615 	int tidno;
1616 
1617 	ath_dbg(common, XMIT, "%s called\n", __func__);
1618 
1619 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1620 		tid = ath_node_to_tid(an, tidno);
1621 		txq = tid->txq;
1622 
1623 		ath_txq_lock(sc, txq);
1624 
1625 		if (list_empty(&tid->list)) {
1626 			ath_txq_unlock(sc, txq);
1627 			continue;
1628 		}
1629 
1630 		if (!skb_queue_empty(&tid->retry_q))
1631 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1632 
1633 		list_del_init(&tid->list);
1634 
1635 		ath_txq_unlock(sc, txq);
1636 	}
1637 }
1638 
1639 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1640 {
1641 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1642 	struct ath_atx_tid *tid;
1643 	struct ath_txq *txq;
1644 	int tidno;
1645 
1646 	ath_dbg(common, XMIT, "%s called\n", __func__);
1647 
1648 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1649 		tid = ath_node_to_tid(an, tidno);
1650 		txq = tid->txq;
1651 
1652 		ath_txq_lock(sc, txq);
1653 		tid->clear_ps_filter = true;
1654 		if (ath_tid_has_buffered(tid)) {
1655 			ath_tx_queue_tid(sc, tid);
1656 			ath_txq_schedule(sc, txq);
1657 		}
1658 		ath_txq_unlock_complete(sc, txq);
1659 	}
1660 }
1661 
1662 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1663 				   struct ieee80211_sta *sta,
1664 				   u16 tids, int nframes,
1665 				   enum ieee80211_frame_release_type reason,
1666 				   bool more_data)
1667 {
1668 	struct ath_softc *sc = hw->priv;
1669 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1670 	struct ath_txq *txq = sc->tx.uapsdq;
1671 	struct ieee80211_tx_info *info;
1672 	struct list_head bf_q;
1673 	struct ath_buf *bf_tail = NULL, *bf;
1674 	int sent = 0;
1675 	int i;
1676 
1677 	INIT_LIST_HEAD(&bf_q);
1678 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1679 		struct ath_atx_tid *tid;
1680 
1681 		if (!(tids & 1))
1682 			continue;
1683 
1684 		tid = ATH_AN_2_TID(an, i);
1685 
1686 		ath_txq_lock(sc, tid->txq);
1687 		while (nframes > 0) {
1688 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1689 			if (!bf)
1690 				break;
1691 
1692 			list_add_tail(&bf->list, &bf_q);
1693 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1694 			if (bf_isampdu(bf)) {
1695 				ath_tx_addto_baw(sc, tid, bf);
1696 				bf->bf_state.bf_type &= ~BUF_AGGR;
1697 			}
1698 			if (bf_tail)
1699 				bf_tail->bf_next = bf;
1700 
1701 			bf_tail = bf;
1702 			nframes--;
1703 			sent++;
1704 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1705 
1706 			if (an->sta && skb_queue_empty(&tid->retry_q))
1707 				ieee80211_sta_set_buffered(an->sta, i, false);
1708 		}
1709 		ath_txq_unlock_complete(sc, tid->txq);
1710 	}
1711 
1712 	if (list_empty(&bf_q))
1713 		return;
1714 
1715 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1716 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1717 
1718 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1719 	ath_txq_lock(sc, txq);
1720 	ath_tx_fill_desc(sc, bf, txq, 0);
1721 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1722 	ath_txq_unlock(sc, txq);
1723 }
1724 
1725 /********************/
1726 /* Queue Management */
1727 /********************/
1728 
1729 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1730 {
1731 	struct ath_hw *ah = sc->sc_ah;
1732 	struct ath9k_tx_queue_info qi;
1733 	static const int subtype_txq_to_hwq[] = {
1734 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1735 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1736 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1737 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1738 	};
1739 	int axq_qnum, i;
1740 
1741 	memset(&qi, 0, sizeof(qi));
1742 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1743 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1744 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1745 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1746 	qi.tqi_physCompBuf = 0;
1747 
1748 	/*
1749 	 * Enable interrupts only for EOL and DESC conditions.
1750 	 * We mark tx descriptors to receive a DESC interrupt
1751 	 * when a tx queue gets deep; otherwise waiting for the
1752 	 * EOL to reap descriptors.  Note that this is done to
1753 	 * reduce interrupt load and this only defers reaping
1754 	 * descriptors, never transmitting frames.  Aside from
1755 	 * reducing interrupts this also permits more concurrency.
1756 	 * The only potential downside is if the tx queue backs
1757 	 * up in which case the top half of the kernel may backup
1758 	 * due to a lack of tx descriptors.
1759 	 *
1760 	 * The UAPSD queue is an exception, since we take a desc-
1761 	 * based intr on the EOSP frames.
1762 	 */
1763 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1764 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1765 	} else {
1766 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1767 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1768 		else
1769 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1770 					TXQ_FLAG_TXDESCINT_ENABLE;
1771 	}
1772 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1773 	if (axq_qnum == -1) {
1774 		/*
1775 		 * NB: don't print a message, this happens
1776 		 * normally on parts with too few tx queues
1777 		 */
1778 		return NULL;
1779 	}
1780 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1781 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1782 
1783 		txq->axq_qnum = axq_qnum;
1784 		txq->mac80211_qnum = -1;
1785 		txq->axq_link = NULL;
1786 		__skb_queue_head_init(&txq->complete_q);
1787 		INIT_LIST_HEAD(&txq->axq_q);
1788 		spin_lock_init(&txq->axq_lock);
1789 		txq->axq_depth = 0;
1790 		txq->axq_ampdu_depth = 0;
1791 		txq->axq_tx_inprogress = false;
1792 		sc->tx.txqsetup |= 1<<axq_qnum;
1793 
1794 		txq->txq_headidx = txq->txq_tailidx = 0;
1795 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1796 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1797 	}
1798 	return &sc->tx.txq[axq_qnum];
1799 }
1800 
1801 int ath_txq_update(struct ath_softc *sc, int qnum,
1802 		   struct ath9k_tx_queue_info *qinfo)
1803 {
1804 	struct ath_hw *ah = sc->sc_ah;
1805 	int error = 0;
1806 	struct ath9k_tx_queue_info qi;
1807 
1808 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1809 
1810 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1811 	qi.tqi_aifs = qinfo->tqi_aifs;
1812 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1813 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1814 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1815 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1816 
1817 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1818 		ath_err(ath9k_hw_common(sc->sc_ah),
1819 			"Unable to update hardware queue %u!\n", qnum);
1820 		error = -EIO;
1821 	} else {
1822 		ath9k_hw_resettxqueue(ah, qnum);
1823 	}
1824 
1825 	return error;
1826 }
1827 
1828 int ath_cabq_update(struct ath_softc *sc)
1829 {
1830 	struct ath9k_tx_queue_info qi;
1831 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1832 	int qnum = sc->beacon.cabq->axq_qnum;
1833 
1834 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1835 
1836 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1837 			    ATH_CABQ_READY_TIME) / 100;
1838 	ath_txq_update(sc, qnum, &qi);
1839 
1840 	return 0;
1841 }
1842 
1843 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1844 			       struct list_head *list)
1845 {
1846 	struct ath_buf *bf, *lastbf;
1847 	struct list_head bf_head;
1848 	struct ath_tx_status ts;
1849 
1850 	memset(&ts, 0, sizeof(ts));
1851 	ts.ts_status = ATH9K_TX_FLUSH;
1852 	INIT_LIST_HEAD(&bf_head);
1853 
1854 	while (!list_empty(list)) {
1855 		bf = list_first_entry(list, struct ath_buf, list);
1856 
1857 		if (bf->bf_state.stale) {
1858 			list_del(&bf->list);
1859 
1860 			ath_tx_return_buffer(sc, bf);
1861 			continue;
1862 		}
1863 
1864 		lastbf = bf->bf_lastbf;
1865 		list_cut_position(&bf_head, list, &lastbf->list);
1866 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1867 	}
1868 }
1869 
1870 /*
1871  * Drain a given TX queue (could be Beacon or Data)
1872  *
1873  * This assumes output has been stopped and
1874  * we do not need to block ath_tx_tasklet.
1875  */
1876 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1877 {
1878 	rcu_read_lock();
1879 	ath_txq_lock(sc, txq);
1880 
1881 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1882 		int idx = txq->txq_tailidx;
1883 
1884 		while (!list_empty(&txq->txq_fifo[idx])) {
1885 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1886 
1887 			INCR(idx, ATH_TXFIFO_DEPTH);
1888 		}
1889 		txq->txq_tailidx = idx;
1890 	}
1891 
1892 	txq->axq_link = NULL;
1893 	txq->axq_tx_inprogress = false;
1894 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1895 
1896 	ath_txq_unlock_complete(sc, txq);
1897 	rcu_read_unlock();
1898 }
1899 
1900 bool ath_drain_all_txq(struct ath_softc *sc)
1901 {
1902 	struct ath_hw *ah = sc->sc_ah;
1903 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1904 	struct ath_txq *txq;
1905 	int i;
1906 	u32 npend = 0;
1907 
1908 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1909 		return true;
1910 
1911 	ath9k_hw_abort_tx_dma(ah);
1912 
1913 	/* Check if any queue remains active */
1914 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1915 		if (!ATH_TXQ_SETUP(sc, i))
1916 			continue;
1917 
1918 		if (!sc->tx.txq[i].axq_depth)
1919 			continue;
1920 
1921 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1922 			npend |= BIT(i);
1923 	}
1924 
1925 	if (npend) {
1926 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1927 		ath_dbg(common, RESET,
1928 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1929 	}
1930 
1931 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1932 		if (!ATH_TXQ_SETUP(sc, i))
1933 			continue;
1934 
1935 		txq = &sc->tx.txq[i];
1936 		ath_draintxq(sc, txq);
1937 	}
1938 
1939 	return !npend;
1940 }
1941 
1942 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1943 {
1944 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1945 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1946 }
1947 
1948 /* For each acq entry, for each tid, try to schedule packets
1949  * for transmit until ampdu_depth has reached min Q depth.
1950  */
1951 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1952 {
1953 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1954 	struct ath_atx_tid *tid;
1955 	struct list_head *tid_list;
1956 	struct ath_acq *acq;
1957 	bool active = AIRTIME_ACTIVE(sc->airtime_flags);
1958 
1959 	if (txq->mac80211_qnum < 0)
1960 		return;
1961 
1962 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1963 		return;
1964 
1965 	spin_lock_bh(&sc->chan_lock);
1966 	rcu_read_lock();
1967 	acq = &sc->cur_chan->acq[txq->mac80211_qnum];
1968 
1969 	if (sc->cur_chan->stopped)
1970 		goto out;
1971 
1972 begin:
1973 	tid_list = &acq->acq_new;
1974 	if (list_empty(tid_list)) {
1975 		tid_list = &acq->acq_old;
1976 		if (list_empty(tid_list))
1977 			goto out;
1978 	}
1979 	tid = list_first_entry(tid_list, struct ath_atx_tid, list);
1980 
1981 	if (active && tid->an->airtime_deficit[txq->mac80211_qnum] <= 0) {
1982 		spin_lock_bh(&acq->lock);
1983 		tid->an->airtime_deficit[txq->mac80211_qnum] += ATH_AIRTIME_QUANTUM;
1984 		list_move_tail(&tid->list, &acq->acq_old);
1985 		spin_unlock_bh(&acq->lock);
1986 		goto begin;
1987 	}
1988 
1989 	if (!ath_tid_has_buffered(tid)) {
1990 		spin_lock_bh(&acq->lock);
1991 		if ((tid_list == &acq->acq_new) && !list_empty(&acq->acq_old))
1992 			list_move_tail(&tid->list, &acq->acq_old);
1993 		else {
1994 			list_del_init(&tid->list);
1995 		}
1996 		spin_unlock_bh(&acq->lock);
1997 		goto begin;
1998 	}
1999 
2000 
2001 	/*
2002 	 * If we succeed in scheduling something, immediately restart to make
2003 	 * sure we keep the HW busy.
2004 	 */
2005 	if(ath_tx_sched_aggr(sc, txq, tid)) {
2006 		if (!active) {
2007 			spin_lock_bh(&acq->lock);
2008 			list_move_tail(&tid->list, &acq->acq_old);
2009 			spin_unlock_bh(&acq->lock);
2010 		}
2011 		goto begin;
2012 	}
2013 
2014 out:
2015 	rcu_read_unlock();
2016 	spin_unlock_bh(&sc->chan_lock);
2017 }
2018 
2019 void ath_txq_schedule_all(struct ath_softc *sc)
2020 {
2021 	struct ath_txq *txq;
2022 	int i;
2023 
2024 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2025 		txq = sc->tx.txq_map[i];
2026 
2027 		spin_lock_bh(&txq->axq_lock);
2028 		ath_txq_schedule(sc, txq);
2029 		spin_unlock_bh(&txq->axq_lock);
2030 	}
2031 }
2032 
2033 /***********/
2034 /* TX, DMA */
2035 /***********/
2036 
2037 /*
2038  * Insert a chain of ath_buf (descriptors) on a txq and
2039  * assume the descriptors are already chained together by caller.
2040  */
2041 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2042 			     struct list_head *head, bool internal)
2043 {
2044 	struct ath_hw *ah = sc->sc_ah;
2045 	struct ath_common *common = ath9k_hw_common(ah);
2046 	struct ath_buf *bf, *bf_last;
2047 	bool puttxbuf = false;
2048 	bool edma;
2049 
2050 	/*
2051 	 * Insert the frame on the outbound list and
2052 	 * pass it on to the hardware.
2053 	 */
2054 
2055 	if (list_empty(head))
2056 		return;
2057 
2058 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2059 	bf = list_first_entry(head, struct ath_buf, list);
2060 	bf_last = list_entry(head->prev, struct ath_buf, list);
2061 
2062 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2063 		txq->axq_qnum, txq->axq_depth);
2064 
2065 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2066 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2067 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2068 		puttxbuf = true;
2069 	} else {
2070 		list_splice_tail_init(head, &txq->axq_q);
2071 
2072 		if (txq->axq_link) {
2073 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2074 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2075 				txq->axq_qnum, txq->axq_link,
2076 				ito64(bf->bf_daddr), bf->bf_desc);
2077 		} else if (!edma)
2078 			puttxbuf = true;
2079 
2080 		txq->axq_link = bf_last->bf_desc;
2081 	}
2082 
2083 	if (puttxbuf) {
2084 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
2085 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2086 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2087 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2088 	}
2089 
2090 	if (!edma || sc->tx99_state) {
2091 		TX_STAT_INC(txq->axq_qnum, txstart);
2092 		ath9k_hw_txstart(ah, txq->axq_qnum);
2093 	}
2094 
2095 	if (!internal) {
2096 		while (bf) {
2097 			txq->axq_depth++;
2098 			if (bf_is_ampdu_not_probing(bf))
2099 				txq->axq_ampdu_depth++;
2100 
2101 			bf_last = bf->bf_lastbf;
2102 			bf = bf_last->bf_next;
2103 			bf_last->bf_next = NULL;
2104 		}
2105 	}
2106 }
2107 
2108 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2109 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2110 {
2111 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2112 	struct ath_frame_info *fi = get_frame_info(skb);
2113 	struct list_head bf_head;
2114 	struct ath_buf *bf = fi->bf;
2115 
2116 	INIT_LIST_HEAD(&bf_head);
2117 	list_add_tail(&bf->list, &bf_head);
2118 	bf->bf_state.bf_type = 0;
2119 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2120 		bf->bf_state.bf_type = BUF_AMPDU;
2121 		ath_tx_addto_baw(sc, tid, bf);
2122 	}
2123 
2124 	bf->bf_next = NULL;
2125 	bf->bf_lastbf = bf;
2126 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2127 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2128 	TX_STAT_INC(txq->axq_qnum, queued);
2129 }
2130 
2131 static void setup_frame_info(struct ieee80211_hw *hw,
2132 			     struct ieee80211_sta *sta,
2133 			     struct sk_buff *skb,
2134 			     int framelen)
2135 {
2136 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2137 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2138 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2139 	const struct ieee80211_rate *rate;
2140 	struct ath_frame_info *fi = get_frame_info(skb);
2141 	struct ath_node *an = NULL;
2142 	enum ath9k_key_type keytype;
2143 	bool short_preamble = false;
2144 	u8 txpower;
2145 
2146 	/*
2147 	 * We check if Short Preamble is needed for the CTS rate by
2148 	 * checking the BSS's global flag.
2149 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2150 	 */
2151 	if (tx_info->control.vif &&
2152 	    tx_info->control.vif->bss_conf.use_short_preamble)
2153 		short_preamble = true;
2154 
2155 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2156 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2157 
2158 	if (sta)
2159 		an = (struct ath_node *) sta->drv_priv;
2160 
2161 	if (tx_info->control.vif) {
2162 		struct ieee80211_vif *vif = tx_info->control.vif;
2163 
2164 		txpower = 2 * vif->bss_conf.txpower;
2165 	} else {
2166 		struct ath_softc *sc = hw->priv;
2167 
2168 		txpower = sc->cur_chan->cur_txpower;
2169 	}
2170 
2171 	memset(fi, 0, sizeof(*fi));
2172 	fi->txq = -1;
2173 	if (hw_key)
2174 		fi->keyix = hw_key->hw_key_idx;
2175 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2176 		fi->keyix = an->ps_key;
2177 	else
2178 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2179 	fi->keytype = keytype;
2180 	fi->framelen = framelen;
2181 	fi->tx_power = txpower;
2182 
2183 	if (!rate)
2184 		return;
2185 	fi->rtscts_rate = rate->hw_value;
2186 	if (short_preamble)
2187 		fi->rtscts_rate |= rate->hw_value_short;
2188 }
2189 
2190 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2191 {
2192 	struct ath_hw *ah = sc->sc_ah;
2193 	struct ath9k_channel *curchan = ah->curchan;
2194 
2195 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2196 	    (chainmask == 0x7) && (rate < 0x90))
2197 		return 0x3;
2198 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2199 		 IS_CCK_RATE(rate))
2200 		return 0x2;
2201 	else
2202 		return chainmask;
2203 }
2204 
2205 /*
2206  * Assign a descriptor (and sequence number if necessary,
2207  * and map buffer for DMA. Frees skb on error
2208  */
2209 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2210 					   struct ath_txq *txq,
2211 					   struct ath_atx_tid *tid,
2212 					   struct sk_buff *skb)
2213 {
2214 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2215 	struct ath_frame_info *fi = get_frame_info(skb);
2216 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2217 	struct ath_buf *bf;
2218 	int fragno;
2219 	u16 seqno;
2220 
2221 	bf = ath_tx_get_buffer(sc);
2222 	if (!bf) {
2223 		ath_dbg(common, XMIT, "TX buffers are full\n");
2224 		return NULL;
2225 	}
2226 
2227 	ATH_TXBUF_RESET(bf);
2228 
2229 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2230 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2231 		seqno = tid->seq_next;
2232 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2233 
2234 		if (fragno)
2235 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2236 
2237 		if (!ieee80211_has_morefrags(hdr->frame_control))
2238 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2239 
2240 		bf->bf_state.seqno = seqno;
2241 	}
2242 
2243 	bf->bf_mpdu = skb;
2244 
2245 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2246 					 skb->len, DMA_TO_DEVICE);
2247 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2248 		bf->bf_mpdu = NULL;
2249 		bf->bf_buf_addr = 0;
2250 		ath_err(ath9k_hw_common(sc->sc_ah),
2251 			"dma_mapping_error() on TX\n");
2252 		ath_tx_return_buffer(sc, bf);
2253 		return NULL;
2254 	}
2255 
2256 	fi->bf = bf;
2257 
2258 	return bf;
2259 }
2260 
2261 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2262 {
2263 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2264 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2265 	struct ieee80211_vif *vif = info->control.vif;
2266 	struct ath_vif *avp;
2267 
2268 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2269 		return;
2270 
2271 	if (!vif)
2272 		return;
2273 
2274 	avp = (struct ath_vif *)vif->drv_priv;
2275 
2276 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2277 		avp->seq_no += 0x10;
2278 
2279 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2280 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2281 }
2282 
2283 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2284 			  struct ath_tx_control *txctl)
2285 {
2286 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2287 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2288 	struct ieee80211_sta *sta = txctl->sta;
2289 	struct ieee80211_vif *vif = info->control.vif;
2290 	struct ath_vif *avp;
2291 	struct ath_softc *sc = hw->priv;
2292 	int frmlen = skb->len + FCS_LEN;
2293 	int padpos, padsize;
2294 
2295 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2296 	if (sta)
2297 		txctl->an = (struct ath_node *)sta->drv_priv;
2298 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2299 		avp = (void *)vif->drv_priv;
2300 		txctl->an = &avp->mcast_node;
2301 	}
2302 
2303 	if (info->control.hw_key)
2304 		frmlen += info->control.hw_key->icv_len;
2305 
2306 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2307 
2308 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2309 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2310 	    !ieee80211_is_data(hdr->frame_control))
2311 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2312 
2313 	/* Add the padding after the header if this is not already done */
2314 	padpos = ieee80211_hdrlen(hdr->frame_control);
2315 	padsize = padpos & 3;
2316 	if (padsize && skb->len > padpos) {
2317 		if (skb_headroom(skb) < padsize)
2318 			return -ENOMEM;
2319 
2320 		skb_push(skb, padsize);
2321 		memmove(skb->data, skb->data + padsize, padpos);
2322 	}
2323 
2324 	setup_frame_info(hw, sta, skb, frmlen);
2325 	return 0;
2326 }
2327 
2328 
2329 /* Upon failure caller should free skb */
2330 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2331 		 struct ath_tx_control *txctl)
2332 {
2333 	struct ieee80211_hdr *hdr;
2334 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2335 	struct ieee80211_sta *sta = txctl->sta;
2336 	struct ieee80211_vif *vif = info->control.vif;
2337 	struct ath_frame_info *fi = get_frame_info(skb);
2338 	struct ath_vif *avp = NULL;
2339 	struct ath_softc *sc = hw->priv;
2340 	struct ath_txq *txq = txctl->txq;
2341 	struct ath_atx_tid *tid = NULL;
2342 	struct ath_node *an = NULL;
2343 	struct ath_buf *bf;
2344 	bool ps_resp;
2345 	int q, ret;
2346 
2347 	if (vif)
2348 		avp = (void *)vif->drv_priv;
2349 
2350 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2351 
2352 	ret = ath_tx_prepare(hw, skb, txctl);
2353 	if (ret)
2354 	    return ret;
2355 
2356 	hdr = (struct ieee80211_hdr *) skb->data;
2357 	/*
2358 	 * At this point, the vif, hw_key and sta pointers in the tx control
2359 	 * info are no longer valid (overwritten by the ath_frame_info data.
2360 	 */
2361 
2362 	q = skb_get_queue_mapping(skb);
2363 
2364 	if (ps_resp)
2365 		txq = sc->tx.uapsdq;
2366 
2367 	if (txctl->sta) {
2368 		an = (struct ath_node *) sta->drv_priv;
2369 		tid = ath_get_skb_tid(sc, an, skb);
2370 	}
2371 
2372 	ath_txq_lock(sc, txq);
2373 	if (txq == sc->tx.txq_map[q]) {
2374 		fi->txq = q;
2375 		++txq->pending_frames;
2376 	}
2377 
2378 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2379 	if (!bf) {
2380 		ath_txq_skb_done(sc, txq, skb);
2381 		if (txctl->paprd)
2382 			dev_kfree_skb_any(skb);
2383 		else
2384 			ieee80211_free_txskb(sc->hw, skb);
2385 		goto out;
2386 	}
2387 
2388 	bf->bf_state.bfs_paprd = txctl->paprd;
2389 
2390 	if (txctl->paprd)
2391 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2392 
2393 	ath_set_rates(vif, sta, bf);
2394 	ath_tx_send_normal(sc, txq, tid, skb);
2395 
2396 out:
2397 	ath_txq_unlock(sc, txq);
2398 
2399 	return 0;
2400 }
2401 
2402 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2403 		 struct sk_buff *skb)
2404 {
2405 	struct ath_softc *sc = hw->priv;
2406 	struct ath_tx_control txctl = {
2407 		.txq = sc->beacon.cabq
2408 	};
2409 	struct ath_tx_info info = {};
2410 	struct ieee80211_hdr *hdr;
2411 	struct ath_buf *bf_tail = NULL;
2412 	struct ath_buf *bf;
2413 	LIST_HEAD(bf_q);
2414 	int duration = 0;
2415 	int max_duration;
2416 
2417 	max_duration =
2418 		sc->cur_chan->beacon.beacon_interval * 1000 *
2419 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2420 
2421 	do {
2422 		struct ath_frame_info *fi = get_frame_info(skb);
2423 
2424 		if (ath_tx_prepare(hw, skb, &txctl))
2425 			break;
2426 
2427 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2428 		if (!bf)
2429 			break;
2430 
2431 		bf->bf_lastbf = bf;
2432 		ath_set_rates(vif, NULL, bf);
2433 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2434 		duration += info.rates[0].PktDuration;
2435 		if (bf_tail)
2436 			bf_tail->bf_next = bf;
2437 
2438 		list_add_tail(&bf->list, &bf_q);
2439 		bf_tail = bf;
2440 		skb = NULL;
2441 
2442 		if (duration > max_duration)
2443 			break;
2444 
2445 		skb = ieee80211_get_buffered_bc(hw, vif);
2446 	} while(skb);
2447 
2448 	if (skb)
2449 		ieee80211_free_txskb(hw, skb);
2450 
2451 	if (list_empty(&bf_q))
2452 		return;
2453 
2454 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2455 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2456 
2457 	if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) {
2458 		hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2459 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2460 			sizeof(*hdr), DMA_TO_DEVICE);
2461 	}
2462 
2463 	ath_txq_lock(sc, txctl.txq);
2464 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2465 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2466 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2467 	ath_txq_unlock(sc, txctl.txq);
2468 }
2469 
2470 /*****************/
2471 /* TX Completion */
2472 /*****************/
2473 
2474 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2475 			    int tx_flags, struct ath_txq *txq,
2476 			    struct ieee80211_sta *sta)
2477 {
2478 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2479 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2480 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2481 	int padpos, padsize;
2482 	unsigned long flags;
2483 
2484 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2485 
2486 	if (sc->sc_ah->caldata)
2487 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2488 
2489 	if (!(tx_flags & ATH_TX_ERROR)) {
2490 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2491 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2492 		else
2493 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2494 	}
2495 
2496 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2497 		padpos = ieee80211_hdrlen(hdr->frame_control);
2498 		padsize = padpos & 3;
2499 		if (padsize && skb->len>padpos+padsize) {
2500 			/*
2501 			 * Remove MAC header padding before giving the frame back to
2502 			 * mac80211.
2503 			 */
2504 			memmove(skb->data + padsize, skb->data, padpos);
2505 			skb_pull(skb, padsize);
2506 		}
2507 	}
2508 
2509 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2510 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2511 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2512 		ath_dbg(common, PS,
2513 			"Going back to sleep after having received TX status (0x%lx)\n",
2514 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2515 					PS_WAIT_FOR_CAB |
2516 					PS_WAIT_FOR_PSPOLL_DATA |
2517 					PS_WAIT_FOR_TX_ACK));
2518 	}
2519 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2520 
2521 	ath_txq_skb_done(sc, txq, skb);
2522 	tx_info->status.status_driver_data[0] = sta;
2523 	__skb_queue_tail(&txq->complete_q, skb);
2524 }
2525 
2526 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2527 				struct ath_txq *txq, struct list_head *bf_q,
2528 				struct ieee80211_sta *sta,
2529 				struct ath_tx_status *ts, int txok)
2530 {
2531 	struct sk_buff *skb = bf->bf_mpdu;
2532 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2533 	unsigned long flags;
2534 	int tx_flags = 0;
2535 
2536 	if (!txok)
2537 		tx_flags |= ATH_TX_ERROR;
2538 
2539 	if (ts->ts_status & ATH9K_TXERR_FILT)
2540 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2541 
2542 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2543 	bf->bf_buf_addr = 0;
2544 	if (sc->tx99_state)
2545 		goto skip_tx_complete;
2546 
2547 	if (bf->bf_state.bfs_paprd) {
2548 		if (time_after(jiffies,
2549 				bf->bf_state.bfs_paprd_timestamp +
2550 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2551 			dev_kfree_skb_any(skb);
2552 		else
2553 			complete(&sc->paprd_complete);
2554 	} else {
2555 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2556 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2557 	}
2558 skip_tx_complete:
2559 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2560 	 * accidentally reference it later.
2561 	 */
2562 	bf->bf_mpdu = NULL;
2563 
2564 	/*
2565 	 * Return the list of ath_buf of this mpdu to free queue
2566 	 */
2567 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2568 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2569 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2570 }
2571 
2572 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2573 			     struct ath_tx_status *ts, int nframes, int nbad,
2574 			     int txok)
2575 {
2576 	struct sk_buff *skb = bf->bf_mpdu;
2577 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2578 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2579 	struct ieee80211_hw *hw = sc->hw;
2580 	struct ath_hw *ah = sc->sc_ah;
2581 	u8 i, tx_rateindex;
2582 
2583 	if (txok)
2584 		tx_info->status.ack_signal = ts->ts_rssi;
2585 
2586 	tx_rateindex = ts->ts_rateindex;
2587 	WARN_ON(tx_rateindex >= hw->max_rates);
2588 
2589 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2590 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2591 
2592 		BUG_ON(nbad > nframes);
2593 	}
2594 	tx_info->status.ampdu_len = nframes;
2595 	tx_info->status.ampdu_ack_len = nframes - nbad;
2596 
2597 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2598 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2599 		/*
2600 		 * If an underrun error is seen assume it as an excessive
2601 		 * retry only if max frame trigger level has been reached
2602 		 * (2 KB for single stream, and 4 KB for dual stream).
2603 		 * Adjust the long retry as if the frame was tried
2604 		 * hw->max_rate_tries times to affect how rate control updates
2605 		 * PER for the failed rate.
2606 		 * In case of congestion on the bus penalizing this type of
2607 		 * underruns should help hardware actually transmit new frames
2608 		 * successfully by eventually preferring slower rates.
2609 		 * This itself should also alleviate congestion on the bus.
2610 		 */
2611 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2612 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2613 		    ieee80211_is_data(hdr->frame_control) &&
2614 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2615 			tx_info->status.rates[tx_rateindex].count =
2616 				hw->max_rate_tries;
2617 	}
2618 
2619 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2620 		tx_info->status.rates[i].count = 0;
2621 		tx_info->status.rates[i].idx = -1;
2622 	}
2623 
2624 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2625 }
2626 
2627 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2628 {
2629 	struct ath_hw *ah = sc->sc_ah;
2630 	struct ath_common *common = ath9k_hw_common(ah);
2631 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2632 	struct list_head bf_head;
2633 	struct ath_desc *ds;
2634 	struct ath_tx_status ts;
2635 	int status;
2636 
2637 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2638 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2639 		txq->axq_link);
2640 
2641 	ath_txq_lock(sc, txq);
2642 	for (;;) {
2643 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2644 			break;
2645 
2646 		if (list_empty(&txq->axq_q)) {
2647 			txq->axq_link = NULL;
2648 			ath_txq_schedule(sc, txq);
2649 			break;
2650 		}
2651 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2652 
2653 		/*
2654 		 * There is a race condition that a BH gets scheduled
2655 		 * after sw writes TxE and before hw re-load the last
2656 		 * descriptor to get the newly chained one.
2657 		 * Software must keep the last DONE descriptor as a
2658 		 * holding descriptor - software does so by marking
2659 		 * it with the STALE flag.
2660 		 */
2661 		bf_held = NULL;
2662 		if (bf->bf_state.stale) {
2663 			bf_held = bf;
2664 			if (list_is_last(&bf_held->list, &txq->axq_q))
2665 				break;
2666 
2667 			bf = list_entry(bf_held->list.next, struct ath_buf,
2668 					list);
2669 		}
2670 
2671 		lastbf = bf->bf_lastbf;
2672 		ds = lastbf->bf_desc;
2673 
2674 		memset(&ts, 0, sizeof(ts));
2675 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2676 		if (status == -EINPROGRESS)
2677 			break;
2678 
2679 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2680 
2681 		/*
2682 		 * Remove ath_buf's of the same transmit unit from txq,
2683 		 * however leave the last descriptor back as the holding
2684 		 * descriptor for hw.
2685 		 */
2686 		lastbf->bf_state.stale = true;
2687 		INIT_LIST_HEAD(&bf_head);
2688 		if (!list_is_singular(&lastbf->list))
2689 			list_cut_position(&bf_head,
2690 				&txq->axq_q, lastbf->list.prev);
2691 
2692 		if (bf_held) {
2693 			list_del(&bf_held->list);
2694 			ath_tx_return_buffer(sc, bf_held);
2695 		}
2696 
2697 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2698 	}
2699 	ath_txq_unlock_complete(sc, txq);
2700 }
2701 
2702 void ath_tx_tasklet(struct ath_softc *sc)
2703 {
2704 	struct ath_hw *ah = sc->sc_ah;
2705 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2706 	int i;
2707 
2708 	rcu_read_lock();
2709 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2710 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2711 			ath_tx_processq(sc, &sc->tx.txq[i]);
2712 	}
2713 	rcu_read_unlock();
2714 }
2715 
2716 void ath_tx_edma_tasklet(struct ath_softc *sc)
2717 {
2718 	struct ath_tx_status ts;
2719 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2720 	struct ath_hw *ah = sc->sc_ah;
2721 	struct ath_txq *txq;
2722 	struct ath_buf *bf, *lastbf;
2723 	struct list_head bf_head;
2724 	struct list_head *fifo_list;
2725 	int status;
2726 
2727 	rcu_read_lock();
2728 	for (;;) {
2729 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2730 			break;
2731 
2732 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2733 		if (status == -EINPROGRESS)
2734 			break;
2735 		if (status == -EIO) {
2736 			ath_dbg(common, XMIT, "Error processing tx status\n");
2737 			break;
2738 		}
2739 
2740 		/* Process beacon completions separately */
2741 		if (ts.qid == sc->beacon.beaconq) {
2742 			sc->beacon.tx_processed = true;
2743 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2744 
2745 			if (ath9k_is_chanctx_enabled()) {
2746 				ath_chanctx_event(sc, NULL,
2747 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2748 			}
2749 
2750 			ath9k_csa_update(sc);
2751 			continue;
2752 		}
2753 
2754 		txq = &sc->tx.txq[ts.qid];
2755 
2756 		ath_txq_lock(sc, txq);
2757 
2758 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2759 
2760 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2761 		if (list_empty(fifo_list)) {
2762 			ath_txq_unlock(sc, txq);
2763 			break;
2764 		}
2765 
2766 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2767 		if (bf->bf_state.stale) {
2768 			list_del(&bf->list);
2769 			ath_tx_return_buffer(sc, bf);
2770 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2771 		}
2772 
2773 		lastbf = bf->bf_lastbf;
2774 
2775 		INIT_LIST_HEAD(&bf_head);
2776 		if (list_is_last(&lastbf->list, fifo_list)) {
2777 			list_splice_tail_init(fifo_list, &bf_head);
2778 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2779 
2780 			if (!list_empty(&txq->axq_q)) {
2781 				struct list_head bf_q;
2782 
2783 				INIT_LIST_HEAD(&bf_q);
2784 				txq->axq_link = NULL;
2785 				list_splice_tail_init(&txq->axq_q, &bf_q);
2786 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2787 			}
2788 		} else {
2789 			lastbf->bf_state.stale = true;
2790 			if (bf != lastbf)
2791 				list_cut_position(&bf_head, fifo_list,
2792 						  lastbf->list.prev);
2793 		}
2794 
2795 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2796 		ath_txq_unlock_complete(sc, txq);
2797 	}
2798 	rcu_read_unlock();
2799 }
2800 
2801 /*****************/
2802 /* Init, Cleanup */
2803 /*****************/
2804 
2805 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2806 {
2807 	struct ath_descdma *dd = &sc->txsdma;
2808 	u8 txs_len = sc->sc_ah->caps.txs_len;
2809 
2810 	dd->dd_desc_len = size * txs_len;
2811 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2812 					  &dd->dd_desc_paddr, GFP_KERNEL);
2813 	if (!dd->dd_desc)
2814 		return -ENOMEM;
2815 
2816 	return 0;
2817 }
2818 
2819 static int ath_tx_edma_init(struct ath_softc *sc)
2820 {
2821 	int err;
2822 
2823 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2824 	if (!err)
2825 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2826 					  sc->txsdma.dd_desc_paddr,
2827 					  ATH_TXSTATUS_RING_SIZE);
2828 
2829 	return err;
2830 }
2831 
2832 int ath_tx_init(struct ath_softc *sc, int nbufs)
2833 {
2834 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2835 	int error = 0;
2836 
2837 	spin_lock_init(&sc->tx.txbuflock);
2838 
2839 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2840 				  "tx", nbufs, 1, 1);
2841 	if (error != 0) {
2842 		ath_err(common,
2843 			"Failed to allocate tx descriptors: %d\n", error);
2844 		return error;
2845 	}
2846 
2847 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2848 				  "beacon", ATH_BCBUF, 1, 1);
2849 	if (error != 0) {
2850 		ath_err(common,
2851 			"Failed to allocate beacon descriptors: %d\n", error);
2852 		return error;
2853 	}
2854 
2855 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2856 		error = ath_tx_edma_init(sc);
2857 
2858 	return error;
2859 }
2860 
2861 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2862 {
2863 	struct ath_atx_tid *tid;
2864 	int tidno, acno;
2865 
2866 	for (acno = 0; acno < IEEE80211_NUM_ACS; acno++)
2867 		an->airtime_deficit[acno] = ATH_AIRTIME_QUANTUM;
2868 
2869 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2870 		tid = ath_node_to_tid(an, tidno);
2871 		tid->an        = an;
2872 		tid->tidno     = tidno;
2873 		tid->seq_start = tid->seq_next = 0;
2874 		tid->baw_size  = WME_MAX_BA;
2875 		tid->baw_head  = tid->baw_tail = 0;
2876 		tid->active	   = false;
2877 		tid->clear_ps_filter = true;
2878 		tid->has_queued  = false;
2879 		__skb_queue_head_init(&tid->retry_q);
2880 		INIT_LIST_HEAD(&tid->list);
2881 		acno = TID_TO_WME_AC(tidno);
2882 		tid->txq = sc->tx.txq_map[acno];
2883 
2884 		if (!an->sta)
2885 			break; /* just one multicast ath_atx_tid */
2886 	}
2887 }
2888 
2889 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2890 {
2891 	struct ath_atx_tid *tid;
2892 	struct ath_txq *txq;
2893 	int tidno;
2894 
2895 	rcu_read_lock();
2896 
2897 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2898 		tid = ath_node_to_tid(an, tidno);
2899 		txq = tid->txq;
2900 
2901 		ath_txq_lock(sc, txq);
2902 
2903 		if (!list_empty(&tid->list))
2904 			list_del_init(&tid->list);
2905 
2906 		ath_tid_drain(sc, txq, tid);
2907 		tid->active = false;
2908 
2909 		ath_txq_unlock(sc, txq);
2910 
2911 		if (!an->sta)
2912 			break; /* just one multicast ath_atx_tid */
2913 	}
2914 
2915 	rcu_read_unlock();
2916 }
2917 
2918 #ifdef CONFIG_ATH9K_TX99
2919 
2920 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2921 		    struct ath_tx_control *txctl)
2922 {
2923 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2924 	struct ath_frame_info *fi = get_frame_info(skb);
2925 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2926 	struct ath_buf *bf;
2927 	int padpos, padsize;
2928 
2929 	padpos = ieee80211_hdrlen(hdr->frame_control);
2930 	padsize = padpos & 3;
2931 
2932 	if (padsize && skb->len > padpos) {
2933 		if (skb_headroom(skb) < padsize) {
2934 			ath_dbg(common, XMIT,
2935 				"tx99 padding failed\n");
2936 			return -EINVAL;
2937 		}
2938 
2939 		skb_push(skb, padsize);
2940 		memmove(skb->data, skb->data + padsize, padpos);
2941 	}
2942 
2943 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2944 	fi->framelen = skb->len + FCS_LEN;
2945 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2946 
2947 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2948 	if (!bf) {
2949 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2950 		return -EINVAL;
2951 	}
2952 
2953 	ath_set_rates(sc->tx99_vif, NULL, bf);
2954 
2955 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2956 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2957 
2958 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2959 
2960 	return 0;
2961 }
2962 
2963 #endif /* CONFIG_ATH9K_TX99 */
2964