xref: /linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 60a2f25de7b8b785baee2932db932ae9a5b8c86d)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */
38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT    0
39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT    4
40 #define ATH9K_PWRTBL_11NA_HT_SHIFT      8
41 #define ATH9K_PWRTBL_11NG_HT_SHIFT      12
42 
43 
44 static u16 bits_per_symbol[][2] = {
45 	/* 20MHz 40MHz */
46 	{    26,   54 },     /*  0: BPSK */
47 	{    52,  108 },     /*  1: QPSK 1/2 */
48 	{    78,  162 },     /*  2: QPSK 3/4 */
49 	{   104,  216 },     /*  3: 16-QAM 1/2 */
50 	{   156,  324 },     /*  4: 16-QAM 3/4 */
51 	{   208,  432 },     /*  5: 64-QAM 2/3 */
52 	{   234,  486 },     /*  6: 64-QAM 3/4 */
53 	{   260,  540 },     /*  7: 64-QAM 5/6 */
54 };
55 
56 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
57 			       struct ath_atx_tid *tid, struct sk_buff *skb);
58 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
59 			    int tx_flags, struct ath_txq *txq,
60 			    struct ieee80211_sta *sta);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 				struct ath_txq *txq, struct list_head *bf_q,
63 				struct ieee80211_sta *sta,
64 				struct ath_tx_status *ts, int txok);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 			     struct list_head *head, bool internal);
67 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
68 			     struct ath_tx_status *ts, int nframes, int nbad,
69 			     int txok);
70 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
71 			      struct ath_buf *bf);
72 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
73 					   struct ath_txq *txq,
74 					   struct ath_atx_tid *tid,
75 					   struct sk_buff *skb);
76 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
77 			  struct ath_tx_control *txctl);
78 
79 enum {
80 	MCS_HT20,
81 	MCS_HT20_SGI,
82 	MCS_HT40,
83 	MCS_HT40_SGI,
84 };
85 
86 /*********************/
87 /* Aggregation logic */
88 /*********************/
89 
90 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
91 {
92 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
93 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
94 
95 	if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
96 			   IEEE80211_TX_STATUS_EOSP)) {
97 		ieee80211_tx_status_skb(hw, skb);
98 		return;
99 	}
100 
101 	if (sta)
102 		ieee80211_tx_status_noskb(hw, sta, info);
103 
104 	dev_kfree_skb(skb);
105 }
106 
107 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
108 	__releases(&txq->axq_lock)
109 {
110 	struct ieee80211_hw *hw = sc->hw;
111 	struct sk_buff_head q;
112 	struct sk_buff *skb;
113 
114 	__skb_queue_head_init(&q);
115 	skb_queue_splice_init(&txq->complete_q, &q);
116 	spin_unlock_bh(&txq->axq_lock);
117 
118 	while ((skb = __skb_dequeue(&q)))
119 		ath_tx_status(hw, skb);
120 }
121 
122 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
123 {
124 	struct ieee80211_txq *queue =
125 		container_of((void *)tid, struct ieee80211_txq, drv_priv);
126 
127 	ieee80211_schedule_txq(sc->hw, queue);
128 }
129 
130 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
131 {
132 	struct ath_softc *sc = hw->priv;
133 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
134 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
135 	struct ath_txq *txq = tid->txq;
136 
137 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
138 		queue->sta ? queue->sta->addr : queue->vif->addr,
139 		tid->tidno);
140 
141 	ath_txq_lock(sc, txq);
142 	ath_txq_schedule(sc, txq);
143 	ath_txq_unlock(sc, txq);
144 }
145 
146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 		     sizeof(tx_info->status.status_driver_data));
151 	return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
152 }
153 
154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 	if (!tid->an->sta)
157 		return;
158 
159 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
160 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
161 }
162 
163 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
164 			      struct ieee80211_tx_info *tx_info)
165 {
166 	struct ieee80211_sta_rates *ratetbl;
167 	u8 i;
168 
169 	if (!sta)
170 		return false;
171 
172 	ratetbl = rcu_dereference(sta->rates);
173 	if (!ratetbl)
174 		return false;
175 
176 	if (tx_info->control.rates[0].idx < 0 ||
177 	    tx_info->control.rates[0].count == 0)
178 	{
179 		i = 0;
180 	} else {
181 		bf->rates[0] = tx_info->control.rates[0];
182 		i = 1;
183 	}
184 
185 	for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
186 		bf->rates[i].idx = ratetbl->rate[i].idx;
187 		bf->rates[i].flags = ratetbl->rate[i].flags;
188 		if (tx_info->control.use_rts)
189 			bf->rates[i].count = ratetbl->rate[i].count_rts;
190 		else if (tx_info->control.use_cts_prot)
191 			bf->rates[i].count = ratetbl->rate[i].count_cts;
192 		else
193 			bf->rates[i].count = ratetbl->rate[i].count;
194 	}
195 
196 	return true;
197 }
198 
199 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
200 			  struct ath_buf *bf)
201 {
202 	struct ieee80211_tx_info *tx_info;
203 
204 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
205 
206 	if (!ath_merge_ratetbl(sta, bf, tx_info))
207 		ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
208 				       ARRAY_SIZE(bf->rates));
209 }
210 
211 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
212 			     struct sk_buff *skb)
213 {
214 	struct ath_frame_info *fi = get_frame_info(skb);
215 	int q = fi->txq;
216 
217 	if (q < 0)
218 		return;
219 
220 	txq = sc->tx.txq_map[q];
221 	if (WARN_ON(--txq->pending_frames < 0))
222 		txq->pending_frames = 0;
223 
224 }
225 
226 static struct ath_atx_tid *
227 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
228 {
229 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
230 	return ATH_AN_2_TID(an, tidno);
231 }
232 
233 static int
234 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
235 {
236 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
237 	struct ath_softc *sc = tid->an->sc;
238 	struct ieee80211_hw *hw = sc->hw;
239 	struct ath_tx_control txctl = {
240 		.txq = tid->txq,
241 		.sta = tid->an->sta,
242 	};
243 	struct sk_buff *skb;
244 	struct ath_frame_info *fi;
245 	int q, ret;
246 
247 	skb = ieee80211_tx_dequeue(hw, txq);
248 	if (!skb)
249 		return -ENOENT;
250 
251 	ret = ath_tx_prepare(hw, skb, &txctl);
252 	if (ret) {
253 		ieee80211_free_txskb(hw, skb);
254 		return ret;
255 	}
256 
257 	q = skb_get_queue_mapping(skb);
258 	if (tid->txq == sc->tx.txq_map[q]) {
259 		fi = get_frame_info(skb);
260 		fi->txq = q;
261 		++tid->txq->pending_frames;
262 	}
263 
264 	*skbuf = skb;
265 	return 0;
266 }
267 
268 static int ath_tid_dequeue(struct ath_atx_tid *tid,
269 			   struct sk_buff **skb)
270 {
271 	int ret = 0;
272 	*skb = __skb_dequeue(&tid->retry_q);
273 	if (!*skb)
274 		ret = ath_tid_pull(tid, skb);
275 
276 	return ret;
277 }
278 
279 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
280 {
281 	struct ath_txq *txq = tid->txq;
282 	struct sk_buff *skb;
283 	struct ath_buf *bf;
284 	struct list_head bf_head;
285 	struct ath_tx_status ts;
286 	struct ath_frame_info *fi;
287 	bool sendbar = false;
288 
289 	INIT_LIST_HEAD(&bf_head);
290 
291 	memset(&ts, 0, sizeof(ts));
292 
293 	while ((skb = __skb_dequeue(&tid->retry_q))) {
294 		fi = get_frame_info(skb);
295 		bf = fi->bf;
296 		if (!bf) {
297 			ath_txq_skb_done(sc, txq, skb);
298 			ieee80211_free_txskb(sc->hw, skb);
299 			continue;
300 		}
301 
302 		if (fi->baw_tracked) {
303 			ath_tx_update_baw(sc, tid, bf);
304 			sendbar = true;
305 		}
306 
307 		list_add_tail(&bf->list, &bf_head);
308 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
309 	}
310 
311 	if (sendbar) {
312 		ath_txq_unlock(sc, txq);
313 		ath_send_bar(tid, tid->seq_start);
314 		ath_txq_lock(sc, txq);
315 	}
316 }
317 
318 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
319 			      struct ath_buf *bf)
320 {
321 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
322 	u16 seqno = bf->bf_state.seqno;
323 	int index, cindex;
324 
325 	if (!fi->baw_tracked)
326 		return;
327 
328 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
329 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
330 
331 	__clear_bit(cindex, tid->tx_buf);
332 
333 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
334 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
335 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
336 		if (tid->bar_index >= 0)
337 			tid->bar_index--;
338 	}
339 }
340 
341 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
342 			     struct ath_buf *bf)
343 {
344 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
345 	u16 seqno = bf->bf_state.seqno;
346 	int index, cindex;
347 
348 	if (fi->baw_tracked)
349 		return;
350 
351 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
352 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
353 	__set_bit(cindex, tid->tx_buf);
354 	fi->baw_tracked = 1;
355 
356 	if (index >= ((tid->baw_tail - tid->baw_head) &
357 		(ATH_TID_MAX_BUFS - 1))) {
358 		tid->baw_tail = cindex;
359 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
360 	}
361 }
362 
363 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
364 			  struct ath_atx_tid *tid)
365 
366 {
367 	struct sk_buff *skb;
368 	struct ath_buf *bf;
369 	struct list_head bf_head;
370 	struct ath_tx_status ts;
371 	struct ath_frame_info *fi;
372 
373 	memset(&ts, 0, sizeof(ts));
374 	INIT_LIST_HEAD(&bf_head);
375 
376 	while (ath_tid_dequeue(tid, &skb) == 0) {
377 		fi = get_frame_info(skb);
378 		bf = fi->bf;
379 
380 		if (!bf) {
381 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
382 			continue;
383 		}
384 
385 		list_add_tail(&bf->list, &bf_head);
386 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
387 	}
388 }
389 
390 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
391 			     struct sk_buff *skb, int count)
392 {
393 	struct ath_frame_info *fi = get_frame_info(skb);
394 	struct ath_buf *bf = fi->bf;
395 	struct ieee80211_hdr *hdr;
396 	int prev = fi->retries;
397 
398 	TX_STAT_INC(sc, txq->axq_qnum, a_retries);
399 	fi->retries += count;
400 
401 	if (prev > 0)
402 		return;
403 
404 	hdr = (struct ieee80211_hdr *)skb->data;
405 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
406 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
407 		sizeof(*hdr), DMA_TO_DEVICE);
408 }
409 
410 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
411 {
412 	struct ath_buf *bf = NULL;
413 
414 	spin_lock_bh(&sc->tx.txbuflock);
415 
416 	if (unlikely(list_empty(&sc->tx.txbuf))) {
417 		spin_unlock_bh(&sc->tx.txbuflock);
418 		return NULL;
419 	}
420 
421 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
422 	list_del(&bf->list);
423 
424 	spin_unlock_bh(&sc->tx.txbuflock);
425 
426 	return bf;
427 }
428 
429 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
430 {
431 	spin_lock_bh(&sc->tx.txbuflock);
432 	list_add_tail(&bf->list, &sc->tx.txbuf);
433 	spin_unlock_bh(&sc->tx.txbuflock);
434 }
435 
436 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
437 {
438 	struct ath_buf *tbf;
439 
440 	tbf = ath_tx_get_buffer(sc);
441 	if (WARN_ON(!tbf))
442 		return NULL;
443 
444 	ATH_TXBUF_RESET(tbf);
445 
446 	tbf->bf_mpdu = bf->bf_mpdu;
447 	tbf->bf_buf_addr = bf->bf_buf_addr;
448 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
449 	tbf->bf_state = bf->bf_state;
450 	tbf->bf_state.stale = false;
451 
452 	return tbf;
453 }
454 
455 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
456 			        struct ath_tx_status *ts, int txok,
457 			        int *nframes, int *nbad)
458 {
459 	u16 seq_st = 0;
460 	u32 ba[WME_BA_BMP_SIZE >> 5];
461 	int ba_index;
462 	int isaggr = 0;
463 
464 	*nbad = 0;
465 	*nframes = 0;
466 
467 	isaggr = bf_isaggr(bf);
468 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
469 
470 	if (isaggr) {
471 		seq_st = ts->ts_seqnum;
472 		memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
473 	}
474 
475 	while (bf) {
476 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
477 
478 		(*nframes)++;
479 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
480 			(*nbad)++;
481 
482 		bf = bf->bf_next;
483 	}
484 }
485 
486 
487 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
488 				 struct ath_buf *bf, struct list_head *bf_q,
489 				 struct ieee80211_sta *sta,
490 				 struct ath_atx_tid *tid,
491 				 struct ath_tx_status *ts, int txok)
492 {
493 	struct ath_node *an = NULL;
494 	struct sk_buff *skb;
495 	struct ieee80211_tx_info *tx_info;
496 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
497 	struct list_head bf_head;
498 	struct sk_buff_head bf_pending;
499 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
500 	u32 ba[WME_BA_BMP_SIZE >> 5];
501 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
502 	bool rc_update = true, isba;
503 	struct ieee80211_tx_rate rates[4];
504 	struct ath_frame_info *fi;
505 	int nframes;
506 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
507 	int i, retries;
508 	int bar_index = -1;
509 
510 	skb = bf->bf_mpdu;
511 	tx_info = IEEE80211_SKB_CB(skb);
512 
513 	memcpy(rates, bf->rates, sizeof(rates));
514 
515 	retries = ts->ts_longretry + 1;
516 	for (i = 0; i < ts->ts_rateindex; i++)
517 		retries += rates[i].count;
518 
519 	if (!sta) {
520 		INIT_LIST_HEAD(&bf_head);
521 		while (bf) {
522 			bf_next = bf->bf_next;
523 
524 			if (!bf->bf_state.stale || bf_next != NULL)
525 				list_move_tail(&bf->list, &bf_head);
526 
527 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
528 
529 			bf = bf_next;
530 		}
531 		return;
532 	}
533 
534 	an = (struct ath_node *)sta->drv_priv;
535 	seq_first = tid->seq_start;
536 	isba = ts->ts_flags & ATH9K_TX_BA;
537 
538 	/*
539 	 * The hardware occasionally sends a tx status for the wrong TID.
540 	 * In this case, the BA status cannot be considered valid and all
541 	 * subframes need to be retransmitted
542 	 *
543 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
544 	 * checked
545 	 */
546 	if (isba && tid->tidno != ts->tid)
547 		txok = false;
548 
549 	isaggr = bf_isaggr(bf);
550 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
551 
552 	if (isaggr && txok) {
553 		if (ts->ts_flags & ATH9K_TX_BA) {
554 			seq_st = ts->ts_seqnum;
555 			memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
556 		} else {
557 			/*
558 			 * AR5416 can become deaf/mute when BA
559 			 * issue happens. Chip needs to be reset.
560 			 * But AP code may have sychronization issues
561 			 * when perform internal reset in this routine.
562 			 * Only enable reset in STA mode for now.
563 			 */
564 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
565 				needreset = 1;
566 		}
567 	}
568 
569 	__skb_queue_head_init(&bf_pending);
570 
571 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
572 	while (bf) {
573 		u16 seqno = bf->bf_state.seqno;
574 
575 		txfail = txpending = sendbar = 0;
576 		bf_next = bf->bf_next;
577 
578 		skb = bf->bf_mpdu;
579 		tx_info = IEEE80211_SKB_CB(skb);
580 		fi = get_frame_info(skb);
581 
582 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
583 		    !tid->active) {
584 			/*
585 			 * Outside of the current BlockAck window,
586 			 * maybe part of a previous session
587 			 */
588 			txfail = 1;
589 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
590 			/* transmit completion, subframe is
591 			 * acked by block ack */
592 			acked_cnt++;
593 		} else if (!isaggr && txok) {
594 			/* transmit completion */
595 			acked_cnt++;
596 		} else if (flush) {
597 			txpending = 1;
598 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
599 			if (txok || !an->sleeping)
600 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
601 						 retries);
602 
603 			txpending = 1;
604 		} else {
605 			txfail = 1;
606 			txfail_cnt++;
607 			bar_index = max_t(int, bar_index,
608 				ATH_BA_INDEX(seq_first, seqno));
609 		}
610 
611 		/*
612 		 * Make sure the last desc is reclaimed if it
613 		 * not a holding desc.
614 		 */
615 		INIT_LIST_HEAD(&bf_head);
616 		if (bf_next != NULL || !bf_last->bf_state.stale)
617 			list_move_tail(&bf->list, &bf_head);
618 
619 		if (!txpending) {
620 			/*
621 			 * complete the acked-ones/xretried ones; update
622 			 * block-ack window
623 			 */
624 			ath_tx_update_baw(sc, tid, bf);
625 
626 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
627 				memcpy(tx_info->control.rates, rates, sizeof(rates));
628 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
629 				rc_update = false;
630 				if (bf == bf->bf_lastbf)
631 					ath_dynack_sample_tx_ts(sc->sc_ah,
632 								bf->bf_mpdu,
633 								ts, sta);
634 			}
635 
636 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
637 				!txfail);
638 		} else {
639 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
640 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
641 				ieee80211_sta_eosp(sta);
642 			}
643 			/* retry the un-acked ones */
644 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
645 				struct ath_buf *tbf;
646 
647 				tbf = ath_clone_txbuf(sc, bf_last);
648 				/*
649 				 * Update tx baw and complete the
650 				 * frame with failed status if we
651 				 * run out of tx buf.
652 				 */
653 				if (!tbf) {
654 					ath_tx_update_baw(sc, tid, bf);
655 
656 					ath_tx_complete_buf(sc, bf, txq,
657 							    &bf_head, NULL, ts,
658 							    0);
659 					bar_index = max_t(int, bar_index,
660 						ATH_BA_INDEX(seq_first, seqno));
661 					break;
662 				}
663 
664 				fi->bf = tbf;
665 			}
666 
667 			/*
668 			 * Put this buffer to the temporary pending
669 			 * queue to retain ordering
670 			 */
671 			__skb_queue_tail(&bf_pending, skb);
672 		}
673 
674 		bf = bf_next;
675 	}
676 
677 	/* prepend un-acked frames to the beginning of the pending frame queue */
678 	if (!skb_queue_empty(&bf_pending)) {
679 		if (an->sleeping)
680 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
681 
682 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
683 		if (!an->sleeping) {
684 			ath_tx_queue_tid(sc, tid);
685 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
686 				tid->clear_ps_filter = true;
687 		}
688 	}
689 
690 	if (bar_index >= 0) {
691 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
692 
693 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
694 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
695 
696 		ath_txq_unlock(sc, txq);
697 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
698 		ath_txq_lock(sc, txq);
699 	}
700 
701 	if (needreset)
702 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
703 }
704 
705 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
706 {
707     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
708     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
709 }
710 
711 static void ath_tx_count_airtime(struct ath_softc *sc,
712 				 struct ieee80211_sta *sta,
713 				 struct ath_buf *bf,
714 				 struct ath_tx_status *ts,
715 				 u8 tid)
716 {
717 	u32 airtime = 0;
718 	int i;
719 
720 	airtime += ts->duration * (ts->ts_longretry + 1);
721 	for(i = 0; i < ts->ts_rateindex; i++) {
722 		int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
723 		airtime += rate_dur * bf->rates[i].count;
724 	}
725 
726 	ieee80211_sta_register_airtime(sta, tid, airtime, 0);
727 }
728 
729 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
730 				  struct ath_tx_status *ts, struct ath_buf *bf,
731 				  struct list_head *bf_head)
732 {
733 	struct ieee80211_hw *hw = sc->hw;
734 	struct ieee80211_tx_info *info;
735 	struct ieee80211_sta *sta;
736 	struct ieee80211_hdr *hdr;
737 	struct ath_atx_tid *tid = NULL;
738 	bool txok, flush;
739 
740 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
741 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
742 	txq->axq_tx_inprogress = false;
743 
744 	txq->axq_depth--;
745 	if (bf_is_ampdu_not_probing(bf))
746 		txq->axq_ampdu_depth--;
747 
748 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
749 					     ts->ts_rateindex);
750 
751 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
752 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
753 	if (sta) {
754 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
755 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
756 		ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
757 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
758 			tid->clear_ps_filter = true;
759 	}
760 
761 	if (!bf_isampdu(bf)) {
762 		if (!flush) {
763 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
764 			memcpy(info->control.rates, bf->rates,
765 			       sizeof(info->control.rates));
766 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
767 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
768 						sta);
769 		}
770 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
771 	} else
772 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
773 
774 	if (!flush)
775 		ath_txq_schedule(sc, txq);
776 }
777 
778 static bool ath_lookup_legacy(struct ath_buf *bf)
779 {
780 	struct sk_buff *skb;
781 	struct ieee80211_tx_info *tx_info;
782 	struct ieee80211_tx_rate *rates;
783 	int i;
784 
785 	skb = bf->bf_mpdu;
786 	tx_info = IEEE80211_SKB_CB(skb);
787 	rates = tx_info->control.rates;
788 
789 	for (i = 0; i < 4; i++) {
790 		if (!rates[i].count || rates[i].idx < 0)
791 			break;
792 
793 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
794 			return true;
795 	}
796 
797 	return false;
798 }
799 
800 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
801 			   struct ath_atx_tid *tid)
802 {
803 	struct sk_buff *skb;
804 	struct ieee80211_tx_info *tx_info;
805 	struct ieee80211_tx_rate *rates;
806 	u32 max_4ms_framelen, frmlen;
807 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
808 	int q = tid->txq->mac80211_qnum;
809 	int i;
810 
811 	skb = bf->bf_mpdu;
812 	tx_info = IEEE80211_SKB_CB(skb);
813 	rates = bf->rates;
814 
815 	/*
816 	 * Find the lowest frame length among the rate series that will have a
817 	 * 4ms (or TXOP limited) transmit duration.
818 	 */
819 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
820 
821 	for (i = 0; i < 4; i++) {
822 		int modeidx;
823 
824 		if (!rates[i].count)
825 			continue;
826 
827 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
828 			legacy = 1;
829 			break;
830 		}
831 
832 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
833 			modeidx = MCS_HT40;
834 		else
835 			modeidx = MCS_HT20;
836 
837 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
838 			modeidx++;
839 
840 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
841 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
842 	}
843 
844 	/*
845 	 * limit aggregate size by the minimum rate if rate selected is
846 	 * not a probe rate, if rate selected is a probe rate then
847 	 * avoid aggregation of this packet.
848 	 */
849 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
850 		return 0;
851 
852 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
853 
854 	/*
855 	 * Override the default aggregation limit for BTCOEX.
856 	 */
857 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
858 	if (bt_aggr_limit)
859 		aggr_limit = bt_aggr_limit;
860 
861 	if (tid->an->maxampdu)
862 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
863 
864 	return aggr_limit;
865 }
866 
867 /*
868  * Returns the number of delimiters to be added to
869  * meet the minimum required mpdudensity.
870  */
871 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
872 				  struct ath_buf *bf, u16 frmlen,
873 				  bool first_subfrm)
874 {
875 #define FIRST_DESC_NDELIMS 60
876 	u32 nsymbits, nsymbols;
877 	u16 minlen;
878 	u8 flags, rix;
879 	int width, streams, half_gi, ndelim, mindelim;
880 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
881 
882 	/* Select standard number of delimiters based on frame length alone */
883 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
884 
885 	/*
886 	 * If encryption enabled, hardware requires some more padding between
887 	 * subframes.
888 	 * TODO - this could be improved to be dependent on the rate.
889 	 *      The hardware can keep up at lower rates, but not higher rates
890 	 */
891 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
892 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
893 		ndelim += ATH_AGGR_ENCRYPTDELIM;
894 
895 	/*
896 	 * Add delimiter when using RTS/CTS with aggregation
897 	 * and non enterprise AR9003 card
898 	 */
899 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
900 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
901 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
902 
903 	/*
904 	 * Convert desired mpdu density from microeconds to bytes based
905 	 * on highest rate in rate series (i.e. first rate) to determine
906 	 * required minimum length for subframe. Take into account
907 	 * whether high rate is 20 or 40Mhz and half or full GI.
908 	 *
909 	 * If there is no mpdu density restriction, no further calculation
910 	 * is needed.
911 	 */
912 
913 	if (tid->an->mpdudensity == 0)
914 		return ndelim;
915 
916 	rix = bf->rates[0].idx;
917 	flags = bf->rates[0].flags;
918 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
919 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
920 
921 	if (half_gi)
922 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
923 	else
924 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
925 
926 	if (nsymbols == 0)
927 		nsymbols = 1;
928 
929 	streams = HT_RC_2_STREAMS(rix);
930 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
931 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
932 
933 	if (frmlen < minlen) {
934 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
935 		ndelim = max(mindelim, ndelim);
936 	}
937 
938 	return ndelim;
939 }
940 
941 static int
942 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
943 			struct ath_atx_tid *tid, struct ath_buf **buf)
944 {
945 	struct ieee80211_tx_info *tx_info;
946 	struct ath_frame_info *fi;
947 	struct ath_buf *bf;
948 	struct sk_buff *skb, *first_skb = NULL;
949 	u16 seqno;
950 	int ret;
951 
952 	while (1) {
953 		ret = ath_tid_dequeue(tid, &skb);
954 		if (ret < 0)
955 			return ret;
956 
957 		fi = get_frame_info(skb);
958 		bf = fi->bf;
959 		if (!fi->bf)
960 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
961 		else
962 			bf->bf_state.stale = false;
963 
964 		if (!bf) {
965 			ath_txq_skb_done(sc, txq, skb);
966 			ieee80211_free_txskb(sc->hw, skb);
967 			continue;
968 		}
969 
970 		bf->bf_next = NULL;
971 		bf->bf_lastbf = bf;
972 
973 		tx_info = IEEE80211_SKB_CB(skb);
974 		tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
975 				    IEEE80211_TX_STATUS_EOSP);
976 
977 		/*
978 		 * No aggregation session is running, but there may be frames
979 		 * from a previous session or a failed attempt in the queue.
980 		 * Send them out as normal data frames
981 		 */
982 		if (!tid->active)
983 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
984 
985 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
986 			bf->bf_state.bf_type = 0;
987 			break;
988 		}
989 
990 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
991 		seqno = bf->bf_state.seqno;
992 
993 		/* do not step over block-ack window */
994 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
995 			__skb_queue_tail(&tid->retry_q, skb);
996 
997 			/* If there are other skbs in the retry q, they are
998 			 * probably within the BAW, so loop immediately to get
999 			 * one of them. Otherwise the queue can get stuck. */
1000 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
1001 			    !WARN_ON(skb == first_skb)) {
1002 				if(!first_skb) /* infinite loop prevention */
1003 					first_skb = skb;
1004 				continue;
1005 			}
1006 			return -EINPROGRESS;
1007 		}
1008 
1009 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1010 			struct ath_tx_status ts = {};
1011 			struct list_head bf_head;
1012 
1013 			INIT_LIST_HEAD(&bf_head);
1014 			list_add(&bf->list, &bf_head);
1015 			ath_tx_update_baw(sc, tid, bf);
1016 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1017 			continue;
1018 		}
1019 
1020 		if (bf_isampdu(bf))
1021 			ath_tx_addto_baw(sc, tid, bf);
1022 
1023 		break;
1024 	}
1025 
1026 	*buf = bf;
1027 	return 0;
1028 }
1029 
1030 static int
1031 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1032 		 struct ath_atx_tid *tid, struct list_head *bf_q,
1033 		 struct ath_buf *bf_first)
1034 {
1035 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1036 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1037 	int nframes = 0, ndelim, ret;
1038 	u16 aggr_limit = 0, al = 0, bpad = 0,
1039 	    al_delta, h_baw = tid->baw_size / 2;
1040 	struct ieee80211_tx_info *tx_info;
1041 	struct ath_frame_info *fi;
1042 	struct sk_buff *skb;
1043 
1044 
1045 	bf = bf_first;
1046 	aggr_limit = ath_lookup_rate(sc, bf, tid);
1047 
1048 	while (bf)
1049 	{
1050 		skb = bf->bf_mpdu;
1051 		fi = get_frame_info(skb);
1052 
1053 		/* do not exceed aggregation limit */
1054 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1055 		if (nframes) {
1056 			if (aggr_limit < al + bpad + al_delta ||
1057 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1058 				goto stop;
1059 
1060 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1061 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1062 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1063 				goto stop;
1064 		}
1065 
1066 		/* add padding for previous frame to aggregation length */
1067 		al += bpad + al_delta;
1068 
1069 		/*
1070 		 * Get the delimiters needed to meet the MPDU
1071 		 * density for this node.
1072 		 */
1073 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1074 						!nframes);
1075 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1076 
1077 		nframes++;
1078 		bf->bf_next = NULL;
1079 
1080 		/* link buffers of this frame to the aggregate */
1081 		bf->bf_state.ndelim = ndelim;
1082 
1083 		list_add_tail(&bf->list, bf_q);
1084 		if (bf_prev)
1085 			bf_prev->bf_next = bf;
1086 
1087 		bf_prev = bf;
1088 
1089 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1090 		if (ret < 0)
1091 			break;
1092 	}
1093 	goto finish;
1094 stop:
1095 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1096 finish:
1097 	bf = bf_first;
1098 	bf->bf_lastbf = bf_prev;
1099 
1100 	if (bf == bf_prev) {
1101 		al = get_frame_info(bf->bf_mpdu)->framelen;
1102 		bf->bf_state.bf_type = BUF_AMPDU;
1103 	} else {
1104 		TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1105 	}
1106 
1107 	return al;
1108 #undef PADBYTES
1109 }
1110 
1111 /*
1112  * rix - rate index
1113  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1114  * width  - 0 for 20 MHz, 1 for 40 MHz
1115  * half_gi - to use 4us v/s 3.6 us for symbol time
1116  */
1117 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1118 		     int width, int half_gi, bool shortPreamble)
1119 {
1120 	u32 nbits, nsymbits, duration, nsymbols;
1121 	int streams;
1122 
1123 	/* find number of symbols: PLCP + data */
1124 	streams = HT_RC_2_STREAMS(rix);
1125 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1126 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1127 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1128 
1129 	if (!half_gi)
1130 		duration = SYMBOL_TIME(nsymbols);
1131 	else
1132 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1133 
1134 	/* addup duration for legacy/ht training and signal fields */
1135 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1136 
1137 	return duration;
1138 }
1139 
1140 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1141 {
1142 	int streams = HT_RC_2_STREAMS(mcs);
1143 	int symbols, bits;
1144 	int bytes = 0;
1145 
1146 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1147 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1148 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1149 	bits -= OFDM_PLCP_BITS;
1150 	bytes = bits / 8;
1151 	if (bytes > 65532)
1152 		bytes = 65532;
1153 
1154 	return bytes;
1155 }
1156 
1157 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1158 {
1159 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1160 	int mcs;
1161 
1162 	/* 4ms is the default (and maximum) duration */
1163 	if (!txop || txop > 4096)
1164 		txop = 4096;
1165 
1166 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1167 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1168 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1169 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1170 	for (mcs = 0; mcs < 32; mcs++) {
1171 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1172 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1173 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1174 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1175 	}
1176 }
1177 
1178 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1179 			       u8 rateidx, bool is_40, bool is_cck, bool is_mcs)
1180 {
1181 	u8 max_power;
1182 	struct sk_buff *skb;
1183 	struct ath_frame_info *fi;
1184 	struct ieee80211_tx_info *info;
1185 	struct ath_hw *ah = sc->sc_ah;
1186 	bool is_2ghz, is_5ghz, use_stbc;
1187 
1188 	if (sc->tx99_state || !ah->tpc_enabled)
1189 		return MAX_RATE_POWER;
1190 
1191 	skb = bf->bf_mpdu;
1192 	fi = get_frame_info(skb);
1193 	info = IEEE80211_SKB_CB(skb);
1194 
1195 	is_2ghz = info->band == NL80211_BAND_2GHZ;
1196 	is_5ghz = info->band == NL80211_BAND_5GHZ;
1197 	use_stbc = is_mcs && rateidx < 8 && (info->flags &
1198 					     IEEE80211_TX_CTL_STBC);
1199 
1200 	if (is_mcs)
1201 		rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT
1202 				   : ATH9K_PWRTBL_11NG_HT_SHIFT;
1203 	else if (is_2ghz && !is_cck)
1204 		rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT;
1205 	else
1206 		rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT;
1207 
1208 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1209 		int txpower = fi->tx_power;
1210 
1211 		if (is_40) {
1212 			u8 power_ht40delta;
1213 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1214 			u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1215 
1216 			if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1217 				struct modal_eep_header *pmodal;
1218 
1219 				pmodal = &eep->modalHeader[is_2ghz];
1220 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1221 			} else {
1222 				power_ht40delta = 2;
1223 			}
1224 			txpower += power_ht40delta;
1225 		}
1226 
1227 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1228 		    AR_SREV_9271(ah)) {
1229 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1230 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1231 			s8 power_offset;
1232 
1233 			power_offset = ah->eep_ops->get_eeprom(ah,
1234 							EEP_PWR_TABLE_OFFSET);
1235 			txpower -= 2 * power_offset;
1236 		}
1237 
1238 		if (OLC_FOR_AR9280_20_LATER(ah) && is_cck)
1239 			txpower -= 2;
1240 
1241 		txpower = max(txpower, 0);
1242 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1243 
1244 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1245 		 * max_power is set to 0, frames are transmitted at max
1246 		 * TX power
1247 		 */
1248 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1249 			max_power = 1;
1250 	} else if (!bf->bf_state.bfs_paprd) {
1251 		if (use_stbc)
1252 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1253 					  fi->tx_power);
1254 		else
1255 			max_power = min_t(u8, ah->tx_power[rateidx],
1256 					  fi->tx_power);
1257 	} else {
1258 		max_power = ah->paprd_training_power;
1259 	}
1260 
1261 	return max_power;
1262 }
1263 
1264 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1265 			     struct ath_tx_info *info, int len, bool rts)
1266 {
1267 	struct ath_hw *ah = sc->sc_ah;
1268 	struct ath_common *common = ath9k_hw_common(ah);
1269 	struct sk_buff *skb;
1270 	struct ieee80211_tx_info *tx_info;
1271 	struct ieee80211_tx_rate *rates;
1272 	const struct ieee80211_rate *rate;
1273 	struct ieee80211_hdr *hdr;
1274 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1275 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1276 	int i;
1277 	u8 rix = 0;
1278 
1279 	skb = bf->bf_mpdu;
1280 	tx_info = IEEE80211_SKB_CB(skb);
1281 	rates = bf->rates;
1282 	hdr = (struct ieee80211_hdr *)skb->data;
1283 
1284 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1285 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1286 	info->rtscts_rate = fi->rtscts_rate;
1287 
1288 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1289 		bool is_40, is_sgi, is_sp, is_cck;
1290 		int phy;
1291 
1292 		if (!rates[i].count || (rates[i].idx < 0))
1293 			break;
1294 
1295 		rix = rates[i].idx;
1296 		info->rates[i].Tries = rates[i].count;
1297 
1298 		/*
1299 		 * Handle RTS threshold for unaggregated HT frames.
1300 		 */
1301 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1302 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1303 		    unlikely(rts_thresh != (u32) -1)) {
1304 			if (!rts_thresh || (len > rts_thresh))
1305 				rts = true;
1306 		}
1307 
1308 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1309 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1310 			info->flags |= ATH9K_TXDESC_RTSENA;
1311 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1312 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1313 			info->flags |= ATH9K_TXDESC_CTSENA;
1314 		}
1315 
1316 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1317 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1318 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1319 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1320 
1321 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1322 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1323 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1324 
1325 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1326 			/* MCS rates */
1327 			info->rates[i].Rate = rix | 0x80;
1328 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1329 					ah->txchainmask, info->rates[i].Rate);
1330 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1331 				 is_40, is_sgi, is_sp);
1332 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1333 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1334 			if (rix >= 8 && fi->dyn_smps) {
1335 				info->rates[i].RateFlags |=
1336 					ATH9K_RATESERIES_RTS_CTS;
1337 				info->flags |= ATH9K_TXDESC_CTSENA;
1338 			}
1339 
1340 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1341 								is_40, false, true);
1342 			continue;
1343 		}
1344 
1345 		/* legacy rates */
1346 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1347 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1348 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1349 			phy = WLAN_RC_PHY_CCK;
1350 		else
1351 			phy = WLAN_RC_PHY_OFDM;
1352 
1353 		info->rates[i].Rate = rate->hw_value;
1354 		if (rate->hw_value_short) {
1355 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1356 				info->rates[i].Rate |= rate->hw_value_short;
1357 		} else {
1358 			is_sp = false;
1359 		}
1360 
1361 		if (bf->bf_state.bfs_paprd)
1362 			info->rates[i].ChSel = ah->txchainmask;
1363 		else
1364 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1365 					ah->txchainmask, info->rates[i].Rate);
1366 
1367 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1368 			phy, rate->bitrate * 100, len, rix, is_sp);
1369 
1370 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1371 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1372 							is_cck, false);
1373 	}
1374 
1375 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1376 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1377 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1378 
1379 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1380 	if (info->flags & ATH9K_TXDESC_RTSENA)
1381 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1382 }
1383 
1384 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1385 {
1386 	struct ieee80211_hdr *hdr;
1387 	enum ath9k_pkt_type htype;
1388 	__le16 fc;
1389 
1390 	hdr = (struct ieee80211_hdr *)skb->data;
1391 	fc = hdr->frame_control;
1392 
1393 	if (ieee80211_is_beacon(fc))
1394 		htype = ATH9K_PKT_TYPE_BEACON;
1395 	else if (ieee80211_is_probe_resp(fc))
1396 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1397 	else if (ieee80211_is_atim(fc))
1398 		htype = ATH9K_PKT_TYPE_ATIM;
1399 	else if (ieee80211_is_pspoll(fc))
1400 		htype = ATH9K_PKT_TYPE_PSPOLL;
1401 	else
1402 		htype = ATH9K_PKT_TYPE_NORMAL;
1403 
1404 	return htype;
1405 }
1406 
1407 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1408 			     struct ath_txq *txq, int len)
1409 {
1410 	struct ath_hw *ah = sc->sc_ah;
1411 	struct ath_buf *bf_first = NULL;
1412 	struct ath_tx_info info;
1413 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1414 	bool rts = false;
1415 
1416 	memset(&info, 0, sizeof(info));
1417 	info.is_first = true;
1418 	info.is_last = true;
1419 	info.qcu = txq->axq_qnum;
1420 
1421 	while (bf) {
1422 		struct sk_buff *skb = bf->bf_mpdu;
1423 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1424 		struct ath_frame_info *fi = get_frame_info(skb);
1425 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1426 
1427 		info.type = get_hw_packet_type(skb);
1428 		if (bf->bf_next)
1429 			info.link = bf->bf_next->bf_daddr;
1430 		else
1431 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1432 
1433 		if (!bf_first) {
1434 			bf_first = bf;
1435 
1436 			if (!sc->tx99_state)
1437 				info.flags = ATH9K_TXDESC_INTREQ;
1438 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1439 			    txq == sc->tx.uapsdq)
1440 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1441 
1442 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1443 				info.flags |= ATH9K_TXDESC_NOACK;
1444 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1445 				info.flags |= ATH9K_TXDESC_LDPC;
1446 
1447 			if (bf->bf_state.bfs_paprd)
1448 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1449 					      ATH9K_TXDESC_PAPRD_S;
1450 
1451 			/*
1452 			 * mac80211 doesn't handle RTS threshold for HT because
1453 			 * the decision has to be taken based on AMPDU length
1454 			 * and aggregation is done entirely inside ath9k.
1455 			 * Set the RTS/CTS flag for the first subframe based
1456 			 * on the threshold.
1457 			 */
1458 			if (aggr && (bf == bf_first) &&
1459 			    unlikely(rts_thresh != (u32) -1)) {
1460 				/*
1461 				 * "len" is the size of the entire AMPDU.
1462 				 */
1463 				if (!rts_thresh || (len > rts_thresh))
1464 					rts = true;
1465 			}
1466 
1467 			if (!aggr)
1468 				len = fi->framelen;
1469 
1470 			ath_buf_set_rate(sc, bf, &info, len, rts);
1471 		}
1472 
1473 		info.buf_addr[0] = bf->bf_buf_addr;
1474 		info.buf_len[0] = skb->len;
1475 		info.pkt_len = fi->framelen;
1476 		info.keyix = fi->keyix;
1477 		info.keytype = fi->keytype;
1478 
1479 		if (aggr) {
1480 			if (bf == bf_first)
1481 				info.aggr = AGGR_BUF_FIRST;
1482 			else if (bf == bf_first->bf_lastbf)
1483 				info.aggr = AGGR_BUF_LAST;
1484 			else
1485 				info.aggr = AGGR_BUF_MIDDLE;
1486 
1487 			info.ndelim = bf->bf_state.ndelim;
1488 			info.aggr_len = len;
1489 		}
1490 
1491 		if (bf == bf_first->bf_lastbf)
1492 			bf_first = NULL;
1493 
1494 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1495 		bf = bf->bf_next;
1496 	}
1497 }
1498 
1499 static void
1500 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1501 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1502 		  struct ath_buf *bf_first)
1503 {
1504 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1505 	int nframes = 0, ret;
1506 
1507 	do {
1508 		struct ieee80211_tx_info *tx_info;
1509 
1510 		nframes++;
1511 		list_add_tail(&bf->list, bf_q);
1512 		if (bf_prev)
1513 			bf_prev->bf_next = bf;
1514 		bf_prev = bf;
1515 
1516 		if (nframes >= 2)
1517 			break;
1518 
1519 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1520 		if (ret < 0)
1521 			break;
1522 
1523 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1524 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1525 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1526 			break;
1527 		}
1528 
1529 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1530 	} while (1);
1531 }
1532 
1533 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1534 			     struct ath_atx_tid *tid)
1535 {
1536 	struct ath_buf *bf = NULL;
1537 	struct ieee80211_tx_info *tx_info;
1538 	struct list_head bf_q;
1539 	int aggr_len = 0, ret;
1540 	bool aggr;
1541 
1542 	INIT_LIST_HEAD(&bf_q);
1543 
1544 	ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1545 	if (ret < 0)
1546 		return ret;
1547 
1548 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1549 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1550 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1551 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1552 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1553 		return -EBUSY;
1554 	}
1555 
1556 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1557 	if (aggr)
1558 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1559 	else
1560 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1561 
1562 	if (list_empty(&bf_q))
1563 		return -EAGAIN;
1564 
1565 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1566 		tid->clear_ps_filter = false;
1567 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1568 	}
1569 
1570 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1571 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1572 	return 0;
1573 }
1574 
1575 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1576 		      u16 tid, u16 *ssn)
1577 {
1578 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1579 	struct ath_atx_tid *txtid;
1580 	struct ath_txq *txq;
1581 	struct ath_node *an;
1582 	u8 density;
1583 
1584 	ath_dbg(common, XMIT, "%s called\n", __func__);
1585 
1586 	an = (struct ath_node *)sta->drv_priv;
1587 	txtid = ATH_AN_2_TID(an, tid);
1588 	txq = txtid->txq;
1589 
1590 	ath_txq_lock(sc, txq);
1591 
1592 	/* update ampdu factor/density, they may have changed. This may happen
1593 	 * in HT IBSS when a beacon with HT-info is received after the station
1594 	 * has already been added.
1595 	 */
1596 	if (sta->deflink.ht_cap.ht_supported) {
1597 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1598 				      sta->deflink.ht_cap.ampdu_factor)) - 1;
1599 		density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
1600 		an->mpdudensity = density;
1601 	}
1602 
1603 	txtid->active = true;
1604 	*ssn = txtid->seq_start = txtid->seq_next;
1605 	txtid->bar_index = -1;
1606 
1607 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1608 	txtid->baw_head = txtid->baw_tail = 0;
1609 
1610 	ath_txq_unlock_complete(sc, txq);
1611 
1612 	return 0;
1613 }
1614 
1615 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1616 {
1617 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1618 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1619 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1620 	struct ath_txq *txq = txtid->txq;
1621 
1622 	ath_dbg(common, XMIT, "%s called\n", __func__);
1623 
1624 	ath_txq_lock(sc, txq);
1625 	txtid->active = false;
1626 	ath_tx_flush_tid(sc, txtid);
1627 	ath_txq_unlock_complete(sc, txq);
1628 }
1629 
1630 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1631 		       struct ath_node *an)
1632 {
1633 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1634 	struct ath_atx_tid *tid;
1635 	int tidno;
1636 
1637 	ath_dbg(common, XMIT, "%s called\n", __func__);
1638 
1639 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1640 		tid = ath_node_to_tid(an, tidno);
1641 
1642 		if (!skb_queue_empty(&tid->retry_q))
1643 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1644 
1645 	}
1646 }
1647 
1648 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1649 {
1650 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1651 	struct ath_atx_tid *tid;
1652 	struct ath_txq *txq;
1653 	int tidno;
1654 
1655 	ath_dbg(common, XMIT, "%s called\n", __func__);
1656 
1657 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1658 		tid = ath_node_to_tid(an, tidno);
1659 		txq = tid->txq;
1660 
1661 		ath_txq_lock(sc, txq);
1662 		tid->clear_ps_filter = true;
1663 		if (!skb_queue_empty(&tid->retry_q)) {
1664 			ath_tx_queue_tid(sc, tid);
1665 			ath_txq_schedule(sc, txq);
1666 		}
1667 		ath_txq_unlock_complete(sc, txq);
1668 
1669 	}
1670 }
1671 
1672 
1673 static void
1674 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1675 {
1676 	struct ieee80211_hdr *hdr;
1677 	u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1678 	u16 mask_val = mask * val;
1679 
1680 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1681 	if ((hdr->frame_control & mask) != mask_val) {
1682 		hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1683 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1684 			sizeof(*hdr), DMA_TO_DEVICE);
1685 	}
1686 }
1687 
1688 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1689 				   struct ieee80211_sta *sta,
1690 				   u16 tids, int nframes,
1691 				   enum ieee80211_frame_release_type reason,
1692 				   bool more_data)
1693 {
1694 	struct ath_softc *sc = hw->priv;
1695 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1696 	struct ath_txq *txq = sc->tx.uapsdq;
1697 	struct ieee80211_tx_info *info;
1698 	struct list_head bf_q;
1699 	struct ath_buf *bf_tail = NULL, *bf = NULL;
1700 	int i, ret;
1701 
1702 	INIT_LIST_HEAD(&bf_q);
1703 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1704 		struct ath_atx_tid *tid;
1705 
1706 		if (!(tids & 1))
1707 			continue;
1708 
1709 		tid = ATH_AN_2_TID(an, i);
1710 
1711 		ath_txq_lock(sc, tid->txq);
1712 		while (nframes > 0) {
1713 			ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1714 						      tid, &bf);
1715 			if (ret < 0)
1716 				break;
1717 
1718 			ath9k_set_moredata(sc, bf, true);
1719 			list_add_tail(&bf->list, &bf_q);
1720 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1721 			if (bf_isampdu(bf))
1722 				bf->bf_state.bf_type &= ~BUF_AGGR;
1723 			if (bf_tail)
1724 				bf_tail->bf_next = bf;
1725 
1726 			bf_tail = bf;
1727 			nframes--;
1728 			TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1729 
1730 			if (an->sta && skb_queue_empty(&tid->retry_q))
1731 				ieee80211_sta_set_buffered(an->sta, i, false);
1732 		}
1733 		ath_txq_unlock_complete(sc, tid->txq);
1734 	}
1735 
1736 	if (list_empty(&bf_q))
1737 		return;
1738 
1739 	if (!more_data)
1740 		ath9k_set_moredata(sc, bf_tail, false);
1741 
1742 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1743 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1744 
1745 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1746 	ath_txq_lock(sc, txq);
1747 	ath_tx_fill_desc(sc, bf, txq, 0);
1748 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1749 	ath_txq_unlock(sc, txq);
1750 }
1751 
1752 /********************/
1753 /* Queue Management */
1754 /********************/
1755 
1756 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1757 {
1758 	struct ath_hw *ah = sc->sc_ah;
1759 	struct ath9k_tx_queue_info qi;
1760 	static const int subtype_txq_to_hwq[] = {
1761 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1762 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1763 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1764 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1765 	};
1766 	int axq_qnum, i;
1767 
1768 	memset(&qi, 0, sizeof(qi));
1769 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1770 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1771 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1772 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1773 	qi.tqi_physCompBuf = 0;
1774 
1775 	/*
1776 	 * Enable interrupts only for EOL and DESC conditions.
1777 	 * We mark tx descriptors to receive a DESC interrupt
1778 	 * when a tx queue gets deep; otherwise waiting for the
1779 	 * EOL to reap descriptors.  Note that this is done to
1780 	 * reduce interrupt load and this only defers reaping
1781 	 * descriptors, never transmitting frames.  Aside from
1782 	 * reducing interrupts this also permits more concurrency.
1783 	 * The only potential downside is if the tx queue backs
1784 	 * up in which case the top half of the kernel may backup
1785 	 * due to a lack of tx descriptors.
1786 	 *
1787 	 * The UAPSD queue is an exception, since we take a desc-
1788 	 * based intr on the EOSP frames.
1789 	 */
1790 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1791 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1792 	} else {
1793 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1794 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1795 		else
1796 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1797 					TXQ_FLAG_TXDESCINT_ENABLE;
1798 	}
1799 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1800 	if (axq_qnum == -1) {
1801 		/*
1802 		 * NB: don't print a message, this happens
1803 		 * normally on parts with too few tx queues
1804 		 */
1805 		return NULL;
1806 	}
1807 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1808 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1809 
1810 		txq->axq_qnum = axq_qnum;
1811 		txq->mac80211_qnum = -1;
1812 		txq->axq_link = NULL;
1813 		__skb_queue_head_init(&txq->complete_q);
1814 		INIT_LIST_HEAD(&txq->axq_q);
1815 		spin_lock_init(&txq->axq_lock);
1816 		txq->axq_depth = 0;
1817 		txq->axq_ampdu_depth = 0;
1818 		txq->axq_tx_inprogress = false;
1819 		sc->tx.txqsetup |= 1<<axq_qnum;
1820 
1821 		txq->txq_headidx = txq->txq_tailidx = 0;
1822 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1823 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1824 	}
1825 	return &sc->tx.txq[axq_qnum];
1826 }
1827 
1828 int ath_txq_update(struct ath_softc *sc, int qnum,
1829 		   struct ath9k_tx_queue_info *qinfo)
1830 {
1831 	struct ath_hw *ah = sc->sc_ah;
1832 	int error = 0;
1833 	struct ath9k_tx_queue_info qi;
1834 
1835 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1836 
1837 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1838 	qi.tqi_aifs = qinfo->tqi_aifs;
1839 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1840 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1841 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1842 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1843 
1844 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1845 		ath_err(ath9k_hw_common(sc->sc_ah),
1846 			"Unable to update hardware queue %u!\n", qnum);
1847 		error = -EIO;
1848 	} else {
1849 		ath9k_hw_resettxqueue(ah, qnum);
1850 	}
1851 
1852 	return error;
1853 }
1854 
1855 int ath_cabq_update(struct ath_softc *sc)
1856 {
1857 	struct ath9k_tx_queue_info qi;
1858 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1859 	int qnum = sc->beacon.cabq->axq_qnum;
1860 
1861 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1862 
1863 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1864 			    ATH_CABQ_READY_TIME) / 100;
1865 	ath_txq_update(sc, qnum, &qi);
1866 
1867 	return 0;
1868 }
1869 
1870 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1871 			       struct list_head *list)
1872 {
1873 	struct ath_buf *bf, *lastbf;
1874 	struct list_head bf_head;
1875 	struct ath_tx_status ts;
1876 
1877 	memset(&ts, 0, sizeof(ts));
1878 	ts.ts_status = ATH9K_TX_FLUSH;
1879 	INIT_LIST_HEAD(&bf_head);
1880 
1881 	while (!list_empty(list)) {
1882 		bf = list_first_entry(list, struct ath_buf, list);
1883 
1884 		if (bf->bf_state.stale) {
1885 			list_del(&bf->list);
1886 
1887 			ath_tx_return_buffer(sc, bf);
1888 			continue;
1889 		}
1890 
1891 		lastbf = bf->bf_lastbf;
1892 		list_cut_position(&bf_head, list, &lastbf->list);
1893 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1894 	}
1895 }
1896 
1897 /*
1898  * Drain a given TX queue (could be Beacon or Data)
1899  *
1900  * This assumes output has been stopped and
1901  * we do not need to block ath_tx_tasklet.
1902  */
1903 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1904 {
1905 	rcu_read_lock();
1906 	ath_txq_lock(sc, txq);
1907 
1908 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1909 		int idx = txq->txq_tailidx;
1910 
1911 		while (!list_empty(&txq->txq_fifo[idx])) {
1912 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1913 
1914 			INCR(idx, ATH_TXFIFO_DEPTH);
1915 		}
1916 		txq->txq_tailidx = idx;
1917 	}
1918 
1919 	txq->axq_link = NULL;
1920 	txq->axq_tx_inprogress = false;
1921 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1922 
1923 	ath_txq_unlock_complete(sc, txq);
1924 	rcu_read_unlock();
1925 }
1926 
1927 bool ath_drain_all_txq(struct ath_softc *sc)
1928 {
1929 	struct ath_hw *ah = sc->sc_ah;
1930 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1931 	struct ath_txq *txq;
1932 	int i;
1933 	u32 npend = 0;
1934 
1935 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1936 		return true;
1937 
1938 	ath9k_hw_abort_tx_dma(ah);
1939 
1940 	/* Check if any queue remains active */
1941 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1942 		if (!ATH_TXQ_SETUP(sc, i))
1943 			continue;
1944 
1945 		if (!sc->tx.txq[i].axq_depth)
1946 			continue;
1947 
1948 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1949 			npend |= BIT(i);
1950 	}
1951 
1952 	if (npend) {
1953 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1954 		ath_dbg(common, RESET,
1955 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1956 	}
1957 
1958 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1959 		if (!ATH_TXQ_SETUP(sc, i))
1960 			continue;
1961 
1962 		txq = &sc->tx.txq[i];
1963 		ath_draintxq(sc, txq);
1964 	}
1965 
1966 	return !npend;
1967 }
1968 
1969 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1970 {
1971 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1972 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1973 }
1974 
1975 /* For each acq entry, for each tid, try to schedule packets
1976  * for transmit until ampdu_depth has reached min Q depth.
1977  */
1978 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1979 {
1980 	struct ieee80211_hw *hw = sc->hw;
1981 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1982 	struct ieee80211_txq *queue;
1983 	struct ath_atx_tid *tid;
1984 	int ret;
1985 
1986 	if (txq->mac80211_qnum < 0)
1987 		return;
1988 
1989 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1990 		return;
1991 
1992 	ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1993 	spin_lock_bh(&sc->chan_lock);
1994 	rcu_read_lock();
1995 
1996 	if (sc->cur_chan->stopped)
1997 		goto out;
1998 
1999 	while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
2000 		bool force;
2001 
2002 		tid = (struct ath_atx_tid *)queue->drv_priv;
2003 
2004 		ret = ath_tx_sched_aggr(sc, txq, tid);
2005 		ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
2006 
2007 		force = !skb_queue_empty(&tid->retry_q);
2008 		ieee80211_return_txq(hw, queue, force);
2009 	}
2010 
2011 out:
2012 	rcu_read_unlock();
2013 	spin_unlock_bh(&sc->chan_lock);
2014 	ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
2015 }
2016 
2017 void ath_txq_schedule_all(struct ath_softc *sc)
2018 {
2019 	struct ath_txq *txq;
2020 	int i;
2021 
2022 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2023 		txq = sc->tx.txq_map[i];
2024 
2025 		spin_lock_bh(&txq->axq_lock);
2026 		ath_txq_schedule(sc, txq);
2027 		spin_unlock_bh(&txq->axq_lock);
2028 	}
2029 }
2030 
2031 /***********/
2032 /* TX, DMA */
2033 /***********/
2034 
2035 /*
2036  * Insert a chain of ath_buf (descriptors) on a txq and
2037  * assume the descriptors are already chained together by caller.
2038  */
2039 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2040 			     struct list_head *head, bool internal)
2041 {
2042 	struct ath_hw *ah = sc->sc_ah;
2043 	struct ath_common *common = ath9k_hw_common(ah);
2044 	struct ath_buf *bf, *bf_last;
2045 	bool puttxbuf = false;
2046 	bool edma;
2047 
2048 	/*
2049 	 * Insert the frame on the outbound list and
2050 	 * pass it on to the hardware.
2051 	 */
2052 
2053 	if (list_empty(head))
2054 		return;
2055 
2056 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2057 	bf = list_first_entry(head, struct ath_buf, list);
2058 	bf_last = list_entry(head->prev, struct ath_buf, list);
2059 
2060 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2061 		txq->axq_qnum, txq->axq_depth);
2062 
2063 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2064 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2065 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2066 		puttxbuf = true;
2067 	} else {
2068 		list_splice_tail_init(head, &txq->axq_q);
2069 
2070 		if (txq->axq_link) {
2071 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2072 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2073 				txq->axq_qnum, txq->axq_link,
2074 				ito64(bf->bf_daddr), bf->bf_desc);
2075 		} else if (!edma)
2076 			puttxbuf = true;
2077 
2078 		txq->axq_link = bf_last->bf_desc;
2079 	}
2080 
2081 	if (puttxbuf) {
2082 		TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2083 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2084 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2085 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2086 	}
2087 
2088 	if (!edma || sc->tx99_state) {
2089 		TX_STAT_INC(sc, txq->axq_qnum, txstart);
2090 		ath9k_hw_txstart(ah, txq->axq_qnum);
2091 	}
2092 
2093 	if (!internal) {
2094 		while (bf) {
2095 			txq->axq_depth++;
2096 			if (bf_is_ampdu_not_probing(bf))
2097 				txq->axq_ampdu_depth++;
2098 
2099 			bf_last = bf->bf_lastbf;
2100 			bf = bf_last->bf_next;
2101 			bf_last->bf_next = NULL;
2102 		}
2103 	}
2104 }
2105 
2106 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2107 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2108 {
2109 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2110 	struct ath_frame_info *fi = get_frame_info(skb);
2111 	struct list_head bf_head;
2112 	struct ath_buf *bf = fi->bf;
2113 
2114 	INIT_LIST_HEAD(&bf_head);
2115 	list_add_tail(&bf->list, &bf_head);
2116 	bf->bf_state.bf_type = 0;
2117 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2118 		bf->bf_state.bf_type = BUF_AMPDU;
2119 		ath_tx_addto_baw(sc, tid, bf);
2120 	}
2121 
2122 	bf->bf_next = NULL;
2123 	bf->bf_lastbf = bf;
2124 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2125 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2126 	TX_STAT_INC(sc, txq->axq_qnum, queued);
2127 }
2128 
2129 static void setup_frame_info(struct ieee80211_hw *hw,
2130 			     struct ieee80211_sta *sta,
2131 			     struct sk_buff *skb,
2132 			     int framelen)
2133 {
2134 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2135 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2136 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2137 	const struct ieee80211_rate *rate;
2138 	struct ath_frame_info *fi = get_frame_info(skb);
2139 	struct ath_node *an = NULL;
2140 	enum ath9k_key_type keytype;
2141 	bool short_preamble = false;
2142 	u8 txpower;
2143 
2144 	/*
2145 	 * We check if Short Preamble is needed for the CTS rate by
2146 	 * checking the BSS's global flag.
2147 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2148 	 */
2149 	if (tx_info->control.vif &&
2150 	    tx_info->control.vif->bss_conf.use_short_preamble)
2151 		short_preamble = true;
2152 
2153 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2154 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2155 
2156 	if (sta)
2157 		an = (struct ath_node *) sta->drv_priv;
2158 
2159 	if (tx_info->control.vif) {
2160 		struct ieee80211_vif *vif = tx_info->control.vif;
2161 		if (vif->bss_conf.txpower == INT_MIN)
2162 			goto nonvifpower;
2163 		txpower = 2 * vif->bss_conf.txpower;
2164 	} else {
2165 		struct ath_softc *sc;
2166 	nonvifpower:
2167 		sc = hw->priv;
2168 
2169 		txpower = sc->cur_chan->cur_txpower;
2170 	}
2171 
2172 	memset(fi, 0, sizeof(*fi));
2173 	fi->txq = -1;
2174 	if (hw_key)
2175 		fi->keyix = hw_key->hw_key_idx;
2176 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2177 		fi->keyix = an->ps_key;
2178 	else
2179 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2180 	fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
2181 	fi->keytype = keytype;
2182 	fi->framelen = framelen;
2183 	fi->tx_power = txpower;
2184 
2185 	if (!rate)
2186 		return;
2187 	fi->rtscts_rate = rate->hw_value;
2188 	if (short_preamble)
2189 		fi->rtscts_rate |= rate->hw_value_short;
2190 }
2191 
2192 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2193 {
2194 	struct ath_hw *ah = sc->sc_ah;
2195 	struct ath9k_channel *curchan = ah->curchan;
2196 
2197 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2198 	    (chainmask == 0x7) && (rate < 0x90))
2199 		return 0x3;
2200 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2201 		 IS_CCK_RATE(rate))
2202 		return 0x2;
2203 	else
2204 		return chainmask;
2205 }
2206 
2207 /*
2208  * Assign a descriptor (and sequence number if necessary,
2209  * and map buffer for DMA. Frees skb on error
2210  */
2211 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2212 					   struct ath_txq *txq,
2213 					   struct ath_atx_tid *tid,
2214 					   struct sk_buff *skb)
2215 {
2216 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2217 	struct ath_frame_info *fi = get_frame_info(skb);
2218 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2219 	struct ath_buf *bf;
2220 	int fragno;
2221 	u16 seqno;
2222 
2223 	bf = ath_tx_get_buffer(sc);
2224 	if (!bf) {
2225 		ath_dbg(common, XMIT, "TX buffers are full\n");
2226 		return NULL;
2227 	}
2228 
2229 	ATH_TXBUF_RESET(bf);
2230 
2231 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2232 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2233 		seqno = tid->seq_next;
2234 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2235 
2236 		if (fragno)
2237 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2238 
2239 		if (!ieee80211_has_morefrags(hdr->frame_control))
2240 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2241 
2242 		bf->bf_state.seqno = seqno;
2243 	}
2244 
2245 	bf->bf_mpdu = skb;
2246 
2247 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2248 					 skb->len, DMA_TO_DEVICE);
2249 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2250 		bf->bf_mpdu = NULL;
2251 		bf->bf_buf_addr = 0;
2252 		ath_err(ath9k_hw_common(sc->sc_ah),
2253 			"dma_mapping_error() on TX\n");
2254 		ath_tx_return_buffer(sc, bf);
2255 		return NULL;
2256 	}
2257 
2258 	fi->bf = bf;
2259 
2260 	return bf;
2261 }
2262 
2263 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2264 {
2265 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2266 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2267 	struct ieee80211_vif *vif = info->control.vif;
2268 	struct ath_vif *avp;
2269 
2270 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2271 		return;
2272 
2273 	if (!vif)
2274 		return;
2275 
2276 	avp = (struct ath_vif *)vif->drv_priv;
2277 
2278 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2279 		avp->seq_no += 0x10;
2280 
2281 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2282 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2283 }
2284 
2285 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2286 			  struct ath_tx_control *txctl)
2287 {
2288 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2289 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2290 	struct ieee80211_sta *sta = txctl->sta;
2291 	struct ieee80211_vif *vif = info->control.vif;
2292 	struct ath_vif *avp;
2293 	struct ath_softc *sc = hw->priv;
2294 	int frmlen = skb->len + FCS_LEN;
2295 	int padpos, padsize;
2296 
2297 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2298 	if (sta)
2299 		txctl->an = (struct ath_node *)sta->drv_priv;
2300 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2301 		avp = (void *)vif->drv_priv;
2302 		txctl->an = &avp->mcast_node;
2303 	}
2304 
2305 	if (info->control.hw_key)
2306 		frmlen += info->control.hw_key->icv_len;
2307 
2308 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2309 
2310 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2311 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2312 	    !ieee80211_is_data(hdr->frame_control))
2313 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2314 
2315 	/* Add the padding after the header if this is not already done */
2316 	padpos = ieee80211_hdrlen(hdr->frame_control);
2317 	padsize = padpos & 3;
2318 	if (padsize && skb->len > padpos) {
2319 		if (skb_headroom(skb) < padsize)
2320 			return -ENOMEM;
2321 
2322 		skb_push(skb, padsize);
2323 		memmove(skb->data, skb->data + padsize, padpos);
2324 	}
2325 
2326 	setup_frame_info(hw, sta, skb, frmlen);
2327 	return 0;
2328 }
2329 
2330 
2331 /* Upon failure caller should free skb */
2332 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2333 		 struct ath_tx_control *txctl)
2334 {
2335 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2336 	struct ieee80211_sta *sta = txctl->sta;
2337 	struct ieee80211_vif *vif = info->control.vif;
2338 	struct ath_frame_info *fi = get_frame_info(skb);
2339 	struct ath_softc *sc = hw->priv;
2340 	struct ath_txq *txq = txctl->txq;
2341 	struct ath_atx_tid *tid = NULL;
2342 	struct ath_node *an = NULL;
2343 	struct ath_buf *bf;
2344 	bool ps_resp;
2345 	int q, ret;
2346 
2347 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2348 
2349 	ret = ath_tx_prepare(hw, skb, txctl);
2350 	if (ret)
2351 	    return ret;
2352 
2353 	/*
2354 	 * At this point, the vif, hw_key and sta pointers in the tx control
2355 	 * info are no longer valid (overwritten by the ath_frame_info data.
2356 	 */
2357 
2358 	q = skb_get_queue_mapping(skb);
2359 
2360 	if (ps_resp)
2361 		txq = sc->tx.uapsdq;
2362 
2363 	if (txctl->sta) {
2364 		an = (struct ath_node *) sta->drv_priv;
2365 		tid = ath_get_skb_tid(sc, an, skb);
2366 	}
2367 
2368 	ath_txq_lock(sc, txq);
2369 	if (txq == sc->tx.txq_map[q]) {
2370 		fi->txq = q;
2371 		++txq->pending_frames;
2372 	}
2373 
2374 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2375 	if (!bf) {
2376 		ath_txq_skb_done(sc, txq, skb);
2377 		if (txctl->paprd)
2378 			dev_kfree_skb_any(skb);
2379 		else
2380 			ieee80211_free_txskb(sc->hw, skb);
2381 		goto out;
2382 	}
2383 
2384 	bf->bf_state.bfs_paprd = txctl->paprd;
2385 
2386 	if (txctl->paprd)
2387 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2388 
2389 	ath_set_rates(vif, sta, bf);
2390 	ath_tx_send_normal(sc, txq, tid, skb);
2391 
2392 out:
2393 	ath_txq_unlock(sc, txq);
2394 
2395 	return 0;
2396 }
2397 
2398 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2399 		 struct sk_buff *skb)
2400 {
2401 	struct ath_softc *sc = hw->priv;
2402 	struct ath_tx_control txctl = {
2403 		.txq = sc->beacon.cabq
2404 	};
2405 	struct ath_tx_info info = {};
2406 	struct ath_buf *bf_tail = NULL;
2407 	struct ath_buf *bf;
2408 	LIST_HEAD(bf_q);
2409 	int duration = 0;
2410 	int max_duration;
2411 
2412 	max_duration =
2413 		sc->cur_chan->beacon.beacon_interval * 1000 *
2414 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2415 
2416 	do {
2417 		struct ath_frame_info *fi = get_frame_info(skb);
2418 
2419 		if (ath_tx_prepare(hw, skb, &txctl))
2420 			break;
2421 
2422 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2423 		if (!bf)
2424 			break;
2425 
2426 		bf->bf_lastbf = bf;
2427 		ath_set_rates(vif, NULL, bf);
2428 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2429 		duration += info.rates[0].PktDuration;
2430 		if (bf_tail)
2431 			bf_tail->bf_next = bf;
2432 
2433 		list_add_tail(&bf->list, &bf_q);
2434 		bf_tail = bf;
2435 		skb = NULL;
2436 
2437 		if (duration > max_duration)
2438 			break;
2439 
2440 		skb = ieee80211_get_buffered_bc(hw, vif);
2441 	} while(skb);
2442 
2443 	if (skb)
2444 		ieee80211_free_txskb(hw, skb);
2445 
2446 	if (list_empty(&bf_q))
2447 		return;
2448 
2449 	bf = list_last_entry(&bf_q, struct ath_buf, list);
2450 	ath9k_set_moredata(sc, bf, false);
2451 
2452 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2453 	ath_txq_lock(sc, txctl.txq);
2454 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2455 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2456 	TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2457 	ath_txq_unlock(sc, txctl.txq);
2458 }
2459 
2460 /*****************/
2461 /* TX Completion */
2462 /*****************/
2463 
2464 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2465 			    int tx_flags, struct ath_txq *txq,
2466 			    struct ieee80211_sta *sta)
2467 {
2468 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2469 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2470 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2471 	int padpos, padsize;
2472 	unsigned long flags;
2473 
2474 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2475 
2476 	if (sc->sc_ah->caldata)
2477 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2478 
2479 	if (!(tx_flags & ATH_TX_ERROR)) {
2480 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2481 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2482 		else
2483 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2484 	}
2485 
2486 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2487 		padpos = ieee80211_hdrlen(hdr->frame_control);
2488 		padsize = padpos & 3;
2489 		if (padsize && skb->len>padpos+padsize) {
2490 			/*
2491 			 * Remove MAC header padding before giving the frame back to
2492 			 * mac80211.
2493 			 */
2494 			memmove(skb->data + padsize, skb->data, padpos);
2495 			skb_pull(skb, padsize);
2496 		}
2497 	}
2498 
2499 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2500 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2501 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2502 		ath_dbg(common, PS,
2503 			"Going back to sleep after having received TX status (0x%lx)\n",
2504 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2505 					PS_WAIT_FOR_CAB |
2506 					PS_WAIT_FOR_PSPOLL_DATA |
2507 					PS_WAIT_FOR_TX_ACK));
2508 	}
2509 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2510 
2511 	ath_txq_skb_done(sc, txq, skb);
2512 	tx_info->status.status_driver_data[0] = sta;
2513 	__skb_queue_tail(&txq->complete_q, skb);
2514 }
2515 
2516 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2517 				struct ath_txq *txq, struct list_head *bf_q,
2518 				struct ieee80211_sta *sta,
2519 				struct ath_tx_status *ts, int txok)
2520 {
2521 	struct sk_buff *skb = bf->bf_mpdu;
2522 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2523 	unsigned long flags;
2524 	int tx_flags = 0;
2525 
2526 	if (!txok)
2527 		tx_flags |= ATH_TX_ERROR;
2528 
2529 	if (ts->ts_status & ATH9K_TXERR_FILT)
2530 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2531 
2532 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2533 	bf->bf_buf_addr = 0;
2534 	if (sc->tx99_state)
2535 		goto skip_tx_complete;
2536 
2537 	if (bf->bf_state.bfs_paprd) {
2538 		if (time_after(jiffies,
2539 				bf->bf_state.bfs_paprd_timestamp +
2540 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2541 			dev_kfree_skb_any(skb);
2542 		else
2543 			complete(&sc->paprd_complete);
2544 	} else {
2545 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2546 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2547 	}
2548 skip_tx_complete:
2549 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2550 	 * accidentally reference it later.
2551 	 */
2552 	bf->bf_mpdu = NULL;
2553 
2554 	/*
2555 	 * Return the list of ath_buf of this mpdu to free queue
2556 	 */
2557 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2558 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2559 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2560 }
2561 
2562 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
2563 {
2564 	void *ptr = &tx_info->status;
2565 
2566 	memset(ptr + sizeof(tx_info->status.rates), 0,
2567 	       sizeof(tx_info->status) -
2568 	       sizeof(tx_info->status.rates) -
2569 	       sizeof(tx_info->status.status_driver_data));
2570 }
2571 
2572 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2573 			     struct ath_tx_status *ts, int nframes, int nbad,
2574 			     int txok)
2575 {
2576 	struct sk_buff *skb = bf->bf_mpdu;
2577 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2578 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2579 	struct ieee80211_hw *hw = sc->hw;
2580 	struct ath_hw *ah = sc->sc_ah;
2581 	u8 i, tx_rateindex;
2582 
2583 	ath_clear_tx_status(tx_info);
2584 
2585 	if (txok)
2586 		tx_info->status.ack_signal = ts->ts_rssi;
2587 
2588 	tx_rateindex = ts->ts_rateindex;
2589 	WARN_ON(tx_rateindex >= hw->max_rates);
2590 
2591 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2592 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2593 
2594 		BUG_ON(nbad > nframes);
2595 	}
2596 	tx_info->status.ampdu_len = nframes;
2597 	tx_info->status.ampdu_ack_len = nframes - nbad;
2598 
2599 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2600 
2601 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2602 		tx_info->status.rates[i].count = 0;
2603 		tx_info->status.rates[i].idx = -1;
2604 	}
2605 
2606 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2607 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2608 		/*
2609 		 * If an underrun error is seen assume it as an excessive
2610 		 * retry only if max frame trigger level has been reached
2611 		 * (2 KB for single stream, and 4 KB for dual stream).
2612 		 * Adjust the long retry as if the frame was tried
2613 		 * hw->max_rate_tries times to affect how rate control updates
2614 		 * PER for the failed rate.
2615 		 * In case of congestion on the bus penalizing this type of
2616 		 * underruns should help hardware actually transmit new frames
2617 		 * successfully by eventually preferring slower rates.
2618 		 * This itself should also alleviate congestion on the bus.
2619 		 */
2620 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2621 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2622 		    ieee80211_is_data(hdr->frame_control) &&
2623 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2624 			tx_info->status.rates[tx_rateindex].count =
2625 				hw->max_rate_tries;
2626 	}
2627 }
2628 
2629 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2630 {
2631 	struct ath_hw *ah = sc->sc_ah;
2632 	struct ath_common *common = ath9k_hw_common(ah);
2633 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2634 	struct list_head bf_head;
2635 	struct ath_desc *ds;
2636 	struct ath_tx_status ts;
2637 	int status;
2638 
2639 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2640 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2641 		txq->axq_link);
2642 
2643 	ath_txq_lock(sc, txq);
2644 	for (;;) {
2645 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2646 			break;
2647 
2648 		if (list_empty(&txq->axq_q)) {
2649 			txq->axq_link = NULL;
2650 			ath_txq_schedule(sc, txq);
2651 			break;
2652 		}
2653 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2654 
2655 		/*
2656 		 * There is a race condition that a BH gets scheduled
2657 		 * after sw writes TxE and before hw re-load the last
2658 		 * descriptor to get the newly chained one.
2659 		 * Software must keep the last DONE descriptor as a
2660 		 * holding descriptor - software does so by marking
2661 		 * it with the STALE flag.
2662 		 */
2663 		bf_held = NULL;
2664 		if (bf->bf_state.stale) {
2665 			bf_held = bf;
2666 			if (list_is_last(&bf_held->list, &txq->axq_q))
2667 				break;
2668 
2669 			bf = list_entry(bf_held->list.next, struct ath_buf,
2670 					list);
2671 		}
2672 
2673 		lastbf = bf->bf_lastbf;
2674 		ds = lastbf->bf_desc;
2675 
2676 		memset(&ts, 0, sizeof(ts));
2677 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2678 		if (status == -EINPROGRESS)
2679 			break;
2680 
2681 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2682 
2683 		/*
2684 		 * Remove ath_buf's of the same transmit unit from txq,
2685 		 * however leave the last descriptor back as the holding
2686 		 * descriptor for hw.
2687 		 */
2688 		lastbf->bf_state.stale = true;
2689 		INIT_LIST_HEAD(&bf_head);
2690 		if (!list_is_singular(&lastbf->list))
2691 			list_cut_position(&bf_head,
2692 				&txq->axq_q, lastbf->list.prev);
2693 
2694 		if (bf_held) {
2695 			list_del(&bf_held->list);
2696 			ath_tx_return_buffer(sc, bf_held);
2697 		}
2698 
2699 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2700 	}
2701 	ath_txq_unlock_complete(sc, txq);
2702 }
2703 
2704 void ath_tx_tasklet(struct ath_softc *sc)
2705 {
2706 	struct ath_hw *ah = sc->sc_ah;
2707 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2708 	int i;
2709 
2710 	rcu_read_lock();
2711 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2712 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2713 			ath_tx_processq(sc, &sc->tx.txq[i]);
2714 	}
2715 	rcu_read_unlock();
2716 }
2717 
2718 void ath_tx_edma_tasklet(struct ath_softc *sc)
2719 {
2720 	struct ath_tx_status ts;
2721 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2722 	struct ath_hw *ah = sc->sc_ah;
2723 	struct ath_txq *txq;
2724 	struct ath_buf *bf, *lastbf;
2725 	struct list_head bf_head;
2726 	struct list_head *fifo_list;
2727 	int status;
2728 
2729 	rcu_read_lock();
2730 	for (;;) {
2731 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2732 			break;
2733 
2734 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2735 		if (status == -EINPROGRESS)
2736 			break;
2737 		if (status == -EIO) {
2738 			ath_dbg(common, XMIT, "Error processing tx status\n");
2739 			break;
2740 		}
2741 
2742 		/* Process beacon completions separately */
2743 		if (ts.qid == sc->beacon.beaconq) {
2744 			sc->beacon.tx_processed = true;
2745 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2746 
2747 			if (ath9k_is_chanctx_enabled()) {
2748 				ath_chanctx_event(sc, NULL,
2749 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2750 			}
2751 
2752 			ath9k_csa_update(sc);
2753 			continue;
2754 		}
2755 
2756 		txq = &sc->tx.txq[ts.qid];
2757 
2758 		ath_txq_lock(sc, txq);
2759 
2760 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2761 
2762 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2763 		if (list_empty(fifo_list)) {
2764 			ath_txq_unlock(sc, txq);
2765 			break;
2766 		}
2767 
2768 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2769 		if (bf->bf_state.stale) {
2770 			list_del(&bf->list);
2771 			ath_tx_return_buffer(sc, bf);
2772 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2773 		}
2774 
2775 		lastbf = bf->bf_lastbf;
2776 
2777 		INIT_LIST_HEAD(&bf_head);
2778 		if (list_is_last(&lastbf->list, fifo_list)) {
2779 			list_splice_tail_init(fifo_list, &bf_head);
2780 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2781 
2782 			if (!list_empty(&txq->axq_q)) {
2783 				struct list_head bf_q;
2784 
2785 				INIT_LIST_HEAD(&bf_q);
2786 				txq->axq_link = NULL;
2787 				list_splice_tail_init(&txq->axq_q, &bf_q);
2788 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2789 			}
2790 		} else {
2791 			lastbf->bf_state.stale = true;
2792 			if (bf != lastbf)
2793 				list_cut_position(&bf_head, fifo_list,
2794 						  lastbf->list.prev);
2795 		}
2796 
2797 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2798 		ath_txq_unlock_complete(sc, txq);
2799 	}
2800 	rcu_read_unlock();
2801 }
2802 
2803 /*****************/
2804 /* Init, Cleanup */
2805 /*****************/
2806 
2807 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2808 {
2809 	struct ath_descdma *dd = &sc->txsdma;
2810 	u8 txs_len = sc->sc_ah->caps.txs_len;
2811 
2812 	dd->dd_desc_len = size * txs_len;
2813 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2814 					  &dd->dd_desc_paddr, GFP_KERNEL);
2815 	if (!dd->dd_desc)
2816 		return -ENOMEM;
2817 
2818 	return 0;
2819 }
2820 
2821 static int ath_tx_edma_init(struct ath_softc *sc)
2822 {
2823 	int err;
2824 
2825 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2826 	if (!err)
2827 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2828 					  sc->txsdma.dd_desc_paddr,
2829 					  ATH_TXSTATUS_RING_SIZE);
2830 
2831 	return err;
2832 }
2833 
2834 int ath_tx_init(struct ath_softc *sc, int nbufs)
2835 {
2836 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2837 	int error = 0;
2838 
2839 	spin_lock_init(&sc->tx.txbuflock);
2840 
2841 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2842 				  "tx", nbufs, 1, 1);
2843 	if (error != 0) {
2844 		ath_err(common,
2845 			"Failed to allocate tx descriptors: %d\n", error);
2846 		return error;
2847 	}
2848 
2849 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2850 				  "beacon", ATH_BCBUF, 1, 1);
2851 	if (error != 0) {
2852 		ath_err(common,
2853 			"Failed to allocate beacon descriptors: %d\n", error);
2854 		return error;
2855 	}
2856 
2857 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2858 		error = ath_tx_edma_init(sc);
2859 
2860 	return error;
2861 }
2862 
2863 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2864 {
2865 	struct ath_atx_tid *tid;
2866 	int tidno, acno;
2867 
2868 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2869 		tid = ath_node_to_tid(an, tidno);
2870 		tid->an        = an;
2871 		tid->tidno     = tidno;
2872 		tid->seq_start = tid->seq_next = 0;
2873 		tid->baw_size  = WME_MAX_BA;
2874 		tid->baw_head  = tid->baw_tail = 0;
2875 		tid->active	   = false;
2876 		tid->clear_ps_filter = true;
2877 		__skb_queue_head_init(&tid->retry_q);
2878 		INIT_LIST_HEAD(&tid->list);
2879 		acno = TID_TO_WME_AC(tidno);
2880 		tid->txq = sc->tx.txq_map[acno];
2881 
2882 		if (!an->sta)
2883 			break; /* just one multicast ath_atx_tid */
2884 	}
2885 }
2886 
2887 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2888 {
2889 	struct ath_atx_tid *tid;
2890 	struct ath_txq *txq;
2891 	int tidno;
2892 
2893 	rcu_read_lock();
2894 
2895 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2896 		tid = ath_node_to_tid(an, tidno);
2897 		txq = tid->txq;
2898 
2899 		ath_txq_lock(sc, txq);
2900 
2901 		if (!list_empty(&tid->list))
2902 			list_del_init(&tid->list);
2903 
2904 		ath_tid_drain(sc, txq, tid);
2905 		tid->active = false;
2906 
2907 		ath_txq_unlock(sc, txq);
2908 
2909 		if (!an->sta)
2910 			break; /* just one multicast ath_atx_tid */
2911 	}
2912 
2913 	rcu_read_unlock();
2914 }
2915 
2916 #ifdef CONFIG_ATH9K_TX99
2917 
2918 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2919 		    struct ath_tx_control *txctl)
2920 {
2921 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2922 	struct ath_frame_info *fi = get_frame_info(skb);
2923 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2924 	struct ath_buf *bf;
2925 	int padpos, padsize;
2926 
2927 	padpos = ieee80211_hdrlen(hdr->frame_control);
2928 	padsize = padpos & 3;
2929 
2930 	if (padsize && skb->len > padpos) {
2931 		if (skb_headroom(skb) < padsize) {
2932 			ath_dbg(common, XMIT,
2933 				"tx99 padding failed\n");
2934 			return -EINVAL;
2935 		}
2936 
2937 		skb_push(skb, padsize);
2938 		memmove(skb->data, skb->data + padsize, padpos);
2939 	}
2940 
2941 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2942 	fi->framelen = skb->len + FCS_LEN;
2943 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2944 
2945 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2946 	if (!bf) {
2947 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2948 		return -EINVAL;
2949 	}
2950 
2951 	ath_set_rates(sc->tx99_vif, NULL, bf);
2952 
2953 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2954 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2955 
2956 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2957 
2958 	return 0;
2959 }
2960 
2961 #endif /* CONFIG_ATH9K_TX99 */
2962