1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq, 54 struct ieee80211_sta *sta); 55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 56 struct ath_txq *txq, struct list_head *bf_q, 57 struct ieee80211_sta *sta, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 int seqno); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 71 struct ath_tx_control *txctl); 72 73 enum { 74 MCS_HT20, 75 MCS_HT20_SGI, 76 MCS_HT40, 77 MCS_HT40_SGI, 78 }; 79 80 /*********************/ 81 /* Aggregation logic */ 82 /*********************/ 83 84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) 85 { 86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 87 struct ieee80211_sta *sta = info->status.status_driver_data[0]; 88 89 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 90 ieee80211_tx_status(hw, skb); 91 return; 92 } 93 94 if (sta) 95 ieee80211_tx_status_noskb(hw, sta, info); 96 97 dev_kfree_skb(skb); 98 } 99 100 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 101 __releases(&txq->axq_lock) 102 { 103 struct ieee80211_hw *hw = sc->hw; 104 struct sk_buff_head q; 105 struct sk_buff *skb; 106 107 __skb_queue_head_init(&q); 108 skb_queue_splice_init(&txq->complete_q, &q); 109 spin_unlock_bh(&txq->axq_lock); 110 111 while ((skb = __skb_dequeue(&q))) 112 ath_tx_status(hw, skb); 113 } 114 115 void __ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 116 { 117 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv; 118 struct ath_chanctx *ctx = avp->chanctx; 119 struct ath_acq *acq; 120 struct list_head *tid_list; 121 u8 acno = TID_TO_WME_AC(tid->tidno); 122 123 if (!ctx || !list_empty(&tid->list)) 124 return; 125 126 127 acq = &ctx->acq[acno]; 128 if ((sc->airtime_flags & AIRTIME_USE_NEW_QUEUES) && 129 tid->an->airtime_deficit[acno] > 0) 130 tid_list = &acq->acq_new; 131 else 132 tid_list = &acq->acq_old; 133 134 list_add_tail(&tid->list, tid_list); 135 } 136 137 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 138 { 139 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv; 140 struct ath_chanctx *ctx = avp->chanctx; 141 struct ath_acq *acq; 142 143 if (!ctx || !list_empty(&tid->list)) 144 return; 145 146 acq = &ctx->acq[TID_TO_WME_AC(tid->tidno)]; 147 spin_lock_bh(&acq->lock); 148 __ath_tx_queue_tid(sc, tid); 149 spin_unlock_bh(&acq->lock); 150 } 151 152 153 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue) 154 { 155 struct ath_softc *sc = hw->priv; 156 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 157 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv; 158 struct ath_txq *txq = tid->txq; 159 160 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n", 161 queue->sta ? queue->sta->addr : queue->vif->addr, 162 tid->tidno); 163 164 ath_txq_lock(sc, txq); 165 166 tid->has_queued = true; 167 ath_tx_queue_tid(sc, tid); 168 ath_txq_schedule(sc, txq); 169 170 ath_txq_unlock(sc, txq); 171 } 172 173 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 174 { 175 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 176 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 177 sizeof(tx_info->rate_driver_data)); 178 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 179 } 180 181 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 182 { 183 if (!tid->an->sta) 184 return; 185 186 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 187 seqno << IEEE80211_SEQ_SEQ_SHIFT); 188 } 189 190 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 191 struct ath_buf *bf) 192 { 193 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 194 ARRAY_SIZE(bf->rates)); 195 } 196 197 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 198 struct sk_buff *skb) 199 { 200 struct ath_frame_info *fi = get_frame_info(skb); 201 int q = fi->txq; 202 203 if (q < 0) 204 return; 205 206 txq = sc->tx.txq_map[q]; 207 if (WARN_ON(--txq->pending_frames < 0)) 208 txq->pending_frames = 0; 209 210 } 211 212 static struct ath_atx_tid * 213 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 214 { 215 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 216 return ATH_AN_2_TID(an, tidno); 217 } 218 219 static struct sk_buff * 220 ath_tid_pull(struct ath_atx_tid *tid) 221 { 222 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv); 223 struct ath_softc *sc = tid->an->sc; 224 struct ieee80211_hw *hw = sc->hw; 225 struct ath_tx_control txctl = { 226 .txq = tid->txq, 227 .sta = tid->an->sta, 228 }; 229 struct sk_buff *skb; 230 struct ath_frame_info *fi; 231 int q; 232 233 if (!tid->has_queued) 234 return NULL; 235 236 skb = ieee80211_tx_dequeue(hw, txq); 237 if (!skb) { 238 tid->has_queued = false; 239 return NULL; 240 } 241 242 if (ath_tx_prepare(hw, skb, &txctl)) { 243 ieee80211_free_txskb(hw, skb); 244 return NULL; 245 } 246 247 q = skb_get_queue_mapping(skb); 248 if (tid->txq == sc->tx.txq_map[q]) { 249 fi = get_frame_info(skb); 250 fi->txq = q; 251 ++tid->txq->pending_frames; 252 } 253 254 return skb; 255 } 256 257 258 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 259 { 260 return !skb_queue_empty(&tid->retry_q) || tid->has_queued; 261 } 262 263 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 264 { 265 struct sk_buff *skb; 266 267 skb = __skb_dequeue(&tid->retry_q); 268 if (!skb) 269 skb = ath_tid_pull(tid); 270 271 return skb; 272 } 273 274 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 275 { 276 struct ath_txq *txq = tid->txq; 277 struct sk_buff *skb; 278 struct ath_buf *bf; 279 struct list_head bf_head; 280 struct ath_tx_status ts; 281 struct ath_frame_info *fi; 282 bool sendbar = false; 283 284 INIT_LIST_HEAD(&bf_head); 285 286 memset(&ts, 0, sizeof(ts)); 287 288 while ((skb = __skb_dequeue(&tid->retry_q))) { 289 fi = get_frame_info(skb); 290 bf = fi->bf; 291 if (!bf) { 292 ath_txq_skb_done(sc, txq, skb); 293 ieee80211_free_txskb(sc->hw, skb); 294 continue; 295 } 296 297 if (fi->baw_tracked) { 298 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 299 sendbar = true; 300 } 301 302 list_add_tail(&bf->list, &bf_head); 303 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 304 } 305 306 if (sendbar) { 307 ath_txq_unlock(sc, txq); 308 ath_send_bar(tid, tid->seq_start); 309 ath_txq_lock(sc, txq); 310 } 311 } 312 313 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 314 int seqno) 315 { 316 int index, cindex; 317 318 index = ATH_BA_INDEX(tid->seq_start, seqno); 319 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 320 321 __clear_bit(cindex, tid->tx_buf); 322 323 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 324 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 325 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 326 if (tid->bar_index >= 0) 327 tid->bar_index--; 328 } 329 } 330 331 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 332 struct ath_buf *bf) 333 { 334 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 335 u16 seqno = bf->bf_state.seqno; 336 int index, cindex; 337 338 index = ATH_BA_INDEX(tid->seq_start, seqno); 339 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 340 __set_bit(cindex, tid->tx_buf); 341 fi->baw_tracked = 1; 342 343 if (index >= ((tid->baw_tail - tid->baw_head) & 344 (ATH_TID_MAX_BUFS - 1))) { 345 tid->baw_tail = cindex; 346 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 347 } 348 } 349 350 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 351 struct ath_atx_tid *tid) 352 353 { 354 struct sk_buff *skb; 355 struct ath_buf *bf; 356 struct list_head bf_head; 357 struct ath_tx_status ts; 358 struct ath_frame_info *fi; 359 360 memset(&ts, 0, sizeof(ts)); 361 INIT_LIST_HEAD(&bf_head); 362 363 while ((skb = ath_tid_dequeue(tid))) { 364 fi = get_frame_info(skb); 365 bf = fi->bf; 366 367 if (!bf) { 368 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL); 369 continue; 370 } 371 372 list_add_tail(&bf->list, &bf_head); 373 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 374 } 375 } 376 377 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 378 struct sk_buff *skb, int count) 379 { 380 struct ath_frame_info *fi = get_frame_info(skb); 381 struct ath_buf *bf = fi->bf; 382 struct ieee80211_hdr *hdr; 383 int prev = fi->retries; 384 385 TX_STAT_INC(txq->axq_qnum, a_retries); 386 fi->retries += count; 387 388 if (prev > 0) 389 return; 390 391 hdr = (struct ieee80211_hdr *)skb->data; 392 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 393 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 394 sizeof(*hdr), DMA_TO_DEVICE); 395 } 396 397 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 398 { 399 struct ath_buf *bf = NULL; 400 401 spin_lock_bh(&sc->tx.txbuflock); 402 403 if (unlikely(list_empty(&sc->tx.txbuf))) { 404 spin_unlock_bh(&sc->tx.txbuflock); 405 return NULL; 406 } 407 408 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 409 list_del(&bf->list); 410 411 spin_unlock_bh(&sc->tx.txbuflock); 412 413 return bf; 414 } 415 416 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 417 { 418 spin_lock_bh(&sc->tx.txbuflock); 419 list_add_tail(&bf->list, &sc->tx.txbuf); 420 spin_unlock_bh(&sc->tx.txbuflock); 421 } 422 423 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 424 { 425 struct ath_buf *tbf; 426 427 tbf = ath_tx_get_buffer(sc); 428 if (WARN_ON(!tbf)) 429 return NULL; 430 431 ATH_TXBUF_RESET(tbf); 432 433 tbf->bf_mpdu = bf->bf_mpdu; 434 tbf->bf_buf_addr = bf->bf_buf_addr; 435 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 436 tbf->bf_state = bf->bf_state; 437 tbf->bf_state.stale = false; 438 439 return tbf; 440 } 441 442 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 443 struct ath_tx_status *ts, int txok, 444 int *nframes, int *nbad) 445 { 446 struct ath_frame_info *fi; 447 u16 seq_st = 0; 448 u32 ba[WME_BA_BMP_SIZE >> 5]; 449 int ba_index; 450 int isaggr = 0; 451 452 *nbad = 0; 453 *nframes = 0; 454 455 isaggr = bf_isaggr(bf); 456 if (isaggr) { 457 seq_st = ts->ts_seqnum; 458 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 459 } 460 461 while (bf) { 462 fi = get_frame_info(bf->bf_mpdu); 463 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 464 465 (*nframes)++; 466 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 467 (*nbad)++; 468 469 bf = bf->bf_next; 470 } 471 } 472 473 474 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 475 struct ath_buf *bf, struct list_head *bf_q, 476 struct ieee80211_sta *sta, 477 struct ath_atx_tid *tid, 478 struct ath_tx_status *ts, int txok) 479 { 480 struct ath_node *an = NULL; 481 struct sk_buff *skb; 482 struct ieee80211_hdr *hdr; 483 struct ieee80211_tx_info *tx_info; 484 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 485 struct list_head bf_head; 486 struct sk_buff_head bf_pending; 487 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 488 u32 ba[WME_BA_BMP_SIZE >> 5]; 489 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 490 bool rc_update = true, isba; 491 struct ieee80211_tx_rate rates[4]; 492 struct ath_frame_info *fi; 493 int nframes; 494 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 495 int i, retries; 496 int bar_index = -1; 497 498 skb = bf->bf_mpdu; 499 hdr = (struct ieee80211_hdr *)skb->data; 500 501 tx_info = IEEE80211_SKB_CB(skb); 502 503 memcpy(rates, bf->rates, sizeof(rates)); 504 505 retries = ts->ts_longretry + 1; 506 for (i = 0; i < ts->ts_rateindex; i++) 507 retries += rates[i].count; 508 509 if (!sta) { 510 INIT_LIST_HEAD(&bf_head); 511 while (bf) { 512 bf_next = bf->bf_next; 513 514 if (!bf->bf_state.stale || bf_next != NULL) 515 list_move_tail(&bf->list, &bf_head); 516 517 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); 518 519 bf = bf_next; 520 } 521 return; 522 } 523 524 an = (struct ath_node *)sta->drv_priv; 525 seq_first = tid->seq_start; 526 isba = ts->ts_flags & ATH9K_TX_BA; 527 528 /* 529 * The hardware occasionally sends a tx status for the wrong TID. 530 * In this case, the BA status cannot be considered valid and all 531 * subframes need to be retransmitted 532 * 533 * Only BlockAcks have a TID and therefore normal Acks cannot be 534 * checked 535 */ 536 if (isba && tid->tidno != ts->tid) 537 txok = false; 538 539 isaggr = bf_isaggr(bf); 540 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 541 542 if (isaggr && txok) { 543 if (ts->ts_flags & ATH9K_TX_BA) { 544 seq_st = ts->ts_seqnum; 545 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 546 } else { 547 /* 548 * AR5416 can become deaf/mute when BA 549 * issue happens. Chip needs to be reset. 550 * But AP code may have sychronization issues 551 * when perform internal reset in this routine. 552 * Only enable reset in STA mode for now. 553 */ 554 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 555 needreset = 1; 556 } 557 } 558 559 __skb_queue_head_init(&bf_pending); 560 561 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 562 while (bf) { 563 u16 seqno = bf->bf_state.seqno; 564 565 txfail = txpending = sendbar = 0; 566 bf_next = bf->bf_next; 567 568 skb = bf->bf_mpdu; 569 tx_info = IEEE80211_SKB_CB(skb); 570 fi = get_frame_info(skb); 571 572 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 573 !tid->active) { 574 /* 575 * Outside of the current BlockAck window, 576 * maybe part of a previous session 577 */ 578 txfail = 1; 579 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 580 /* transmit completion, subframe is 581 * acked by block ack */ 582 acked_cnt++; 583 } else if (!isaggr && txok) { 584 /* transmit completion */ 585 acked_cnt++; 586 } else if (flush) { 587 txpending = 1; 588 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 589 if (txok || !an->sleeping) 590 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 591 retries); 592 593 txpending = 1; 594 } else { 595 txfail = 1; 596 txfail_cnt++; 597 bar_index = max_t(int, bar_index, 598 ATH_BA_INDEX(seq_first, seqno)); 599 } 600 601 /* 602 * Make sure the last desc is reclaimed if it 603 * not a holding desc. 604 */ 605 INIT_LIST_HEAD(&bf_head); 606 if (bf_next != NULL || !bf_last->bf_state.stale) 607 list_move_tail(&bf->list, &bf_head); 608 609 if (!txpending) { 610 /* 611 * complete the acked-ones/xretried ones; update 612 * block-ack window 613 */ 614 ath_tx_update_baw(sc, tid, seqno); 615 616 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 617 memcpy(tx_info->control.rates, rates, sizeof(rates)); 618 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 619 rc_update = false; 620 if (bf == bf->bf_lastbf) 621 ath_dynack_sample_tx_ts(sc->sc_ah, 622 bf->bf_mpdu, 623 ts); 624 } 625 626 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts, 627 !txfail); 628 } else { 629 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 630 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 631 ieee80211_sta_eosp(sta); 632 } 633 /* retry the un-acked ones */ 634 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 635 struct ath_buf *tbf; 636 637 tbf = ath_clone_txbuf(sc, bf_last); 638 /* 639 * Update tx baw and complete the 640 * frame with failed status if we 641 * run out of tx buf. 642 */ 643 if (!tbf) { 644 ath_tx_update_baw(sc, tid, seqno); 645 646 ath_tx_complete_buf(sc, bf, txq, 647 &bf_head, NULL, ts, 648 0); 649 bar_index = max_t(int, bar_index, 650 ATH_BA_INDEX(seq_first, seqno)); 651 break; 652 } 653 654 fi->bf = tbf; 655 } 656 657 /* 658 * Put this buffer to the temporary pending 659 * queue to retain ordering 660 */ 661 __skb_queue_tail(&bf_pending, skb); 662 } 663 664 bf = bf_next; 665 } 666 667 /* prepend un-acked frames to the beginning of the pending frame queue */ 668 if (!skb_queue_empty(&bf_pending)) { 669 if (an->sleeping) 670 ieee80211_sta_set_buffered(sta, tid->tidno, true); 671 672 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 673 if (!an->sleeping) { 674 ath_tx_queue_tid(sc, tid); 675 676 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 677 tid->clear_ps_filter = true; 678 } 679 } 680 681 if (bar_index >= 0) { 682 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 683 684 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 685 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 686 687 ath_txq_unlock(sc, txq); 688 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 689 ath_txq_lock(sc, txq); 690 } 691 692 if (needreset) 693 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 694 } 695 696 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 697 { 698 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 699 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 700 } 701 702 static void ath_tx_count_airtime(struct ath_softc *sc, struct ath_node *an, 703 struct ath_atx_tid *tid, struct ath_buf *bf, 704 struct ath_tx_status *ts) 705 { 706 struct ath_txq *txq = tid->txq; 707 u32 airtime = 0; 708 int i; 709 710 airtime += ts->duration * (ts->ts_longretry + 1); 711 for(i = 0; i < ts->ts_rateindex; i++) { 712 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i); 713 airtime += rate_dur * bf->rates[i].count; 714 } 715 716 if (sc->airtime_flags & AIRTIME_USE_TX) { 717 int q = txq->mac80211_qnum; 718 struct ath_acq *acq = &sc->cur_chan->acq[q]; 719 720 spin_lock_bh(&acq->lock); 721 an->airtime_deficit[q] -= airtime; 722 if (an->airtime_deficit[q] <= 0) 723 __ath_tx_queue_tid(sc, tid); 724 spin_unlock_bh(&acq->lock); 725 } 726 ath_debug_airtime(sc, an, 0, airtime); 727 } 728 729 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 730 struct ath_tx_status *ts, struct ath_buf *bf, 731 struct list_head *bf_head) 732 { 733 struct ieee80211_hw *hw = sc->hw; 734 struct ieee80211_tx_info *info; 735 struct ieee80211_sta *sta; 736 struct ieee80211_hdr *hdr; 737 struct ath_atx_tid *tid = NULL; 738 bool txok, flush; 739 740 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 741 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 742 txq->axq_tx_inprogress = false; 743 744 txq->axq_depth--; 745 if (bf_is_ampdu_not_probing(bf)) 746 txq->axq_ampdu_depth--; 747 748 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 749 ts->ts_rateindex); 750 751 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 752 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 753 if (sta) { 754 struct ath_node *an = (struct ath_node *)sta->drv_priv; 755 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu); 756 ath_tx_count_airtime(sc, an, tid, bf, ts); 757 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 758 tid->clear_ps_filter = true; 759 } 760 761 if (!bf_isampdu(bf)) { 762 if (!flush) { 763 info = IEEE80211_SKB_CB(bf->bf_mpdu); 764 memcpy(info->control.rates, bf->rates, 765 sizeof(info->control.rates)); 766 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 767 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts); 768 } 769 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok); 770 } else 771 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok); 772 773 if (!flush) 774 ath_txq_schedule(sc, txq); 775 } 776 777 static bool ath_lookup_legacy(struct ath_buf *bf) 778 { 779 struct sk_buff *skb; 780 struct ieee80211_tx_info *tx_info; 781 struct ieee80211_tx_rate *rates; 782 int i; 783 784 skb = bf->bf_mpdu; 785 tx_info = IEEE80211_SKB_CB(skb); 786 rates = tx_info->control.rates; 787 788 for (i = 0; i < 4; i++) { 789 if (!rates[i].count || rates[i].idx < 0) 790 break; 791 792 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 793 return true; 794 } 795 796 return false; 797 } 798 799 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 800 struct ath_atx_tid *tid) 801 { 802 struct sk_buff *skb; 803 struct ieee80211_tx_info *tx_info; 804 struct ieee80211_tx_rate *rates; 805 u32 max_4ms_framelen, frmlen; 806 u16 aggr_limit, bt_aggr_limit, legacy = 0; 807 int q = tid->txq->mac80211_qnum; 808 int i; 809 810 skb = bf->bf_mpdu; 811 tx_info = IEEE80211_SKB_CB(skb); 812 rates = bf->rates; 813 814 /* 815 * Find the lowest frame length among the rate series that will have a 816 * 4ms (or TXOP limited) transmit duration. 817 */ 818 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 819 820 for (i = 0; i < 4; i++) { 821 int modeidx; 822 823 if (!rates[i].count) 824 continue; 825 826 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 827 legacy = 1; 828 break; 829 } 830 831 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 832 modeidx = MCS_HT40; 833 else 834 modeidx = MCS_HT20; 835 836 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 837 modeidx++; 838 839 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 840 max_4ms_framelen = min(max_4ms_framelen, frmlen); 841 } 842 843 /* 844 * limit aggregate size by the minimum rate if rate selected is 845 * not a probe rate, if rate selected is a probe rate then 846 * avoid aggregation of this packet. 847 */ 848 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 849 return 0; 850 851 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 852 853 /* 854 * Override the default aggregation limit for BTCOEX. 855 */ 856 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 857 if (bt_aggr_limit) 858 aggr_limit = bt_aggr_limit; 859 860 if (tid->an->maxampdu) 861 aggr_limit = min(aggr_limit, tid->an->maxampdu); 862 863 return aggr_limit; 864 } 865 866 /* 867 * Returns the number of delimiters to be added to 868 * meet the minimum required mpdudensity. 869 */ 870 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 871 struct ath_buf *bf, u16 frmlen, 872 bool first_subfrm) 873 { 874 #define FIRST_DESC_NDELIMS 60 875 u32 nsymbits, nsymbols; 876 u16 minlen; 877 u8 flags, rix; 878 int width, streams, half_gi, ndelim, mindelim; 879 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 880 881 /* Select standard number of delimiters based on frame length alone */ 882 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 883 884 /* 885 * If encryption enabled, hardware requires some more padding between 886 * subframes. 887 * TODO - this could be improved to be dependent on the rate. 888 * The hardware can keep up at lower rates, but not higher rates 889 */ 890 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 891 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 892 ndelim += ATH_AGGR_ENCRYPTDELIM; 893 894 /* 895 * Add delimiter when using RTS/CTS with aggregation 896 * and non enterprise AR9003 card 897 */ 898 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 899 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 900 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 901 902 /* 903 * Convert desired mpdu density from microeconds to bytes based 904 * on highest rate in rate series (i.e. first rate) to determine 905 * required minimum length for subframe. Take into account 906 * whether high rate is 20 or 40Mhz and half or full GI. 907 * 908 * If there is no mpdu density restriction, no further calculation 909 * is needed. 910 */ 911 912 if (tid->an->mpdudensity == 0) 913 return ndelim; 914 915 rix = bf->rates[0].idx; 916 flags = bf->rates[0].flags; 917 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 918 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 919 920 if (half_gi) 921 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 922 else 923 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 924 925 if (nsymbols == 0) 926 nsymbols = 1; 927 928 streams = HT_RC_2_STREAMS(rix); 929 nsymbits = bits_per_symbol[rix % 8][width] * streams; 930 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 931 932 if (frmlen < minlen) { 933 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 934 ndelim = max(mindelim, ndelim); 935 } 936 937 return ndelim; 938 } 939 940 static struct ath_buf * 941 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 942 struct ath_atx_tid *tid) 943 { 944 struct ieee80211_tx_info *tx_info; 945 struct ath_frame_info *fi; 946 struct sk_buff *skb, *first_skb = NULL; 947 struct ath_buf *bf; 948 u16 seqno; 949 950 while (1) { 951 skb = ath_tid_dequeue(tid); 952 if (!skb) 953 break; 954 955 fi = get_frame_info(skb); 956 bf = fi->bf; 957 if (!fi->bf) 958 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 959 else 960 bf->bf_state.stale = false; 961 962 if (!bf) { 963 ath_txq_skb_done(sc, txq, skb); 964 ieee80211_free_txskb(sc->hw, skb); 965 continue; 966 } 967 968 bf->bf_next = NULL; 969 bf->bf_lastbf = bf; 970 971 tx_info = IEEE80211_SKB_CB(skb); 972 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 973 974 /* 975 * No aggregation session is running, but there may be frames 976 * from a previous session or a failed attempt in the queue. 977 * Send them out as normal data frames 978 */ 979 if (!tid->active) 980 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 981 982 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 983 bf->bf_state.bf_type = 0; 984 return bf; 985 } 986 987 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 988 seqno = bf->bf_state.seqno; 989 990 /* do not step over block-ack window */ 991 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 992 __skb_queue_tail(&tid->retry_q, skb); 993 994 /* If there are other skbs in the retry q, they are 995 * probably within the BAW, so loop immediately to get 996 * one of them. Otherwise the queue can get stuck. */ 997 if (!skb_queue_is_first(&tid->retry_q, skb) && 998 !WARN_ON(skb == first_skb)) { 999 if(!first_skb) /* infinite loop prevention */ 1000 first_skb = skb; 1001 continue; 1002 } 1003 break; 1004 } 1005 1006 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 1007 struct ath_tx_status ts = {}; 1008 struct list_head bf_head; 1009 1010 INIT_LIST_HEAD(&bf_head); 1011 list_add(&bf->list, &bf_head); 1012 ath_tx_update_baw(sc, tid, seqno); 1013 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 1014 continue; 1015 } 1016 1017 return bf; 1018 } 1019 1020 return NULL; 1021 } 1022 1023 static int 1024 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 1025 struct ath_atx_tid *tid, struct list_head *bf_q, 1026 struct ath_buf *bf_first) 1027 { 1028 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 1029 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1030 int nframes = 0, ndelim; 1031 u16 aggr_limit = 0, al = 0, bpad = 0, 1032 al_delta, h_baw = tid->baw_size / 2; 1033 struct ieee80211_tx_info *tx_info; 1034 struct ath_frame_info *fi; 1035 struct sk_buff *skb; 1036 1037 1038 bf = bf_first; 1039 aggr_limit = ath_lookup_rate(sc, bf, tid); 1040 1041 while (bf) 1042 { 1043 skb = bf->bf_mpdu; 1044 fi = get_frame_info(skb); 1045 1046 /* do not exceed aggregation limit */ 1047 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 1048 if (nframes) { 1049 if (aggr_limit < al + bpad + al_delta || 1050 ath_lookup_legacy(bf) || nframes >= h_baw) 1051 goto stop; 1052 1053 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1054 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 1055 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 1056 goto stop; 1057 } 1058 1059 /* add padding for previous frame to aggregation length */ 1060 al += bpad + al_delta; 1061 1062 /* 1063 * Get the delimiters needed to meet the MPDU 1064 * density for this node. 1065 */ 1066 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 1067 !nframes); 1068 bpad = PADBYTES(al_delta) + (ndelim << 2); 1069 1070 nframes++; 1071 bf->bf_next = NULL; 1072 1073 /* link buffers of this frame to the aggregate */ 1074 if (!fi->baw_tracked) 1075 ath_tx_addto_baw(sc, tid, bf); 1076 bf->bf_state.ndelim = ndelim; 1077 1078 list_add_tail(&bf->list, bf_q); 1079 if (bf_prev) 1080 bf_prev->bf_next = bf; 1081 1082 bf_prev = bf; 1083 1084 bf = ath_tx_get_tid_subframe(sc, txq, tid); 1085 } 1086 goto finish; 1087 stop: 1088 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1089 finish: 1090 bf = bf_first; 1091 bf->bf_lastbf = bf_prev; 1092 1093 if (bf == bf_prev) { 1094 al = get_frame_info(bf->bf_mpdu)->framelen; 1095 bf->bf_state.bf_type = BUF_AMPDU; 1096 } else { 1097 TX_STAT_INC(txq->axq_qnum, a_aggr); 1098 } 1099 1100 return al; 1101 #undef PADBYTES 1102 } 1103 1104 /* 1105 * rix - rate index 1106 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1107 * width - 0 for 20 MHz, 1 for 40 MHz 1108 * half_gi - to use 4us v/s 3.6 us for symbol time 1109 */ 1110 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1111 int width, int half_gi, bool shortPreamble) 1112 { 1113 u32 nbits, nsymbits, duration, nsymbols; 1114 int streams; 1115 1116 /* find number of symbols: PLCP + data */ 1117 streams = HT_RC_2_STREAMS(rix); 1118 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1119 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1120 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1121 1122 if (!half_gi) 1123 duration = SYMBOL_TIME(nsymbols); 1124 else 1125 duration = SYMBOL_TIME_HALFGI(nsymbols); 1126 1127 /* addup duration for legacy/ht training and signal fields */ 1128 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1129 1130 return duration; 1131 } 1132 1133 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1134 { 1135 int streams = HT_RC_2_STREAMS(mcs); 1136 int symbols, bits; 1137 int bytes = 0; 1138 1139 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1140 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1141 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1142 bits -= OFDM_PLCP_BITS; 1143 bytes = bits / 8; 1144 if (bytes > 65532) 1145 bytes = 65532; 1146 1147 return bytes; 1148 } 1149 1150 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1151 { 1152 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1153 int mcs; 1154 1155 /* 4ms is the default (and maximum) duration */ 1156 if (!txop || txop > 4096) 1157 txop = 4096; 1158 1159 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1160 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1161 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1162 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1163 for (mcs = 0; mcs < 32; mcs++) { 1164 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1165 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1166 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1167 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1168 } 1169 } 1170 1171 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf, 1172 u8 rateidx, bool is_40, bool is_cck) 1173 { 1174 u8 max_power; 1175 struct sk_buff *skb; 1176 struct ath_frame_info *fi; 1177 struct ieee80211_tx_info *info; 1178 struct ath_hw *ah = sc->sc_ah; 1179 1180 if (sc->tx99_state || !ah->tpc_enabled) 1181 return MAX_RATE_POWER; 1182 1183 skb = bf->bf_mpdu; 1184 fi = get_frame_info(skb); 1185 info = IEEE80211_SKB_CB(skb); 1186 1187 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1188 int txpower = fi->tx_power; 1189 1190 if (is_40) { 1191 u8 power_ht40delta; 1192 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 1193 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah); 1194 1195 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) { 1196 bool is_2ghz; 1197 struct modal_eep_header *pmodal; 1198 1199 is_2ghz = info->band == NL80211_BAND_2GHZ; 1200 pmodal = &eep->modalHeader[is_2ghz]; 1201 power_ht40delta = pmodal->ht40PowerIncForPdadc; 1202 } else { 1203 power_ht40delta = 2; 1204 } 1205 txpower += power_ht40delta; 1206 } 1207 1208 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) || 1209 AR_SREV_9271(ah)) { 1210 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB; 1211 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 1212 s8 power_offset; 1213 1214 power_offset = ah->eep_ops->get_eeprom(ah, 1215 EEP_PWR_TABLE_OFFSET); 1216 txpower -= 2 * power_offset; 1217 } 1218 1219 if (OLC_FOR_AR9280_20_LATER && is_cck) 1220 txpower -= 2; 1221 1222 txpower = max(txpower, 0); 1223 max_power = min_t(u8, ah->tx_power[rateidx], txpower); 1224 1225 /* XXX: clamp minimum TX power at 1 for AR9160 since if 1226 * max_power is set to 0, frames are transmitted at max 1227 * TX power 1228 */ 1229 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah)) 1230 max_power = 1; 1231 } else if (!bf->bf_state.bfs_paprd) { 1232 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC)) 1233 max_power = min_t(u8, ah->tx_power_stbc[rateidx], 1234 fi->tx_power); 1235 else 1236 max_power = min_t(u8, ah->tx_power[rateidx], 1237 fi->tx_power); 1238 } else { 1239 max_power = ah->paprd_training_power; 1240 } 1241 1242 return max_power; 1243 } 1244 1245 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1246 struct ath_tx_info *info, int len, bool rts) 1247 { 1248 struct ath_hw *ah = sc->sc_ah; 1249 struct ath_common *common = ath9k_hw_common(ah); 1250 struct sk_buff *skb; 1251 struct ieee80211_tx_info *tx_info; 1252 struct ieee80211_tx_rate *rates; 1253 const struct ieee80211_rate *rate; 1254 struct ieee80211_hdr *hdr; 1255 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1256 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1257 int i; 1258 u8 rix = 0; 1259 1260 skb = bf->bf_mpdu; 1261 tx_info = IEEE80211_SKB_CB(skb); 1262 rates = bf->rates; 1263 hdr = (struct ieee80211_hdr *)skb->data; 1264 1265 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1266 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1267 info->rtscts_rate = fi->rtscts_rate; 1268 1269 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1270 bool is_40, is_sgi, is_sp, is_cck; 1271 int phy; 1272 1273 if (!rates[i].count || (rates[i].idx < 0)) 1274 continue; 1275 1276 rix = rates[i].idx; 1277 info->rates[i].Tries = rates[i].count; 1278 1279 /* 1280 * Handle RTS threshold for unaggregated HT frames. 1281 */ 1282 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1283 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1284 unlikely(rts_thresh != (u32) -1)) { 1285 if (!rts_thresh || (len > rts_thresh)) 1286 rts = true; 1287 } 1288 1289 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1290 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1291 info->flags |= ATH9K_TXDESC_RTSENA; 1292 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1293 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1294 info->flags |= ATH9K_TXDESC_CTSENA; 1295 } 1296 1297 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1298 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1299 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1300 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1301 1302 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1303 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1304 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1305 1306 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1307 /* MCS rates */ 1308 info->rates[i].Rate = rix | 0x80; 1309 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1310 ah->txchainmask, info->rates[i].Rate); 1311 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1312 is_40, is_sgi, is_sp); 1313 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1314 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1315 1316 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, 1317 is_40, false); 1318 continue; 1319 } 1320 1321 /* legacy rates */ 1322 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1323 if ((tx_info->band == NL80211_BAND_2GHZ) && 1324 !(rate->flags & IEEE80211_RATE_ERP_G)) 1325 phy = WLAN_RC_PHY_CCK; 1326 else 1327 phy = WLAN_RC_PHY_OFDM; 1328 1329 info->rates[i].Rate = rate->hw_value; 1330 if (rate->hw_value_short) { 1331 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1332 info->rates[i].Rate |= rate->hw_value_short; 1333 } else { 1334 is_sp = false; 1335 } 1336 1337 if (bf->bf_state.bfs_paprd) 1338 info->rates[i].ChSel = ah->txchainmask; 1339 else 1340 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1341 ah->txchainmask, info->rates[i].Rate); 1342 1343 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1344 phy, rate->bitrate * 100, len, rix, is_sp); 1345 1346 is_cck = IS_CCK_RATE(info->rates[i].Rate); 1347 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false, 1348 is_cck); 1349 } 1350 1351 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1352 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1353 info->flags &= ~ATH9K_TXDESC_RTSENA; 1354 1355 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1356 if (info->flags & ATH9K_TXDESC_RTSENA) 1357 info->flags &= ~ATH9K_TXDESC_CTSENA; 1358 } 1359 1360 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1361 { 1362 struct ieee80211_hdr *hdr; 1363 enum ath9k_pkt_type htype; 1364 __le16 fc; 1365 1366 hdr = (struct ieee80211_hdr *)skb->data; 1367 fc = hdr->frame_control; 1368 1369 if (ieee80211_is_beacon(fc)) 1370 htype = ATH9K_PKT_TYPE_BEACON; 1371 else if (ieee80211_is_probe_resp(fc)) 1372 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1373 else if (ieee80211_is_atim(fc)) 1374 htype = ATH9K_PKT_TYPE_ATIM; 1375 else if (ieee80211_is_pspoll(fc)) 1376 htype = ATH9K_PKT_TYPE_PSPOLL; 1377 else 1378 htype = ATH9K_PKT_TYPE_NORMAL; 1379 1380 return htype; 1381 } 1382 1383 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1384 struct ath_txq *txq, int len) 1385 { 1386 struct ath_hw *ah = sc->sc_ah; 1387 struct ath_buf *bf_first = NULL; 1388 struct ath_tx_info info; 1389 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1390 bool rts = false; 1391 1392 memset(&info, 0, sizeof(info)); 1393 info.is_first = true; 1394 info.is_last = true; 1395 info.qcu = txq->axq_qnum; 1396 1397 while (bf) { 1398 struct sk_buff *skb = bf->bf_mpdu; 1399 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1400 struct ath_frame_info *fi = get_frame_info(skb); 1401 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1402 1403 info.type = get_hw_packet_type(skb); 1404 if (bf->bf_next) 1405 info.link = bf->bf_next->bf_daddr; 1406 else 1407 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1408 1409 if (!bf_first) { 1410 bf_first = bf; 1411 1412 if (!sc->tx99_state) 1413 info.flags = ATH9K_TXDESC_INTREQ; 1414 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1415 txq == sc->tx.uapsdq) 1416 info.flags |= ATH9K_TXDESC_CLRDMASK; 1417 1418 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1419 info.flags |= ATH9K_TXDESC_NOACK; 1420 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1421 info.flags |= ATH9K_TXDESC_LDPC; 1422 1423 if (bf->bf_state.bfs_paprd) 1424 info.flags |= (u32) bf->bf_state.bfs_paprd << 1425 ATH9K_TXDESC_PAPRD_S; 1426 1427 /* 1428 * mac80211 doesn't handle RTS threshold for HT because 1429 * the decision has to be taken based on AMPDU length 1430 * and aggregation is done entirely inside ath9k. 1431 * Set the RTS/CTS flag for the first subframe based 1432 * on the threshold. 1433 */ 1434 if (aggr && (bf == bf_first) && 1435 unlikely(rts_thresh != (u32) -1)) { 1436 /* 1437 * "len" is the size of the entire AMPDU. 1438 */ 1439 if (!rts_thresh || (len > rts_thresh)) 1440 rts = true; 1441 } 1442 1443 if (!aggr) 1444 len = fi->framelen; 1445 1446 ath_buf_set_rate(sc, bf, &info, len, rts); 1447 } 1448 1449 info.buf_addr[0] = bf->bf_buf_addr; 1450 info.buf_len[0] = skb->len; 1451 info.pkt_len = fi->framelen; 1452 info.keyix = fi->keyix; 1453 info.keytype = fi->keytype; 1454 1455 if (aggr) { 1456 if (bf == bf_first) 1457 info.aggr = AGGR_BUF_FIRST; 1458 else if (bf == bf_first->bf_lastbf) 1459 info.aggr = AGGR_BUF_LAST; 1460 else 1461 info.aggr = AGGR_BUF_MIDDLE; 1462 1463 info.ndelim = bf->bf_state.ndelim; 1464 info.aggr_len = len; 1465 } 1466 1467 if (bf == bf_first->bf_lastbf) 1468 bf_first = NULL; 1469 1470 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1471 bf = bf->bf_next; 1472 } 1473 } 1474 1475 static void 1476 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1477 struct ath_atx_tid *tid, struct list_head *bf_q, 1478 struct ath_buf *bf_first) 1479 { 1480 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1481 int nframes = 0; 1482 1483 do { 1484 struct ieee80211_tx_info *tx_info; 1485 1486 nframes++; 1487 list_add_tail(&bf->list, bf_q); 1488 if (bf_prev) 1489 bf_prev->bf_next = bf; 1490 bf_prev = bf; 1491 1492 if (nframes >= 2) 1493 break; 1494 1495 bf = ath_tx_get_tid_subframe(sc, txq, tid); 1496 if (!bf) 1497 break; 1498 1499 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1500 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 1501 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1502 break; 1503 } 1504 1505 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1506 } while (1); 1507 } 1508 1509 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1510 struct ath_atx_tid *tid) 1511 { 1512 struct ath_buf *bf; 1513 struct ieee80211_tx_info *tx_info; 1514 struct list_head bf_q; 1515 int aggr_len = 0; 1516 bool aggr; 1517 1518 if (!ath_tid_has_buffered(tid)) 1519 return false; 1520 1521 INIT_LIST_HEAD(&bf_q); 1522 1523 bf = ath_tx_get_tid_subframe(sc, txq, tid); 1524 if (!bf) 1525 return false; 1526 1527 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1528 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1529 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1530 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1531 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1532 return false; 1533 } 1534 1535 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1536 if (aggr) 1537 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf); 1538 else 1539 ath_tx_form_burst(sc, txq, tid, &bf_q, bf); 1540 1541 if (list_empty(&bf_q)) 1542 return false; 1543 1544 if (tid->clear_ps_filter || tid->an->no_ps_filter) { 1545 tid->clear_ps_filter = false; 1546 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1547 } 1548 1549 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1550 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1551 return true; 1552 } 1553 1554 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1555 u16 tid, u16 *ssn) 1556 { 1557 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1558 struct ath_atx_tid *txtid; 1559 struct ath_txq *txq; 1560 struct ath_node *an; 1561 u8 density; 1562 1563 ath_dbg(common, XMIT, "%s called\n", __func__); 1564 1565 an = (struct ath_node *)sta->drv_priv; 1566 txtid = ATH_AN_2_TID(an, tid); 1567 txq = txtid->txq; 1568 1569 ath_txq_lock(sc, txq); 1570 1571 /* update ampdu factor/density, they may have changed. This may happen 1572 * in HT IBSS when a beacon with HT-info is received after the station 1573 * has already been added. 1574 */ 1575 if (sta->ht_cap.ht_supported) { 1576 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1577 sta->ht_cap.ampdu_factor)) - 1; 1578 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1579 an->mpdudensity = density; 1580 } 1581 1582 txtid->active = true; 1583 *ssn = txtid->seq_start = txtid->seq_next; 1584 txtid->bar_index = -1; 1585 1586 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1587 txtid->baw_head = txtid->baw_tail = 0; 1588 1589 ath_txq_unlock_complete(sc, txq); 1590 1591 return 0; 1592 } 1593 1594 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1595 { 1596 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1597 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1598 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1599 struct ath_txq *txq = txtid->txq; 1600 1601 ath_dbg(common, XMIT, "%s called\n", __func__); 1602 1603 ath_txq_lock(sc, txq); 1604 txtid->active = false; 1605 ath_tx_flush_tid(sc, txtid); 1606 ath_txq_unlock_complete(sc, txq); 1607 } 1608 1609 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1610 struct ath_node *an) 1611 { 1612 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1613 struct ath_atx_tid *tid; 1614 struct ath_txq *txq; 1615 int tidno; 1616 1617 ath_dbg(common, XMIT, "%s called\n", __func__); 1618 1619 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1620 tid = ath_node_to_tid(an, tidno); 1621 txq = tid->txq; 1622 1623 ath_txq_lock(sc, txq); 1624 1625 if (list_empty(&tid->list)) { 1626 ath_txq_unlock(sc, txq); 1627 continue; 1628 } 1629 1630 if (!skb_queue_empty(&tid->retry_q)) 1631 ieee80211_sta_set_buffered(sta, tid->tidno, true); 1632 1633 list_del_init(&tid->list); 1634 1635 ath_txq_unlock(sc, txq); 1636 } 1637 } 1638 1639 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1640 { 1641 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1642 struct ath_atx_tid *tid; 1643 struct ath_txq *txq; 1644 int tidno; 1645 1646 ath_dbg(common, XMIT, "%s called\n", __func__); 1647 1648 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1649 tid = ath_node_to_tid(an, tidno); 1650 txq = tid->txq; 1651 1652 ath_txq_lock(sc, txq); 1653 tid->clear_ps_filter = true; 1654 if (ath_tid_has_buffered(tid)) { 1655 ath_tx_queue_tid(sc, tid); 1656 ath_txq_schedule(sc, txq); 1657 } 1658 ath_txq_unlock_complete(sc, txq); 1659 } 1660 } 1661 1662 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1663 struct ieee80211_sta *sta, 1664 u16 tids, int nframes, 1665 enum ieee80211_frame_release_type reason, 1666 bool more_data) 1667 { 1668 struct ath_softc *sc = hw->priv; 1669 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1670 struct ath_txq *txq = sc->tx.uapsdq; 1671 struct ieee80211_tx_info *info; 1672 struct list_head bf_q; 1673 struct ath_buf *bf_tail = NULL, *bf; 1674 int sent = 0; 1675 int i; 1676 1677 INIT_LIST_HEAD(&bf_q); 1678 for (i = 0; tids && nframes; i++, tids >>= 1) { 1679 struct ath_atx_tid *tid; 1680 1681 if (!(tids & 1)) 1682 continue; 1683 1684 tid = ATH_AN_2_TID(an, i); 1685 1686 ath_txq_lock(sc, tid->txq); 1687 while (nframes > 0) { 1688 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid); 1689 if (!bf) 1690 break; 1691 1692 list_add_tail(&bf->list, &bf_q); 1693 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1694 if (bf_isampdu(bf)) { 1695 ath_tx_addto_baw(sc, tid, bf); 1696 bf->bf_state.bf_type &= ~BUF_AGGR; 1697 } 1698 if (bf_tail) 1699 bf_tail->bf_next = bf; 1700 1701 bf_tail = bf; 1702 nframes--; 1703 sent++; 1704 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1705 1706 if (an->sta && skb_queue_empty(&tid->retry_q)) 1707 ieee80211_sta_set_buffered(an->sta, i, false); 1708 } 1709 ath_txq_unlock_complete(sc, tid->txq); 1710 } 1711 1712 if (list_empty(&bf_q)) 1713 return; 1714 1715 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1716 info->flags |= IEEE80211_TX_STATUS_EOSP; 1717 1718 bf = list_first_entry(&bf_q, struct ath_buf, list); 1719 ath_txq_lock(sc, txq); 1720 ath_tx_fill_desc(sc, bf, txq, 0); 1721 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1722 ath_txq_unlock(sc, txq); 1723 } 1724 1725 /********************/ 1726 /* Queue Management */ 1727 /********************/ 1728 1729 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1730 { 1731 struct ath_hw *ah = sc->sc_ah; 1732 struct ath9k_tx_queue_info qi; 1733 static const int subtype_txq_to_hwq[] = { 1734 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1735 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1736 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1737 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1738 }; 1739 int axq_qnum, i; 1740 1741 memset(&qi, 0, sizeof(qi)); 1742 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1743 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1744 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1745 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1746 qi.tqi_physCompBuf = 0; 1747 1748 /* 1749 * Enable interrupts only for EOL and DESC conditions. 1750 * We mark tx descriptors to receive a DESC interrupt 1751 * when a tx queue gets deep; otherwise waiting for the 1752 * EOL to reap descriptors. Note that this is done to 1753 * reduce interrupt load and this only defers reaping 1754 * descriptors, never transmitting frames. Aside from 1755 * reducing interrupts this also permits more concurrency. 1756 * The only potential downside is if the tx queue backs 1757 * up in which case the top half of the kernel may backup 1758 * due to a lack of tx descriptors. 1759 * 1760 * The UAPSD queue is an exception, since we take a desc- 1761 * based intr on the EOSP frames. 1762 */ 1763 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1764 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1765 } else { 1766 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1767 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1768 else 1769 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1770 TXQ_FLAG_TXDESCINT_ENABLE; 1771 } 1772 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1773 if (axq_qnum == -1) { 1774 /* 1775 * NB: don't print a message, this happens 1776 * normally on parts with too few tx queues 1777 */ 1778 return NULL; 1779 } 1780 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1781 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1782 1783 txq->axq_qnum = axq_qnum; 1784 txq->mac80211_qnum = -1; 1785 txq->axq_link = NULL; 1786 __skb_queue_head_init(&txq->complete_q); 1787 INIT_LIST_HEAD(&txq->axq_q); 1788 spin_lock_init(&txq->axq_lock); 1789 txq->axq_depth = 0; 1790 txq->axq_ampdu_depth = 0; 1791 txq->axq_tx_inprogress = false; 1792 sc->tx.txqsetup |= 1<<axq_qnum; 1793 1794 txq->txq_headidx = txq->txq_tailidx = 0; 1795 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1796 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1797 } 1798 return &sc->tx.txq[axq_qnum]; 1799 } 1800 1801 int ath_txq_update(struct ath_softc *sc, int qnum, 1802 struct ath9k_tx_queue_info *qinfo) 1803 { 1804 struct ath_hw *ah = sc->sc_ah; 1805 int error = 0; 1806 struct ath9k_tx_queue_info qi; 1807 1808 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1809 1810 ath9k_hw_get_txq_props(ah, qnum, &qi); 1811 qi.tqi_aifs = qinfo->tqi_aifs; 1812 qi.tqi_cwmin = qinfo->tqi_cwmin; 1813 qi.tqi_cwmax = qinfo->tqi_cwmax; 1814 qi.tqi_burstTime = qinfo->tqi_burstTime; 1815 qi.tqi_readyTime = qinfo->tqi_readyTime; 1816 1817 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1818 ath_err(ath9k_hw_common(sc->sc_ah), 1819 "Unable to update hardware queue %u!\n", qnum); 1820 error = -EIO; 1821 } else { 1822 ath9k_hw_resettxqueue(ah, qnum); 1823 } 1824 1825 return error; 1826 } 1827 1828 int ath_cabq_update(struct ath_softc *sc) 1829 { 1830 struct ath9k_tx_queue_info qi; 1831 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1832 int qnum = sc->beacon.cabq->axq_qnum; 1833 1834 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1835 1836 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1837 ATH_CABQ_READY_TIME) / 100; 1838 ath_txq_update(sc, qnum, &qi); 1839 1840 return 0; 1841 } 1842 1843 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1844 struct list_head *list) 1845 { 1846 struct ath_buf *bf, *lastbf; 1847 struct list_head bf_head; 1848 struct ath_tx_status ts; 1849 1850 memset(&ts, 0, sizeof(ts)); 1851 ts.ts_status = ATH9K_TX_FLUSH; 1852 INIT_LIST_HEAD(&bf_head); 1853 1854 while (!list_empty(list)) { 1855 bf = list_first_entry(list, struct ath_buf, list); 1856 1857 if (bf->bf_state.stale) { 1858 list_del(&bf->list); 1859 1860 ath_tx_return_buffer(sc, bf); 1861 continue; 1862 } 1863 1864 lastbf = bf->bf_lastbf; 1865 list_cut_position(&bf_head, list, &lastbf->list); 1866 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1867 } 1868 } 1869 1870 /* 1871 * Drain a given TX queue (could be Beacon or Data) 1872 * 1873 * This assumes output has been stopped and 1874 * we do not need to block ath_tx_tasklet. 1875 */ 1876 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1877 { 1878 rcu_read_lock(); 1879 ath_txq_lock(sc, txq); 1880 1881 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1882 int idx = txq->txq_tailidx; 1883 1884 while (!list_empty(&txq->txq_fifo[idx])) { 1885 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1886 1887 INCR(idx, ATH_TXFIFO_DEPTH); 1888 } 1889 txq->txq_tailidx = idx; 1890 } 1891 1892 txq->axq_link = NULL; 1893 txq->axq_tx_inprogress = false; 1894 ath_drain_txq_list(sc, txq, &txq->axq_q); 1895 1896 ath_txq_unlock_complete(sc, txq); 1897 rcu_read_unlock(); 1898 } 1899 1900 bool ath_drain_all_txq(struct ath_softc *sc) 1901 { 1902 struct ath_hw *ah = sc->sc_ah; 1903 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1904 struct ath_txq *txq; 1905 int i; 1906 u32 npend = 0; 1907 1908 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1909 return true; 1910 1911 ath9k_hw_abort_tx_dma(ah); 1912 1913 /* Check if any queue remains active */ 1914 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1915 if (!ATH_TXQ_SETUP(sc, i)) 1916 continue; 1917 1918 if (!sc->tx.txq[i].axq_depth) 1919 continue; 1920 1921 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1922 npend |= BIT(i); 1923 } 1924 1925 if (npend) { 1926 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR); 1927 ath_dbg(common, RESET, 1928 "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1929 } 1930 1931 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1932 if (!ATH_TXQ_SETUP(sc, i)) 1933 continue; 1934 1935 txq = &sc->tx.txq[i]; 1936 ath_draintxq(sc, txq); 1937 } 1938 1939 return !npend; 1940 } 1941 1942 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1943 { 1944 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1945 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1946 } 1947 1948 /* For each acq entry, for each tid, try to schedule packets 1949 * for transmit until ampdu_depth has reached min Q depth. 1950 */ 1951 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1952 { 1953 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1954 struct ath_atx_tid *tid; 1955 struct list_head *tid_list; 1956 struct ath_acq *acq; 1957 bool active = AIRTIME_ACTIVE(sc->airtime_flags); 1958 1959 if (txq->mac80211_qnum < 0) 1960 return; 1961 1962 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1963 return; 1964 1965 spin_lock_bh(&sc->chan_lock); 1966 rcu_read_lock(); 1967 acq = &sc->cur_chan->acq[txq->mac80211_qnum]; 1968 1969 if (sc->cur_chan->stopped) 1970 goto out; 1971 1972 begin: 1973 tid_list = &acq->acq_new; 1974 if (list_empty(tid_list)) { 1975 tid_list = &acq->acq_old; 1976 if (list_empty(tid_list)) 1977 goto out; 1978 } 1979 tid = list_first_entry(tid_list, struct ath_atx_tid, list); 1980 1981 if (active && tid->an->airtime_deficit[txq->mac80211_qnum] <= 0) { 1982 spin_lock_bh(&acq->lock); 1983 tid->an->airtime_deficit[txq->mac80211_qnum] += ATH_AIRTIME_QUANTUM; 1984 list_move_tail(&tid->list, &acq->acq_old); 1985 spin_unlock_bh(&acq->lock); 1986 goto begin; 1987 } 1988 1989 if (!ath_tid_has_buffered(tid)) { 1990 spin_lock_bh(&acq->lock); 1991 if ((tid_list == &acq->acq_new) && !list_empty(&acq->acq_old)) 1992 list_move_tail(&tid->list, &acq->acq_old); 1993 else { 1994 list_del_init(&tid->list); 1995 } 1996 spin_unlock_bh(&acq->lock); 1997 goto begin; 1998 } 1999 2000 2001 /* 2002 * If we succeed in scheduling something, immediately restart to make 2003 * sure we keep the HW busy. 2004 */ 2005 if(ath_tx_sched_aggr(sc, txq, tid)) { 2006 if (!active) { 2007 spin_lock_bh(&acq->lock); 2008 list_move_tail(&tid->list, &acq->acq_old); 2009 spin_unlock_bh(&acq->lock); 2010 } 2011 goto begin; 2012 } 2013 2014 out: 2015 rcu_read_unlock(); 2016 spin_unlock_bh(&sc->chan_lock); 2017 } 2018 2019 void ath_txq_schedule_all(struct ath_softc *sc) 2020 { 2021 struct ath_txq *txq; 2022 int i; 2023 2024 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 2025 txq = sc->tx.txq_map[i]; 2026 2027 spin_lock_bh(&txq->axq_lock); 2028 ath_txq_schedule(sc, txq); 2029 spin_unlock_bh(&txq->axq_lock); 2030 } 2031 } 2032 2033 /***********/ 2034 /* TX, DMA */ 2035 /***********/ 2036 2037 /* 2038 * Insert a chain of ath_buf (descriptors) on a txq and 2039 * assume the descriptors are already chained together by caller. 2040 */ 2041 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 2042 struct list_head *head, bool internal) 2043 { 2044 struct ath_hw *ah = sc->sc_ah; 2045 struct ath_common *common = ath9k_hw_common(ah); 2046 struct ath_buf *bf, *bf_last; 2047 bool puttxbuf = false; 2048 bool edma; 2049 2050 /* 2051 * Insert the frame on the outbound list and 2052 * pass it on to the hardware. 2053 */ 2054 2055 if (list_empty(head)) 2056 return; 2057 2058 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 2059 bf = list_first_entry(head, struct ath_buf, list); 2060 bf_last = list_entry(head->prev, struct ath_buf, list); 2061 2062 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 2063 txq->axq_qnum, txq->axq_depth); 2064 2065 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 2066 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 2067 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 2068 puttxbuf = true; 2069 } else { 2070 list_splice_tail_init(head, &txq->axq_q); 2071 2072 if (txq->axq_link) { 2073 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 2074 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 2075 txq->axq_qnum, txq->axq_link, 2076 ito64(bf->bf_daddr), bf->bf_desc); 2077 } else if (!edma) 2078 puttxbuf = true; 2079 2080 txq->axq_link = bf_last->bf_desc; 2081 } 2082 2083 if (puttxbuf) { 2084 TX_STAT_INC(txq->axq_qnum, puttxbuf); 2085 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 2086 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 2087 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 2088 } 2089 2090 if (!edma || sc->tx99_state) { 2091 TX_STAT_INC(txq->axq_qnum, txstart); 2092 ath9k_hw_txstart(ah, txq->axq_qnum); 2093 } 2094 2095 if (!internal) { 2096 while (bf) { 2097 txq->axq_depth++; 2098 if (bf_is_ampdu_not_probing(bf)) 2099 txq->axq_ampdu_depth++; 2100 2101 bf_last = bf->bf_lastbf; 2102 bf = bf_last->bf_next; 2103 bf_last->bf_next = NULL; 2104 } 2105 } 2106 } 2107 2108 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2109 struct ath_atx_tid *tid, struct sk_buff *skb) 2110 { 2111 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2112 struct ath_frame_info *fi = get_frame_info(skb); 2113 struct list_head bf_head; 2114 struct ath_buf *bf = fi->bf; 2115 2116 INIT_LIST_HEAD(&bf_head); 2117 list_add_tail(&bf->list, &bf_head); 2118 bf->bf_state.bf_type = 0; 2119 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2120 bf->bf_state.bf_type = BUF_AMPDU; 2121 ath_tx_addto_baw(sc, tid, bf); 2122 } 2123 2124 bf->bf_next = NULL; 2125 bf->bf_lastbf = bf; 2126 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2127 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2128 TX_STAT_INC(txq->axq_qnum, queued); 2129 } 2130 2131 static void setup_frame_info(struct ieee80211_hw *hw, 2132 struct ieee80211_sta *sta, 2133 struct sk_buff *skb, 2134 int framelen) 2135 { 2136 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2137 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2138 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2139 const struct ieee80211_rate *rate; 2140 struct ath_frame_info *fi = get_frame_info(skb); 2141 struct ath_node *an = NULL; 2142 enum ath9k_key_type keytype; 2143 bool short_preamble = false; 2144 u8 txpower; 2145 2146 /* 2147 * We check if Short Preamble is needed for the CTS rate by 2148 * checking the BSS's global flag. 2149 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2150 */ 2151 if (tx_info->control.vif && 2152 tx_info->control.vif->bss_conf.use_short_preamble) 2153 short_preamble = true; 2154 2155 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2156 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2157 2158 if (sta) 2159 an = (struct ath_node *) sta->drv_priv; 2160 2161 if (tx_info->control.vif) { 2162 struct ieee80211_vif *vif = tx_info->control.vif; 2163 2164 txpower = 2 * vif->bss_conf.txpower; 2165 } else { 2166 struct ath_softc *sc = hw->priv; 2167 2168 txpower = sc->cur_chan->cur_txpower; 2169 } 2170 2171 memset(fi, 0, sizeof(*fi)); 2172 fi->txq = -1; 2173 if (hw_key) 2174 fi->keyix = hw_key->hw_key_idx; 2175 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2176 fi->keyix = an->ps_key; 2177 else 2178 fi->keyix = ATH9K_TXKEYIX_INVALID; 2179 fi->keytype = keytype; 2180 fi->framelen = framelen; 2181 fi->tx_power = txpower; 2182 2183 if (!rate) 2184 return; 2185 fi->rtscts_rate = rate->hw_value; 2186 if (short_preamble) 2187 fi->rtscts_rate |= rate->hw_value_short; 2188 } 2189 2190 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2191 { 2192 struct ath_hw *ah = sc->sc_ah; 2193 struct ath9k_channel *curchan = ah->curchan; 2194 2195 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2196 (chainmask == 0x7) && (rate < 0x90)) 2197 return 0x3; 2198 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2199 IS_CCK_RATE(rate)) 2200 return 0x2; 2201 else 2202 return chainmask; 2203 } 2204 2205 /* 2206 * Assign a descriptor (and sequence number if necessary, 2207 * and map buffer for DMA. Frees skb on error 2208 */ 2209 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2210 struct ath_txq *txq, 2211 struct ath_atx_tid *tid, 2212 struct sk_buff *skb) 2213 { 2214 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2215 struct ath_frame_info *fi = get_frame_info(skb); 2216 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2217 struct ath_buf *bf; 2218 int fragno; 2219 u16 seqno; 2220 2221 bf = ath_tx_get_buffer(sc); 2222 if (!bf) { 2223 ath_dbg(common, XMIT, "TX buffers are full\n"); 2224 return NULL; 2225 } 2226 2227 ATH_TXBUF_RESET(bf); 2228 2229 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2230 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2231 seqno = tid->seq_next; 2232 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2233 2234 if (fragno) 2235 hdr->seq_ctrl |= cpu_to_le16(fragno); 2236 2237 if (!ieee80211_has_morefrags(hdr->frame_control)) 2238 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2239 2240 bf->bf_state.seqno = seqno; 2241 } 2242 2243 bf->bf_mpdu = skb; 2244 2245 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2246 skb->len, DMA_TO_DEVICE); 2247 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2248 bf->bf_mpdu = NULL; 2249 bf->bf_buf_addr = 0; 2250 ath_err(ath9k_hw_common(sc->sc_ah), 2251 "dma_mapping_error() on TX\n"); 2252 ath_tx_return_buffer(sc, bf); 2253 return NULL; 2254 } 2255 2256 fi->bf = bf; 2257 2258 return bf; 2259 } 2260 2261 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2262 { 2263 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2264 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2265 struct ieee80211_vif *vif = info->control.vif; 2266 struct ath_vif *avp; 2267 2268 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2269 return; 2270 2271 if (!vif) 2272 return; 2273 2274 avp = (struct ath_vif *)vif->drv_priv; 2275 2276 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2277 avp->seq_no += 0x10; 2278 2279 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2280 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2281 } 2282 2283 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2284 struct ath_tx_control *txctl) 2285 { 2286 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2287 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2288 struct ieee80211_sta *sta = txctl->sta; 2289 struct ieee80211_vif *vif = info->control.vif; 2290 struct ath_vif *avp; 2291 struct ath_softc *sc = hw->priv; 2292 int frmlen = skb->len + FCS_LEN; 2293 int padpos, padsize; 2294 2295 /* NOTE: sta can be NULL according to net/mac80211.h */ 2296 if (sta) 2297 txctl->an = (struct ath_node *)sta->drv_priv; 2298 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2299 avp = (void *)vif->drv_priv; 2300 txctl->an = &avp->mcast_node; 2301 } 2302 2303 if (info->control.hw_key) 2304 frmlen += info->control.hw_key->icv_len; 2305 2306 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2307 2308 if ((vif && vif->type != NL80211_IFTYPE_AP && 2309 vif->type != NL80211_IFTYPE_AP_VLAN) || 2310 !ieee80211_is_data(hdr->frame_control)) 2311 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2312 2313 /* Add the padding after the header if this is not already done */ 2314 padpos = ieee80211_hdrlen(hdr->frame_control); 2315 padsize = padpos & 3; 2316 if (padsize && skb->len > padpos) { 2317 if (skb_headroom(skb) < padsize) 2318 return -ENOMEM; 2319 2320 skb_push(skb, padsize); 2321 memmove(skb->data, skb->data + padsize, padpos); 2322 } 2323 2324 setup_frame_info(hw, sta, skb, frmlen); 2325 return 0; 2326 } 2327 2328 2329 /* Upon failure caller should free skb */ 2330 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2331 struct ath_tx_control *txctl) 2332 { 2333 struct ieee80211_hdr *hdr; 2334 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2335 struct ieee80211_sta *sta = txctl->sta; 2336 struct ieee80211_vif *vif = info->control.vif; 2337 struct ath_frame_info *fi = get_frame_info(skb); 2338 struct ath_vif *avp = NULL; 2339 struct ath_softc *sc = hw->priv; 2340 struct ath_txq *txq = txctl->txq; 2341 struct ath_atx_tid *tid = NULL; 2342 struct ath_node *an = NULL; 2343 struct ath_buf *bf; 2344 bool ps_resp; 2345 int q, ret; 2346 2347 if (vif) 2348 avp = (void *)vif->drv_priv; 2349 2350 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE); 2351 2352 ret = ath_tx_prepare(hw, skb, txctl); 2353 if (ret) 2354 return ret; 2355 2356 hdr = (struct ieee80211_hdr *) skb->data; 2357 /* 2358 * At this point, the vif, hw_key and sta pointers in the tx control 2359 * info are no longer valid (overwritten by the ath_frame_info data. 2360 */ 2361 2362 q = skb_get_queue_mapping(skb); 2363 2364 if (ps_resp) 2365 txq = sc->tx.uapsdq; 2366 2367 if (txctl->sta) { 2368 an = (struct ath_node *) sta->drv_priv; 2369 tid = ath_get_skb_tid(sc, an, skb); 2370 } 2371 2372 ath_txq_lock(sc, txq); 2373 if (txq == sc->tx.txq_map[q]) { 2374 fi->txq = q; 2375 ++txq->pending_frames; 2376 } 2377 2378 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2379 if (!bf) { 2380 ath_txq_skb_done(sc, txq, skb); 2381 if (txctl->paprd) 2382 dev_kfree_skb_any(skb); 2383 else 2384 ieee80211_free_txskb(sc->hw, skb); 2385 goto out; 2386 } 2387 2388 bf->bf_state.bfs_paprd = txctl->paprd; 2389 2390 if (txctl->paprd) 2391 bf->bf_state.bfs_paprd_timestamp = jiffies; 2392 2393 ath_set_rates(vif, sta, bf); 2394 ath_tx_send_normal(sc, txq, tid, skb); 2395 2396 out: 2397 ath_txq_unlock(sc, txq); 2398 2399 return 0; 2400 } 2401 2402 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2403 struct sk_buff *skb) 2404 { 2405 struct ath_softc *sc = hw->priv; 2406 struct ath_tx_control txctl = { 2407 .txq = sc->beacon.cabq 2408 }; 2409 struct ath_tx_info info = {}; 2410 struct ieee80211_hdr *hdr; 2411 struct ath_buf *bf_tail = NULL; 2412 struct ath_buf *bf; 2413 LIST_HEAD(bf_q); 2414 int duration = 0; 2415 int max_duration; 2416 2417 max_duration = 2418 sc->cur_chan->beacon.beacon_interval * 1000 * 2419 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2420 2421 do { 2422 struct ath_frame_info *fi = get_frame_info(skb); 2423 2424 if (ath_tx_prepare(hw, skb, &txctl)) 2425 break; 2426 2427 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2428 if (!bf) 2429 break; 2430 2431 bf->bf_lastbf = bf; 2432 ath_set_rates(vif, NULL, bf); 2433 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2434 duration += info.rates[0].PktDuration; 2435 if (bf_tail) 2436 bf_tail->bf_next = bf; 2437 2438 list_add_tail(&bf->list, &bf_q); 2439 bf_tail = bf; 2440 skb = NULL; 2441 2442 if (duration > max_duration) 2443 break; 2444 2445 skb = ieee80211_get_buffered_bc(hw, vif); 2446 } while(skb); 2447 2448 if (skb) 2449 ieee80211_free_txskb(hw, skb); 2450 2451 if (list_empty(&bf_q)) 2452 return; 2453 2454 bf = list_first_entry(&bf_q, struct ath_buf, list); 2455 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2456 2457 if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) { 2458 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2459 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2460 sizeof(*hdr), DMA_TO_DEVICE); 2461 } 2462 2463 ath_txq_lock(sc, txctl.txq); 2464 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2465 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2466 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2467 ath_txq_unlock(sc, txctl.txq); 2468 } 2469 2470 /*****************/ 2471 /* TX Completion */ 2472 /*****************/ 2473 2474 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2475 int tx_flags, struct ath_txq *txq, 2476 struct ieee80211_sta *sta) 2477 { 2478 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2479 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2480 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2481 int padpos, padsize; 2482 unsigned long flags; 2483 2484 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2485 2486 if (sc->sc_ah->caldata) 2487 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2488 2489 if (!(tx_flags & ATH_TX_ERROR)) { 2490 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 2491 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 2492 else 2493 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2494 } 2495 2496 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 2497 padpos = ieee80211_hdrlen(hdr->frame_control); 2498 padsize = padpos & 3; 2499 if (padsize && skb->len>padpos+padsize) { 2500 /* 2501 * Remove MAC header padding before giving the frame back to 2502 * mac80211. 2503 */ 2504 memmove(skb->data + padsize, skb->data, padpos); 2505 skb_pull(skb, padsize); 2506 } 2507 } 2508 2509 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2510 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2511 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2512 ath_dbg(common, PS, 2513 "Going back to sleep after having received TX status (0x%lx)\n", 2514 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2515 PS_WAIT_FOR_CAB | 2516 PS_WAIT_FOR_PSPOLL_DATA | 2517 PS_WAIT_FOR_TX_ACK)); 2518 } 2519 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2520 2521 ath_txq_skb_done(sc, txq, skb); 2522 tx_info->status.status_driver_data[0] = sta; 2523 __skb_queue_tail(&txq->complete_q, skb); 2524 } 2525 2526 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2527 struct ath_txq *txq, struct list_head *bf_q, 2528 struct ieee80211_sta *sta, 2529 struct ath_tx_status *ts, int txok) 2530 { 2531 struct sk_buff *skb = bf->bf_mpdu; 2532 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2533 unsigned long flags; 2534 int tx_flags = 0; 2535 2536 if (!txok) 2537 tx_flags |= ATH_TX_ERROR; 2538 2539 if (ts->ts_status & ATH9K_TXERR_FILT) 2540 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2541 2542 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2543 bf->bf_buf_addr = 0; 2544 if (sc->tx99_state) 2545 goto skip_tx_complete; 2546 2547 if (bf->bf_state.bfs_paprd) { 2548 if (time_after(jiffies, 2549 bf->bf_state.bfs_paprd_timestamp + 2550 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2551 dev_kfree_skb_any(skb); 2552 else 2553 complete(&sc->paprd_complete); 2554 } else { 2555 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2556 ath_tx_complete(sc, skb, tx_flags, txq, sta); 2557 } 2558 skip_tx_complete: 2559 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2560 * accidentally reference it later. 2561 */ 2562 bf->bf_mpdu = NULL; 2563 2564 /* 2565 * Return the list of ath_buf of this mpdu to free queue 2566 */ 2567 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2568 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2569 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2570 } 2571 2572 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2573 struct ath_tx_status *ts, int nframes, int nbad, 2574 int txok) 2575 { 2576 struct sk_buff *skb = bf->bf_mpdu; 2577 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2578 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2579 struct ieee80211_hw *hw = sc->hw; 2580 struct ath_hw *ah = sc->sc_ah; 2581 u8 i, tx_rateindex; 2582 2583 if (txok) 2584 tx_info->status.ack_signal = ts->ts_rssi; 2585 2586 tx_rateindex = ts->ts_rateindex; 2587 WARN_ON(tx_rateindex >= hw->max_rates); 2588 2589 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2590 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2591 2592 BUG_ON(nbad > nframes); 2593 } 2594 tx_info->status.ampdu_len = nframes; 2595 tx_info->status.ampdu_ack_len = nframes - nbad; 2596 2597 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2598 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2599 /* 2600 * If an underrun error is seen assume it as an excessive 2601 * retry only if max frame trigger level has been reached 2602 * (2 KB for single stream, and 4 KB for dual stream). 2603 * Adjust the long retry as if the frame was tried 2604 * hw->max_rate_tries times to affect how rate control updates 2605 * PER for the failed rate. 2606 * In case of congestion on the bus penalizing this type of 2607 * underruns should help hardware actually transmit new frames 2608 * successfully by eventually preferring slower rates. 2609 * This itself should also alleviate congestion on the bus. 2610 */ 2611 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2612 ATH9K_TX_DELIM_UNDERRUN)) && 2613 ieee80211_is_data(hdr->frame_control) && 2614 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2615 tx_info->status.rates[tx_rateindex].count = 2616 hw->max_rate_tries; 2617 } 2618 2619 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2620 tx_info->status.rates[i].count = 0; 2621 tx_info->status.rates[i].idx = -1; 2622 } 2623 2624 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2625 } 2626 2627 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2628 { 2629 struct ath_hw *ah = sc->sc_ah; 2630 struct ath_common *common = ath9k_hw_common(ah); 2631 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2632 struct list_head bf_head; 2633 struct ath_desc *ds; 2634 struct ath_tx_status ts; 2635 int status; 2636 2637 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2638 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2639 txq->axq_link); 2640 2641 ath_txq_lock(sc, txq); 2642 for (;;) { 2643 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2644 break; 2645 2646 if (list_empty(&txq->axq_q)) { 2647 txq->axq_link = NULL; 2648 ath_txq_schedule(sc, txq); 2649 break; 2650 } 2651 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2652 2653 /* 2654 * There is a race condition that a BH gets scheduled 2655 * after sw writes TxE and before hw re-load the last 2656 * descriptor to get the newly chained one. 2657 * Software must keep the last DONE descriptor as a 2658 * holding descriptor - software does so by marking 2659 * it with the STALE flag. 2660 */ 2661 bf_held = NULL; 2662 if (bf->bf_state.stale) { 2663 bf_held = bf; 2664 if (list_is_last(&bf_held->list, &txq->axq_q)) 2665 break; 2666 2667 bf = list_entry(bf_held->list.next, struct ath_buf, 2668 list); 2669 } 2670 2671 lastbf = bf->bf_lastbf; 2672 ds = lastbf->bf_desc; 2673 2674 memset(&ts, 0, sizeof(ts)); 2675 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2676 if (status == -EINPROGRESS) 2677 break; 2678 2679 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2680 2681 /* 2682 * Remove ath_buf's of the same transmit unit from txq, 2683 * however leave the last descriptor back as the holding 2684 * descriptor for hw. 2685 */ 2686 lastbf->bf_state.stale = true; 2687 INIT_LIST_HEAD(&bf_head); 2688 if (!list_is_singular(&lastbf->list)) 2689 list_cut_position(&bf_head, 2690 &txq->axq_q, lastbf->list.prev); 2691 2692 if (bf_held) { 2693 list_del(&bf_held->list); 2694 ath_tx_return_buffer(sc, bf_held); 2695 } 2696 2697 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2698 } 2699 ath_txq_unlock_complete(sc, txq); 2700 } 2701 2702 void ath_tx_tasklet(struct ath_softc *sc) 2703 { 2704 struct ath_hw *ah = sc->sc_ah; 2705 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2706 int i; 2707 2708 rcu_read_lock(); 2709 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2710 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2711 ath_tx_processq(sc, &sc->tx.txq[i]); 2712 } 2713 rcu_read_unlock(); 2714 } 2715 2716 void ath_tx_edma_tasklet(struct ath_softc *sc) 2717 { 2718 struct ath_tx_status ts; 2719 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2720 struct ath_hw *ah = sc->sc_ah; 2721 struct ath_txq *txq; 2722 struct ath_buf *bf, *lastbf; 2723 struct list_head bf_head; 2724 struct list_head *fifo_list; 2725 int status; 2726 2727 rcu_read_lock(); 2728 for (;;) { 2729 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2730 break; 2731 2732 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2733 if (status == -EINPROGRESS) 2734 break; 2735 if (status == -EIO) { 2736 ath_dbg(common, XMIT, "Error processing tx status\n"); 2737 break; 2738 } 2739 2740 /* Process beacon completions separately */ 2741 if (ts.qid == sc->beacon.beaconq) { 2742 sc->beacon.tx_processed = true; 2743 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2744 2745 if (ath9k_is_chanctx_enabled()) { 2746 ath_chanctx_event(sc, NULL, 2747 ATH_CHANCTX_EVENT_BEACON_SENT); 2748 } 2749 2750 ath9k_csa_update(sc); 2751 continue; 2752 } 2753 2754 txq = &sc->tx.txq[ts.qid]; 2755 2756 ath_txq_lock(sc, txq); 2757 2758 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2759 2760 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2761 if (list_empty(fifo_list)) { 2762 ath_txq_unlock(sc, txq); 2763 break; 2764 } 2765 2766 bf = list_first_entry(fifo_list, struct ath_buf, list); 2767 if (bf->bf_state.stale) { 2768 list_del(&bf->list); 2769 ath_tx_return_buffer(sc, bf); 2770 bf = list_first_entry(fifo_list, struct ath_buf, list); 2771 } 2772 2773 lastbf = bf->bf_lastbf; 2774 2775 INIT_LIST_HEAD(&bf_head); 2776 if (list_is_last(&lastbf->list, fifo_list)) { 2777 list_splice_tail_init(fifo_list, &bf_head); 2778 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2779 2780 if (!list_empty(&txq->axq_q)) { 2781 struct list_head bf_q; 2782 2783 INIT_LIST_HEAD(&bf_q); 2784 txq->axq_link = NULL; 2785 list_splice_tail_init(&txq->axq_q, &bf_q); 2786 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2787 } 2788 } else { 2789 lastbf->bf_state.stale = true; 2790 if (bf != lastbf) 2791 list_cut_position(&bf_head, fifo_list, 2792 lastbf->list.prev); 2793 } 2794 2795 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2796 ath_txq_unlock_complete(sc, txq); 2797 } 2798 rcu_read_unlock(); 2799 } 2800 2801 /*****************/ 2802 /* Init, Cleanup */ 2803 /*****************/ 2804 2805 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2806 { 2807 struct ath_descdma *dd = &sc->txsdma; 2808 u8 txs_len = sc->sc_ah->caps.txs_len; 2809 2810 dd->dd_desc_len = size * txs_len; 2811 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2812 &dd->dd_desc_paddr, GFP_KERNEL); 2813 if (!dd->dd_desc) 2814 return -ENOMEM; 2815 2816 return 0; 2817 } 2818 2819 static int ath_tx_edma_init(struct ath_softc *sc) 2820 { 2821 int err; 2822 2823 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2824 if (!err) 2825 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2826 sc->txsdma.dd_desc_paddr, 2827 ATH_TXSTATUS_RING_SIZE); 2828 2829 return err; 2830 } 2831 2832 int ath_tx_init(struct ath_softc *sc, int nbufs) 2833 { 2834 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2835 int error = 0; 2836 2837 spin_lock_init(&sc->tx.txbuflock); 2838 2839 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2840 "tx", nbufs, 1, 1); 2841 if (error != 0) { 2842 ath_err(common, 2843 "Failed to allocate tx descriptors: %d\n", error); 2844 return error; 2845 } 2846 2847 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2848 "beacon", ATH_BCBUF, 1, 1); 2849 if (error != 0) { 2850 ath_err(common, 2851 "Failed to allocate beacon descriptors: %d\n", error); 2852 return error; 2853 } 2854 2855 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2856 error = ath_tx_edma_init(sc); 2857 2858 return error; 2859 } 2860 2861 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2862 { 2863 struct ath_atx_tid *tid; 2864 int tidno, acno; 2865 2866 for (acno = 0; acno < IEEE80211_NUM_ACS; acno++) 2867 an->airtime_deficit[acno] = ATH_AIRTIME_QUANTUM; 2868 2869 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2870 tid = ath_node_to_tid(an, tidno); 2871 tid->an = an; 2872 tid->tidno = tidno; 2873 tid->seq_start = tid->seq_next = 0; 2874 tid->baw_size = WME_MAX_BA; 2875 tid->baw_head = tid->baw_tail = 0; 2876 tid->active = false; 2877 tid->clear_ps_filter = true; 2878 tid->has_queued = false; 2879 __skb_queue_head_init(&tid->retry_q); 2880 INIT_LIST_HEAD(&tid->list); 2881 acno = TID_TO_WME_AC(tidno); 2882 tid->txq = sc->tx.txq_map[acno]; 2883 2884 if (!an->sta) 2885 break; /* just one multicast ath_atx_tid */ 2886 } 2887 } 2888 2889 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2890 { 2891 struct ath_atx_tid *tid; 2892 struct ath_txq *txq; 2893 int tidno; 2894 2895 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2896 tid = ath_node_to_tid(an, tidno); 2897 txq = tid->txq; 2898 2899 ath_txq_lock(sc, txq); 2900 2901 if (!list_empty(&tid->list)) 2902 list_del_init(&tid->list); 2903 2904 ath_tid_drain(sc, txq, tid); 2905 tid->active = false; 2906 2907 ath_txq_unlock(sc, txq); 2908 2909 if (!an->sta) 2910 break; /* just one multicast ath_atx_tid */ 2911 } 2912 } 2913 2914 #ifdef CONFIG_ATH9K_TX99 2915 2916 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2917 struct ath_tx_control *txctl) 2918 { 2919 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2920 struct ath_frame_info *fi = get_frame_info(skb); 2921 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2922 struct ath_buf *bf; 2923 int padpos, padsize; 2924 2925 padpos = ieee80211_hdrlen(hdr->frame_control); 2926 padsize = padpos & 3; 2927 2928 if (padsize && skb->len > padpos) { 2929 if (skb_headroom(skb) < padsize) { 2930 ath_dbg(common, XMIT, 2931 "tx99 padding failed\n"); 2932 return -EINVAL; 2933 } 2934 2935 skb_push(skb, padsize); 2936 memmove(skb->data, skb->data + padsize, padpos); 2937 } 2938 2939 fi->keyix = ATH9K_TXKEYIX_INVALID; 2940 fi->framelen = skb->len + FCS_LEN; 2941 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2942 2943 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2944 if (!bf) { 2945 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2946 return -EINVAL; 2947 } 2948 2949 ath_set_rates(sc->tx99_vif, NULL, bf); 2950 2951 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2952 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2953 2954 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2955 2956 return 0; 2957 } 2958 2959 #endif /* CONFIG_ATH9K_TX99 */ 2960