xref: /linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq,
54 			    struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 				struct ath_txq *txq, struct list_head *bf_q,
57 				struct ieee80211_sta *sta,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      struct ath_buf *bf);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 			  struct ath_tx_control *txctl);
72 
73 enum {
74 	MCS_HT20,
75 	MCS_HT20_SGI,
76 	MCS_HT40,
77 	MCS_HT40_SGI,
78 };
79 
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
83 
84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
85 {
86 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
88 
89 	if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
90 			   IEEE80211_TX_STATUS_EOSP)) {
91 		ieee80211_tx_status(hw, skb);
92 		return;
93 	}
94 
95 	if (sta)
96 		ieee80211_tx_status_noskb(hw, sta, info);
97 
98 	dev_kfree_skb(skb);
99 }
100 
101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
102 	__releases(&txq->axq_lock)
103 {
104 	struct ieee80211_hw *hw = sc->hw;
105 	struct sk_buff_head q;
106 	struct sk_buff *skb;
107 
108 	__skb_queue_head_init(&q);
109 	skb_queue_splice_init(&txq->complete_q, &q);
110 	spin_unlock_bh(&txq->axq_lock);
111 
112 	while ((skb = __skb_dequeue(&q)))
113 		ath_tx_status(hw, skb);
114 }
115 
116 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
117 {
118 	struct ieee80211_txq *queue =
119 		container_of((void *)tid, struct ieee80211_txq, drv_priv);
120 
121 	ieee80211_schedule_txq(sc->hw, queue);
122 }
123 
124 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
125 {
126 	struct ath_softc *sc = hw->priv;
127 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
128 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
129 	struct ath_txq *txq = tid->txq;
130 
131 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
132 		queue->sta ? queue->sta->addr : queue->vif->addr,
133 		tid->tidno);
134 
135 	ath_txq_lock(sc, txq);
136 	ath_txq_schedule(sc, txq);
137 	ath_txq_unlock(sc, txq);
138 }
139 
140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
141 {
142 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
143 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
144 		     sizeof(tx_info->rate_driver_data));
145 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
146 }
147 
148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
149 {
150 	if (!tid->an->sta)
151 		return;
152 
153 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
154 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
155 }
156 
157 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
158 			  struct ath_buf *bf)
159 {
160 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
161 			       ARRAY_SIZE(bf->rates));
162 }
163 
164 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
165 			     struct sk_buff *skb)
166 {
167 	struct ath_frame_info *fi = get_frame_info(skb);
168 	int q = fi->txq;
169 
170 	if (q < 0)
171 		return;
172 
173 	txq = sc->tx.txq_map[q];
174 	if (WARN_ON(--txq->pending_frames < 0))
175 		txq->pending_frames = 0;
176 
177 }
178 
179 static struct ath_atx_tid *
180 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
181 {
182 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
183 	return ATH_AN_2_TID(an, tidno);
184 }
185 
186 static int
187 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
188 {
189 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
190 	struct ath_softc *sc = tid->an->sc;
191 	struct ieee80211_hw *hw = sc->hw;
192 	struct ath_tx_control txctl = {
193 		.txq = tid->txq,
194 		.sta = tid->an->sta,
195 	};
196 	struct sk_buff *skb;
197 	struct ath_frame_info *fi;
198 	int q, ret;
199 
200 	skb = ieee80211_tx_dequeue(hw, txq);
201 	if (!skb)
202 		return -ENOENT;
203 
204 	ret = ath_tx_prepare(hw, skb, &txctl);
205 	if (ret) {
206 		ieee80211_free_txskb(hw, skb);
207 		return ret;
208 	}
209 
210 	q = skb_get_queue_mapping(skb);
211 	if (tid->txq == sc->tx.txq_map[q]) {
212 		fi = get_frame_info(skb);
213 		fi->txq = q;
214 		++tid->txq->pending_frames;
215 	}
216 
217 	*skbuf = skb;
218 	return 0;
219 }
220 
221 static int ath_tid_dequeue(struct ath_atx_tid *tid,
222 			   struct sk_buff **skb)
223 {
224 	int ret = 0;
225 	*skb = __skb_dequeue(&tid->retry_q);
226 	if (!*skb)
227 		ret = ath_tid_pull(tid, skb);
228 
229 	return ret;
230 }
231 
232 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
233 {
234 	struct ath_txq *txq = tid->txq;
235 	struct sk_buff *skb;
236 	struct ath_buf *bf;
237 	struct list_head bf_head;
238 	struct ath_tx_status ts;
239 	struct ath_frame_info *fi;
240 	bool sendbar = false;
241 
242 	INIT_LIST_HEAD(&bf_head);
243 
244 	memset(&ts, 0, sizeof(ts));
245 
246 	while ((skb = __skb_dequeue(&tid->retry_q))) {
247 		fi = get_frame_info(skb);
248 		bf = fi->bf;
249 		if (!bf) {
250 			ath_txq_skb_done(sc, txq, skb);
251 			ieee80211_free_txskb(sc->hw, skb);
252 			continue;
253 		}
254 
255 		if (fi->baw_tracked) {
256 			ath_tx_update_baw(sc, tid, bf);
257 			sendbar = true;
258 		}
259 
260 		list_add_tail(&bf->list, &bf_head);
261 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
262 	}
263 
264 	if (sendbar) {
265 		ath_txq_unlock(sc, txq);
266 		ath_send_bar(tid, tid->seq_start);
267 		ath_txq_lock(sc, txq);
268 	}
269 }
270 
271 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
272 			      struct ath_buf *bf)
273 {
274 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
275 	u16 seqno = bf->bf_state.seqno;
276 	int index, cindex;
277 
278 	if (!fi->baw_tracked)
279 		return;
280 
281 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
282 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
283 
284 	__clear_bit(cindex, tid->tx_buf);
285 
286 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
287 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
288 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
289 		if (tid->bar_index >= 0)
290 			tid->bar_index--;
291 	}
292 }
293 
294 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
295 			     struct ath_buf *bf)
296 {
297 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
298 	u16 seqno = bf->bf_state.seqno;
299 	int index, cindex;
300 
301 	if (fi->baw_tracked)
302 		return;
303 
304 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
305 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
306 	__set_bit(cindex, tid->tx_buf);
307 	fi->baw_tracked = 1;
308 
309 	if (index >= ((tid->baw_tail - tid->baw_head) &
310 		(ATH_TID_MAX_BUFS - 1))) {
311 		tid->baw_tail = cindex;
312 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
313 	}
314 }
315 
316 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
317 			  struct ath_atx_tid *tid)
318 
319 {
320 	struct sk_buff *skb;
321 	struct ath_buf *bf;
322 	struct list_head bf_head;
323 	struct ath_tx_status ts;
324 	struct ath_frame_info *fi;
325 	int ret;
326 
327 	memset(&ts, 0, sizeof(ts));
328 	INIT_LIST_HEAD(&bf_head);
329 
330 	while ((ret = ath_tid_dequeue(tid, &skb)) == 0) {
331 		fi = get_frame_info(skb);
332 		bf = fi->bf;
333 
334 		if (!bf) {
335 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
336 			continue;
337 		}
338 
339 		list_add_tail(&bf->list, &bf_head);
340 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
341 	}
342 }
343 
344 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
345 			     struct sk_buff *skb, int count)
346 {
347 	struct ath_frame_info *fi = get_frame_info(skb);
348 	struct ath_buf *bf = fi->bf;
349 	struct ieee80211_hdr *hdr;
350 	int prev = fi->retries;
351 
352 	TX_STAT_INC(sc, txq->axq_qnum, a_retries);
353 	fi->retries += count;
354 
355 	if (prev > 0)
356 		return;
357 
358 	hdr = (struct ieee80211_hdr *)skb->data;
359 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
360 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
361 		sizeof(*hdr), DMA_TO_DEVICE);
362 }
363 
364 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
365 {
366 	struct ath_buf *bf = NULL;
367 
368 	spin_lock_bh(&sc->tx.txbuflock);
369 
370 	if (unlikely(list_empty(&sc->tx.txbuf))) {
371 		spin_unlock_bh(&sc->tx.txbuflock);
372 		return NULL;
373 	}
374 
375 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
376 	list_del(&bf->list);
377 
378 	spin_unlock_bh(&sc->tx.txbuflock);
379 
380 	return bf;
381 }
382 
383 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
384 {
385 	spin_lock_bh(&sc->tx.txbuflock);
386 	list_add_tail(&bf->list, &sc->tx.txbuf);
387 	spin_unlock_bh(&sc->tx.txbuflock);
388 }
389 
390 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
391 {
392 	struct ath_buf *tbf;
393 
394 	tbf = ath_tx_get_buffer(sc);
395 	if (WARN_ON(!tbf))
396 		return NULL;
397 
398 	ATH_TXBUF_RESET(tbf);
399 
400 	tbf->bf_mpdu = bf->bf_mpdu;
401 	tbf->bf_buf_addr = bf->bf_buf_addr;
402 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
403 	tbf->bf_state = bf->bf_state;
404 	tbf->bf_state.stale = false;
405 
406 	return tbf;
407 }
408 
409 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
410 			        struct ath_tx_status *ts, int txok,
411 			        int *nframes, int *nbad)
412 {
413 	struct ath_frame_info *fi;
414 	u16 seq_st = 0;
415 	u32 ba[WME_BA_BMP_SIZE >> 5];
416 	int ba_index;
417 	int isaggr = 0;
418 
419 	*nbad = 0;
420 	*nframes = 0;
421 
422 	isaggr = bf_isaggr(bf);
423 	if (isaggr) {
424 		seq_st = ts->ts_seqnum;
425 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
426 	}
427 
428 	while (bf) {
429 		fi = get_frame_info(bf->bf_mpdu);
430 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
431 
432 		(*nframes)++;
433 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
434 			(*nbad)++;
435 
436 		bf = bf->bf_next;
437 	}
438 }
439 
440 
441 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
442 				 struct ath_buf *bf, struct list_head *bf_q,
443 				 struct ieee80211_sta *sta,
444 				 struct ath_atx_tid *tid,
445 				 struct ath_tx_status *ts, int txok)
446 {
447 	struct ath_node *an = NULL;
448 	struct sk_buff *skb;
449 	struct ieee80211_hdr *hdr;
450 	struct ieee80211_tx_info *tx_info;
451 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
452 	struct list_head bf_head;
453 	struct sk_buff_head bf_pending;
454 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
455 	u32 ba[WME_BA_BMP_SIZE >> 5];
456 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
457 	bool rc_update = true, isba;
458 	struct ieee80211_tx_rate rates[4];
459 	struct ath_frame_info *fi;
460 	int nframes;
461 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
462 	int i, retries;
463 	int bar_index = -1;
464 
465 	skb = bf->bf_mpdu;
466 	hdr = (struct ieee80211_hdr *)skb->data;
467 
468 	tx_info = IEEE80211_SKB_CB(skb);
469 
470 	memcpy(rates, bf->rates, sizeof(rates));
471 
472 	retries = ts->ts_longretry + 1;
473 	for (i = 0; i < ts->ts_rateindex; i++)
474 		retries += rates[i].count;
475 
476 	if (!sta) {
477 		INIT_LIST_HEAD(&bf_head);
478 		while (bf) {
479 			bf_next = bf->bf_next;
480 
481 			if (!bf->bf_state.stale || bf_next != NULL)
482 				list_move_tail(&bf->list, &bf_head);
483 
484 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
485 
486 			bf = bf_next;
487 		}
488 		return;
489 	}
490 
491 	an = (struct ath_node *)sta->drv_priv;
492 	seq_first = tid->seq_start;
493 	isba = ts->ts_flags & ATH9K_TX_BA;
494 
495 	/*
496 	 * The hardware occasionally sends a tx status for the wrong TID.
497 	 * In this case, the BA status cannot be considered valid and all
498 	 * subframes need to be retransmitted
499 	 *
500 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
501 	 * checked
502 	 */
503 	if (isba && tid->tidno != ts->tid)
504 		txok = false;
505 
506 	isaggr = bf_isaggr(bf);
507 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
508 
509 	if (isaggr && txok) {
510 		if (ts->ts_flags & ATH9K_TX_BA) {
511 			seq_st = ts->ts_seqnum;
512 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
513 		} else {
514 			/*
515 			 * AR5416 can become deaf/mute when BA
516 			 * issue happens. Chip needs to be reset.
517 			 * But AP code may have sychronization issues
518 			 * when perform internal reset in this routine.
519 			 * Only enable reset in STA mode for now.
520 			 */
521 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
522 				needreset = 1;
523 		}
524 	}
525 
526 	__skb_queue_head_init(&bf_pending);
527 
528 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
529 	while (bf) {
530 		u16 seqno = bf->bf_state.seqno;
531 
532 		txfail = txpending = sendbar = 0;
533 		bf_next = bf->bf_next;
534 
535 		skb = bf->bf_mpdu;
536 		tx_info = IEEE80211_SKB_CB(skb);
537 		fi = get_frame_info(skb);
538 
539 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
540 		    !tid->active) {
541 			/*
542 			 * Outside of the current BlockAck window,
543 			 * maybe part of a previous session
544 			 */
545 			txfail = 1;
546 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
547 			/* transmit completion, subframe is
548 			 * acked by block ack */
549 			acked_cnt++;
550 		} else if (!isaggr && txok) {
551 			/* transmit completion */
552 			acked_cnt++;
553 		} else if (flush) {
554 			txpending = 1;
555 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
556 			if (txok || !an->sleeping)
557 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
558 						 retries);
559 
560 			txpending = 1;
561 		} else {
562 			txfail = 1;
563 			txfail_cnt++;
564 			bar_index = max_t(int, bar_index,
565 				ATH_BA_INDEX(seq_first, seqno));
566 		}
567 
568 		/*
569 		 * Make sure the last desc is reclaimed if it
570 		 * not a holding desc.
571 		 */
572 		INIT_LIST_HEAD(&bf_head);
573 		if (bf_next != NULL || !bf_last->bf_state.stale)
574 			list_move_tail(&bf->list, &bf_head);
575 
576 		if (!txpending) {
577 			/*
578 			 * complete the acked-ones/xretried ones; update
579 			 * block-ack window
580 			 */
581 			ath_tx_update_baw(sc, tid, bf);
582 
583 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
584 				memcpy(tx_info->control.rates, rates, sizeof(rates));
585 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
586 				rc_update = false;
587 				if (bf == bf->bf_lastbf)
588 					ath_dynack_sample_tx_ts(sc->sc_ah,
589 								bf->bf_mpdu,
590 								ts, sta);
591 			}
592 
593 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
594 				!txfail);
595 		} else {
596 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
597 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
598 				ieee80211_sta_eosp(sta);
599 			}
600 			/* retry the un-acked ones */
601 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
602 				struct ath_buf *tbf;
603 
604 				tbf = ath_clone_txbuf(sc, bf_last);
605 				/*
606 				 * Update tx baw and complete the
607 				 * frame with failed status if we
608 				 * run out of tx buf.
609 				 */
610 				if (!tbf) {
611 					ath_tx_update_baw(sc, tid, bf);
612 
613 					ath_tx_complete_buf(sc, bf, txq,
614 							    &bf_head, NULL, ts,
615 							    0);
616 					bar_index = max_t(int, bar_index,
617 						ATH_BA_INDEX(seq_first, seqno));
618 					break;
619 				}
620 
621 				fi->bf = tbf;
622 			}
623 
624 			/*
625 			 * Put this buffer to the temporary pending
626 			 * queue to retain ordering
627 			 */
628 			__skb_queue_tail(&bf_pending, skb);
629 		}
630 
631 		bf = bf_next;
632 	}
633 
634 	/* prepend un-acked frames to the beginning of the pending frame queue */
635 	if (!skb_queue_empty(&bf_pending)) {
636 		if (an->sleeping)
637 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
638 
639 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
640 		if (!an->sleeping) {
641 			ath_tx_queue_tid(sc, tid);
642 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
643 				tid->clear_ps_filter = true;
644 		}
645 	}
646 
647 	if (bar_index >= 0) {
648 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
649 
650 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
651 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
652 
653 		ath_txq_unlock(sc, txq);
654 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
655 		ath_txq_lock(sc, txq);
656 	}
657 
658 	if (needreset)
659 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
660 }
661 
662 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
663 {
664     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
665     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
666 }
667 
668 static void ath_tx_count_airtime(struct ath_softc *sc,
669 				 struct ieee80211_sta *sta,
670 				 struct ath_buf *bf,
671 				 struct ath_tx_status *ts)
672 {
673 	u32 airtime = 0;
674 	int i;
675 
676 	airtime += ts->duration * (ts->ts_longretry + 1);
677 	for(i = 0; i < ts->ts_rateindex; i++) {
678 		int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
679 		airtime += rate_dur * bf->rates[i].count;
680 	}
681 
682 	ieee80211_sta_register_airtime(sta, ts->tid, airtime, 0);
683 }
684 
685 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
686 				  struct ath_tx_status *ts, struct ath_buf *bf,
687 				  struct list_head *bf_head)
688 {
689 	struct ieee80211_hw *hw = sc->hw;
690 	struct ieee80211_tx_info *info;
691 	struct ieee80211_sta *sta;
692 	struct ieee80211_hdr *hdr;
693 	struct ath_atx_tid *tid = NULL;
694 	bool txok, flush;
695 
696 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
697 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
698 	txq->axq_tx_inprogress = false;
699 
700 	txq->axq_depth--;
701 	if (bf_is_ampdu_not_probing(bf))
702 		txq->axq_ampdu_depth--;
703 
704 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
705 					     ts->ts_rateindex);
706 
707 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
708 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
709 	if (sta) {
710 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
711 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
712 		ath_tx_count_airtime(sc, sta, bf, ts);
713 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
714 			tid->clear_ps_filter = true;
715 	}
716 
717 	if (!bf_isampdu(bf)) {
718 		if (!flush) {
719 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
720 			memcpy(info->control.rates, bf->rates,
721 			       sizeof(info->control.rates));
722 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
723 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
724 						sta);
725 		}
726 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
727 	} else
728 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
729 
730 	if (!flush)
731 		ath_txq_schedule(sc, txq);
732 }
733 
734 static bool ath_lookup_legacy(struct ath_buf *bf)
735 {
736 	struct sk_buff *skb;
737 	struct ieee80211_tx_info *tx_info;
738 	struct ieee80211_tx_rate *rates;
739 	int i;
740 
741 	skb = bf->bf_mpdu;
742 	tx_info = IEEE80211_SKB_CB(skb);
743 	rates = tx_info->control.rates;
744 
745 	for (i = 0; i < 4; i++) {
746 		if (!rates[i].count || rates[i].idx < 0)
747 			break;
748 
749 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
750 			return true;
751 	}
752 
753 	return false;
754 }
755 
756 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
757 			   struct ath_atx_tid *tid)
758 {
759 	struct sk_buff *skb;
760 	struct ieee80211_tx_info *tx_info;
761 	struct ieee80211_tx_rate *rates;
762 	u32 max_4ms_framelen, frmlen;
763 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
764 	int q = tid->txq->mac80211_qnum;
765 	int i;
766 
767 	skb = bf->bf_mpdu;
768 	tx_info = IEEE80211_SKB_CB(skb);
769 	rates = bf->rates;
770 
771 	/*
772 	 * Find the lowest frame length among the rate series that will have a
773 	 * 4ms (or TXOP limited) transmit duration.
774 	 */
775 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
776 
777 	for (i = 0; i < 4; i++) {
778 		int modeidx;
779 
780 		if (!rates[i].count)
781 			continue;
782 
783 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
784 			legacy = 1;
785 			break;
786 		}
787 
788 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
789 			modeidx = MCS_HT40;
790 		else
791 			modeidx = MCS_HT20;
792 
793 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
794 			modeidx++;
795 
796 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
797 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
798 	}
799 
800 	/*
801 	 * limit aggregate size by the minimum rate if rate selected is
802 	 * not a probe rate, if rate selected is a probe rate then
803 	 * avoid aggregation of this packet.
804 	 */
805 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
806 		return 0;
807 
808 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
809 
810 	/*
811 	 * Override the default aggregation limit for BTCOEX.
812 	 */
813 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
814 	if (bt_aggr_limit)
815 		aggr_limit = bt_aggr_limit;
816 
817 	if (tid->an->maxampdu)
818 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
819 
820 	return aggr_limit;
821 }
822 
823 /*
824  * Returns the number of delimiters to be added to
825  * meet the minimum required mpdudensity.
826  */
827 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
828 				  struct ath_buf *bf, u16 frmlen,
829 				  bool first_subfrm)
830 {
831 #define FIRST_DESC_NDELIMS 60
832 	u32 nsymbits, nsymbols;
833 	u16 minlen;
834 	u8 flags, rix;
835 	int width, streams, half_gi, ndelim, mindelim;
836 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
837 
838 	/* Select standard number of delimiters based on frame length alone */
839 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
840 
841 	/*
842 	 * If encryption enabled, hardware requires some more padding between
843 	 * subframes.
844 	 * TODO - this could be improved to be dependent on the rate.
845 	 *      The hardware can keep up at lower rates, but not higher rates
846 	 */
847 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
848 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
849 		ndelim += ATH_AGGR_ENCRYPTDELIM;
850 
851 	/*
852 	 * Add delimiter when using RTS/CTS with aggregation
853 	 * and non enterprise AR9003 card
854 	 */
855 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
856 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
857 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
858 
859 	/*
860 	 * Convert desired mpdu density from microeconds to bytes based
861 	 * on highest rate in rate series (i.e. first rate) to determine
862 	 * required minimum length for subframe. Take into account
863 	 * whether high rate is 20 or 40Mhz and half or full GI.
864 	 *
865 	 * If there is no mpdu density restriction, no further calculation
866 	 * is needed.
867 	 */
868 
869 	if (tid->an->mpdudensity == 0)
870 		return ndelim;
871 
872 	rix = bf->rates[0].idx;
873 	flags = bf->rates[0].flags;
874 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
875 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
876 
877 	if (half_gi)
878 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
879 	else
880 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
881 
882 	if (nsymbols == 0)
883 		nsymbols = 1;
884 
885 	streams = HT_RC_2_STREAMS(rix);
886 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
887 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
888 
889 	if (frmlen < minlen) {
890 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
891 		ndelim = max(mindelim, ndelim);
892 	}
893 
894 	return ndelim;
895 }
896 
897 static int
898 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
899 			struct ath_atx_tid *tid, struct ath_buf **buf)
900 {
901 	struct ieee80211_tx_info *tx_info;
902 	struct ath_frame_info *fi;
903 	struct ath_buf *bf;
904 	struct sk_buff *skb, *first_skb = NULL;
905 	u16 seqno;
906 	int ret;
907 
908 	while (1) {
909 		ret = ath_tid_dequeue(tid, &skb);
910 		if (ret < 0)
911 			return ret;
912 
913 		fi = get_frame_info(skb);
914 		bf = fi->bf;
915 		if (!fi->bf)
916 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
917 		else
918 			bf->bf_state.stale = false;
919 
920 		if (!bf) {
921 			ath_txq_skb_done(sc, txq, skb);
922 			ieee80211_free_txskb(sc->hw, skb);
923 			continue;
924 		}
925 
926 		bf->bf_next = NULL;
927 		bf->bf_lastbf = bf;
928 
929 		tx_info = IEEE80211_SKB_CB(skb);
930 		tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
931 				    IEEE80211_TX_STATUS_EOSP);
932 
933 		/*
934 		 * No aggregation session is running, but there may be frames
935 		 * from a previous session or a failed attempt in the queue.
936 		 * Send them out as normal data frames
937 		 */
938 		if (!tid->active)
939 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
940 
941 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
942 			bf->bf_state.bf_type = 0;
943 			break;
944 		}
945 
946 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
947 		seqno = bf->bf_state.seqno;
948 
949 		/* do not step over block-ack window */
950 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
951 			__skb_queue_tail(&tid->retry_q, skb);
952 
953 			/* If there are other skbs in the retry q, they are
954 			 * probably within the BAW, so loop immediately to get
955 			 * one of them. Otherwise the queue can get stuck. */
956 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
957 			    !WARN_ON(skb == first_skb)) {
958 				if(!first_skb) /* infinite loop prevention */
959 					first_skb = skb;
960 				continue;
961 			}
962 			return -EINPROGRESS;
963 		}
964 
965 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
966 			struct ath_tx_status ts = {};
967 			struct list_head bf_head;
968 
969 			INIT_LIST_HEAD(&bf_head);
970 			list_add(&bf->list, &bf_head);
971 			ath_tx_update_baw(sc, tid, bf);
972 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
973 			continue;
974 		}
975 
976 		if (bf_isampdu(bf))
977 			ath_tx_addto_baw(sc, tid, bf);
978 
979 		break;
980 	}
981 
982 	*buf = bf;
983 	return 0;
984 }
985 
986 static int
987 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
988 		 struct ath_atx_tid *tid, struct list_head *bf_q,
989 		 struct ath_buf *bf_first)
990 {
991 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
992 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
993 	int nframes = 0, ndelim, ret;
994 	u16 aggr_limit = 0, al = 0, bpad = 0,
995 	    al_delta, h_baw = tid->baw_size / 2;
996 	struct ieee80211_tx_info *tx_info;
997 	struct ath_frame_info *fi;
998 	struct sk_buff *skb;
999 
1000 
1001 	bf = bf_first;
1002 	aggr_limit = ath_lookup_rate(sc, bf, tid);
1003 
1004 	while (bf)
1005 	{
1006 		skb = bf->bf_mpdu;
1007 		fi = get_frame_info(skb);
1008 
1009 		/* do not exceed aggregation limit */
1010 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1011 		if (nframes) {
1012 			if (aggr_limit < al + bpad + al_delta ||
1013 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1014 				goto stop;
1015 
1016 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1017 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1018 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1019 				goto stop;
1020 		}
1021 
1022 		/* add padding for previous frame to aggregation length */
1023 		al += bpad + al_delta;
1024 
1025 		/*
1026 		 * Get the delimiters needed to meet the MPDU
1027 		 * density for this node.
1028 		 */
1029 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1030 						!nframes);
1031 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1032 
1033 		nframes++;
1034 		bf->bf_next = NULL;
1035 
1036 		/* link buffers of this frame to the aggregate */
1037 		bf->bf_state.ndelim = ndelim;
1038 
1039 		list_add_tail(&bf->list, bf_q);
1040 		if (bf_prev)
1041 			bf_prev->bf_next = bf;
1042 
1043 		bf_prev = bf;
1044 
1045 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1046 		if (ret < 0)
1047 			break;
1048 	}
1049 	goto finish;
1050 stop:
1051 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1052 finish:
1053 	bf = bf_first;
1054 	bf->bf_lastbf = bf_prev;
1055 
1056 	if (bf == bf_prev) {
1057 		al = get_frame_info(bf->bf_mpdu)->framelen;
1058 		bf->bf_state.bf_type = BUF_AMPDU;
1059 	} else {
1060 		TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1061 	}
1062 
1063 	return al;
1064 #undef PADBYTES
1065 }
1066 
1067 /*
1068  * rix - rate index
1069  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1070  * width  - 0 for 20 MHz, 1 for 40 MHz
1071  * half_gi - to use 4us v/s 3.6 us for symbol time
1072  */
1073 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1074 		     int width, int half_gi, bool shortPreamble)
1075 {
1076 	u32 nbits, nsymbits, duration, nsymbols;
1077 	int streams;
1078 
1079 	/* find number of symbols: PLCP + data */
1080 	streams = HT_RC_2_STREAMS(rix);
1081 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1082 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1083 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1084 
1085 	if (!half_gi)
1086 		duration = SYMBOL_TIME(nsymbols);
1087 	else
1088 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1089 
1090 	/* addup duration for legacy/ht training and signal fields */
1091 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1092 
1093 	return duration;
1094 }
1095 
1096 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1097 {
1098 	int streams = HT_RC_2_STREAMS(mcs);
1099 	int symbols, bits;
1100 	int bytes = 0;
1101 
1102 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1103 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1104 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1105 	bits -= OFDM_PLCP_BITS;
1106 	bytes = bits / 8;
1107 	if (bytes > 65532)
1108 		bytes = 65532;
1109 
1110 	return bytes;
1111 }
1112 
1113 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1114 {
1115 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1116 	int mcs;
1117 
1118 	/* 4ms is the default (and maximum) duration */
1119 	if (!txop || txop > 4096)
1120 		txop = 4096;
1121 
1122 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1123 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1124 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1125 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1126 	for (mcs = 0; mcs < 32; mcs++) {
1127 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1128 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1129 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1130 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1131 	}
1132 }
1133 
1134 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1135 			       u8 rateidx, bool is_40, bool is_cck)
1136 {
1137 	u8 max_power;
1138 	struct sk_buff *skb;
1139 	struct ath_frame_info *fi;
1140 	struct ieee80211_tx_info *info;
1141 	struct ath_hw *ah = sc->sc_ah;
1142 
1143 	if (sc->tx99_state || !ah->tpc_enabled)
1144 		return MAX_RATE_POWER;
1145 
1146 	skb = bf->bf_mpdu;
1147 	fi = get_frame_info(skb);
1148 	info = IEEE80211_SKB_CB(skb);
1149 
1150 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1151 		int txpower = fi->tx_power;
1152 
1153 		if (is_40) {
1154 			u8 power_ht40delta;
1155 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1156 			u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1157 
1158 			if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1159 				bool is_2ghz;
1160 				struct modal_eep_header *pmodal;
1161 
1162 				is_2ghz = info->band == NL80211_BAND_2GHZ;
1163 				pmodal = &eep->modalHeader[is_2ghz];
1164 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1165 			} else {
1166 				power_ht40delta = 2;
1167 			}
1168 			txpower += power_ht40delta;
1169 		}
1170 
1171 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1172 		    AR_SREV_9271(ah)) {
1173 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1174 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1175 			s8 power_offset;
1176 
1177 			power_offset = ah->eep_ops->get_eeprom(ah,
1178 							EEP_PWR_TABLE_OFFSET);
1179 			txpower -= 2 * power_offset;
1180 		}
1181 
1182 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1183 			txpower -= 2;
1184 
1185 		txpower = max(txpower, 0);
1186 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1187 
1188 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1189 		 * max_power is set to 0, frames are transmitted at max
1190 		 * TX power
1191 		 */
1192 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1193 			max_power = 1;
1194 	} else if (!bf->bf_state.bfs_paprd) {
1195 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1196 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1197 					  fi->tx_power);
1198 		else
1199 			max_power = min_t(u8, ah->tx_power[rateidx],
1200 					  fi->tx_power);
1201 	} else {
1202 		max_power = ah->paprd_training_power;
1203 	}
1204 
1205 	return max_power;
1206 }
1207 
1208 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1209 			     struct ath_tx_info *info, int len, bool rts)
1210 {
1211 	struct ath_hw *ah = sc->sc_ah;
1212 	struct ath_common *common = ath9k_hw_common(ah);
1213 	struct sk_buff *skb;
1214 	struct ieee80211_tx_info *tx_info;
1215 	struct ieee80211_tx_rate *rates;
1216 	const struct ieee80211_rate *rate;
1217 	struct ieee80211_hdr *hdr;
1218 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1219 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1220 	int i;
1221 	u8 rix = 0;
1222 
1223 	skb = bf->bf_mpdu;
1224 	tx_info = IEEE80211_SKB_CB(skb);
1225 	rates = bf->rates;
1226 	hdr = (struct ieee80211_hdr *)skb->data;
1227 
1228 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1229 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1230 	info->rtscts_rate = fi->rtscts_rate;
1231 
1232 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1233 		bool is_40, is_sgi, is_sp, is_cck;
1234 		int phy;
1235 
1236 		if (!rates[i].count || (rates[i].idx < 0))
1237 			continue;
1238 
1239 		rix = rates[i].idx;
1240 		info->rates[i].Tries = rates[i].count;
1241 
1242 		/*
1243 		 * Handle RTS threshold for unaggregated HT frames.
1244 		 */
1245 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1246 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1247 		    unlikely(rts_thresh != (u32) -1)) {
1248 			if (!rts_thresh || (len > rts_thresh))
1249 				rts = true;
1250 		}
1251 
1252 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1253 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1254 			info->flags |= ATH9K_TXDESC_RTSENA;
1255 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1256 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1257 			info->flags |= ATH9K_TXDESC_CTSENA;
1258 		}
1259 
1260 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1261 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1262 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1263 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1264 
1265 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1266 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1267 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1268 
1269 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1270 			/* MCS rates */
1271 			info->rates[i].Rate = rix | 0x80;
1272 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1273 					ah->txchainmask, info->rates[i].Rate);
1274 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1275 				 is_40, is_sgi, is_sp);
1276 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1277 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1278 
1279 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1280 								is_40, false);
1281 			continue;
1282 		}
1283 
1284 		/* legacy rates */
1285 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1286 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1287 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1288 			phy = WLAN_RC_PHY_CCK;
1289 		else
1290 			phy = WLAN_RC_PHY_OFDM;
1291 
1292 		info->rates[i].Rate = rate->hw_value;
1293 		if (rate->hw_value_short) {
1294 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1295 				info->rates[i].Rate |= rate->hw_value_short;
1296 		} else {
1297 			is_sp = false;
1298 		}
1299 
1300 		if (bf->bf_state.bfs_paprd)
1301 			info->rates[i].ChSel = ah->txchainmask;
1302 		else
1303 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1304 					ah->txchainmask, info->rates[i].Rate);
1305 
1306 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1307 			phy, rate->bitrate * 100, len, rix, is_sp);
1308 
1309 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1310 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1311 							is_cck);
1312 	}
1313 
1314 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1315 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1316 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1317 
1318 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1319 	if (info->flags & ATH9K_TXDESC_RTSENA)
1320 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1321 }
1322 
1323 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1324 {
1325 	struct ieee80211_hdr *hdr;
1326 	enum ath9k_pkt_type htype;
1327 	__le16 fc;
1328 
1329 	hdr = (struct ieee80211_hdr *)skb->data;
1330 	fc = hdr->frame_control;
1331 
1332 	if (ieee80211_is_beacon(fc))
1333 		htype = ATH9K_PKT_TYPE_BEACON;
1334 	else if (ieee80211_is_probe_resp(fc))
1335 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1336 	else if (ieee80211_is_atim(fc))
1337 		htype = ATH9K_PKT_TYPE_ATIM;
1338 	else if (ieee80211_is_pspoll(fc))
1339 		htype = ATH9K_PKT_TYPE_PSPOLL;
1340 	else
1341 		htype = ATH9K_PKT_TYPE_NORMAL;
1342 
1343 	return htype;
1344 }
1345 
1346 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1347 			     struct ath_txq *txq, int len)
1348 {
1349 	struct ath_hw *ah = sc->sc_ah;
1350 	struct ath_buf *bf_first = NULL;
1351 	struct ath_tx_info info;
1352 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1353 	bool rts = false;
1354 
1355 	memset(&info, 0, sizeof(info));
1356 	info.is_first = true;
1357 	info.is_last = true;
1358 	info.qcu = txq->axq_qnum;
1359 
1360 	while (bf) {
1361 		struct sk_buff *skb = bf->bf_mpdu;
1362 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1363 		struct ath_frame_info *fi = get_frame_info(skb);
1364 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1365 
1366 		info.type = get_hw_packet_type(skb);
1367 		if (bf->bf_next)
1368 			info.link = bf->bf_next->bf_daddr;
1369 		else
1370 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1371 
1372 		if (!bf_first) {
1373 			bf_first = bf;
1374 
1375 			if (!sc->tx99_state)
1376 				info.flags = ATH9K_TXDESC_INTREQ;
1377 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1378 			    txq == sc->tx.uapsdq)
1379 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1380 
1381 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1382 				info.flags |= ATH9K_TXDESC_NOACK;
1383 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1384 				info.flags |= ATH9K_TXDESC_LDPC;
1385 
1386 			if (bf->bf_state.bfs_paprd)
1387 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1388 					      ATH9K_TXDESC_PAPRD_S;
1389 
1390 			/*
1391 			 * mac80211 doesn't handle RTS threshold for HT because
1392 			 * the decision has to be taken based on AMPDU length
1393 			 * and aggregation is done entirely inside ath9k.
1394 			 * Set the RTS/CTS flag for the first subframe based
1395 			 * on the threshold.
1396 			 */
1397 			if (aggr && (bf == bf_first) &&
1398 			    unlikely(rts_thresh != (u32) -1)) {
1399 				/*
1400 				 * "len" is the size of the entire AMPDU.
1401 				 */
1402 				if (!rts_thresh || (len > rts_thresh))
1403 					rts = true;
1404 			}
1405 
1406 			if (!aggr)
1407 				len = fi->framelen;
1408 
1409 			ath_buf_set_rate(sc, bf, &info, len, rts);
1410 		}
1411 
1412 		info.buf_addr[0] = bf->bf_buf_addr;
1413 		info.buf_len[0] = skb->len;
1414 		info.pkt_len = fi->framelen;
1415 		info.keyix = fi->keyix;
1416 		info.keytype = fi->keytype;
1417 
1418 		if (aggr) {
1419 			if (bf == bf_first)
1420 				info.aggr = AGGR_BUF_FIRST;
1421 			else if (bf == bf_first->bf_lastbf)
1422 				info.aggr = AGGR_BUF_LAST;
1423 			else
1424 				info.aggr = AGGR_BUF_MIDDLE;
1425 
1426 			info.ndelim = bf->bf_state.ndelim;
1427 			info.aggr_len = len;
1428 		}
1429 
1430 		if (bf == bf_first->bf_lastbf)
1431 			bf_first = NULL;
1432 
1433 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1434 		bf = bf->bf_next;
1435 	}
1436 }
1437 
1438 static void
1439 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1440 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1441 		  struct ath_buf *bf_first)
1442 {
1443 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1444 	int nframes = 0, ret;
1445 
1446 	do {
1447 		struct ieee80211_tx_info *tx_info;
1448 
1449 		nframes++;
1450 		list_add_tail(&bf->list, bf_q);
1451 		if (bf_prev)
1452 			bf_prev->bf_next = bf;
1453 		bf_prev = bf;
1454 
1455 		if (nframes >= 2)
1456 			break;
1457 
1458 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1459 		if (ret < 0)
1460 			break;
1461 
1462 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1463 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1464 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1465 			break;
1466 		}
1467 
1468 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1469 	} while (1);
1470 }
1471 
1472 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1473 			     struct ath_atx_tid *tid)
1474 {
1475 	struct ath_buf *bf = NULL;
1476 	struct ieee80211_tx_info *tx_info;
1477 	struct list_head bf_q;
1478 	int aggr_len = 0, ret;
1479 	bool aggr;
1480 
1481 	INIT_LIST_HEAD(&bf_q);
1482 
1483 	ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1488 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1489 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1490 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1491 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1492 		return -EBUSY;
1493 	}
1494 
1495 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1496 	if (aggr)
1497 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1498 	else
1499 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1500 
1501 	if (list_empty(&bf_q))
1502 		return -EAGAIN;
1503 
1504 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1505 		tid->clear_ps_filter = false;
1506 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1507 	}
1508 
1509 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1510 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1511 	return 0;
1512 }
1513 
1514 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1515 		      u16 tid, u16 *ssn)
1516 {
1517 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1518 	struct ath_atx_tid *txtid;
1519 	struct ath_txq *txq;
1520 	struct ath_node *an;
1521 	u8 density;
1522 
1523 	ath_dbg(common, XMIT, "%s called\n", __func__);
1524 
1525 	an = (struct ath_node *)sta->drv_priv;
1526 	txtid = ATH_AN_2_TID(an, tid);
1527 	txq = txtid->txq;
1528 
1529 	ath_txq_lock(sc, txq);
1530 
1531 	/* update ampdu factor/density, they may have changed. This may happen
1532 	 * in HT IBSS when a beacon with HT-info is received after the station
1533 	 * has already been added.
1534 	 */
1535 	if (sta->ht_cap.ht_supported) {
1536 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1537 				      sta->ht_cap.ampdu_factor)) - 1;
1538 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1539 		an->mpdudensity = density;
1540 	}
1541 
1542 	txtid->active = true;
1543 	*ssn = txtid->seq_start = txtid->seq_next;
1544 	txtid->bar_index = -1;
1545 
1546 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1547 	txtid->baw_head = txtid->baw_tail = 0;
1548 
1549 	ath_txq_unlock_complete(sc, txq);
1550 
1551 	return 0;
1552 }
1553 
1554 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1555 {
1556 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1557 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1558 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1559 	struct ath_txq *txq = txtid->txq;
1560 
1561 	ath_dbg(common, XMIT, "%s called\n", __func__);
1562 
1563 	ath_txq_lock(sc, txq);
1564 	txtid->active = false;
1565 	ath_tx_flush_tid(sc, txtid);
1566 	ath_txq_unlock_complete(sc, txq);
1567 }
1568 
1569 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1570 		       struct ath_node *an)
1571 {
1572 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1573 	struct ath_atx_tid *tid;
1574 	int tidno;
1575 
1576 	ath_dbg(common, XMIT, "%s called\n", __func__);
1577 
1578 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1579 		tid = ath_node_to_tid(an, tidno);
1580 
1581 		if (!skb_queue_empty(&tid->retry_q))
1582 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1583 
1584 	}
1585 }
1586 
1587 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1588 {
1589 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1590 	struct ath_atx_tid *tid;
1591 	struct ath_txq *txq;
1592 	int tidno;
1593 
1594 	ath_dbg(common, XMIT, "%s called\n", __func__);
1595 
1596 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1597 		tid = ath_node_to_tid(an, tidno);
1598 		txq = tid->txq;
1599 
1600 		ath_txq_lock(sc, txq);
1601 		tid->clear_ps_filter = true;
1602 		if (!skb_queue_empty(&tid->retry_q)) {
1603 			ath_tx_queue_tid(sc, tid);
1604 			ath_txq_schedule(sc, txq);
1605 		}
1606 		ath_txq_unlock_complete(sc, txq);
1607 
1608 	}
1609 }
1610 
1611 
1612 static void
1613 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1614 {
1615 	struct ieee80211_hdr *hdr;
1616 	u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1617 	u16 mask_val = mask * val;
1618 
1619 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1620 	if ((hdr->frame_control & mask) != mask_val) {
1621 		hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1622 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1623 			sizeof(*hdr), DMA_TO_DEVICE);
1624 	}
1625 }
1626 
1627 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1628 				   struct ieee80211_sta *sta,
1629 				   u16 tids, int nframes,
1630 				   enum ieee80211_frame_release_type reason,
1631 				   bool more_data)
1632 {
1633 	struct ath_softc *sc = hw->priv;
1634 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1635 	struct ath_txq *txq = sc->tx.uapsdq;
1636 	struct ieee80211_tx_info *info;
1637 	struct list_head bf_q;
1638 	struct ath_buf *bf_tail = NULL, *bf = NULL;
1639 	int sent = 0;
1640 	int i, ret;
1641 
1642 	INIT_LIST_HEAD(&bf_q);
1643 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1644 		struct ath_atx_tid *tid;
1645 
1646 		if (!(tids & 1))
1647 			continue;
1648 
1649 		tid = ATH_AN_2_TID(an, i);
1650 
1651 		ath_txq_lock(sc, tid->txq);
1652 		while (nframes > 0) {
1653 			ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1654 						      tid, &bf);
1655 			if (ret < 0)
1656 				break;
1657 
1658 			ath9k_set_moredata(sc, bf, true);
1659 			list_add_tail(&bf->list, &bf_q);
1660 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1661 			if (bf_isampdu(bf))
1662 				bf->bf_state.bf_type &= ~BUF_AGGR;
1663 			if (bf_tail)
1664 				bf_tail->bf_next = bf;
1665 
1666 			bf_tail = bf;
1667 			nframes--;
1668 			sent++;
1669 			TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1670 
1671 			if (an->sta && skb_queue_empty(&tid->retry_q))
1672 				ieee80211_sta_set_buffered(an->sta, i, false);
1673 		}
1674 		ath_txq_unlock_complete(sc, tid->txq);
1675 	}
1676 
1677 	if (list_empty(&bf_q))
1678 		return;
1679 
1680 	if (!more_data)
1681 		ath9k_set_moredata(sc, bf_tail, false);
1682 
1683 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1684 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1685 
1686 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1687 	ath_txq_lock(sc, txq);
1688 	ath_tx_fill_desc(sc, bf, txq, 0);
1689 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1690 	ath_txq_unlock(sc, txq);
1691 }
1692 
1693 /********************/
1694 /* Queue Management */
1695 /********************/
1696 
1697 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1698 {
1699 	struct ath_hw *ah = sc->sc_ah;
1700 	struct ath9k_tx_queue_info qi;
1701 	static const int subtype_txq_to_hwq[] = {
1702 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1703 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1704 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1705 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1706 	};
1707 	int axq_qnum, i;
1708 
1709 	memset(&qi, 0, sizeof(qi));
1710 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1711 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1712 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1713 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1714 	qi.tqi_physCompBuf = 0;
1715 
1716 	/*
1717 	 * Enable interrupts only for EOL and DESC conditions.
1718 	 * We mark tx descriptors to receive a DESC interrupt
1719 	 * when a tx queue gets deep; otherwise waiting for the
1720 	 * EOL to reap descriptors.  Note that this is done to
1721 	 * reduce interrupt load and this only defers reaping
1722 	 * descriptors, never transmitting frames.  Aside from
1723 	 * reducing interrupts this also permits more concurrency.
1724 	 * The only potential downside is if the tx queue backs
1725 	 * up in which case the top half of the kernel may backup
1726 	 * due to a lack of tx descriptors.
1727 	 *
1728 	 * The UAPSD queue is an exception, since we take a desc-
1729 	 * based intr on the EOSP frames.
1730 	 */
1731 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1732 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1733 	} else {
1734 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1735 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1736 		else
1737 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1738 					TXQ_FLAG_TXDESCINT_ENABLE;
1739 	}
1740 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1741 	if (axq_qnum == -1) {
1742 		/*
1743 		 * NB: don't print a message, this happens
1744 		 * normally on parts with too few tx queues
1745 		 */
1746 		return NULL;
1747 	}
1748 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1749 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1750 
1751 		txq->axq_qnum = axq_qnum;
1752 		txq->mac80211_qnum = -1;
1753 		txq->axq_link = NULL;
1754 		__skb_queue_head_init(&txq->complete_q);
1755 		INIT_LIST_HEAD(&txq->axq_q);
1756 		spin_lock_init(&txq->axq_lock);
1757 		txq->axq_depth = 0;
1758 		txq->axq_ampdu_depth = 0;
1759 		txq->axq_tx_inprogress = false;
1760 		sc->tx.txqsetup |= 1<<axq_qnum;
1761 
1762 		txq->txq_headidx = txq->txq_tailidx = 0;
1763 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1764 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1765 	}
1766 	return &sc->tx.txq[axq_qnum];
1767 }
1768 
1769 int ath_txq_update(struct ath_softc *sc, int qnum,
1770 		   struct ath9k_tx_queue_info *qinfo)
1771 {
1772 	struct ath_hw *ah = sc->sc_ah;
1773 	int error = 0;
1774 	struct ath9k_tx_queue_info qi;
1775 
1776 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1777 
1778 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1779 	qi.tqi_aifs = qinfo->tqi_aifs;
1780 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1781 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1782 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1783 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1784 
1785 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1786 		ath_err(ath9k_hw_common(sc->sc_ah),
1787 			"Unable to update hardware queue %u!\n", qnum);
1788 		error = -EIO;
1789 	} else {
1790 		ath9k_hw_resettxqueue(ah, qnum);
1791 	}
1792 
1793 	return error;
1794 }
1795 
1796 int ath_cabq_update(struct ath_softc *sc)
1797 {
1798 	struct ath9k_tx_queue_info qi;
1799 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1800 	int qnum = sc->beacon.cabq->axq_qnum;
1801 
1802 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1803 
1804 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1805 			    ATH_CABQ_READY_TIME) / 100;
1806 	ath_txq_update(sc, qnum, &qi);
1807 
1808 	return 0;
1809 }
1810 
1811 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1812 			       struct list_head *list)
1813 {
1814 	struct ath_buf *bf, *lastbf;
1815 	struct list_head bf_head;
1816 	struct ath_tx_status ts;
1817 
1818 	memset(&ts, 0, sizeof(ts));
1819 	ts.ts_status = ATH9K_TX_FLUSH;
1820 	INIT_LIST_HEAD(&bf_head);
1821 
1822 	while (!list_empty(list)) {
1823 		bf = list_first_entry(list, struct ath_buf, list);
1824 
1825 		if (bf->bf_state.stale) {
1826 			list_del(&bf->list);
1827 
1828 			ath_tx_return_buffer(sc, bf);
1829 			continue;
1830 		}
1831 
1832 		lastbf = bf->bf_lastbf;
1833 		list_cut_position(&bf_head, list, &lastbf->list);
1834 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1835 	}
1836 }
1837 
1838 /*
1839  * Drain a given TX queue (could be Beacon or Data)
1840  *
1841  * This assumes output has been stopped and
1842  * we do not need to block ath_tx_tasklet.
1843  */
1844 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1845 {
1846 	rcu_read_lock();
1847 	ath_txq_lock(sc, txq);
1848 
1849 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1850 		int idx = txq->txq_tailidx;
1851 
1852 		while (!list_empty(&txq->txq_fifo[idx])) {
1853 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1854 
1855 			INCR(idx, ATH_TXFIFO_DEPTH);
1856 		}
1857 		txq->txq_tailidx = idx;
1858 	}
1859 
1860 	txq->axq_link = NULL;
1861 	txq->axq_tx_inprogress = false;
1862 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1863 
1864 	ath_txq_unlock_complete(sc, txq);
1865 	rcu_read_unlock();
1866 }
1867 
1868 bool ath_drain_all_txq(struct ath_softc *sc)
1869 {
1870 	struct ath_hw *ah = sc->sc_ah;
1871 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1872 	struct ath_txq *txq;
1873 	int i;
1874 	u32 npend = 0;
1875 
1876 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1877 		return true;
1878 
1879 	ath9k_hw_abort_tx_dma(ah);
1880 
1881 	/* Check if any queue remains active */
1882 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1883 		if (!ATH_TXQ_SETUP(sc, i))
1884 			continue;
1885 
1886 		if (!sc->tx.txq[i].axq_depth)
1887 			continue;
1888 
1889 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1890 			npend |= BIT(i);
1891 	}
1892 
1893 	if (npend) {
1894 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1895 		ath_dbg(common, RESET,
1896 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1897 	}
1898 
1899 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1900 		if (!ATH_TXQ_SETUP(sc, i))
1901 			continue;
1902 
1903 		txq = &sc->tx.txq[i];
1904 		ath_draintxq(sc, txq);
1905 	}
1906 
1907 	return !npend;
1908 }
1909 
1910 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1911 {
1912 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1913 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1914 }
1915 
1916 /* For each acq entry, for each tid, try to schedule packets
1917  * for transmit until ampdu_depth has reached min Q depth.
1918  */
1919 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1920 {
1921 	struct ieee80211_hw *hw = sc->hw;
1922 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1923 	struct ieee80211_txq *queue;
1924 	struct ath_atx_tid *tid;
1925 	int ret;
1926 
1927 	if (txq->mac80211_qnum < 0)
1928 		return;
1929 
1930 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1931 		return;
1932 
1933 	ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1934 	spin_lock_bh(&sc->chan_lock);
1935 	rcu_read_lock();
1936 
1937 	if (sc->cur_chan->stopped)
1938 		goto out;
1939 
1940 	while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
1941 		tid = (struct ath_atx_tid *)queue->drv_priv;
1942 
1943 		ret = ath_tx_sched_aggr(sc, txq, tid);
1944 		ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
1945 
1946 		ieee80211_return_txq(hw, queue);
1947 	}
1948 
1949 out:
1950 	rcu_read_unlock();
1951 	spin_unlock_bh(&sc->chan_lock);
1952 	ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
1953 }
1954 
1955 void ath_txq_schedule_all(struct ath_softc *sc)
1956 {
1957 	struct ath_txq *txq;
1958 	int i;
1959 
1960 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1961 		txq = sc->tx.txq_map[i];
1962 
1963 		spin_lock_bh(&txq->axq_lock);
1964 		ath_txq_schedule(sc, txq);
1965 		spin_unlock_bh(&txq->axq_lock);
1966 	}
1967 }
1968 
1969 /***********/
1970 /* TX, DMA */
1971 /***********/
1972 
1973 /*
1974  * Insert a chain of ath_buf (descriptors) on a txq and
1975  * assume the descriptors are already chained together by caller.
1976  */
1977 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1978 			     struct list_head *head, bool internal)
1979 {
1980 	struct ath_hw *ah = sc->sc_ah;
1981 	struct ath_common *common = ath9k_hw_common(ah);
1982 	struct ath_buf *bf, *bf_last;
1983 	bool puttxbuf = false;
1984 	bool edma;
1985 
1986 	/*
1987 	 * Insert the frame on the outbound list and
1988 	 * pass it on to the hardware.
1989 	 */
1990 
1991 	if (list_empty(head))
1992 		return;
1993 
1994 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1995 	bf = list_first_entry(head, struct ath_buf, list);
1996 	bf_last = list_entry(head->prev, struct ath_buf, list);
1997 
1998 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1999 		txq->axq_qnum, txq->axq_depth);
2000 
2001 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2002 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2003 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2004 		puttxbuf = true;
2005 	} else {
2006 		list_splice_tail_init(head, &txq->axq_q);
2007 
2008 		if (txq->axq_link) {
2009 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2010 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2011 				txq->axq_qnum, txq->axq_link,
2012 				ito64(bf->bf_daddr), bf->bf_desc);
2013 		} else if (!edma)
2014 			puttxbuf = true;
2015 
2016 		txq->axq_link = bf_last->bf_desc;
2017 	}
2018 
2019 	if (puttxbuf) {
2020 		TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2021 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2022 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2023 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2024 	}
2025 
2026 	if (!edma || sc->tx99_state) {
2027 		TX_STAT_INC(sc, txq->axq_qnum, txstart);
2028 		ath9k_hw_txstart(ah, txq->axq_qnum);
2029 	}
2030 
2031 	if (!internal) {
2032 		while (bf) {
2033 			txq->axq_depth++;
2034 			if (bf_is_ampdu_not_probing(bf))
2035 				txq->axq_ampdu_depth++;
2036 
2037 			bf_last = bf->bf_lastbf;
2038 			bf = bf_last->bf_next;
2039 			bf_last->bf_next = NULL;
2040 		}
2041 	}
2042 }
2043 
2044 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2045 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2046 {
2047 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2048 	struct ath_frame_info *fi = get_frame_info(skb);
2049 	struct list_head bf_head;
2050 	struct ath_buf *bf = fi->bf;
2051 
2052 	INIT_LIST_HEAD(&bf_head);
2053 	list_add_tail(&bf->list, &bf_head);
2054 	bf->bf_state.bf_type = 0;
2055 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2056 		bf->bf_state.bf_type = BUF_AMPDU;
2057 		ath_tx_addto_baw(sc, tid, bf);
2058 	}
2059 
2060 	bf->bf_next = NULL;
2061 	bf->bf_lastbf = bf;
2062 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2063 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2064 	TX_STAT_INC(sc, txq->axq_qnum, queued);
2065 }
2066 
2067 static void setup_frame_info(struct ieee80211_hw *hw,
2068 			     struct ieee80211_sta *sta,
2069 			     struct sk_buff *skb,
2070 			     int framelen)
2071 {
2072 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2073 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2074 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2075 	const struct ieee80211_rate *rate;
2076 	struct ath_frame_info *fi = get_frame_info(skb);
2077 	struct ath_node *an = NULL;
2078 	enum ath9k_key_type keytype;
2079 	bool short_preamble = false;
2080 	u8 txpower;
2081 
2082 	/*
2083 	 * We check if Short Preamble is needed for the CTS rate by
2084 	 * checking the BSS's global flag.
2085 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2086 	 */
2087 	if (tx_info->control.vif &&
2088 	    tx_info->control.vif->bss_conf.use_short_preamble)
2089 		short_preamble = true;
2090 
2091 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2092 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2093 
2094 	if (sta)
2095 		an = (struct ath_node *) sta->drv_priv;
2096 
2097 	if (tx_info->control.vif) {
2098 		struct ieee80211_vif *vif = tx_info->control.vif;
2099 
2100 		txpower = 2 * vif->bss_conf.txpower;
2101 	} else {
2102 		struct ath_softc *sc = hw->priv;
2103 
2104 		txpower = sc->cur_chan->cur_txpower;
2105 	}
2106 
2107 	memset(fi, 0, sizeof(*fi));
2108 	fi->txq = -1;
2109 	if (hw_key)
2110 		fi->keyix = hw_key->hw_key_idx;
2111 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2112 		fi->keyix = an->ps_key;
2113 	else
2114 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2115 	fi->keytype = keytype;
2116 	fi->framelen = framelen;
2117 	fi->tx_power = txpower;
2118 
2119 	if (!rate)
2120 		return;
2121 	fi->rtscts_rate = rate->hw_value;
2122 	if (short_preamble)
2123 		fi->rtscts_rate |= rate->hw_value_short;
2124 }
2125 
2126 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2127 {
2128 	struct ath_hw *ah = sc->sc_ah;
2129 	struct ath9k_channel *curchan = ah->curchan;
2130 
2131 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2132 	    (chainmask == 0x7) && (rate < 0x90))
2133 		return 0x3;
2134 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2135 		 IS_CCK_RATE(rate))
2136 		return 0x2;
2137 	else
2138 		return chainmask;
2139 }
2140 
2141 /*
2142  * Assign a descriptor (and sequence number if necessary,
2143  * and map buffer for DMA. Frees skb on error
2144  */
2145 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2146 					   struct ath_txq *txq,
2147 					   struct ath_atx_tid *tid,
2148 					   struct sk_buff *skb)
2149 {
2150 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2151 	struct ath_frame_info *fi = get_frame_info(skb);
2152 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2153 	struct ath_buf *bf;
2154 	int fragno;
2155 	u16 seqno;
2156 
2157 	bf = ath_tx_get_buffer(sc);
2158 	if (!bf) {
2159 		ath_dbg(common, XMIT, "TX buffers are full\n");
2160 		return NULL;
2161 	}
2162 
2163 	ATH_TXBUF_RESET(bf);
2164 
2165 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2166 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2167 		seqno = tid->seq_next;
2168 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2169 
2170 		if (fragno)
2171 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2172 
2173 		if (!ieee80211_has_morefrags(hdr->frame_control))
2174 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2175 
2176 		bf->bf_state.seqno = seqno;
2177 	}
2178 
2179 	bf->bf_mpdu = skb;
2180 
2181 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2182 					 skb->len, DMA_TO_DEVICE);
2183 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2184 		bf->bf_mpdu = NULL;
2185 		bf->bf_buf_addr = 0;
2186 		ath_err(ath9k_hw_common(sc->sc_ah),
2187 			"dma_mapping_error() on TX\n");
2188 		ath_tx_return_buffer(sc, bf);
2189 		return NULL;
2190 	}
2191 
2192 	fi->bf = bf;
2193 
2194 	return bf;
2195 }
2196 
2197 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2198 {
2199 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2200 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2201 	struct ieee80211_vif *vif = info->control.vif;
2202 	struct ath_vif *avp;
2203 
2204 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2205 		return;
2206 
2207 	if (!vif)
2208 		return;
2209 
2210 	avp = (struct ath_vif *)vif->drv_priv;
2211 
2212 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2213 		avp->seq_no += 0x10;
2214 
2215 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2216 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2217 }
2218 
2219 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2220 			  struct ath_tx_control *txctl)
2221 {
2222 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2223 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2224 	struct ieee80211_sta *sta = txctl->sta;
2225 	struct ieee80211_vif *vif = info->control.vif;
2226 	struct ath_vif *avp;
2227 	struct ath_softc *sc = hw->priv;
2228 	int frmlen = skb->len + FCS_LEN;
2229 	int padpos, padsize;
2230 
2231 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2232 	if (sta)
2233 		txctl->an = (struct ath_node *)sta->drv_priv;
2234 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2235 		avp = (void *)vif->drv_priv;
2236 		txctl->an = &avp->mcast_node;
2237 	}
2238 
2239 	if (info->control.hw_key)
2240 		frmlen += info->control.hw_key->icv_len;
2241 
2242 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2243 
2244 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2245 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2246 	    !ieee80211_is_data(hdr->frame_control))
2247 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2248 
2249 	/* Add the padding after the header if this is not already done */
2250 	padpos = ieee80211_hdrlen(hdr->frame_control);
2251 	padsize = padpos & 3;
2252 	if (padsize && skb->len > padpos) {
2253 		if (skb_headroom(skb) < padsize)
2254 			return -ENOMEM;
2255 
2256 		skb_push(skb, padsize);
2257 		memmove(skb->data, skb->data + padsize, padpos);
2258 	}
2259 
2260 	setup_frame_info(hw, sta, skb, frmlen);
2261 	return 0;
2262 }
2263 
2264 
2265 /* Upon failure caller should free skb */
2266 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2267 		 struct ath_tx_control *txctl)
2268 {
2269 	struct ieee80211_hdr *hdr;
2270 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2271 	struct ieee80211_sta *sta = txctl->sta;
2272 	struct ieee80211_vif *vif = info->control.vif;
2273 	struct ath_frame_info *fi = get_frame_info(skb);
2274 	struct ath_vif *avp = NULL;
2275 	struct ath_softc *sc = hw->priv;
2276 	struct ath_txq *txq = txctl->txq;
2277 	struct ath_atx_tid *tid = NULL;
2278 	struct ath_node *an = NULL;
2279 	struct ath_buf *bf;
2280 	bool ps_resp;
2281 	int q, ret;
2282 
2283 	if (vif)
2284 		avp = (void *)vif->drv_priv;
2285 
2286 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2287 
2288 	ret = ath_tx_prepare(hw, skb, txctl);
2289 	if (ret)
2290 	    return ret;
2291 
2292 	hdr = (struct ieee80211_hdr *) skb->data;
2293 	/*
2294 	 * At this point, the vif, hw_key and sta pointers in the tx control
2295 	 * info are no longer valid (overwritten by the ath_frame_info data.
2296 	 */
2297 
2298 	q = skb_get_queue_mapping(skb);
2299 
2300 	if (ps_resp)
2301 		txq = sc->tx.uapsdq;
2302 
2303 	if (txctl->sta) {
2304 		an = (struct ath_node *) sta->drv_priv;
2305 		tid = ath_get_skb_tid(sc, an, skb);
2306 	}
2307 
2308 	ath_txq_lock(sc, txq);
2309 	if (txq == sc->tx.txq_map[q]) {
2310 		fi->txq = q;
2311 		++txq->pending_frames;
2312 	}
2313 
2314 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2315 	if (!bf) {
2316 		ath_txq_skb_done(sc, txq, skb);
2317 		if (txctl->paprd)
2318 			dev_kfree_skb_any(skb);
2319 		else
2320 			ieee80211_free_txskb(sc->hw, skb);
2321 		goto out;
2322 	}
2323 
2324 	bf->bf_state.bfs_paprd = txctl->paprd;
2325 
2326 	if (txctl->paprd)
2327 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2328 
2329 	ath_set_rates(vif, sta, bf);
2330 	ath_tx_send_normal(sc, txq, tid, skb);
2331 
2332 out:
2333 	ath_txq_unlock(sc, txq);
2334 
2335 	return 0;
2336 }
2337 
2338 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2339 		 struct sk_buff *skb)
2340 {
2341 	struct ath_softc *sc = hw->priv;
2342 	struct ath_tx_control txctl = {
2343 		.txq = sc->beacon.cabq
2344 	};
2345 	struct ath_tx_info info = {};
2346 	struct ath_buf *bf_tail = NULL;
2347 	struct ath_buf *bf;
2348 	LIST_HEAD(bf_q);
2349 	int duration = 0;
2350 	int max_duration;
2351 
2352 	max_duration =
2353 		sc->cur_chan->beacon.beacon_interval * 1000 *
2354 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2355 
2356 	do {
2357 		struct ath_frame_info *fi = get_frame_info(skb);
2358 
2359 		if (ath_tx_prepare(hw, skb, &txctl))
2360 			break;
2361 
2362 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2363 		if (!bf)
2364 			break;
2365 
2366 		bf->bf_lastbf = bf;
2367 		ath_set_rates(vif, NULL, bf);
2368 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2369 		duration += info.rates[0].PktDuration;
2370 		if (bf_tail)
2371 			bf_tail->bf_next = bf;
2372 
2373 		list_add_tail(&bf->list, &bf_q);
2374 		bf_tail = bf;
2375 		skb = NULL;
2376 
2377 		if (duration > max_duration)
2378 			break;
2379 
2380 		skb = ieee80211_get_buffered_bc(hw, vif);
2381 	} while(skb);
2382 
2383 	if (skb)
2384 		ieee80211_free_txskb(hw, skb);
2385 
2386 	if (list_empty(&bf_q))
2387 		return;
2388 
2389 	bf = list_last_entry(&bf_q, struct ath_buf, list);
2390 	ath9k_set_moredata(sc, bf, false);
2391 
2392 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2393 	ath_txq_lock(sc, txctl.txq);
2394 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2395 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2396 	TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2397 	ath_txq_unlock(sc, txctl.txq);
2398 }
2399 
2400 /*****************/
2401 /* TX Completion */
2402 /*****************/
2403 
2404 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2405 			    int tx_flags, struct ath_txq *txq,
2406 			    struct ieee80211_sta *sta)
2407 {
2408 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2409 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2410 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2411 	int padpos, padsize;
2412 	unsigned long flags;
2413 
2414 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2415 
2416 	if (sc->sc_ah->caldata)
2417 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2418 
2419 	if (!(tx_flags & ATH_TX_ERROR)) {
2420 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2421 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2422 		else
2423 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2424 	}
2425 
2426 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2427 		padpos = ieee80211_hdrlen(hdr->frame_control);
2428 		padsize = padpos & 3;
2429 		if (padsize && skb->len>padpos+padsize) {
2430 			/*
2431 			 * Remove MAC header padding before giving the frame back to
2432 			 * mac80211.
2433 			 */
2434 			memmove(skb->data + padsize, skb->data, padpos);
2435 			skb_pull(skb, padsize);
2436 		}
2437 	}
2438 
2439 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2440 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2441 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2442 		ath_dbg(common, PS,
2443 			"Going back to sleep after having received TX status (0x%lx)\n",
2444 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2445 					PS_WAIT_FOR_CAB |
2446 					PS_WAIT_FOR_PSPOLL_DATA |
2447 					PS_WAIT_FOR_TX_ACK));
2448 	}
2449 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2450 
2451 	ath_txq_skb_done(sc, txq, skb);
2452 	tx_info->status.status_driver_data[0] = sta;
2453 	__skb_queue_tail(&txq->complete_q, skb);
2454 }
2455 
2456 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2457 				struct ath_txq *txq, struct list_head *bf_q,
2458 				struct ieee80211_sta *sta,
2459 				struct ath_tx_status *ts, int txok)
2460 {
2461 	struct sk_buff *skb = bf->bf_mpdu;
2462 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2463 	unsigned long flags;
2464 	int tx_flags = 0;
2465 
2466 	if (!txok)
2467 		tx_flags |= ATH_TX_ERROR;
2468 
2469 	if (ts->ts_status & ATH9K_TXERR_FILT)
2470 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2471 
2472 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2473 	bf->bf_buf_addr = 0;
2474 	if (sc->tx99_state)
2475 		goto skip_tx_complete;
2476 
2477 	if (bf->bf_state.bfs_paprd) {
2478 		if (time_after(jiffies,
2479 				bf->bf_state.bfs_paprd_timestamp +
2480 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2481 			dev_kfree_skb_any(skb);
2482 		else
2483 			complete(&sc->paprd_complete);
2484 	} else {
2485 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2486 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2487 	}
2488 skip_tx_complete:
2489 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2490 	 * accidentally reference it later.
2491 	 */
2492 	bf->bf_mpdu = NULL;
2493 
2494 	/*
2495 	 * Return the list of ath_buf of this mpdu to free queue
2496 	 */
2497 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2498 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2499 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2500 }
2501 
2502 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2503 			     struct ath_tx_status *ts, int nframes, int nbad,
2504 			     int txok)
2505 {
2506 	struct sk_buff *skb = bf->bf_mpdu;
2507 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2508 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2509 	struct ieee80211_hw *hw = sc->hw;
2510 	struct ath_hw *ah = sc->sc_ah;
2511 	u8 i, tx_rateindex;
2512 
2513 	if (txok)
2514 		tx_info->status.ack_signal = ts->ts_rssi;
2515 
2516 	tx_rateindex = ts->ts_rateindex;
2517 	WARN_ON(tx_rateindex >= hw->max_rates);
2518 
2519 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2520 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2521 
2522 		BUG_ON(nbad > nframes);
2523 	}
2524 	tx_info->status.ampdu_len = nframes;
2525 	tx_info->status.ampdu_ack_len = nframes - nbad;
2526 
2527 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2528 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2529 		/*
2530 		 * If an underrun error is seen assume it as an excessive
2531 		 * retry only if max frame trigger level has been reached
2532 		 * (2 KB for single stream, and 4 KB for dual stream).
2533 		 * Adjust the long retry as if the frame was tried
2534 		 * hw->max_rate_tries times to affect how rate control updates
2535 		 * PER for the failed rate.
2536 		 * In case of congestion on the bus penalizing this type of
2537 		 * underruns should help hardware actually transmit new frames
2538 		 * successfully by eventually preferring slower rates.
2539 		 * This itself should also alleviate congestion on the bus.
2540 		 */
2541 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2542 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2543 		    ieee80211_is_data(hdr->frame_control) &&
2544 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2545 			tx_info->status.rates[tx_rateindex].count =
2546 				hw->max_rate_tries;
2547 	}
2548 
2549 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2550 		tx_info->status.rates[i].count = 0;
2551 		tx_info->status.rates[i].idx = -1;
2552 	}
2553 
2554 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2555 
2556 	/* we report airtime in ath_tx_count_airtime(), don't report twice */
2557 	tx_info->status.tx_time = 0;
2558 }
2559 
2560 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2561 {
2562 	struct ath_hw *ah = sc->sc_ah;
2563 	struct ath_common *common = ath9k_hw_common(ah);
2564 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2565 	struct list_head bf_head;
2566 	struct ath_desc *ds;
2567 	struct ath_tx_status ts;
2568 	int status;
2569 
2570 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2571 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2572 		txq->axq_link);
2573 
2574 	ath_txq_lock(sc, txq);
2575 	for (;;) {
2576 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2577 			break;
2578 
2579 		if (list_empty(&txq->axq_q)) {
2580 			txq->axq_link = NULL;
2581 			ath_txq_schedule(sc, txq);
2582 			break;
2583 		}
2584 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2585 
2586 		/*
2587 		 * There is a race condition that a BH gets scheduled
2588 		 * after sw writes TxE and before hw re-load the last
2589 		 * descriptor to get the newly chained one.
2590 		 * Software must keep the last DONE descriptor as a
2591 		 * holding descriptor - software does so by marking
2592 		 * it with the STALE flag.
2593 		 */
2594 		bf_held = NULL;
2595 		if (bf->bf_state.stale) {
2596 			bf_held = bf;
2597 			if (list_is_last(&bf_held->list, &txq->axq_q))
2598 				break;
2599 
2600 			bf = list_entry(bf_held->list.next, struct ath_buf,
2601 					list);
2602 		}
2603 
2604 		lastbf = bf->bf_lastbf;
2605 		ds = lastbf->bf_desc;
2606 
2607 		memset(&ts, 0, sizeof(ts));
2608 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2609 		if (status == -EINPROGRESS)
2610 			break;
2611 
2612 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2613 
2614 		/*
2615 		 * Remove ath_buf's of the same transmit unit from txq,
2616 		 * however leave the last descriptor back as the holding
2617 		 * descriptor for hw.
2618 		 */
2619 		lastbf->bf_state.stale = true;
2620 		INIT_LIST_HEAD(&bf_head);
2621 		if (!list_is_singular(&lastbf->list))
2622 			list_cut_position(&bf_head,
2623 				&txq->axq_q, lastbf->list.prev);
2624 
2625 		if (bf_held) {
2626 			list_del(&bf_held->list);
2627 			ath_tx_return_buffer(sc, bf_held);
2628 		}
2629 
2630 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2631 	}
2632 	ath_txq_unlock_complete(sc, txq);
2633 }
2634 
2635 void ath_tx_tasklet(struct ath_softc *sc)
2636 {
2637 	struct ath_hw *ah = sc->sc_ah;
2638 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2639 	int i;
2640 
2641 	rcu_read_lock();
2642 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2643 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2644 			ath_tx_processq(sc, &sc->tx.txq[i]);
2645 	}
2646 	rcu_read_unlock();
2647 }
2648 
2649 void ath_tx_edma_tasklet(struct ath_softc *sc)
2650 {
2651 	struct ath_tx_status ts;
2652 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2653 	struct ath_hw *ah = sc->sc_ah;
2654 	struct ath_txq *txq;
2655 	struct ath_buf *bf, *lastbf;
2656 	struct list_head bf_head;
2657 	struct list_head *fifo_list;
2658 	int status;
2659 
2660 	rcu_read_lock();
2661 	for (;;) {
2662 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2663 			break;
2664 
2665 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2666 		if (status == -EINPROGRESS)
2667 			break;
2668 		if (status == -EIO) {
2669 			ath_dbg(common, XMIT, "Error processing tx status\n");
2670 			break;
2671 		}
2672 
2673 		/* Process beacon completions separately */
2674 		if (ts.qid == sc->beacon.beaconq) {
2675 			sc->beacon.tx_processed = true;
2676 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2677 
2678 			if (ath9k_is_chanctx_enabled()) {
2679 				ath_chanctx_event(sc, NULL,
2680 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2681 			}
2682 
2683 			ath9k_csa_update(sc);
2684 			continue;
2685 		}
2686 
2687 		txq = &sc->tx.txq[ts.qid];
2688 
2689 		ath_txq_lock(sc, txq);
2690 
2691 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2692 
2693 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2694 		if (list_empty(fifo_list)) {
2695 			ath_txq_unlock(sc, txq);
2696 			break;
2697 		}
2698 
2699 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2700 		if (bf->bf_state.stale) {
2701 			list_del(&bf->list);
2702 			ath_tx_return_buffer(sc, bf);
2703 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2704 		}
2705 
2706 		lastbf = bf->bf_lastbf;
2707 
2708 		INIT_LIST_HEAD(&bf_head);
2709 		if (list_is_last(&lastbf->list, fifo_list)) {
2710 			list_splice_tail_init(fifo_list, &bf_head);
2711 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2712 
2713 			if (!list_empty(&txq->axq_q)) {
2714 				struct list_head bf_q;
2715 
2716 				INIT_LIST_HEAD(&bf_q);
2717 				txq->axq_link = NULL;
2718 				list_splice_tail_init(&txq->axq_q, &bf_q);
2719 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2720 			}
2721 		} else {
2722 			lastbf->bf_state.stale = true;
2723 			if (bf != lastbf)
2724 				list_cut_position(&bf_head, fifo_list,
2725 						  lastbf->list.prev);
2726 		}
2727 
2728 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2729 		ath_txq_unlock_complete(sc, txq);
2730 	}
2731 	rcu_read_unlock();
2732 }
2733 
2734 /*****************/
2735 /* Init, Cleanup */
2736 /*****************/
2737 
2738 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2739 {
2740 	struct ath_descdma *dd = &sc->txsdma;
2741 	u8 txs_len = sc->sc_ah->caps.txs_len;
2742 
2743 	dd->dd_desc_len = size * txs_len;
2744 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2745 					  &dd->dd_desc_paddr, GFP_KERNEL);
2746 	if (!dd->dd_desc)
2747 		return -ENOMEM;
2748 
2749 	return 0;
2750 }
2751 
2752 static int ath_tx_edma_init(struct ath_softc *sc)
2753 {
2754 	int err;
2755 
2756 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2757 	if (!err)
2758 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2759 					  sc->txsdma.dd_desc_paddr,
2760 					  ATH_TXSTATUS_RING_SIZE);
2761 
2762 	return err;
2763 }
2764 
2765 int ath_tx_init(struct ath_softc *sc, int nbufs)
2766 {
2767 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2768 	int error = 0;
2769 
2770 	spin_lock_init(&sc->tx.txbuflock);
2771 
2772 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2773 				  "tx", nbufs, 1, 1);
2774 	if (error != 0) {
2775 		ath_err(common,
2776 			"Failed to allocate tx descriptors: %d\n", error);
2777 		return error;
2778 	}
2779 
2780 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2781 				  "beacon", ATH_BCBUF, 1, 1);
2782 	if (error != 0) {
2783 		ath_err(common,
2784 			"Failed to allocate beacon descriptors: %d\n", error);
2785 		return error;
2786 	}
2787 
2788 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2789 		error = ath_tx_edma_init(sc);
2790 
2791 	return error;
2792 }
2793 
2794 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2795 {
2796 	struct ath_atx_tid *tid;
2797 	int tidno, acno;
2798 
2799 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2800 		tid = ath_node_to_tid(an, tidno);
2801 		tid->an        = an;
2802 		tid->tidno     = tidno;
2803 		tid->seq_start = tid->seq_next = 0;
2804 		tid->baw_size  = WME_MAX_BA;
2805 		tid->baw_head  = tid->baw_tail = 0;
2806 		tid->active	   = false;
2807 		tid->clear_ps_filter = true;
2808 		__skb_queue_head_init(&tid->retry_q);
2809 		INIT_LIST_HEAD(&tid->list);
2810 		acno = TID_TO_WME_AC(tidno);
2811 		tid->txq = sc->tx.txq_map[acno];
2812 
2813 		if (!an->sta)
2814 			break; /* just one multicast ath_atx_tid */
2815 	}
2816 }
2817 
2818 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2819 {
2820 	struct ath_atx_tid *tid;
2821 	struct ath_txq *txq;
2822 	int tidno;
2823 
2824 	rcu_read_lock();
2825 
2826 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2827 		tid = ath_node_to_tid(an, tidno);
2828 		txq = tid->txq;
2829 
2830 		ath_txq_lock(sc, txq);
2831 
2832 		if (!list_empty(&tid->list))
2833 			list_del_init(&tid->list);
2834 
2835 		ath_tid_drain(sc, txq, tid);
2836 		tid->active = false;
2837 
2838 		ath_txq_unlock(sc, txq);
2839 
2840 		if (!an->sta)
2841 			break; /* just one multicast ath_atx_tid */
2842 	}
2843 
2844 	rcu_read_unlock();
2845 }
2846 
2847 #ifdef CONFIG_ATH9K_TX99
2848 
2849 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2850 		    struct ath_tx_control *txctl)
2851 {
2852 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2853 	struct ath_frame_info *fi = get_frame_info(skb);
2854 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2855 	struct ath_buf *bf;
2856 	int padpos, padsize;
2857 
2858 	padpos = ieee80211_hdrlen(hdr->frame_control);
2859 	padsize = padpos & 3;
2860 
2861 	if (padsize && skb->len > padpos) {
2862 		if (skb_headroom(skb) < padsize) {
2863 			ath_dbg(common, XMIT,
2864 				"tx99 padding failed\n");
2865 			return -EINVAL;
2866 		}
2867 
2868 		skb_push(skb, padsize);
2869 		memmove(skb->data, skb->data + padsize, padpos);
2870 	}
2871 
2872 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2873 	fi->framelen = skb->len + FCS_LEN;
2874 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2875 
2876 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2877 	if (!bf) {
2878 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2879 		return -EINVAL;
2880 	}
2881 
2882 	ath_set_rates(sc->tx99_vif, NULL, bf);
2883 
2884 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2885 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2886 
2887 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2888 
2889 	return 0;
2890 }
2891 
2892 #endif /* CONFIG_ATH9K_TX99 */
2893