xref: /linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
51 
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 			       struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 			    int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 				struct ath_txq *txq, struct list_head *bf_q,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 
71 enum {
72 	MCS_HT20,
73 	MCS_HT20_SGI,
74 	MCS_HT40,
75 	MCS_HT40_SGI,
76 };
77 
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81 
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 	__acquires(&txq->axq_lock)
84 {
85 	spin_lock_bh(&txq->axq_lock);
86 }
87 
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 	__releases(&txq->axq_lock)
90 {
91 	spin_unlock_bh(&txq->axq_lock);
92 }
93 
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 	__releases(&txq->axq_lock)
96 {
97 	struct sk_buff_head q;
98 	struct sk_buff *skb;
99 
100 	__skb_queue_head_init(&q);
101 	skb_queue_splice_init(&txq->complete_q, &q);
102 	spin_unlock_bh(&txq->axq_lock);
103 
104 	while ((skb = __skb_dequeue(&q)))
105 		ieee80211_tx_status(sc->hw, skb);
106 }
107 
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 	struct ath_atx_ac *ac = tid->ac;
111 
112 	if (tid->paused)
113 		return;
114 
115 	if (tid->sched)
116 		return;
117 
118 	tid->sched = true;
119 	list_add_tail(&tid->list, &ac->tid_q);
120 
121 	if (ac->sched)
122 		return;
123 
124 	ac->sched = true;
125 	list_add_tail(&ac->list, &txq->axq_acq);
126 }
127 
128 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
129 {
130 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
131 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
132 		     sizeof(tx_info->rate_driver_data));
133 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
134 }
135 
136 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
137 {
138 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
139 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
140 }
141 
142 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
143 			  struct ath_buf *bf)
144 {
145 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
146 			       ARRAY_SIZE(bf->rates));
147 }
148 
149 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
150 {
151 	struct ath_txq *txq = tid->ac->txq;
152 	struct sk_buff *skb;
153 	struct ath_buf *bf;
154 	struct list_head bf_head;
155 	struct ath_tx_status ts;
156 	struct ath_frame_info *fi;
157 	bool sendbar = false;
158 
159 	INIT_LIST_HEAD(&bf_head);
160 
161 	memset(&ts, 0, sizeof(ts));
162 
163 	while ((skb = __skb_dequeue(&tid->buf_q))) {
164 		fi = get_frame_info(skb);
165 		bf = fi->bf;
166 
167 		if (!bf) {
168 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
169 			if (!bf) {
170 				ieee80211_free_txskb(sc->hw, skb);
171 				continue;
172 			}
173 		}
174 
175 		if (fi->retries) {
176 			list_add_tail(&bf->list, &bf_head);
177 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
178 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
179 			sendbar = true;
180 		} else {
181 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
182 			ath_tx_send_normal(sc, txq, NULL, skb);
183 		}
184 	}
185 
186 	if (sendbar) {
187 		ath_txq_unlock(sc, txq);
188 		ath_send_bar(tid, tid->seq_start);
189 		ath_txq_lock(sc, txq);
190 	}
191 }
192 
193 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
194 			      int seqno)
195 {
196 	int index, cindex;
197 
198 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
199 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
200 
201 	__clear_bit(cindex, tid->tx_buf);
202 
203 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
204 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
205 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
206 		if (tid->bar_index >= 0)
207 			tid->bar_index--;
208 	}
209 }
210 
211 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
212 			     u16 seqno)
213 {
214 	int index, cindex;
215 
216 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
217 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
218 	__set_bit(cindex, tid->tx_buf);
219 
220 	if (index >= ((tid->baw_tail - tid->baw_head) &
221 		(ATH_TID_MAX_BUFS - 1))) {
222 		tid->baw_tail = cindex;
223 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
224 	}
225 }
226 
227 /*
228  * TODO: For frame(s) that are in the retry state, we will reuse the
229  * sequence number(s) without setting the retry bit. The
230  * alternative is to give up on these and BAR the receiver's window
231  * forward.
232  */
233 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
234 			  struct ath_atx_tid *tid)
235 
236 {
237 	struct sk_buff *skb;
238 	struct ath_buf *bf;
239 	struct list_head bf_head;
240 	struct ath_tx_status ts;
241 	struct ath_frame_info *fi;
242 
243 	memset(&ts, 0, sizeof(ts));
244 	INIT_LIST_HEAD(&bf_head);
245 
246 	while ((skb = __skb_dequeue(&tid->buf_q))) {
247 		fi = get_frame_info(skb);
248 		bf = fi->bf;
249 
250 		if (!bf) {
251 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
252 			continue;
253 		}
254 
255 		list_add_tail(&bf->list, &bf_head);
256 
257 		ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
258 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
259 	}
260 
261 	tid->seq_next = tid->seq_start;
262 	tid->baw_tail = tid->baw_head;
263 	tid->bar_index = -1;
264 }
265 
266 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
267 			     struct sk_buff *skb, int count)
268 {
269 	struct ath_frame_info *fi = get_frame_info(skb);
270 	struct ath_buf *bf = fi->bf;
271 	struct ieee80211_hdr *hdr;
272 	int prev = fi->retries;
273 
274 	TX_STAT_INC(txq->axq_qnum, a_retries);
275 	fi->retries += count;
276 
277 	if (prev > 0)
278 		return;
279 
280 	hdr = (struct ieee80211_hdr *)skb->data;
281 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
282 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
283 		sizeof(*hdr), DMA_TO_DEVICE);
284 }
285 
286 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
287 {
288 	struct ath_buf *bf = NULL;
289 
290 	spin_lock_bh(&sc->tx.txbuflock);
291 
292 	if (unlikely(list_empty(&sc->tx.txbuf))) {
293 		spin_unlock_bh(&sc->tx.txbuflock);
294 		return NULL;
295 	}
296 
297 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
298 	list_del(&bf->list);
299 
300 	spin_unlock_bh(&sc->tx.txbuflock);
301 
302 	return bf;
303 }
304 
305 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
306 {
307 	spin_lock_bh(&sc->tx.txbuflock);
308 	list_add_tail(&bf->list, &sc->tx.txbuf);
309 	spin_unlock_bh(&sc->tx.txbuflock);
310 }
311 
312 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
313 {
314 	struct ath_buf *tbf;
315 
316 	tbf = ath_tx_get_buffer(sc);
317 	if (WARN_ON(!tbf))
318 		return NULL;
319 
320 	ATH_TXBUF_RESET(tbf);
321 
322 	tbf->bf_mpdu = bf->bf_mpdu;
323 	tbf->bf_buf_addr = bf->bf_buf_addr;
324 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
325 	tbf->bf_state = bf->bf_state;
326 
327 	return tbf;
328 }
329 
330 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
331 			        struct ath_tx_status *ts, int txok,
332 			        int *nframes, int *nbad)
333 {
334 	struct ath_frame_info *fi;
335 	u16 seq_st = 0;
336 	u32 ba[WME_BA_BMP_SIZE >> 5];
337 	int ba_index;
338 	int isaggr = 0;
339 
340 	*nbad = 0;
341 	*nframes = 0;
342 
343 	isaggr = bf_isaggr(bf);
344 	if (isaggr) {
345 		seq_st = ts->ts_seqnum;
346 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
347 	}
348 
349 	while (bf) {
350 		fi = get_frame_info(bf->bf_mpdu);
351 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
352 
353 		(*nframes)++;
354 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
355 			(*nbad)++;
356 
357 		bf = bf->bf_next;
358 	}
359 }
360 
361 
362 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
363 				 struct ath_buf *bf, struct list_head *bf_q,
364 				 struct ath_tx_status *ts, int txok)
365 {
366 	struct ath_node *an = NULL;
367 	struct sk_buff *skb;
368 	struct ieee80211_sta *sta;
369 	struct ieee80211_hw *hw = sc->hw;
370 	struct ieee80211_hdr *hdr;
371 	struct ieee80211_tx_info *tx_info;
372 	struct ath_atx_tid *tid = NULL;
373 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
374 	struct list_head bf_head;
375 	struct sk_buff_head bf_pending;
376 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
377 	u32 ba[WME_BA_BMP_SIZE >> 5];
378 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
379 	bool rc_update = true, isba;
380 	struct ieee80211_tx_rate rates[4];
381 	struct ath_frame_info *fi;
382 	int nframes;
383 	u8 tidno;
384 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
385 	int i, retries;
386 	int bar_index = -1;
387 
388 	skb = bf->bf_mpdu;
389 	hdr = (struct ieee80211_hdr *)skb->data;
390 
391 	tx_info = IEEE80211_SKB_CB(skb);
392 
393 	memcpy(rates, bf->rates, sizeof(rates));
394 
395 	retries = ts->ts_longretry + 1;
396 	for (i = 0; i < ts->ts_rateindex; i++)
397 		retries += rates[i].count;
398 
399 	rcu_read_lock();
400 
401 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
402 	if (!sta) {
403 		rcu_read_unlock();
404 
405 		INIT_LIST_HEAD(&bf_head);
406 		while (bf) {
407 			bf_next = bf->bf_next;
408 
409 			if (!bf->bf_stale || bf_next != NULL)
410 				list_move_tail(&bf->list, &bf_head);
411 
412 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
413 
414 			bf = bf_next;
415 		}
416 		return;
417 	}
418 
419 	an = (struct ath_node *)sta->drv_priv;
420 	tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
421 	tid = ATH_AN_2_TID(an, tidno);
422 	seq_first = tid->seq_start;
423 	isba = ts->ts_flags & ATH9K_TX_BA;
424 
425 	/*
426 	 * The hardware occasionally sends a tx status for the wrong TID.
427 	 * In this case, the BA status cannot be considered valid and all
428 	 * subframes need to be retransmitted
429 	 *
430 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
431 	 * checked
432 	 */
433 	if (isba && tidno != ts->tid)
434 		txok = false;
435 
436 	isaggr = bf_isaggr(bf);
437 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
438 
439 	if (isaggr && txok) {
440 		if (ts->ts_flags & ATH9K_TX_BA) {
441 			seq_st = ts->ts_seqnum;
442 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
443 		} else {
444 			/*
445 			 * AR5416 can become deaf/mute when BA
446 			 * issue happens. Chip needs to be reset.
447 			 * But AP code may have sychronization issues
448 			 * when perform internal reset in this routine.
449 			 * Only enable reset in STA mode for now.
450 			 */
451 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
452 				needreset = 1;
453 		}
454 	}
455 
456 	__skb_queue_head_init(&bf_pending);
457 
458 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
459 	while (bf) {
460 		u16 seqno = bf->bf_state.seqno;
461 
462 		txfail = txpending = sendbar = 0;
463 		bf_next = bf->bf_next;
464 
465 		skb = bf->bf_mpdu;
466 		tx_info = IEEE80211_SKB_CB(skb);
467 		fi = get_frame_info(skb);
468 
469 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
470 			/*
471 			 * Outside of the current BlockAck window,
472 			 * maybe part of a previous session
473 			 */
474 			txfail = 1;
475 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
476 			/* transmit completion, subframe is
477 			 * acked by block ack */
478 			acked_cnt++;
479 		} else if (!isaggr && txok) {
480 			/* transmit completion */
481 			acked_cnt++;
482 		} else if (flush) {
483 			txpending = 1;
484 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
485 			if (txok || !an->sleeping)
486 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
487 						 retries);
488 
489 			txpending = 1;
490 		} else {
491 			txfail = 1;
492 			txfail_cnt++;
493 			bar_index = max_t(int, bar_index,
494 				ATH_BA_INDEX(seq_first, seqno));
495 		}
496 
497 		/*
498 		 * Make sure the last desc is reclaimed if it
499 		 * not a holding desc.
500 		 */
501 		INIT_LIST_HEAD(&bf_head);
502 		if (bf_next != NULL || !bf_last->bf_stale)
503 			list_move_tail(&bf->list, &bf_head);
504 
505 		if (!txpending) {
506 			/*
507 			 * complete the acked-ones/xretried ones; update
508 			 * block-ack window
509 			 */
510 			ath_tx_update_baw(sc, tid, seqno);
511 
512 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
513 				memcpy(tx_info->control.rates, rates, sizeof(rates));
514 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
515 				rc_update = false;
516 			}
517 
518 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
519 				!txfail);
520 		} else {
521 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
522 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
523 				ieee80211_sta_eosp(sta);
524 			}
525 			/* retry the un-acked ones */
526 			if (bf->bf_next == NULL && bf_last->bf_stale) {
527 				struct ath_buf *tbf;
528 
529 				tbf = ath_clone_txbuf(sc, bf_last);
530 				/*
531 				 * Update tx baw and complete the
532 				 * frame with failed status if we
533 				 * run out of tx buf.
534 				 */
535 				if (!tbf) {
536 					ath_tx_update_baw(sc, tid, seqno);
537 
538 					ath_tx_complete_buf(sc, bf, txq,
539 							    &bf_head, ts, 0);
540 					bar_index = max_t(int, bar_index,
541 						ATH_BA_INDEX(seq_first, seqno));
542 					break;
543 				}
544 
545 				fi->bf = tbf;
546 			}
547 
548 			/*
549 			 * Put this buffer to the temporary pending
550 			 * queue to retain ordering
551 			 */
552 			__skb_queue_tail(&bf_pending, skb);
553 		}
554 
555 		bf = bf_next;
556 	}
557 
558 	/* prepend un-acked frames to the beginning of the pending frame queue */
559 	if (!skb_queue_empty(&bf_pending)) {
560 		if (an->sleeping)
561 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
562 
563 		skb_queue_splice(&bf_pending, &tid->buf_q);
564 		if (!an->sleeping) {
565 			ath_tx_queue_tid(txq, tid);
566 
567 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
568 				tid->ac->clear_ps_filter = true;
569 		}
570 	}
571 
572 	if (bar_index >= 0) {
573 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
574 
575 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
576 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
577 
578 		ath_txq_unlock(sc, txq);
579 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
580 		ath_txq_lock(sc, txq);
581 	}
582 
583 	rcu_read_unlock();
584 
585 	if (needreset)
586 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
587 }
588 
589 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
590 {
591     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
592     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
593 }
594 
595 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
596 				  struct ath_tx_status *ts, struct ath_buf *bf,
597 				  struct list_head *bf_head)
598 {
599 	struct ieee80211_tx_info *info;
600 	bool txok, flush;
601 
602 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
603 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
604 	txq->axq_tx_inprogress = false;
605 
606 	txq->axq_depth--;
607 	if (bf_is_ampdu_not_probing(bf))
608 		txq->axq_ampdu_depth--;
609 
610 	if (!bf_isampdu(bf)) {
611 		if (!flush) {
612 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
613 			memcpy(info->control.rates, bf->rates,
614 			       sizeof(info->control.rates));
615 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
616 		}
617 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
618 	} else
619 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
620 
621 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
622 		ath_txq_schedule(sc, txq);
623 }
624 
625 static bool ath_lookup_legacy(struct ath_buf *bf)
626 {
627 	struct sk_buff *skb;
628 	struct ieee80211_tx_info *tx_info;
629 	struct ieee80211_tx_rate *rates;
630 	int i;
631 
632 	skb = bf->bf_mpdu;
633 	tx_info = IEEE80211_SKB_CB(skb);
634 	rates = tx_info->control.rates;
635 
636 	for (i = 0; i < 4; i++) {
637 		if (!rates[i].count || rates[i].idx < 0)
638 			break;
639 
640 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
641 			return true;
642 	}
643 
644 	return false;
645 }
646 
647 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
648 			   struct ath_atx_tid *tid)
649 {
650 	struct sk_buff *skb;
651 	struct ieee80211_tx_info *tx_info;
652 	struct ieee80211_tx_rate *rates;
653 	u32 max_4ms_framelen, frmlen;
654 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
655 	int q = tid->ac->txq->mac80211_qnum;
656 	int i;
657 
658 	skb = bf->bf_mpdu;
659 	tx_info = IEEE80211_SKB_CB(skb);
660 	rates = bf->rates;
661 
662 	/*
663 	 * Find the lowest frame length among the rate series that will have a
664 	 * 4ms (or TXOP limited) transmit duration.
665 	 */
666 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
667 
668 	for (i = 0; i < 4; i++) {
669 		int modeidx;
670 
671 		if (!rates[i].count)
672 			continue;
673 
674 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
675 			legacy = 1;
676 			break;
677 		}
678 
679 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
680 			modeidx = MCS_HT40;
681 		else
682 			modeidx = MCS_HT20;
683 
684 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
685 			modeidx++;
686 
687 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
688 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
689 	}
690 
691 	/*
692 	 * limit aggregate size by the minimum rate if rate selected is
693 	 * not a probe rate, if rate selected is a probe rate then
694 	 * avoid aggregation of this packet.
695 	 */
696 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
697 		return 0;
698 
699 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
700 
701 	/*
702 	 * Override the default aggregation limit for BTCOEX.
703 	 */
704 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
705 	if (bt_aggr_limit)
706 		aggr_limit = bt_aggr_limit;
707 
708 	/*
709 	 * h/w can accept aggregates up to 16 bit lengths (65535).
710 	 * The IE, however can hold up to 65536, which shows up here
711 	 * as zero. Ignore 65536 since we  are constrained by hw.
712 	 */
713 	if (tid->an->maxampdu)
714 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
715 
716 	return aggr_limit;
717 }
718 
719 /*
720  * Returns the number of delimiters to be added to
721  * meet the minimum required mpdudensity.
722  */
723 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
724 				  struct ath_buf *bf, u16 frmlen,
725 				  bool first_subfrm)
726 {
727 #define FIRST_DESC_NDELIMS 60
728 	u32 nsymbits, nsymbols;
729 	u16 minlen;
730 	u8 flags, rix;
731 	int width, streams, half_gi, ndelim, mindelim;
732 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
733 
734 	/* Select standard number of delimiters based on frame length alone */
735 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
736 
737 	/*
738 	 * If encryption enabled, hardware requires some more padding between
739 	 * subframes.
740 	 * TODO - this could be improved to be dependent on the rate.
741 	 *      The hardware can keep up at lower rates, but not higher rates
742 	 */
743 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
744 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
745 		ndelim += ATH_AGGR_ENCRYPTDELIM;
746 
747 	/*
748 	 * Add delimiter when using RTS/CTS with aggregation
749 	 * and non enterprise AR9003 card
750 	 */
751 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
752 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
753 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
754 
755 	/*
756 	 * Convert desired mpdu density from microeconds to bytes based
757 	 * on highest rate in rate series (i.e. first rate) to determine
758 	 * required minimum length for subframe. Take into account
759 	 * whether high rate is 20 or 40Mhz and half or full GI.
760 	 *
761 	 * If there is no mpdu density restriction, no further calculation
762 	 * is needed.
763 	 */
764 
765 	if (tid->an->mpdudensity == 0)
766 		return ndelim;
767 
768 	rix = bf->rates[0].idx;
769 	flags = bf->rates[0].flags;
770 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
771 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
772 
773 	if (half_gi)
774 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
775 	else
776 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
777 
778 	if (nsymbols == 0)
779 		nsymbols = 1;
780 
781 	streams = HT_RC_2_STREAMS(rix);
782 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
783 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
784 
785 	if (frmlen < minlen) {
786 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
787 		ndelim = max(mindelim, ndelim);
788 	}
789 
790 	return ndelim;
791 }
792 
793 static struct ath_buf *
794 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
795 			struct ath_atx_tid *tid)
796 {
797 	struct ath_frame_info *fi;
798 	struct sk_buff *skb;
799 	struct ath_buf *bf;
800 	u16 seqno;
801 
802 	while (1) {
803 		skb = skb_peek(&tid->buf_q);
804 		if (!skb)
805 			break;
806 
807 		fi = get_frame_info(skb);
808 		bf = fi->bf;
809 		if (!fi->bf)
810 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
811 
812 		if (!bf) {
813 			__skb_unlink(skb, &tid->buf_q);
814 			ieee80211_free_txskb(sc->hw, skb);
815 			continue;
816 		}
817 
818 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
819 		seqno = bf->bf_state.seqno;
820 
821 		/* do not step over block-ack window */
822 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
823 			break;
824 
825 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
826 			struct ath_tx_status ts = {};
827 			struct list_head bf_head;
828 
829 			INIT_LIST_HEAD(&bf_head);
830 			list_add(&bf->list, &bf_head);
831 			__skb_unlink(skb, &tid->buf_q);
832 			ath_tx_update_baw(sc, tid, seqno);
833 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
834 			continue;
835 		}
836 
837 		bf->bf_next = NULL;
838 		bf->bf_lastbf = bf;
839 		return bf;
840 	}
841 
842 	return NULL;
843 }
844 
845 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
846 					     struct ath_txq *txq,
847 					     struct ath_atx_tid *tid,
848 					     struct list_head *bf_q,
849 					     int *aggr_len)
850 {
851 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
852 	struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
853 	int rl = 0, nframes = 0, ndelim, prev_al = 0;
854 	u16 aggr_limit = 0, al = 0, bpad = 0,
855 		al_delta, h_baw = tid->baw_size / 2;
856 	enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
857 	struct ieee80211_tx_info *tx_info;
858 	struct ath_frame_info *fi;
859 	struct sk_buff *skb;
860 
861 	do {
862 		bf = ath_tx_get_tid_subframe(sc, txq, tid);
863 		if (!bf) {
864 			status = ATH_AGGR_BAW_CLOSED;
865 			break;
866 		}
867 
868 		skb = bf->bf_mpdu;
869 		fi = get_frame_info(skb);
870 
871 		if (!bf_first)
872 			bf_first = bf;
873 
874 		if (!rl) {
875 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
876 			aggr_limit = ath_lookup_rate(sc, bf, tid);
877 			rl = 1;
878 		}
879 
880 		/* do not exceed aggregation limit */
881 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
882 
883 		if (nframes &&
884 		    ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
885 		     ath_lookup_legacy(bf))) {
886 			status = ATH_AGGR_LIMITED;
887 			break;
888 		}
889 
890 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
891 		if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
892 			break;
893 
894 		/* do not exceed subframe limit */
895 		if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
896 			status = ATH_AGGR_LIMITED;
897 			break;
898 		}
899 
900 		/* add padding for previous frame to aggregation length */
901 		al += bpad + al_delta;
902 
903 		/*
904 		 * Get the delimiters needed to meet the MPDU
905 		 * density for this node.
906 		 */
907 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
908 						!nframes);
909 		bpad = PADBYTES(al_delta) + (ndelim << 2);
910 
911 		nframes++;
912 		bf->bf_next = NULL;
913 
914 		/* link buffers of this frame to the aggregate */
915 		if (!fi->retries)
916 			ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
917 		bf->bf_state.ndelim = ndelim;
918 
919 		__skb_unlink(skb, &tid->buf_q);
920 		list_add_tail(&bf->list, bf_q);
921 		if (bf_prev)
922 			bf_prev->bf_next = bf;
923 
924 		bf_prev = bf;
925 
926 	} while (!skb_queue_empty(&tid->buf_q));
927 
928 	*aggr_len = al;
929 
930 	return status;
931 #undef PADBYTES
932 }
933 
934 /*
935  * rix - rate index
936  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
937  * width  - 0 for 20 MHz, 1 for 40 MHz
938  * half_gi - to use 4us v/s 3.6 us for symbol time
939  */
940 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
941 			    int width, int half_gi, bool shortPreamble)
942 {
943 	u32 nbits, nsymbits, duration, nsymbols;
944 	int streams;
945 
946 	/* find number of symbols: PLCP + data */
947 	streams = HT_RC_2_STREAMS(rix);
948 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
949 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
950 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
951 
952 	if (!half_gi)
953 		duration = SYMBOL_TIME(nsymbols);
954 	else
955 		duration = SYMBOL_TIME_HALFGI(nsymbols);
956 
957 	/* addup duration for legacy/ht training and signal fields */
958 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
959 
960 	return duration;
961 }
962 
963 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
964 {
965 	int streams = HT_RC_2_STREAMS(mcs);
966 	int symbols, bits;
967 	int bytes = 0;
968 
969 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
970 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
971 	bits -= OFDM_PLCP_BITS;
972 	bytes = bits / 8;
973 	bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
974 	if (bytes > 65532)
975 		bytes = 65532;
976 
977 	return bytes;
978 }
979 
980 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
981 {
982 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
983 	int mcs;
984 
985 	/* 4ms is the default (and maximum) duration */
986 	if (!txop || txop > 4096)
987 		txop = 4096;
988 
989 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
990 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
991 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
992 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
993 	for (mcs = 0; mcs < 32; mcs++) {
994 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
995 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
996 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
997 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
998 	}
999 }
1000 
1001 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1002 			     struct ath_tx_info *info, int len)
1003 {
1004 	struct ath_hw *ah = sc->sc_ah;
1005 	struct sk_buff *skb;
1006 	struct ieee80211_tx_info *tx_info;
1007 	struct ieee80211_tx_rate *rates;
1008 	const struct ieee80211_rate *rate;
1009 	struct ieee80211_hdr *hdr;
1010 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1011 	int i;
1012 	u8 rix = 0;
1013 
1014 	skb = bf->bf_mpdu;
1015 	tx_info = IEEE80211_SKB_CB(skb);
1016 	rates = bf->rates;
1017 	hdr = (struct ieee80211_hdr *)skb->data;
1018 
1019 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1020 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1021 	info->rtscts_rate = fi->rtscts_rate;
1022 
1023 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1024 		bool is_40, is_sgi, is_sp;
1025 		int phy;
1026 
1027 		if (!rates[i].count || (rates[i].idx < 0))
1028 			continue;
1029 
1030 		rix = rates[i].idx;
1031 		info->rates[i].Tries = rates[i].count;
1032 
1033 		    if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1034 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1035 			info->flags |= ATH9K_TXDESC_RTSENA;
1036 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1037 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1038 			info->flags |= ATH9K_TXDESC_CTSENA;
1039 		}
1040 
1041 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1042 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1043 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1044 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1045 
1046 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1047 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1048 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1049 
1050 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1051 			/* MCS rates */
1052 			info->rates[i].Rate = rix | 0x80;
1053 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1054 					ah->txchainmask, info->rates[i].Rate);
1055 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1056 				 is_40, is_sgi, is_sp);
1057 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1058 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1059 			continue;
1060 		}
1061 
1062 		/* legacy rates */
1063 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1064 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1065 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1066 			phy = WLAN_RC_PHY_CCK;
1067 		else
1068 			phy = WLAN_RC_PHY_OFDM;
1069 
1070 		info->rates[i].Rate = rate->hw_value;
1071 		if (rate->hw_value_short) {
1072 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1073 				info->rates[i].Rate |= rate->hw_value_short;
1074 		} else {
1075 			is_sp = false;
1076 		}
1077 
1078 		if (bf->bf_state.bfs_paprd)
1079 			info->rates[i].ChSel = ah->txchainmask;
1080 		else
1081 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1082 					ah->txchainmask, info->rates[i].Rate);
1083 
1084 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1085 			phy, rate->bitrate * 100, len, rix, is_sp);
1086 	}
1087 
1088 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1089 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1090 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1091 
1092 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1093 	if (info->flags & ATH9K_TXDESC_RTSENA)
1094 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1095 }
1096 
1097 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1098 {
1099 	struct ieee80211_hdr *hdr;
1100 	enum ath9k_pkt_type htype;
1101 	__le16 fc;
1102 
1103 	hdr = (struct ieee80211_hdr *)skb->data;
1104 	fc = hdr->frame_control;
1105 
1106 	if (ieee80211_is_beacon(fc))
1107 		htype = ATH9K_PKT_TYPE_BEACON;
1108 	else if (ieee80211_is_probe_resp(fc))
1109 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1110 	else if (ieee80211_is_atim(fc))
1111 		htype = ATH9K_PKT_TYPE_ATIM;
1112 	else if (ieee80211_is_pspoll(fc))
1113 		htype = ATH9K_PKT_TYPE_PSPOLL;
1114 	else
1115 		htype = ATH9K_PKT_TYPE_NORMAL;
1116 
1117 	return htype;
1118 }
1119 
1120 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1121 			     struct ath_txq *txq, int len)
1122 {
1123 	struct ath_hw *ah = sc->sc_ah;
1124 	struct ath_buf *bf_first = NULL;
1125 	struct ath_tx_info info;
1126 
1127 	memset(&info, 0, sizeof(info));
1128 	info.is_first = true;
1129 	info.is_last = true;
1130 	info.txpower = MAX_RATE_POWER;
1131 	info.qcu = txq->axq_qnum;
1132 
1133 	while (bf) {
1134 		struct sk_buff *skb = bf->bf_mpdu;
1135 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1136 		struct ath_frame_info *fi = get_frame_info(skb);
1137 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1138 
1139 		info.type = get_hw_packet_type(skb);
1140 		if (bf->bf_next)
1141 			info.link = bf->bf_next->bf_daddr;
1142 		else
1143 			info.link = 0;
1144 
1145 		if (!bf_first) {
1146 			bf_first = bf;
1147 
1148 			info.flags = ATH9K_TXDESC_INTREQ;
1149 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1150 			    txq == sc->tx.uapsdq)
1151 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1152 
1153 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1154 				info.flags |= ATH9K_TXDESC_NOACK;
1155 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1156 				info.flags |= ATH9K_TXDESC_LDPC;
1157 
1158 			if (bf->bf_state.bfs_paprd)
1159 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1160 					      ATH9K_TXDESC_PAPRD_S;
1161 
1162 			ath_buf_set_rate(sc, bf, &info, len);
1163 		}
1164 
1165 		info.buf_addr[0] = bf->bf_buf_addr;
1166 		info.buf_len[0] = skb->len;
1167 		info.pkt_len = fi->framelen;
1168 		info.keyix = fi->keyix;
1169 		info.keytype = fi->keytype;
1170 
1171 		if (aggr) {
1172 			if (bf == bf_first)
1173 				info.aggr = AGGR_BUF_FIRST;
1174 			else if (bf == bf_first->bf_lastbf)
1175 				info.aggr = AGGR_BUF_LAST;
1176 			else
1177 				info.aggr = AGGR_BUF_MIDDLE;
1178 
1179 			info.ndelim = bf->bf_state.ndelim;
1180 			info.aggr_len = len;
1181 		}
1182 
1183 		if (bf == bf_first->bf_lastbf)
1184 			bf_first = NULL;
1185 
1186 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1187 		bf = bf->bf_next;
1188 	}
1189 }
1190 
1191 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1192 			      struct ath_atx_tid *tid)
1193 {
1194 	struct ath_buf *bf;
1195 	enum ATH_AGGR_STATUS status;
1196 	struct ieee80211_tx_info *tx_info;
1197 	struct list_head bf_q;
1198 	int aggr_len;
1199 
1200 	do {
1201 		if (skb_queue_empty(&tid->buf_q))
1202 			return;
1203 
1204 		INIT_LIST_HEAD(&bf_q);
1205 
1206 		status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1207 
1208 		/*
1209 		 * no frames picked up to be aggregated;
1210 		 * block-ack window is not open.
1211 		 */
1212 		if (list_empty(&bf_q))
1213 			break;
1214 
1215 		bf = list_first_entry(&bf_q, struct ath_buf, list);
1216 		bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1217 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1218 
1219 		if (tid->ac->clear_ps_filter) {
1220 			tid->ac->clear_ps_filter = false;
1221 			tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1222 		} else {
1223 			tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1224 		}
1225 
1226 		/* if only one frame, send as non-aggregate */
1227 		if (bf == bf->bf_lastbf) {
1228 			aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1229 			bf->bf_state.bf_type = BUF_AMPDU;
1230 		} else {
1231 			TX_STAT_INC(txq->axq_qnum, a_aggr);
1232 		}
1233 
1234 		ath_tx_fill_desc(sc, bf, txq, aggr_len);
1235 		ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1236 	} while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1237 		 status != ATH_AGGR_BAW_CLOSED);
1238 }
1239 
1240 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1241 		      u16 tid, u16 *ssn)
1242 {
1243 	struct ath_atx_tid *txtid;
1244 	struct ath_node *an;
1245 	u8 density;
1246 
1247 	an = (struct ath_node *)sta->drv_priv;
1248 	txtid = ATH_AN_2_TID(an, tid);
1249 
1250 	/* update ampdu factor/density, they may have changed. This may happen
1251 	 * in HT IBSS when a beacon with HT-info is received after the station
1252 	 * has already been added.
1253 	 */
1254 	if (sta->ht_cap.ht_supported) {
1255 		an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1256 				     sta->ht_cap.ampdu_factor);
1257 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1258 		an->mpdudensity = density;
1259 	}
1260 
1261 	txtid->active = true;
1262 	txtid->paused = true;
1263 	*ssn = txtid->seq_start = txtid->seq_next;
1264 	txtid->bar_index = -1;
1265 
1266 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1267 	txtid->baw_head = txtid->baw_tail = 0;
1268 
1269 	return 0;
1270 }
1271 
1272 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1273 {
1274 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1275 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1276 	struct ath_txq *txq = txtid->ac->txq;
1277 
1278 	ath_txq_lock(sc, txq);
1279 	txtid->active = false;
1280 	txtid->paused = true;
1281 	ath_tx_flush_tid(sc, txtid);
1282 	ath_txq_unlock_complete(sc, txq);
1283 }
1284 
1285 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1286 		       struct ath_node *an)
1287 {
1288 	struct ath_atx_tid *tid;
1289 	struct ath_atx_ac *ac;
1290 	struct ath_txq *txq;
1291 	bool buffered;
1292 	int tidno;
1293 
1294 	for (tidno = 0, tid = &an->tid[tidno];
1295 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1296 
1297 		if (!tid->sched)
1298 			continue;
1299 
1300 		ac = tid->ac;
1301 		txq = ac->txq;
1302 
1303 		ath_txq_lock(sc, txq);
1304 
1305 		buffered = !skb_queue_empty(&tid->buf_q);
1306 
1307 		tid->sched = false;
1308 		list_del(&tid->list);
1309 
1310 		if (ac->sched) {
1311 			ac->sched = false;
1312 			list_del(&ac->list);
1313 		}
1314 
1315 		ath_txq_unlock(sc, txq);
1316 
1317 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1318 	}
1319 }
1320 
1321 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1322 {
1323 	struct ath_atx_tid *tid;
1324 	struct ath_atx_ac *ac;
1325 	struct ath_txq *txq;
1326 	int tidno;
1327 
1328 	for (tidno = 0, tid = &an->tid[tidno];
1329 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1330 
1331 		ac = tid->ac;
1332 		txq = ac->txq;
1333 
1334 		ath_txq_lock(sc, txq);
1335 		ac->clear_ps_filter = true;
1336 
1337 		if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1338 			ath_tx_queue_tid(txq, tid);
1339 			ath_txq_schedule(sc, txq);
1340 		}
1341 
1342 		ath_txq_unlock_complete(sc, txq);
1343 	}
1344 }
1345 
1346 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1347 			u16 tidno)
1348 {
1349 	struct ath_atx_tid *tid;
1350 	struct ath_node *an;
1351 	struct ath_txq *txq;
1352 
1353 	an = (struct ath_node *)sta->drv_priv;
1354 	tid = ATH_AN_2_TID(an, tidno);
1355 	txq = tid->ac->txq;
1356 
1357 	ath_txq_lock(sc, txq);
1358 
1359 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1360 	tid->paused = false;
1361 
1362 	if (!skb_queue_empty(&tid->buf_q)) {
1363 		ath_tx_queue_tid(txq, tid);
1364 		ath_txq_schedule(sc, txq);
1365 	}
1366 
1367 	ath_txq_unlock_complete(sc, txq);
1368 }
1369 
1370 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1371 				   struct ieee80211_sta *sta,
1372 				   u16 tids, int nframes,
1373 				   enum ieee80211_frame_release_type reason,
1374 				   bool more_data)
1375 {
1376 	struct ath_softc *sc = hw->priv;
1377 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1378 	struct ath_txq *txq = sc->tx.uapsdq;
1379 	struct ieee80211_tx_info *info;
1380 	struct list_head bf_q;
1381 	struct ath_buf *bf_tail = NULL, *bf;
1382 	int sent = 0;
1383 	int i;
1384 
1385 	INIT_LIST_HEAD(&bf_q);
1386 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1387 		struct ath_atx_tid *tid;
1388 
1389 		if (!(tids & 1))
1390 			continue;
1391 
1392 		tid = ATH_AN_2_TID(an, i);
1393 		if (tid->paused)
1394 			continue;
1395 
1396 		ath_txq_lock(sc, tid->ac->txq);
1397 		while (!skb_queue_empty(&tid->buf_q) && nframes > 0) {
1398 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1399 			if (!bf)
1400 				break;
1401 
1402 			__skb_unlink(bf->bf_mpdu, &tid->buf_q);
1403 			list_add_tail(&bf->list, &bf_q);
1404 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1405 			ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1406 			bf->bf_state.bf_type &= ~BUF_AGGR;
1407 			if (bf_tail)
1408 				bf_tail->bf_next = bf;
1409 
1410 			bf_tail = bf;
1411 			nframes--;
1412 			sent++;
1413 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1414 
1415 			if (skb_queue_empty(&tid->buf_q))
1416 				ieee80211_sta_set_buffered(an->sta, i, false);
1417 		}
1418 		ath_txq_unlock_complete(sc, tid->ac->txq);
1419 	}
1420 
1421 	if (list_empty(&bf_q))
1422 		return;
1423 
1424 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1425 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1426 
1427 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1428 	ath_txq_lock(sc, txq);
1429 	ath_tx_fill_desc(sc, bf, txq, 0);
1430 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1431 	ath_txq_unlock(sc, txq);
1432 }
1433 
1434 /********************/
1435 /* Queue Management */
1436 /********************/
1437 
1438 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1439 {
1440 	struct ath_hw *ah = sc->sc_ah;
1441 	struct ath9k_tx_queue_info qi;
1442 	static const int subtype_txq_to_hwq[] = {
1443 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1444 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1445 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1446 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1447 	};
1448 	int axq_qnum, i;
1449 
1450 	memset(&qi, 0, sizeof(qi));
1451 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1452 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1453 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1454 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1455 	qi.tqi_physCompBuf = 0;
1456 
1457 	/*
1458 	 * Enable interrupts only for EOL and DESC conditions.
1459 	 * We mark tx descriptors to receive a DESC interrupt
1460 	 * when a tx queue gets deep; otherwise waiting for the
1461 	 * EOL to reap descriptors.  Note that this is done to
1462 	 * reduce interrupt load and this only defers reaping
1463 	 * descriptors, never transmitting frames.  Aside from
1464 	 * reducing interrupts this also permits more concurrency.
1465 	 * The only potential downside is if the tx queue backs
1466 	 * up in which case the top half of the kernel may backup
1467 	 * due to a lack of tx descriptors.
1468 	 *
1469 	 * The UAPSD queue is an exception, since we take a desc-
1470 	 * based intr on the EOSP frames.
1471 	 */
1472 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1473 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1474 	} else {
1475 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1476 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1477 		else
1478 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1479 					TXQ_FLAG_TXDESCINT_ENABLE;
1480 	}
1481 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1482 	if (axq_qnum == -1) {
1483 		/*
1484 		 * NB: don't print a message, this happens
1485 		 * normally on parts with too few tx queues
1486 		 */
1487 		return NULL;
1488 	}
1489 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1490 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1491 
1492 		txq->axq_qnum = axq_qnum;
1493 		txq->mac80211_qnum = -1;
1494 		txq->axq_link = NULL;
1495 		__skb_queue_head_init(&txq->complete_q);
1496 		INIT_LIST_HEAD(&txq->axq_q);
1497 		INIT_LIST_HEAD(&txq->axq_acq);
1498 		spin_lock_init(&txq->axq_lock);
1499 		txq->axq_depth = 0;
1500 		txq->axq_ampdu_depth = 0;
1501 		txq->axq_tx_inprogress = false;
1502 		sc->tx.txqsetup |= 1<<axq_qnum;
1503 
1504 		txq->txq_headidx = txq->txq_tailidx = 0;
1505 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1506 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1507 	}
1508 	return &sc->tx.txq[axq_qnum];
1509 }
1510 
1511 int ath_txq_update(struct ath_softc *sc, int qnum,
1512 		   struct ath9k_tx_queue_info *qinfo)
1513 {
1514 	struct ath_hw *ah = sc->sc_ah;
1515 	int error = 0;
1516 	struct ath9k_tx_queue_info qi;
1517 
1518 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1519 
1520 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1521 	qi.tqi_aifs = qinfo->tqi_aifs;
1522 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1523 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1524 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1525 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1526 
1527 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1528 		ath_err(ath9k_hw_common(sc->sc_ah),
1529 			"Unable to update hardware queue %u!\n", qnum);
1530 		error = -EIO;
1531 	} else {
1532 		ath9k_hw_resettxqueue(ah, qnum);
1533 	}
1534 
1535 	return error;
1536 }
1537 
1538 int ath_cabq_update(struct ath_softc *sc)
1539 {
1540 	struct ath9k_tx_queue_info qi;
1541 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1542 	int qnum = sc->beacon.cabq->axq_qnum;
1543 
1544 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1545 	/*
1546 	 * Ensure the readytime % is within the bounds.
1547 	 */
1548 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1549 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1550 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1551 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1552 
1553 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1554 			    sc->config.cabqReadytime) / 100;
1555 	ath_txq_update(sc, qnum, &qi);
1556 
1557 	return 0;
1558 }
1559 
1560 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1561 			       struct list_head *list)
1562 {
1563 	struct ath_buf *bf, *lastbf;
1564 	struct list_head bf_head;
1565 	struct ath_tx_status ts;
1566 
1567 	memset(&ts, 0, sizeof(ts));
1568 	ts.ts_status = ATH9K_TX_FLUSH;
1569 	INIT_LIST_HEAD(&bf_head);
1570 
1571 	while (!list_empty(list)) {
1572 		bf = list_first_entry(list, struct ath_buf, list);
1573 
1574 		if (bf->bf_stale) {
1575 			list_del(&bf->list);
1576 
1577 			ath_tx_return_buffer(sc, bf);
1578 			continue;
1579 		}
1580 
1581 		lastbf = bf->bf_lastbf;
1582 		list_cut_position(&bf_head, list, &lastbf->list);
1583 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1584 	}
1585 }
1586 
1587 /*
1588  * Drain a given TX queue (could be Beacon or Data)
1589  *
1590  * This assumes output has been stopped and
1591  * we do not need to block ath_tx_tasklet.
1592  */
1593 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1594 {
1595 	ath_txq_lock(sc, txq);
1596 
1597 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1598 		int idx = txq->txq_tailidx;
1599 
1600 		while (!list_empty(&txq->txq_fifo[idx])) {
1601 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1602 
1603 			INCR(idx, ATH_TXFIFO_DEPTH);
1604 		}
1605 		txq->txq_tailidx = idx;
1606 	}
1607 
1608 	txq->axq_link = NULL;
1609 	txq->axq_tx_inprogress = false;
1610 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1611 
1612 	ath_txq_unlock_complete(sc, txq);
1613 }
1614 
1615 bool ath_drain_all_txq(struct ath_softc *sc)
1616 {
1617 	struct ath_hw *ah = sc->sc_ah;
1618 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1619 	struct ath_txq *txq;
1620 	int i;
1621 	u32 npend = 0;
1622 
1623 	if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1624 		return true;
1625 
1626 	ath9k_hw_abort_tx_dma(ah);
1627 
1628 	/* Check if any queue remains active */
1629 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1630 		if (!ATH_TXQ_SETUP(sc, i))
1631 			continue;
1632 
1633 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1634 			npend |= BIT(i);
1635 	}
1636 
1637 	if (npend)
1638 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1639 
1640 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1641 		if (!ATH_TXQ_SETUP(sc, i))
1642 			continue;
1643 
1644 		/*
1645 		 * The caller will resume queues with ieee80211_wake_queues.
1646 		 * Mark the queue as not stopped to prevent ath_tx_complete
1647 		 * from waking the queue too early.
1648 		 */
1649 		txq = &sc->tx.txq[i];
1650 		txq->stopped = false;
1651 		ath_draintxq(sc, txq);
1652 	}
1653 
1654 	return !npend;
1655 }
1656 
1657 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1658 {
1659 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1660 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1661 }
1662 
1663 /* For each axq_acq entry, for each tid, try to schedule packets
1664  * for transmit until ampdu_depth has reached min Q depth.
1665  */
1666 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1667 {
1668 	struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1669 	struct ath_atx_tid *tid, *last_tid;
1670 
1671 	if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1672 	    list_empty(&txq->axq_acq) ||
1673 	    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1674 		return;
1675 
1676 	rcu_read_lock();
1677 
1678 	ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1679 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1680 
1681 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1682 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1683 		list_del(&ac->list);
1684 		ac->sched = false;
1685 
1686 		while (!list_empty(&ac->tid_q)) {
1687 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1688 					       list);
1689 			list_del(&tid->list);
1690 			tid->sched = false;
1691 
1692 			if (tid->paused)
1693 				continue;
1694 
1695 			ath_tx_sched_aggr(sc, txq, tid);
1696 
1697 			/*
1698 			 * add tid to round-robin queue if more frames
1699 			 * are pending for the tid
1700 			 */
1701 			if (!skb_queue_empty(&tid->buf_q))
1702 				ath_tx_queue_tid(txq, tid);
1703 
1704 			if (tid == last_tid ||
1705 			    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1706 				break;
1707 		}
1708 
1709 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1710 			ac->sched = true;
1711 			list_add_tail(&ac->list, &txq->axq_acq);
1712 		}
1713 
1714 		if (ac == last_ac ||
1715 		    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1716 			break;
1717 	}
1718 
1719 	rcu_read_unlock();
1720 }
1721 
1722 /***********/
1723 /* TX, DMA */
1724 /***********/
1725 
1726 /*
1727  * Insert a chain of ath_buf (descriptors) on a txq and
1728  * assume the descriptors are already chained together by caller.
1729  */
1730 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1731 			     struct list_head *head, bool internal)
1732 {
1733 	struct ath_hw *ah = sc->sc_ah;
1734 	struct ath_common *common = ath9k_hw_common(ah);
1735 	struct ath_buf *bf, *bf_last;
1736 	bool puttxbuf = false;
1737 	bool edma;
1738 
1739 	/*
1740 	 * Insert the frame on the outbound list and
1741 	 * pass it on to the hardware.
1742 	 */
1743 
1744 	if (list_empty(head))
1745 		return;
1746 
1747 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1748 	bf = list_first_entry(head, struct ath_buf, list);
1749 	bf_last = list_entry(head->prev, struct ath_buf, list);
1750 
1751 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1752 		txq->axq_qnum, txq->axq_depth);
1753 
1754 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1755 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1756 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1757 		puttxbuf = true;
1758 	} else {
1759 		list_splice_tail_init(head, &txq->axq_q);
1760 
1761 		if (txq->axq_link) {
1762 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1763 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1764 				txq->axq_qnum, txq->axq_link,
1765 				ito64(bf->bf_daddr), bf->bf_desc);
1766 		} else if (!edma)
1767 			puttxbuf = true;
1768 
1769 		txq->axq_link = bf_last->bf_desc;
1770 	}
1771 
1772 	if (puttxbuf) {
1773 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1774 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1775 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1776 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1777 	}
1778 
1779 	if (!edma) {
1780 		TX_STAT_INC(txq->axq_qnum, txstart);
1781 		ath9k_hw_txstart(ah, txq->axq_qnum);
1782 	}
1783 
1784 	if (!internal) {
1785 		while (bf) {
1786 			txq->axq_depth++;
1787 			if (bf_is_ampdu_not_probing(bf))
1788 				txq->axq_ampdu_depth++;
1789 
1790 			bf = bf->bf_lastbf->bf_next;
1791 		}
1792 	}
1793 }
1794 
1795 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_txq *txq,
1796 			      struct ath_atx_tid *tid, struct sk_buff *skb,
1797 			      struct ath_tx_control *txctl)
1798 {
1799 	struct ath_frame_info *fi = get_frame_info(skb);
1800 	struct list_head bf_head;
1801 	struct ath_buf *bf;
1802 
1803 	/*
1804 	 * Do not queue to h/w when any of the following conditions is true:
1805 	 * - there are pending frames in software queue
1806 	 * - the TID is currently paused for ADDBA/BAR request
1807 	 * - seqno is not within block-ack window
1808 	 * - h/w queue depth exceeds low water mark
1809 	 */
1810 	if ((!skb_queue_empty(&tid->buf_q) || tid->paused ||
1811 	     !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1812 	     txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) &&
1813 	    txq != sc->tx.uapsdq) {
1814 		/*
1815 		 * Add this frame to software queue for scheduling later
1816 		 * for aggregation.
1817 		 */
1818 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
1819 		__skb_queue_tail(&tid->buf_q, skb);
1820 		if (!txctl->an || !txctl->an->sleeping)
1821 			ath_tx_queue_tid(txq, tid);
1822 		return;
1823 	}
1824 
1825 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
1826 	if (!bf) {
1827 		ieee80211_free_txskb(sc->hw, skb);
1828 		return;
1829 	}
1830 
1831 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1832 	bf->bf_state.bf_type = BUF_AMPDU;
1833 	INIT_LIST_HEAD(&bf_head);
1834 	list_add(&bf->list, &bf_head);
1835 
1836 	/* Add sub-frame to BAW */
1837 	ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1838 
1839 	/* Queue to h/w without aggregation */
1840 	TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1841 	bf->bf_lastbf = bf;
1842 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1843 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1844 }
1845 
1846 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1847 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1848 {
1849 	struct ath_frame_info *fi = get_frame_info(skb);
1850 	struct list_head bf_head;
1851 	struct ath_buf *bf;
1852 
1853 	bf = fi->bf;
1854 
1855 	INIT_LIST_HEAD(&bf_head);
1856 	list_add_tail(&bf->list, &bf_head);
1857 	bf->bf_state.bf_type = 0;
1858 
1859 	bf->bf_next = NULL;
1860 	bf->bf_lastbf = bf;
1861 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1862 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1863 	TX_STAT_INC(txq->axq_qnum, queued);
1864 }
1865 
1866 static void setup_frame_info(struct ieee80211_hw *hw,
1867 			     struct ieee80211_sta *sta,
1868 			     struct sk_buff *skb,
1869 			     int framelen)
1870 {
1871 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1872 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1873 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1874 	const struct ieee80211_rate *rate;
1875 	struct ath_frame_info *fi = get_frame_info(skb);
1876 	struct ath_node *an = NULL;
1877 	enum ath9k_key_type keytype;
1878 	bool short_preamble = false;
1879 
1880 	/*
1881 	 * We check if Short Preamble is needed for the CTS rate by
1882 	 * checking the BSS's global flag.
1883 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1884 	 */
1885 	if (tx_info->control.vif &&
1886 	    tx_info->control.vif->bss_conf.use_short_preamble)
1887 		short_preamble = true;
1888 
1889 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1890 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1891 
1892 	if (sta)
1893 		an = (struct ath_node *) sta->drv_priv;
1894 
1895 	memset(fi, 0, sizeof(*fi));
1896 	if (hw_key)
1897 		fi->keyix = hw_key->hw_key_idx;
1898 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1899 		fi->keyix = an->ps_key;
1900 	else
1901 		fi->keyix = ATH9K_TXKEYIX_INVALID;
1902 	fi->keytype = keytype;
1903 	fi->framelen = framelen;
1904 	fi->rtscts_rate = rate->hw_value;
1905 	if (short_preamble)
1906 		fi->rtscts_rate |= rate->hw_value_short;
1907 }
1908 
1909 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1910 {
1911 	struct ath_hw *ah = sc->sc_ah;
1912 	struct ath9k_channel *curchan = ah->curchan;
1913 
1914 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1915 	    (curchan->channelFlags & CHANNEL_5GHZ) &&
1916 	    (chainmask == 0x7) && (rate < 0x90))
1917 		return 0x3;
1918 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
1919 		 IS_CCK_RATE(rate))
1920 		return 0x2;
1921 	else
1922 		return chainmask;
1923 }
1924 
1925 /*
1926  * Assign a descriptor (and sequence number if necessary,
1927  * and map buffer for DMA. Frees skb on error
1928  */
1929 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1930 					   struct ath_txq *txq,
1931 					   struct ath_atx_tid *tid,
1932 					   struct sk_buff *skb)
1933 {
1934 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1935 	struct ath_frame_info *fi = get_frame_info(skb);
1936 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1937 	struct ath_buf *bf;
1938 	int fragno;
1939 	u16 seqno;
1940 
1941 	bf = ath_tx_get_buffer(sc);
1942 	if (!bf) {
1943 		ath_dbg(common, XMIT, "TX buffers are full\n");
1944 		return NULL;
1945 	}
1946 
1947 	ATH_TXBUF_RESET(bf);
1948 
1949 	if (tid) {
1950 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1951 		seqno = tid->seq_next;
1952 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1953 
1954 		if (fragno)
1955 			hdr->seq_ctrl |= cpu_to_le16(fragno);
1956 
1957 		if (!ieee80211_has_morefrags(hdr->frame_control))
1958 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1959 
1960 		bf->bf_state.seqno = seqno;
1961 	}
1962 
1963 	bf->bf_mpdu = skb;
1964 
1965 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1966 					 skb->len, DMA_TO_DEVICE);
1967 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1968 		bf->bf_mpdu = NULL;
1969 		bf->bf_buf_addr = 0;
1970 		ath_err(ath9k_hw_common(sc->sc_ah),
1971 			"dma_mapping_error() on TX\n");
1972 		ath_tx_return_buffer(sc, bf);
1973 		return NULL;
1974 	}
1975 
1976 	fi->bf = bf;
1977 
1978 	return bf;
1979 }
1980 
1981 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
1982 			  struct ath_tx_control *txctl)
1983 {
1984 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1985 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1986 	struct ieee80211_sta *sta = txctl->sta;
1987 	struct ieee80211_vif *vif = info->control.vif;
1988 	struct ath_softc *sc = hw->priv;
1989 	int frmlen = skb->len + FCS_LEN;
1990 	int padpos, padsize;
1991 
1992 	/* NOTE:  sta can be NULL according to net/mac80211.h */
1993 	if (sta)
1994 		txctl->an = (struct ath_node *)sta->drv_priv;
1995 
1996 	if (info->control.hw_key)
1997 		frmlen += info->control.hw_key->icv_len;
1998 
1999 	/*
2000 	 * As a temporary workaround, assign seq# here; this will likely need
2001 	 * to be cleaned up to work better with Beacon transmission and virtual
2002 	 * BSSes.
2003 	 */
2004 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2005 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2006 			sc->tx.seq_no += 0x10;
2007 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2008 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2009 	}
2010 
2011 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2012 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2013 	    !ieee80211_is_data(hdr->frame_control))
2014 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2015 
2016 	/* Add the padding after the header if this is not already done */
2017 	padpos = ieee80211_hdrlen(hdr->frame_control);
2018 	padsize = padpos & 3;
2019 	if (padsize && skb->len > padpos) {
2020 		if (skb_headroom(skb) < padsize)
2021 			return -ENOMEM;
2022 
2023 		skb_push(skb, padsize);
2024 		memmove(skb->data, skb->data + padsize, padpos);
2025 	}
2026 
2027 	setup_frame_info(hw, sta, skb, frmlen);
2028 	return 0;
2029 }
2030 
2031 
2032 /* Upon failure caller should free skb */
2033 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2034 		 struct ath_tx_control *txctl)
2035 {
2036 	struct ieee80211_hdr *hdr;
2037 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2038 	struct ieee80211_sta *sta = txctl->sta;
2039 	struct ieee80211_vif *vif = info->control.vif;
2040 	struct ath_softc *sc = hw->priv;
2041 	struct ath_txq *txq = txctl->txq;
2042 	struct ath_atx_tid *tid = NULL;
2043 	struct ath_buf *bf;
2044 	u8 tidno;
2045 	int q;
2046 	int ret;
2047 
2048 	ret = ath_tx_prepare(hw, skb, txctl);
2049 	if (ret)
2050 	    return ret;
2051 
2052 	hdr = (struct ieee80211_hdr *) skb->data;
2053 	/*
2054 	 * At this point, the vif, hw_key and sta pointers in the tx control
2055 	 * info are no longer valid (overwritten by the ath_frame_info data.
2056 	 */
2057 
2058 	q = skb_get_queue_mapping(skb);
2059 
2060 	ath_txq_lock(sc, txq);
2061 	if (txq == sc->tx.txq_map[q] &&
2062 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2063 	    !txq->stopped) {
2064 		ieee80211_stop_queue(sc->hw, q);
2065 		txq->stopped = true;
2066 	}
2067 
2068 	if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2069 		ath_txq_unlock(sc, txq);
2070 		txq = sc->tx.uapsdq;
2071 		ath_txq_lock(sc, txq);
2072 	}
2073 
2074 	if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
2075 		tidno = ieee80211_get_qos_ctl(hdr)[0] &
2076 			IEEE80211_QOS_CTL_TID_MASK;
2077 		tid = ATH_AN_2_TID(txctl->an, tidno);
2078 
2079 		WARN_ON(tid->ac->txq != txctl->txq);
2080 	}
2081 
2082 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
2083 		/*
2084 		 * Try aggregation if it's a unicast data frame
2085 		 * and the destination is HT capable.
2086 		 */
2087 		ath_tx_send_ampdu(sc, txq, tid, skb, txctl);
2088 		goto out;
2089 	}
2090 
2091 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2092 	if (!bf) {
2093 		if (txctl->paprd)
2094 			dev_kfree_skb_any(skb);
2095 		else
2096 			ieee80211_free_txskb(sc->hw, skb);
2097 		goto out;
2098 	}
2099 
2100 	bf->bf_state.bfs_paprd = txctl->paprd;
2101 
2102 	if (txctl->paprd)
2103 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2104 
2105 	ath_set_rates(vif, sta, bf);
2106 	ath_tx_send_normal(sc, txq, tid, skb);
2107 
2108 out:
2109 	ath_txq_unlock(sc, txq);
2110 
2111 	return 0;
2112 }
2113 
2114 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2115 		 struct sk_buff *skb)
2116 {
2117 	struct ath_softc *sc = hw->priv;
2118 	struct ath_tx_control txctl = {
2119 		.txq = sc->beacon.cabq
2120 	};
2121 	struct ath_tx_info info = {};
2122 	struct ieee80211_hdr *hdr;
2123 	struct ath_buf *bf_tail = NULL;
2124 	struct ath_buf *bf;
2125 	LIST_HEAD(bf_q);
2126 	int duration = 0;
2127 	int max_duration;
2128 
2129 	max_duration =
2130 		sc->cur_beacon_conf.beacon_interval * 1000 *
2131 		sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2132 
2133 	do {
2134 		struct ath_frame_info *fi = get_frame_info(skb);
2135 
2136 		if (ath_tx_prepare(hw, skb, &txctl))
2137 			break;
2138 
2139 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2140 		if (!bf)
2141 			break;
2142 
2143 		bf->bf_lastbf = bf;
2144 		ath_set_rates(vif, NULL, bf);
2145 		ath_buf_set_rate(sc, bf, &info, fi->framelen);
2146 		duration += info.rates[0].PktDuration;
2147 		if (bf_tail)
2148 			bf_tail->bf_next = bf;
2149 
2150 		list_add_tail(&bf->list, &bf_q);
2151 		bf_tail = bf;
2152 		skb = NULL;
2153 
2154 		if (duration > max_duration)
2155 			break;
2156 
2157 		skb = ieee80211_get_buffered_bc(hw, vif);
2158 	} while(skb);
2159 
2160 	if (skb)
2161 		ieee80211_free_txskb(hw, skb);
2162 
2163 	if (list_empty(&bf_q))
2164 		return;
2165 
2166 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2167 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2168 
2169 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2170 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2171 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2172 			sizeof(*hdr), DMA_TO_DEVICE);
2173 	}
2174 
2175 	ath_txq_lock(sc, txctl.txq);
2176 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2177 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2178 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2179 	ath_txq_unlock(sc, txctl.txq);
2180 }
2181 
2182 /*****************/
2183 /* TX Completion */
2184 /*****************/
2185 
2186 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2187 			    int tx_flags, struct ath_txq *txq)
2188 {
2189 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2190 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2191 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2192 	int q, padpos, padsize;
2193 	unsigned long flags;
2194 
2195 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2196 
2197 	if (sc->sc_ah->caldata)
2198 		sc->sc_ah->caldata->paprd_packet_sent = true;
2199 
2200 	if (!(tx_flags & ATH_TX_ERROR))
2201 		/* Frame was ACKed */
2202 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2203 
2204 	padpos = ieee80211_hdrlen(hdr->frame_control);
2205 	padsize = padpos & 3;
2206 	if (padsize && skb->len>padpos+padsize) {
2207 		/*
2208 		 * Remove MAC header padding before giving the frame back to
2209 		 * mac80211.
2210 		 */
2211 		memmove(skb->data + padsize, skb->data, padpos);
2212 		skb_pull(skb, padsize);
2213 	}
2214 
2215 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2216 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2217 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2218 		ath_dbg(common, PS,
2219 			"Going back to sleep after having received TX status (0x%lx)\n",
2220 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2221 					PS_WAIT_FOR_CAB |
2222 					PS_WAIT_FOR_PSPOLL_DATA |
2223 					PS_WAIT_FOR_TX_ACK));
2224 	}
2225 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2226 
2227 	__skb_queue_tail(&txq->complete_q, skb);
2228 
2229 	q = skb_get_queue_mapping(skb);
2230 	if (txq == sc->tx.uapsdq)
2231 		txq = sc->tx.txq_map[q];
2232 
2233 	if (txq == sc->tx.txq_map[q]) {
2234 		if (WARN_ON(--txq->pending_frames < 0))
2235 			txq->pending_frames = 0;
2236 
2237 		if (txq->stopped &&
2238 		    txq->pending_frames < sc->tx.txq_max_pending[q]) {
2239 			ieee80211_wake_queue(sc->hw, q);
2240 			txq->stopped = false;
2241 		}
2242 	}
2243 }
2244 
2245 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2246 				struct ath_txq *txq, struct list_head *bf_q,
2247 				struct ath_tx_status *ts, int txok)
2248 {
2249 	struct sk_buff *skb = bf->bf_mpdu;
2250 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2251 	unsigned long flags;
2252 	int tx_flags = 0;
2253 
2254 	if (!txok)
2255 		tx_flags |= ATH_TX_ERROR;
2256 
2257 	if (ts->ts_status & ATH9K_TXERR_FILT)
2258 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2259 
2260 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2261 	bf->bf_buf_addr = 0;
2262 
2263 	if (bf->bf_state.bfs_paprd) {
2264 		if (time_after(jiffies,
2265 				bf->bf_state.bfs_paprd_timestamp +
2266 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2267 			dev_kfree_skb_any(skb);
2268 		else
2269 			complete(&sc->paprd_complete);
2270 	} else {
2271 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2272 		ath_tx_complete(sc, skb, tx_flags, txq);
2273 	}
2274 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2275 	 * accidentally reference it later.
2276 	 */
2277 	bf->bf_mpdu = NULL;
2278 
2279 	/*
2280 	 * Return the list of ath_buf of this mpdu to free queue
2281 	 */
2282 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2283 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2284 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2285 }
2286 
2287 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2288 			     struct ath_tx_status *ts, int nframes, int nbad,
2289 			     int txok)
2290 {
2291 	struct sk_buff *skb = bf->bf_mpdu;
2292 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2293 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2294 	struct ieee80211_hw *hw = sc->hw;
2295 	struct ath_hw *ah = sc->sc_ah;
2296 	u8 i, tx_rateindex;
2297 
2298 	if (txok)
2299 		tx_info->status.ack_signal = ts->ts_rssi;
2300 
2301 	tx_rateindex = ts->ts_rateindex;
2302 	WARN_ON(tx_rateindex >= hw->max_rates);
2303 
2304 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2305 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2306 
2307 		BUG_ON(nbad > nframes);
2308 	}
2309 	tx_info->status.ampdu_len = nframes;
2310 	tx_info->status.ampdu_ack_len = nframes - nbad;
2311 
2312 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2313 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2314 		/*
2315 		 * If an underrun error is seen assume it as an excessive
2316 		 * retry only if max frame trigger level has been reached
2317 		 * (2 KB for single stream, and 4 KB for dual stream).
2318 		 * Adjust the long retry as if the frame was tried
2319 		 * hw->max_rate_tries times to affect how rate control updates
2320 		 * PER for the failed rate.
2321 		 * In case of congestion on the bus penalizing this type of
2322 		 * underruns should help hardware actually transmit new frames
2323 		 * successfully by eventually preferring slower rates.
2324 		 * This itself should also alleviate congestion on the bus.
2325 		 */
2326 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2327 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2328 		    ieee80211_is_data(hdr->frame_control) &&
2329 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2330 			tx_info->status.rates[tx_rateindex].count =
2331 				hw->max_rate_tries;
2332 	}
2333 
2334 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2335 		tx_info->status.rates[i].count = 0;
2336 		tx_info->status.rates[i].idx = -1;
2337 	}
2338 
2339 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2340 }
2341 
2342 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2343 {
2344 	struct ath_hw *ah = sc->sc_ah;
2345 	struct ath_common *common = ath9k_hw_common(ah);
2346 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2347 	struct list_head bf_head;
2348 	struct ath_desc *ds;
2349 	struct ath_tx_status ts;
2350 	int status;
2351 
2352 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2353 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2354 		txq->axq_link);
2355 
2356 	ath_txq_lock(sc, txq);
2357 	for (;;) {
2358 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2359 			break;
2360 
2361 		if (list_empty(&txq->axq_q)) {
2362 			txq->axq_link = NULL;
2363 			if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2364 				ath_txq_schedule(sc, txq);
2365 			break;
2366 		}
2367 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2368 
2369 		/*
2370 		 * There is a race condition that a BH gets scheduled
2371 		 * after sw writes TxE and before hw re-load the last
2372 		 * descriptor to get the newly chained one.
2373 		 * Software must keep the last DONE descriptor as a
2374 		 * holding descriptor - software does so by marking
2375 		 * it with the STALE flag.
2376 		 */
2377 		bf_held = NULL;
2378 		if (bf->bf_stale) {
2379 			bf_held = bf;
2380 			if (list_is_last(&bf_held->list, &txq->axq_q))
2381 				break;
2382 
2383 			bf = list_entry(bf_held->list.next, struct ath_buf,
2384 					list);
2385 		}
2386 
2387 		lastbf = bf->bf_lastbf;
2388 		ds = lastbf->bf_desc;
2389 
2390 		memset(&ts, 0, sizeof(ts));
2391 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2392 		if (status == -EINPROGRESS)
2393 			break;
2394 
2395 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2396 
2397 		/*
2398 		 * Remove ath_buf's of the same transmit unit from txq,
2399 		 * however leave the last descriptor back as the holding
2400 		 * descriptor for hw.
2401 		 */
2402 		lastbf->bf_stale = true;
2403 		INIT_LIST_HEAD(&bf_head);
2404 		if (!list_is_singular(&lastbf->list))
2405 			list_cut_position(&bf_head,
2406 				&txq->axq_q, lastbf->list.prev);
2407 
2408 		if (bf_held) {
2409 			list_del(&bf_held->list);
2410 			ath_tx_return_buffer(sc, bf_held);
2411 		}
2412 
2413 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2414 	}
2415 	ath_txq_unlock_complete(sc, txq);
2416 }
2417 
2418 void ath_tx_tasklet(struct ath_softc *sc)
2419 {
2420 	struct ath_hw *ah = sc->sc_ah;
2421 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2422 	int i;
2423 
2424 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2425 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2426 			ath_tx_processq(sc, &sc->tx.txq[i]);
2427 	}
2428 }
2429 
2430 void ath_tx_edma_tasklet(struct ath_softc *sc)
2431 {
2432 	struct ath_tx_status ts;
2433 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2434 	struct ath_hw *ah = sc->sc_ah;
2435 	struct ath_txq *txq;
2436 	struct ath_buf *bf, *lastbf;
2437 	struct list_head bf_head;
2438 	struct list_head *fifo_list;
2439 	int status;
2440 
2441 	for (;;) {
2442 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2443 			break;
2444 
2445 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2446 		if (status == -EINPROGRESS)
2447 			break;
2448 		if (status == -EIO) {
2449 			ath_dbg(common, XMIT, "Error processing tx status\n");
2450 			break;
2451 		}
2452 
2453 		/* Process beacon completions separately */
2454 		if (ts.qid == sc->beacon.beaconq) {
2455 			sc->beacon.tx_processed = true;
2456 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2457 			continue;
2458 		}
2459 
2460 		txq = &sc->tx.txq[ts.qid];
2461 
2462 		ath_txq_lock(sc, txq);
2463 
2464 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2465 
2466 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2467 		if (list_empty(fifo_list)) {
2468 			ath_txq_unlock(sc, txq);
2469 			return;
2470 		}
2471 
2472 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2473 		if (bf->bf_stale) {
2474 			list_del(&bf->list);
2475 			ath_tx_return_buffer(sc, bf);
2476 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2477 		}
2478 
2479 		lastbf = bf->bf_lastbf;
2480 
2481 		INIT_LIST_HEAD(&bf_head);
2482 		if (list_is_last(&lastbf->list, fifo_list)) {
2483 			list_splice_tail_init(fifo_list, &bf_head);
2484 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2485 
2486 			if (!list_empty(&txq->axq_q)) {
2487 				struct list_head bf_q;
2488 
2489 				INIT_LIST_HEAD(&bf_q);
2490 				txq->axq_link = NULL;
2491 				list_splice_tail_init(&txq->axq_q, &bf_q);
2492 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2493 			}
2494 		} else {
2495 			lastbf->bf_stale = true;
2496 			if (bf != lastbf)
2497 				list_cut_position(&bf_head, fifo_list,
2498 						  lastbf->list.prev);
2499 		}
2500 
2501 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2502 		ath_txq_unlock_complete(sc, txq);
2503 	}
2504 }
2505 
2506 /*****************/
2507 /* Init, Cleanup */
2508 /*****************/
2509 
2510 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2511 {
2512 	struct ath_descdma *dd = &sc->txsdma;
2513 	u8 txs_len = sc->sc_ah->caps.txs_len;
2514 
2515 	dd->dd_desc_len = size * txs_len;
2516 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2517 					  &dd->dd_desc_paddr, GFP_KERNEL);
2518 	if (!dd->dd_desc)
2519 		return -ENOMEM;
2520 
2521 	return 0;
2522 }
2523 
2524 static int ath_tx_edma_init(struct ath_softc *sc)
2525 {
2526 	int err;
2527 
2528 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2529 	if (!err)
2530 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2531 					  sc->txsdma.dd_desc_paddr,
2532 					  ATH_TXSTATUS_RING_SIZE);
2533 
2534 	return err;
2535 }
2536 
2537 int ath_tx_init(struct ath_softc *sc, int nbufs)
2538 {
2539 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2540 	int error = 0;
2541 
2542 	spin_lock_init(&sc->tx.txbuflock);
2543 
2544 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2545 				  "tx", nbufs, 1, 1);
2546 	if (error != 0) {
2547 		ath_err(common,
2548 			"Failed to allocate tx descriptors: %d\n", error);
2549 		return error;
2550 	}
2551 
2552 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2553 				  "beacon", ATH_BCBUF, 1, 1);
2554 	if (error != 0) {
2555 		ath_err(common,
2556 			"Failed to allocate beacon descriptors: %d\n", error);
2557 		return error;
2558 	}
2559 
2560 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2561 
2562 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2563 		error = ath_tx_edma_init(sc);
2564 
2565 	return error;
2566 }
2567 
2568 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2569 {
2570 	struct ath_atx_tid *tid;
2571 	struct ath_atx_ac *ac;
2572 	int tidno, acno;
2573 
2574 	for (tidno = 0, tid = &an->tid[tidno];
2575 	     tidno < IEEE80211_NUM_TIDS;
2576 	     tidno++, tid++) {
2577 		tid->an        = an;
2578 		tid->tidno     = tidno;
2579 		tid->seq_start = tid->seq_next = 0;
2580 		tid->baw_size  = WME_MAX_BA;
2581 		tid->baw_head  = tid->baw_tail = 0;
2582 		tid->sched     = false;
2583 		tid->paused    = false;
2584 		tid->active	   = false;
2585 		__skb_queue_head_init(&tid->buf_q);
2586 		acno = TID_TO_WME_AC(tidno);
2587 		tid->ac = &an->ac[acno];
2588 	}
2589 
2590 	for (acno = 0, ac = &an->ac[acno];
2591 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2592 		ac->sched    = false;
2593 		ac->txq = sc->tx.txq_map[acno];
2594 		INIT_LIST_HEAD(&ac->tid_q);
2595 	}
2596 }
2597 
2598 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2599 {
2600 	struct ath_atx_ac *ac;
2601 	struct ath_atx_tid *tid;
2602 	struct ath_txq *txq;
2603 	int tidno;
2604 
2605 	for (tidno = 0, tid = &an->tid[tidno];
2606 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2607 
2608 		ac = tid->ac;
2609 		txq = ac->txq;
2610 
2611 		ath_txq_lock(sc, txq);
2612 
2613 		if (tid->sched) {
2614 			list_del(&tid->list);
2615 			tid->sched = false;
2616 		}
2617 
2618 		if (ac->sched) {
2619 			list_del(&ac->list);
2620 			tid->ac->sched = false;
2621 		}
2622 
2623 		ath_tid_drain(sc, txq, tid);
2624 		tid->active = false;
2625 
2626 		ath_txq_unlock(sc, txq);
2627 	}
2628 }
2629