xref: /linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79 
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 	__acquires(&txq->axq_lock)
82 {
83 	spin_lock_bh(&txq->axq_lock);
84 }
85 
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 	__releases(&txq->axq_lock)
88 {
89 	spin_unlock_bh(&txq->axq_lock);
90 }
91 
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 	__releases(&txq->axq_lock)
94 {
95 	struct sk_buff_head q;
96 	struct sk_buff *skb;
97 
98 	__skb_queue_head_init(&q);
99 	skb_queue_splice_init(&txq->complete_q, &q);
100 	spin_unlock_bh(&txq->axq_lock);
101 
102 	while ((skb = __skb_dequeue(&q)))
103 		ieee80211_tx_status(sc->hw, skb);
104 }
105 
106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 			     struct ath_atx_tid *tid)
108 {
109 	struct list_head *list;
110 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
111 	struct ath_chanctx *ctx = avp->chanctx;
112 
113 	if (!ctx)
114 		return;
115 
116 	list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
117 	if (list_empty(&tid->list))
118 		list_add_tail(&tid->list, list);
119 }
120 
121 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
122 {
123 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
124 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
125 		     sizeof(tx_info->rate_driver_data));
126 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
127 }
128 
129 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
130 {
131 	if (!tid->an->sta)
132 		return;
133 
134 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
135 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
136 }
137 
138 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
139 			  struct ath_buf *bf)
140 {
141 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
142 			       ARRAY_SIZE(bf->rates));
143 }
144 
145 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
146 			     struct sk_buff *skb)
147 {
148 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
149 	struct ath_frame_info *fi = get_frame_info(skb);
150 	int q = fi->txq;
151 
152 	if (q < 0)
153 		return;
154 
155 	txq = sc->tx.txq_map[q];
156 	if (WARN_ON(--txq->pending_frames < 0))
157 		txq->pending_frames = 0;
158 
159 	if (txq->stopped &&
160 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
161 		if (ath9k_is_chanctx_enabled())
162 			ieee80211_wake_queue(sc->hw, info->hw_queue);
163 		else
164 			ieee80211_wake_queue(sc->hw, q);
165 		txq->stopped = false;
166 	}
167 }
168 
169 static struct ath_atx_tid *
170 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
171 {
172 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
173 	return ATH_AN_2_TID(an, tidno);
174 }
175 
176 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
177 {
178 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
179 }
180 
181 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
182 {
183 	struct sk_buff *skb;
184 
185 	skb = __skb_dequeue(&tid->retry_q);
186 	if (!skb)
187 		skb = __skb_dequeue(&tid->buf_q);
188 
189 	return skb;
190 }
191 
192 /*
193  * ath_tx_tid_change_state:
194  * - clears a-mpdu flag of previous session
195  * - force sequence number allocation to fix next BlockAck Window
196  */
197 static void
198 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
199 {
200 	struct ath_txq *txq = tid->txq;
201 	struct ieee80211_tx_info *tx_info;
202 	struct sk_buff *skb, *tskb;
203 	struct ath_buf *bf;
204 	struct ath_frame_info *fi;
205 
206 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
207 		fi = get_frame_info(skb);
208 		bf = fi->bf;
209 
210 		tx_info = IEEE80211_SKB_CB(skb);
211 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
212 
213 		if (bf)
214 			continue;
215 
216 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
217 		if (!bf) {
218 			__skb_unlink(skb, &tid->buf_q);
219 			ath_txq_skb_done(sc, txq, skb);
220 			ieee80211_free_txskb(sc->hw, skb);
221 			continue;
222 		}
223 	}
224 
225 }
226 
227 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
228 {
229 	struct ath_txq *txq = tid->txq;
230 	struct sk_buff *skb;
231 	struct ath_buf *bf;
232 	struct list_head bf_head;
233 	struct ath_tx_status ts;
234 	struct ath_frame_info *fi;
235 	bool sendbar = false;
236 
237 	INIT_LIST_HEAD(&bf_head);
238 
239 	memset(&ts, 0, sizeof(ts));
240 
241 	while ((skb = __skb_dequeue(&tid->retry_q))) {
242 		fi = get_frame_info(skb);
243 		bf = fi->bf;
244 		if (!bf) {
245 			ath_txq_skb_done(sc, txq, skb);
246 			ieee80211_free_txskb(sc->hw, skb);
247 			continue;
248 		}
249 
250 		if (fi->baw_tracked) {
251 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
252 			sendbar = true;
253 		}
254 
255 		list_add_tail(&bf->list, &bf_head);
256 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
257 	}
258 
259 	if (sendbar) {
260 		ath_txq_unlock(sc, txq);
261 		ath_send_bar(tid, tid->seq_start);
262 		ath_txq_lock(sc, txq);
263 	}
264 }
265 
266 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
267 			      int seqno)
268 {
269 	int index, cindex;
270 
271 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
272 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
273 
274 	__clear_bit(cindex, tid->tx_buf);
275 
276 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
277 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
278 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
279 		if (tid->bar_index >= 0)
280 			tid->bar_index--;
281 	}
282 }
283 
284 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
285 			     struct ath_buf *bf)
286 {
287 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
288 	u16 seqno = bf->bf_state.seqno;
289 	int index, cindex;
290 
291 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
292 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
293 	__set_bit(cindex, tid->tx_buf);
294 	fi->baw_tracked = 1;
295 
296 	if (index >= ((tid->baw_tail - tid->baw_head) &
297 		(ATH_TID_MAX_BUFS - 1))) {
298 		tid->baw_tail = cindex;
299 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
300 	}
301 }
302 
303 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
304 			  struct ath_atx_tid *tid)
305 
306 {
307 	struct sk_buff *skb;
308 	struct ath_buf *bf;
309 	struct list_head bf_head;
310 	struct ath_tx_status ts;
311 	struct ath_frame_info *fi;
312 
313 	memset(&ts, 0, sizeof(ts));
314 	INIT_LIST_HEAD(&bf_head);
315 
316 	while ((skb = ath_tid_dequeue(tid))) {
317 		fi = get_frame_info(skb);
318 		bf = fi->bf;
319 
320 		if (!bf) {
321 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
322 			continue;
323 		}
324 
325 		list_add_tail(&bf->list, &bf_head);
326 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
327 	}
328 }
329 
330 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
331 			     struct sk_buff *skb, int count)
332 {
333 	struct ath_frame_info *fi = get_frame_info(skb);
334 	struct ath_buf *bf = fi->bf;
335 	struct ieee80211_hdr *hdr;
336 	int prev = fi->retries;
337 
338 	TX_STAT_INC(txq->axq_qnum, a_retries);
339 	fi->retries += count;
340 
341 	if (prev > 0)
342 		return;
343 
344 	hdr = (struct ieee80211_hdr *)skb->data;
345 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
346 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
347 		sizeof(*hdr), DMA_TO_DEVICE);
348 }
349 
350 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
351 {
352 	struct ath_buf *bf = NULL;
353 
354 	spin_lock_bh(&sc->tx.txbuflock);
355 
356 	if (unlikely(list_empty(&sc->tx.txbuf))) {
357 		spin_unlock_bh(&sc->tx.txbuflock);
358 		return NULL;
359 	}
360 
361 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
362 	list_del(&bf->list);
363 
364 	spin_unlock_bh(&sc->tx.txbuflock);
365 
366 	return bf;
367 }
368 
369 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
370 {
371 	spin_lock_bh(&sc->tx.txbuflock);
372 	list_add_tail(&bf->list, &sc->tx.txbuf);
373 	spin_unlock_bh(&sc->tx.txbuflock);
374 }
375 
376 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
377 {
378 	struct ath_buf *tbf;
379 
380 	tbf = ath_tx_get_buffer(sc);
381 	if (WARN_ON(!tbf))
382 		return NULL;
383 
384 	ATH_TXBUF_RESET(tbf);
385 
386 	tbf->bf_mpdu = bf->bf_mpdu;
387 	tbf->bf_buf_addr = bf->bf_buf_addr;
388 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
389 	tbf->bf_state = bf->bf_state;
390 	tbf->bf_state.stale = false;
391 
392 	return tbf;
393 }
394 
395 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
396 			        struct ath_tx_status *ts, int txok,
397 			        int *nframes, int *nbad)
398 {
399 	struct ath_frame_info *fi;
400 	u16 seq_st = 0;
401 	u32 ba[WME_BA_BMP_SIZE >> 5];
402 	int ba_index;
403 	int isaggr = 0;
404 
405 	*nbad = 0;
406 	*nframes = 0;
407 
408 	isaggr = bf_isaggr(bf);
409 	if (isaggr) {
410 		seq_st = ts->ts_seqnum;
411 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
412 	}
413 
414 	while (bf) {
415 		fi = get_frame_info(bf->bf_mpdu);
416 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
417 
418 		(*nframes)++;
419 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
420 			(*nbad)++;
421 
422 		bf = bf->bf_next;
423 	}
424 }
425 
426 
427 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
428 				 struct ath_buf *bf, struct list_head *bf_q,
429 				 struct ath_tx_status *ts, int txok)
430 {
431 	struct ath_node *an = NULL;
432 	struct sk_buff *skb;
433 	struct ieee80211_sta *sta;
434 	struct ieee80211_hw *hw = sc->hw;
435 	struct ieee80211_hdr *hdr;
436 	struct ieee80211_tx_info *tx_info;
437 	struct ath_atx_tid *tid = NULL;
438 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
439 	struct list_head bf_head;
440 	struct sk_buff_head bf_pending;
441 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
442 	u32 ba[WME_BA_BMP_SIZE >> 5];
443 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
444 	bool rc_update = true, isba;
445 	struct ieee80211_tx_rate rates[4];
446 	struct ath_frame_info *fi;
447 	int nframes;
448 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
449 	int i, retries;
450 	int bar_index = -1;
451 
452 	skb = bf->bf_mpdu;
453 	hdr = (struct ieee80211_hdr *)skb->data;
454 
455 	tx_info = IEEE80211_SKB_CB(skb);
456 
457 	memcpy(rates, bf->rates, sizeof(rates));
458 
459 	retries = ts->ts_longretry + 1;
460 	for (i = 0; i < ts->ts_rateindex; i++)
461 		retries += rates[i].count;
462 
463 	rcu_read_lock();
464 
465 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
466 	if (!sta) {
467 		rcu_read_unlock();
468 
469 		INIT_LIST_HEAD(&bf_head);
470 		while (bf) {
471 			bf_next = bf->bf_next;
472 
473 			if (!bf->bf_state.stale || bf_next != NULL)
474 				list_move_tail(&bf->list, &bf_head);
475 
476 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
477 
478 			bf = bf_next;
479 		}
480 		return;
481 	}
482 
483 	an = (struct ath_node *)sta->drv_priv;
484 	tid = ath_get_skb_tid(sc, an, skb);
485 	seq_first = tid->seq_start;
486 	isba = ts->ts_flags & ATH9K_TX_BA;
487 
488 	/*
489 	 * The hardware occasionally sends a tx status for the wrong TID.
490 	 * In this case, the BA status cannot be considered valid and all
491 	 * subframes need to be retransmitted
492 	 *
493 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
494 	 * checked
495 	 */
496 	if (isba && tid->tidno != ts->tid)
497 		txok = false;
498 
499 	isaggr = bf_isaggr(bf);
500 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
501 
502 	if (isaggr && txok) {
503 		if (ts->ts_flags & ATH9K_TX_BA) {
504 			seq_st = ts->ts_seqnum;
505 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
506 		} else {
507 			/*
508 			 * AR5416 can become deaf/mute when BA
509 			 * issue happens. Chip needs to be reset.
510 			 * But AP code may have sychronization issues
511 			 * when perform internal reset in this routine.
512 			 * Only enable reset in STA mode for now.
513 			 */
514 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
515 				needreset = 1;
516 		}
517 	}
518 
519 	__skb_queue_head_init(&bf_pending);
520 
521 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
522 	while (bf) {
523 		u16 seqno = bf->bf_state.seqno;
524 
525 		txfail = txpending = sendbar = 0;
526 		bf_next = bf->bf_next;
527 
528 		skb = bf->bf_mpdu;
529 		tx_info = IEEE80211_SKB_CB(skb);
530 		fi = get_frame_info(skb);
531 
532 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
533 		    !tid->active) {
534 			/*
535 			 * Outside of the current BlockAck window,
536 			 * maybe part of a previous session
537 			 */
538 			txfail = 1;
539 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
540 			/* transmit completion, subframe is
541 			 * acked by block ack */
542 			acked_cnt++;
543 		} else if (!isaggr && txok) {
544 			/* transmit completion */
545 			acked_cnt++;
546 		} else if (flush) {
547 			txpending = 1;
548 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
549 			if (txok || !an->sleeping)
550 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
551 						 retries);
552 
553 			txpending = 1;
554 		} else {
555 			txfail = 1;
556 			txfail_cnt++;
557 			bar_index = max_t(int, bar_index,
558 				ATH_BA_INDEX(seq_first, seqno));
559 		}
560 
561 		/*
562 		 * Make sure the last desc is reclaimed if it
563 		 * not a holding desc.
564 		 */
565 		INIT_LIST_HEAD(&bf_head);
566 		if (bf_next != NULL || !bf_last->bf_state.stale)
567 			list_move_tail(&bf->list, &bf_head);
568 
569 		if (!txpending) {
570 			/*
571 			 * complete the acked-ones/xretried ones; update
572 			 * block-ack window
573 			 */
574 			ath_tx_update_baw(sc, tid, seqno);
575 
576 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
577 				memcpy(tx_info->control.rates, rates, sizeof(rates));
578 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
579 				rc_update = false;
580 				if (bf == bf->bf_lastbf)
581 					ath_dynack_sample_tx_ts(sc->sc_ah,
582 								bf->bf_mpdu,
583 								ts);
584 			}
585 
586 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
587 				!txfail);
588 		} else {
589 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
590 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
591 				ieee80211_sta_eosp(sta);
592 			}
593 			/* retry the un-acked ones */
594 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
595 				struct ath_buf *tbf;
596 
597 				tbf = ath_clone_txbuf(sc, bf_last);
598 				/*
599 				 * Update tx baw and complete the
600 				 * frame with failed status if we
601 				 * run out of tx buf.
602 				 */
603 				if (!tbf) {
604 					ath_tx_update_baw(sc, tid, seqno);
605 
606 					ath_tx_complete_buf(sc, bf, txq,
607 							    &bf_head, ts, 0);
608 					bar_index = max_t(int, bar_index,
609 						ATH_BA_INDEX(seq_first, seqno));
610 					break;
611 				}
612 
613 				fi->bf = tbf;
614 			}
615 
616 			/*
617 			 * Put this buffer to the temporary pending
618 			 * queue to retain ordering
619 			 */
620 			__skb_queue_tail(&bf_pending, skb);
621 		}
622 
623 		bf = bf_next;
624 	}
625 
626 	/* prepend un-acked frames to the beginning of the pending frame queue */
627 	if (!skb_queue_empty(&bf_pending)) {
628 		if (an->sleeping)
629 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
630 
631 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
632 		if (!an->sleeping) {
633 			ath_tx_queue_tid(sc, txq, tid);
634 
635 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
636 				tid->clear_ps_filter = true;
637 		}
638 	}
639 
640 	if (bar_index >= 0) {
641 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
642 
643 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
644 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
645 
646 		ath_txq_unlock(sc, txq);
647 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
648 		ath_txq_lock(sc, txq);
649 	}
650 
651 	rcu_read_unlock();
652 
653 	if (needreset)
654 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
655 }
656 
657 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
658 {
659     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
660     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
661 }
662 
663 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
664 				  struct ath_tx_status *ts, struct ath_buf *bf,
665 				  struct list_head *bf_head)
666 {
667 	struct ieee80211_tx_info *info;
668 	bool txok, flush;
669 
670 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
671 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
672 	txq->axq_tx_inprogress = false;
673 
674 	txq->axq_depth--;
675 	if (bf_is_ampdu_not_probing(bf))
676 		txq->axq_ampdu_depth--;
677 
678 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
679 					     ts->ts_rateindex);
680 	if (!bf_isampdu(bf)) {
681 		if (!flush) {
682 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
683 			memcpy(info->control.rates, bf->rates,
684 			       sizeof(info->control.rates));
685 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
686 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
687 		}
688 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
689 	} else
690 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
691 
692 	if (!flush)
693 		ath_txq_schedule(sc, txq);
694 }
695 
696 static bool ath_lookup_legacy(struct ath_buf *bf)
697 {
698 	struct sk_buff *skb;
699 	struct ieee80211_tx_info *tx_info;
700 	struct ieee80211_tx_rate *rates;
701 	int i;
702 
703 	skb = bf->bf_mpdu;
704 	tx_info = IEEE80211_SKB_CB(skb);
705 	rates = tx_info->control.rates;
706 
707 	for (i = 0; i < 4; i++) {
708 		if (!rates[i].count || rates[i].idx < 0)
709 			break;
710 
711 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
712 			return true;
713 	}
714 
715 	return false;
716 }
717 
718 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
719 			   struct ath_atx_tid *tid)
720 {
721 	struct sk_buff *skb;
722 	struct ieee80211_tx_info *tx_info;
723 	struct ieee80211_tx_rate *rates;
724 	u32 max_4ms_framelen, frmlen;
725 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
726 	int q = tid->txq->mac80211_qnum;
727 	int i;
728 
729 	skb = bf->bf_mpdu;
730 	tx_info = IEEE80211_SKB_CB(skb);
731 	rates = bf->rates;
732 
733 	/*
734 	 * Find the lowest frame length among the rate series that will have a
735 	 * 4ms (or TXOP limited) transmit duration.
736 	 */
737 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
738 
739 	for (i = 0; i < 4; i++) {
740 		int modeidx;
741 
742 		if (!rates[i].count)
743 			continue;
744 
745 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
746 			legacy = 1;
747 			break;
748 		}
749 
750 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
751 			modeidx = MCS_HT40;
752 		else
753 			modeidx = MCS_HT20;
754 
755 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
756 			modeidx++;
757 
758 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
759 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
760 	}
761 
762 	/*
763 	 * limit aggregate size by the minimum rate if rate selected is
764 	 * not a probe rate, if rate selected is a probe rate then
765 	 * avoid aggregation of this packet.
766 	 */
767 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
768 		return 0;
769 
770 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
771 
772 	/*
773 	 * Override the default aggregation limit for BTCOEX.
774 	 */
775 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
776 	if (bt_aggr_limit)
777 		aggr_limit = bt_aggr_limit;
778 
779 	if (tid->an->maxampdu)
780 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
781 
782 	return aggr_limit;
783 }
784 
785 /*
786  * Returns the number of delimiters to be added to
787  * meet the minimum required mpdudensity.
788  */
789 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
790 				  struct ath_buf *bf, u16 frmlen,
791 				  bool first_subfrm)
792 {
793 #define FIRST_DESC_NDELIMS 60
794 	u32 nsymbits, nsymbols;
795 	u16 minlen;
796 	u8 flags, rix;
797 	int width, streams, half_gi, ndelim, mindelim;
798 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
799 
800 	/* Select standard number of delimiters based on frame length alone */
801 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
802 
803 	/*
804 	 * If encryption enabled, hardware requires some more padding between
805 	 * subframes.
806 	 * TODO - this could be improved to be dependent on the rate.
807 	 *      The hardware can keep up at lower rates, but not higher rates
808 	 */
809 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
810 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
811 		ndelim += ATH_AGGR_ENCRYPTDELIM;
812 
813 	/*
814 	 * Add delimiter when using RTS/CTS with aggregation
815 	 * and non enterprise AR9003 card
816 	 */
817 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
818 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
819 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
820 
821 	/*
822 	 * Convert desired mpdu density from microeconds to bytes based
823 	 * on highest rate in rate series (i.e. first rate) to determine
824 	 * required minimum length for subframe. Take into account
825 	 * whether high rate is 20 or 40Mhz and half or full GI.
826 	 *
827 	 * If there is no mpdu density restriction, no further calculation
828 	 * is needed.
829 	 */
830 
831 	if (tid->an->mpdudensity == 0)
832 		return ndelim;
833 
834 	rix = bf->rates[0].idx;
835 	flags = bf->rates[0].flags;
836 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
837 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
838 
839 	if (half_gi)
840 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
841 	else
842 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
843 
844 	if (nsymbols == 0)
845 		nsymbols = 1;
846 
847 	streams = HT_RC_2_STREAMS(rix);
848 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
849 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
850 
851 	if (frmlen < minlen) {
852 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
853 		ndelim = max(mindelim, ndelim);
854 	}
855 
856 	return ndelim;
857 }
858 
859 static struct ath_buf *
860 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
861 			struct ath_atx_tid *tid, struct sk_buff_head **q)
862 {
863 	struct ieee80211_tx_info *tx_info;
864 	struct ath_frame_info *fi;
865 	struct sk_buff *skb;
866 	struct ath_buf *bf;
867 	u16 seqno;
868 
869 	while (1) {
870 		*q = &tid->retry_q;
871 		if (skb_queue_empty(*q))
872 			*q = &tid->buf_q;
873 
874 		skb = skb_peek(*q);
875 		if (!skb)
876 			break;
877 
878 		fi = get_frame_info(skb);
879 		bf = fi->bf;
880 		if (!fi->bf)
881 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
882 		else
883 			bf->bf_state.stale = false;
884 
885 		if (!bf) {
886 			__skb_unlink(skb, *q);
887 			ath_txq_skb_done(sc, txq, skb);
888 			ieee80211_free_txskb(sc->hw, skb);
889 			continue;
890 		}
891 
892 		bf->bf_next = NULL;
893 		bf->bf_lastbf = bf;
894 
895 		tx_info = IEEE80211_SKB_CB(skb);
896 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
897 
898 		/*
899 		 * No aggregation session is running, but there may be frames
900 		 * from a previous session or a failed attempt in the queue.
901 		 * Send them out as normal data frames
902 		 */
903 		if (!tid->active)
904 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
905 
906 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
907 			bf->bf_state.bf_type = 0;
908 			return bf;
909 		}
910 
911 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
912 		seqno = bf->bf_state.seqno;
913 
914 		/* do not step over block-ack window */
915 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
916 			break;
917 
918 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
919 			struct ath_tx_status ts = {};
920 			struct list_head bf_head;
921 
922 			INIT_LIST_HEAD(&bf_head);
923 			list_add(&bf->list, &bf_head);
924 			__skb_unlink(skb, *q);
925 			ath_tx_update_baw(sc, tid, seqno);
926 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
927 			continue;
928 		}
929 
930 		return bf;
931 	}
932 
933 	return NULL;
934 }
935 
936 static bool
937 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
938 		 struct ath_atx_tid *tid, struct list_head *bf_q,
939 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
940 		 int *aggr_len)
941 {
942 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
943 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
944 	int nframes = 0, ndelim;
945 	u16 aggr_limit = 0, al = 0, bpad = 0,
946 	    al_delta, h_baw = tid->baw_size / 2;
947 	struct ieee80211_tx_info *tx_info;
948 	struct ath_frame_info *fi;
949 	struct sk_buff *skb;
950 	bool closed = false;
951 
952 	bf = bf_first;
953 	aggr_limit = ath_lookup_rate(sc, bf, tid);
954 
955 	do {
956 		skb = bf->bf_mpdu;
957 		fi = get_frame_info(skb);
958 
959 		/* do not exceed aggregation limit */
960 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
961 		if (nframes) {
962 			if (aggr_limit < al + bpad + al_delta ||
963 			    ath_lookup_legacy(bf) || nframes >= h_baw)
964 				break;
965 
966 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
967 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
968 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
969 				break;
970 		}
971 
972 		/* add padding for previous frame to aggregation length */
973 		al += bpad + al_delta;
974 
975 		/*
976 		 * Get the delimiters needed to meet the MPDU
977 		 * density for this node.
978 		 */
979 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
980 						!nframes);
981 		bpad = PADBYTES(al_delta) + (ndelim << 2);
982 
983 		nframes++;
984 		bf->bf_next = NULL;
985 
986 		/* link buffers of this frame to the aggregate */
987 		if (!fi->baw_tracked)
988 			ath_tx_addto_baw(sc, tid, bf);
989 		bf->bf_state.ndelim = ndelim;
990 
991 		__skb_unlink(skb, tid_q);
992 		list_add_tail(&bf->list, bf_q);
993 		if (bf_prev)
994 			bf_prev->bf_next = bf;
995 
996 		bf_prev = bf;
997 
998 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
999 		if (!bf) {
1000 			closed = true;
1001 			break;
1002 		}
1003 	} while (ath_tid_has_buffered(tid));
1004 
1005 	bf = bf_first;
1006 	bf->bf_lastbf = bf_prev;
1007 
1008 	if (bf == bf_prev) {
1009 		al = get_frame_info(bf->bf_mpdu)->framelen;
1010 		bf->bf_state.bf_type = BUF_AMPDU;
1011 	} else {
1012 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1013 	}
1014 
1015 	*aggr_len = al;
1016 
1017 	return closed;
1018 #undef PADBYTES
1019 }
1020 
1021 /*
1022  * rix - rate index
1023  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1024  * width  - 0 for 20 MHz, 1 for 40 MHz
1025  * half_gi - to use 4us v/s 3.6 us for symbol time
1026  */
1027 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1028 			    int width, int half_gi, bool shortPreamble)
1029 {
1030 	u32 nbits, nsymbits, duration, nsymbols;
1031 	int streams;
1032 
1033 	/* find number of symbols: PLCP + data */
1034 	streams = HT_RC_2_STREAMS(rix);
1035 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1036 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1037 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1038 
1039 	if (!half_gi)
1040 		duration = SYMBOL_TIME(nsymbols);
1041 	else
1042 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1043 
1044 	/* addup duration for legacy/ht training and signal fields */
1045 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1046 
1047 	return duration;
1048 }
1049 
1050 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1051 {
1052 	int streams = HT_RC_2_STREAMS(mcs);
1053 	int symbols, bits;
1054 	int bytes = 0;
1055 
1056 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1058 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1059 	bits -= OFDM_PLCP_BITS;
1060 	bytes = bits / 8;
1061 	if (bytes > 65532)
1062 		bytes = 65532;
1063 
1064 	return bytes;
1065 }
1066 
1067 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1068 {
1069 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1070 	int mcs;
1071 
1072 	/* 4ms is the default (and maximum) duration */
1073 	if (!txop || txop > 4096)
1074 		txop = 4096;
1075 
1076 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1077 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1078 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1079 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1080 	for (mcs = 0; mcs < 32; mcs++) {
1081 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1082 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1083 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1084 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1085 	}
1086 }
1087 
1088 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1089 			       u8 rateidx, bool is_40, bool is_cck)
1090 {
1091 	u8 max_power;
1092 	struct sk_buff *skb;
1093 	struct ath_frame_info *fi;
1094 	struct ieee80211_tx_info *info;
1095 	struct ath_hw *ah = sc->sc_ah;
1096 
1097 	if (sc->tx99_state || !ah->tpc_enabled)
1098 		return MAX_RATE_POWER;
1099 
1100 	skb = bf->bf_mpdu;
1101 	fi = get_frame_info(skb);
1102 	info = IEEE80211_SKB_CB(skb);
1103 
1104 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1105 		int txpower = fi->tx_power;
1106 
1107 		if (is_40) {
1108 			u8 power_ht40delta;
1109 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1110 
1111 			if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1112 				bool is_2ghz;
1113 				struct modal_eep_header *pmodal;
1114 
1115 				is_2ghz = info->band == NL80211_BAND_2GHZ;
1116 				pmodal = &eep->modalHeader[is_2ghz];
1117 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1118 			} else {
1119 				power_ht40delta = 2;
1120 			}
1121 			txpower += power_ht40delta;
1122 		}
1123 
1124 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1125 		    AR_SREV_9271(ah)) {
1126 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1127 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1128 			s8 power_offset;
1129 
1130 			power_offset = ah->eep_ops->get_eeprom(ah,
1131 							EEP_PWR_TABLE_OFFSET);
1132 			txpower -= 2 * power_offset;
1133 		}
1134 
1135 		if (OLC_FOR_AR9280_20_LATER && is_cck)
1136 			txpower -= 2;
1137 
1138 		txpower = max(txpower, 0);
1139 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1140 
1141 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1142 		 * max_power is set to 0, frames are transmitted at max
1143 		 * TX power
1144 		 */
1145 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1146 			max_power = 1;
1147 	} else if (!bf->bf_state.bfs_paprd) {
1148 		if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1149 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1150 					  fi->tx_power);
1151 		else
1152 			max_power = min_t(u8, ah->tx_power[rateidx],
1153 					  fi->tx_power);
1154 	} else {
1155 		max_power = ah->paprd_training_power;
1156 	}
1157 
1158 	return max_power;
1159 }
1160 
1161 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1162 			     struct ath_tx_info *info, int len, bool rts)
1163 {
1164 	struct ath_hw *ah = sc->sc_ah;
1165 	struct ath_common *common = ath9k_hw_common(ah);
1166 	struct sk_buff *skb;
1167 	struct ieee80211_tx_info *tx_info;
1168 	struct ieee80211_tx_rate *rates;
1169 	const struct ieee80211_rate *rate;
1170 	struct ieee80211_hdr *hdr;
1171 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1172 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1173 	int i;
1174 	u8 rix = 0;
1175 
1176 	skb = bf->bf_mpdu;
1177 	tx_info = IEEE80211_SKB_CB(skb);
1178 	rates = bf->rates;
1179 	hdr = (struct ieee80211_hdr *)skb->data;
1180 
1181 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1182 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1183 	info->rtscts_rate = fi->rtscts_rate;
1184 
1185 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1186 		bool is_40, is_sgi, is_sp, is_cck;
1187 		int phy;
1188 
1189 		if (!rates[i].count || (rates[i].idx < 0))
1190 			continue;
1191 
1192 		rix = rates[i].idx;
1193 		info->rates[i].Tries = rates[i].count;
1194 
1195 		/*
1196 		 * Handle RTS threshold for unaggregated HT frames.
1197 		 */
1198 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1199 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1200 		    unlikely(rts_thresh != (u32) -1)) {
1201 			if (!rts_thresh || (len > rts_thresh))
1202 				rts = true;
1203 		}
1204 
1205 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1206 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1207 			info->flags |= ATH9K_TXDESC_RTSENA;
1208 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1209 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1210 			info->flags |= ATH9K_TXDESC_CTSENA;
1211 		}
1212 
1213 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1214 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1215 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1216 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1217 
1218 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1219 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1220 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1221 
1222 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1223 			/* MCS rates */
1224 			info->rates[i].Rate = rix | 0x80;
1225 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1226 					ah->txchainmask, info->rates[i].Rate);
1227 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1228 				 is_40, is_sgi, is_sp);
1229 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1230 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1231 
1232 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1233 								is_40, false);
1234 			continue;
1235 		}
1236 
1237 		/* legacy rates */
1238 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1239 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1240 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1241 			phy = WLAN_RC_PHY_CCK;
1242 		else
1243 			phy = WLAN_RC_PHY_OFDM;
1244 
1245 		info->rates[i].Rate = rate->hw_value;
1246 		if (rate->hw_value_short) {
1247 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1248 				info->rates[i].Rate |= rate->hw_value_short;
1249 		} else {
1250 			is_sp = false;
1251 		}
1252 
1253 		if (bf->bf_state.bfs_paprd)
1254 			info->rates[i].ChSel = ah->txchainmask;
1255 		else
1256 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1257 					ah->txchainmask, info->rates[i].Rate);
1258 
1259 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1260 			phy, rate->bitrate * 100, len, rix, is_sp);
1261 
1262 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1263 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1264 							is_cck);
1265 	}
1266 
1267 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1268 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1269 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1270 
1271 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1272 	if (info->flags & ATH9K_TXDESC_RTSENA)
1273 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1274 }
1275 
1276 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1277 {
1278 	struct ieee80211_hdr *hdr;
1279 	enum ath9k_pkt_type htype;
1280 	__le16 fc;
1281 
1282 	hdr = (struct ieee80211_hdr *)skb->data;
1283 	fc = hdr->frame_control;
1284 
1285 	if (ieee80211_is_beacon(fc))
1286 		htype = ATH9K_PKT_TYPE_BEACON;
1287 	else if (ieee80211_is_probe_resp(fc))
1288 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1289 	else if (ieee80211_is_atim(fc))
1290 		htype = ATH9K_PKT_TYPE_ATIM;
1291 	else if (ieee80211_is_pspoll(fc))
1292 		htype = ATH9K_PKT_TYPE_PSPOLL;
1293 	else
1294 		htype = ATH9K_PKT_TYPE_NORMAL;
1295 
1296 	return htype;
1297 }
1298 
1299 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1300 			     struct ath_txq *txq, int len)
1301 {
1302 	struct ath_hw *ah = sc->sc_ah;
1303 	struct ath_buf *bf_first = NULL;
1304 	struct ath_tx_info info;
1305 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1306 	bool rts = false;
1307 
1308 	memset(&info, 0, sizeof(info));
1309 	info.is_first = true;
1310 	info.is_last = true;
1311 	info.qcu = txq->axq_qnum;
1312 
1313 	while (bf) {
1314 		struct sk_buff *skb = bf->bf_mpdu;
1315 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1316 		struct ath_frame_info *fi = get_frame_info(skb);
1317 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1318 
1319 		info.type = get_hw_packet_type(skb);
1320 		if (bf->bf_next)
1321 			info.link = bf->bf_next->bf_daddr;
1322 		else
1323 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1324 
1325 		if (!bf_first) {
1326 			bf_first = bf;
1327 
1328 			if (!sc->tx99_state)
1329 				info.flags = ATH9K_TXDESC_INTREQ;
1330 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1331 			    txq == sc->tx.uapsdq)
1332 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1333 
1334 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1335 				info.flags |= ATH9K_TXDESC_NOACK;
1336 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1337 				info.flags |= ATH9K_TXDESC_LDPC;
1338 
1339 			if (bf->bf_state.bfs_paprd)
1340 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1341 					      ATH9K_TXDESC_PAPRD_S;
1342 
1343 			/*
1344 			 * mac80211 doesn't handle RTS threshold for HT because
1345 			 * the decision has to be taken based on AMPDU length
1346 			 * and aggregation is done entirely inside ath9k.
1347 			 * Set the RTS/CTS flag for the first subframe based
1348 			 * on the threshold.
1349 			 */
1350 			if (aggr && (bf == bf_first) &&
1351 			    unlikely(rts_thresh != (u32) -1)) {
1352 				/*
1353 				 * "len" is the size of the entire AMPDU.
1354 				 */
1355 				if (!rts_thresh || (len > rts_thresh))
1356 					rts = true;
1357 			}
1358 
1359 			if (!aggr)
1360 				len = fi->framelen;
1361 
1362 			ath_buf_set_rate(sc, bf, &info, len, rts);
1363 		}
1364 
1365 		info.buf_addr[0] = bf->bf_buf_addr;
1366 		info.buf_len[0] = skb->len;
1367 		info.pkt_len = fi->framelen;
1368 		info.keyix = fi->keyix;
1369 		info.keytype = fi->keytype;
1370 
1371 		if (aggr) {
1372 			if (bf == bf_first)
1373 				info.aggr = AGGR_BUF_FIRST;
1374 			else if (bf == bf_first->bf_lastbf)
1375 				info.aggr = AGGR_BUF_LAST;
1376 			else
1377 				info.aggr = AGGR_BUF_MIDDLE;
1378 
1379 			info.ndelim = bf->bf_state.ndelim;
1380 			info.aggr_len = len;
1381 		}
1382 
1383 		if (bf == bf_first->bf_lastbf)
1384 			bf_first = NULL;
1385 
1386 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1387 		bf = bf->bf_next;
1388 	}
1389 }
1390 
1391 static void
1392 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1393 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1394 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1395 {
1396 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1397 	struct sk_buff *skb;
1398 	int nframes = 0;
1399 
1400 	do {
1401 		struct ieee80211_tx_info *tx_info;
1402 		skb = bf->bf_mpdu;
1403 
1404 		nframes++;
1405 		__skb_unlink(skb, tid_q);
1406 		list_add_tail(&bf->list, bf_q);
1407 		if (bf_prev)
1408 			bf_prev->bf_next = bf;
1409 		bf_prev = bf;
1410 
1411 		if (nframes >= 2)
1412 			break;
1413 
1414 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1415 		if (!bf)
1416 			break;
1417 
1418 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1419 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1420 			break;
1421 
1422 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1423 	} while (1);
1424 }
1425 
1426 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1427 			      struct ath_atx_tid *tid, bool *stop)
1428 {
1429 	struct ath_buf *bf;
1430 	struct ieee80211_tx_info *tx_info;
1431 	struct sk_buff_head *tid_q;
1432 	struct list_head bf_q;
1433 	int aggr_len = 0;
1434 	bool aggr, last = true;
1435 
1436 	if (!ath_tid_has_buffered(tid))
1437 		return false;
1438 
1439 	INIT_LIST_HEAD(&bf_q);
1440 
1441 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1442 	if (!bf)
1443 		return false;
1444 
1445 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1446 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1447 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1448 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1449 		*stop = true;
1450 		return false;
1451 	}
1452 
1453 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1454 	if (aggr)
1455 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1456 					tid_q, &aggr_len);
1457 	else
1458 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1459 
1460 	if (list_empty(&bf_q))
1461 		return false;
1462 
1463 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1464 		tid->clear_ps_filter = false;
1465 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1466 	}
1467 
1468 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1469 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1470 	return true;
1471 }
1472 
1473 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1474 		      u16 tid, u16 *ssn)
1475 {
1476 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1477 	struct ath_atx_tid *txtid;
1478 	struct ath_txq *txq;
1479 	struct ath_node *an;
1480 	u8 density;
1481 
1482 	ath_dbg(common, XMIT, "%s called\n", __func__);
1483 
1484 	an = (struct ath_node *)sta->drv_priv;
1485 	txtid = ATH_AN_2_TID(an, tid);
1486 	txq = txtid->txq;
1487 
1488 	ath_txq_lock(sc, txq);
1489 
1490 	/* update ampdu factor/density, they may have changed. This may happen
1491 	 * in HT IBSS when a beacon with HT-info is received after the station
1492 	 * has already been added.
1493 	 */
1494 	if (sta->ht_cap.ht_supported) {
1495 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1496 				      sta->ht_cap.ampdu_factor)) - 1;
1497 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1498 		an->mpdudensity = density;
1499 	}
1500 
1501 	/* force sequence number allocation for pending frames */
1502 	ath_tx_tid_change_state(sc, txtid);
1503 
1504 	txtid->active = true;
1505 	*ssn = txtid->seq_start = txtid->seq_next;
1506 	txtid->bar_index = -1;
1507 
1508 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1509 	txtid->baw_head = txtid->baw_tail = 0;
1510 
1511 	ath_txq_unlock_complete(sc, txq);
1512 
1513 	return 0;
1514 }
1515 
1516 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1517 {
1518 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1519 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1520 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1521 	struct ath_txq *txq = txtid->txq;
1522 
1523 	ath_dbg(common, XMIT, "%s called\n", __func__);
1524 
1525 	ath_txq_lock(sc, txq);
1526 	txtid->active = false;
1527 	ath_tx_flush_tid(sc, txtid);
1528 	ath_tx_tid_change_state(sc, txtid);
1529 	ath_txq_unlock_complete(sc, txq);
1530 }
1531 
1532 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1533 		       struct ath_node *an)
1534 {
1535 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1536 	struct ath_atx_tid *tid;
1537 	struct ath_txq *txq;
1538 	bool buffered;
1539 	int tidno;
1540 
1541 	ath_dbg(common, XMIT, "%s called\n", __func__);
1542 
1543 	for (tidno = 0, tid = &an->tid[tidno];
1544 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1545 
1546 		txq = tid->txq;
1547 
1548 		ath_txq_lock(sc, txq);
1549 
1550 		if (list_empty(&tid->list)) {
1551 			ath_txq_unlock(sc, txq);
1552 			continue;
1553 		}
1554 
1555 		buffered = ath_tid_has_buffered(tid);
1556 
1557 		list_del_init(&tid->list);
1558 
1559 		ath_txq_unlock(sc, txq);
1560 
1561 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1562 	}
1563 }
1564 
1565 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1566 {
1567 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1568 	struct ath_atx_tid *tid;
1569 	struct ath_txq *txq;
1570 	int tidno;
1571 
1572 	ath_dbg(common, XMIT, "%s called\n", __func__);
1573 
1574 	for (tidno = 0, tid = &an->tid[tidno];
1575 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1576 
1577 		txq = tid->txq;
1578 
1579 		ath_txq_lock(sc, txq);
1580 		tid->clear_ps_filter = true;
1581 
1582 		if (ath_tid_has_buffered(tid)) {
1583 			ath_tx_queue_tid(sc, txq, tid);
1584 			ath_txq_schedule(sc, txq);
1585 		}
1586 
1587 		ath_txq_unlock_complete(sc, txq);
1588 	}
1589 }
1590 
1591 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1592 			u16 tidno)
1593 {
1594 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1595 	struct ath_atx_tid *tid;
1596 	struct ath_node *an;
1597 	struct ath_txq *txq;
1598 
1599 	ath_dbg(common, XMIT, "%s called\n", __func__);
1600 
1601 	an = (struct ath_node *)sta->drv_priv;
1602 	tid = ATH_AN_2_TID(an, tidno);
1603 	txq = tid->txq;
1604 
1605 	ath_txq_lock(sc, txq);
1606 
1607 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1608 
1609 	if (ath_tid_has_buffered(tid)) {
1610 		ath_tx_queue_tid(sc, txq, tid);
1611 		ath_txq_schedule(sc, txq);
1612 	}
1613 
1614 	ath_txq_unlock_complete(sc, txq);
1615 }
1616 
1617 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1618 				   struct ieee80211_sta *sta,
1619 				   u16 tids, int nframes,
1620 				   enum ieee80211_frame_release_type reason,
1621 				   bool more_data)
1622 {
1623 	struct ath_softc *sc = hw->priv;
1624 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1625 	struct ath_txq *txq = sc->tx.uapsdq;
1626 	struct ieee80211_tx_info *info;
1627 	struct list_head bf_q;
1628 	struct ath_buf *bf_tail = NULL, *bf;
1629 	struct sk_buff_head *tid_q;
1630 	int sent = 0;
1631 	int i;
1632 
1633 	INIT_LIST_HEAD(&bf_q);
1634 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1635 		struct ath_atx_tid *tid;
1636 
1637 		if (!(tids & 1))
1638 			continue;
1639 
1640 		tid = ATH_AN_2_TID(an, i);
1641 
1642 		ath_txq_lock(sc, tid->txq);
1643 		while (nframes > 0) {
1644 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1645 			if (!bf)
1646 				break;
1647 
1648 			__skb_unlink(bf->bf_mpdu, tid_q);
1649 			list_add_tail(&bf->list, &bf_q);
1650 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1651 			if (bf_isampdu(bf)) {
1652 				ath_tx_addto_baw(sc, tid, bf);
1653 				bf->bf_state.bf_type &= ~BUF_AGGR;
1654 			}
1655 			if (bf_tail)
1656 				bf_tail->bf_next = bf;
1657 
1658 			bf_tail = bf;
1659 			nframes--;
1660 			sent++;
1661 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1662 
1663 			if (an->sta && !ath_tid_has_buffered(tid))
1664 				ieee80211_sta_set_buffered(an->sta, i, false);
1665 		}
1666 		ath_txq_unlock_complete(sc, tid->txq);
1667 	}
1668 
1669 	if (list_empty(&bf_q))
1670 		return;
1671 
1672 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1673 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1674 
1675 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1676 	ath_txq_lock(sc, txq);
1677 	ath_tx_fill_desc(sc, bf, txq, 0);
1678 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1679 	ath_txq_unlock(sc, txq);
1680 }
1681 
1682 /********************/
1683 /* Queue Management */
1684 /********************/
1685 
1686 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1687 {
1688 	struct ath_hw *ah = sc->sc_ah;
1689 	struct ath9k_tx_queue_info qi;
1690 	static const int subtype_txq_to_hwq[] = {
1691 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1692 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1693 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1694 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1695 	};
1696 	int axq_qnum, i;
1697 
1698 	memset(&qi, 0, sizeof(qi));
1699 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1700 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1701 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1702 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1703 	qi.tqi_physCompBuf = 0;
1704 
1705 	/*
1706 	 * Enable interrupts only for EOL and DESC conditions.
1707 	 * We mark tx descriptors to receive a DESC interrupt
1708 	 * when a tx queue gets deep; otherwise waiting for the
1709 	 * EOL to reap descriptors.  Note that this is done to
1710 	 * reduce interrupt load and this only defers reaping
1711 	 * descriptors, never transmitting frames.  Aside from
1712 	 * reducing interrupts this also permits more concurrency.
1713 	 * The only potential downside is if the tx queue backs
1714 	 * up in which case the top half of the kernel may backup
1715 	 * due to a lack of tx descriptors.
1716 	 *
1717 	 * The UAPSD queue is an exception, since we take a desc-
1718 	 * based intr on the EOSP frames.
1719 	 */
1720 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1721 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1722 	} else {
1723 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1724 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1725 		else
1726 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1727 					TXQ_FLAG_TXDESCINT_ENABLE;
1728 	}
1729 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1730 	if (axq_qnum == -1) {
1731 		/*
1732 		 * NB: don't print a message, this happens
1733 		 * normally on parts with too few tx queues
1734 		 */
1735 		return NULL;
1736 	}
1737 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1738 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1739 
1740 		txq->axq_qnum = axq_qnum;
1741 		txq->mac80211_qnum = -1;
1742 		txq->axq_link = NULL;
1743 		__skb_queue_head_init(&txq->complete_q);
1744 		INIT_LIST_HEAD(&txq->axq_q);
1745 		spin_lock_init(&txq->axq_lock);
1746 		txq->axq_depth = 0;
1747 		txq->axq_ampdu_depth = 0;
1748 		txq->axq_tx_inprogress = false;
1749 		sc->tx.txqsetup |= 1<<axq_qnum;
1750 
1751 		txq->txq_headidx = txq->txq_tailidx = 0;
1752 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1753 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1754 	}
1755 	return &sc->tx.txq[axq_qnum];
1756 }
1757 
1758 int ath_txq_update(struct ath_softc *sc, int qnum,
1759 		   struct ath9k_tx_queue_info *qinfo)
1760 {
1761 	struct ath_hw *ah = sc->sc_ah;
1762 	int error = 0;
1763 	struct ath9k_tx_queue_info qi;
1764 
1765 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1766 
1767 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1768 	qi.tqi_aifs = qinfo->tqi_aifs;
1769 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1770 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1771 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1772 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1773 
1774 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1775 		ath_err(ath9k_hw_common(sc->sc_ah),
1776 			"Unable to update hardware queue %u!\n", qnum);
1777 		error = -EIO;
1778 	} else {
1779 		ath9k_hw_resettxqueue(ah, qnum);
1780 	}
1781 
1782 	return error;
1783 }
1784 
1785 int ath_cabq_update(struct ath_softc *sc)
1786 {
1787 	struct ath9k_tx_queue_info qi;
1788 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1789 	int qnum = sc->beacon.cabq->axq_qnum;
1790 
1791 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1792 
1793 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1794 			    ATH_CABQ_READY_TIME) / 100;
1795 	ath_txq_update(sc, qnum, &qi);
1796 
1797 	return 0;
1798 }
1799 
1800 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1801 			       struct list_head *list)
1802 {
1803 	struct ath_buf *bf, *lastbf;
1804 	struct list_head bf_head;
1805 	struct ath_tx_status ts;
1806 
1807 	memset(&ts, 0, sizeof(ts));
1808 	ts.ts_status = ATH9K_TX_FLUSH;
1809 	INIT_LIST_HEAD(&bf_head);
1810 
1811 	while (!list_empty(list)) {
1812 		bf = list_first_entry(list, struct ath_buf, list);
1813 
1814 		if (bf->bf_state.stale) {
1815 			list_del(&bf->list);
1816 
1817 			ath_tx_return_buffer(sc, bf);
1818 			continue;
1819 		}
1820 
1821 		lastbf = bf->bf_lastbf;
1822 		list_cut_position(&bf_head, list, &lastbf->list);
1823 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1824 	}
1825 }
1826 
1827 /*
1828  * Drain a given TX queue (could be Beacon or Data)
1829  *
1830  * This assumes output has been stopped and
1831  * we do not need to block ath_tx_tasklet.
1832  */
1833 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1834 {
1835 	ath_txq_lock(sc, txq);
1836 
1837 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1838 		int idx = txq->txq_tailidx;
1839 
1840 		while (!list_empty(&txq->txq_fifo[idx])) {
1841 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1842 
1843 			INCR(idx, ATH_TXFIFO_DEPTH);
1844 		}
1845 		txq->txq_tailidx = idx;
1846 	}
1847 
1848 	txq->axq_link = NULL;
1849 	txq->axq_tx_inprogress = false;
1850 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1851 
1852 	ath_txq_unlock_complete(sc, txq);
1853 }
1854 
1855 bool ath_drain_all_txq(struct ath_softc *sc)
1856 {
1857 	struct ath_hw *ah = sc->sc_ah;
1858 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1859 	struct ath_txq *txq;
1860 	int i;
1861 	u32 npend = 0;
1862 
1863 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1864 		return true;
1865 
1866 	ath9k_hw_abort_tx_dma(ah);
1867 
1868 	/* Check if any queue remains active */
1869 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1870 		if (!ATH_TXQ_SETUP(sc, i))
1871 			continue;
1872 
1873 		if (!sc->tx.txq[i].axq_depth)
1874 			continue;
1875 
1876 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1877 			npend |= BIT(i);
1878 	}
1879 
1880 	if (npend) {
1881 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1882 		ath_dbg(common, RESET,
1883 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1884 	}
1885 
1886 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1887 		if (!ATH_TXQ_SETUP(sc, i))
1888 			continue;
1889 
1890 		/*
1891 		 * The caller will resume queues with ieee80211_wake_queues.
1892 		 * Mark the queue as not stopped to prevent ath_tx_complete
1893 		 * from waking the queue too early.
1894 		 */
1895 		txq = &sc->tx.txq[i];
1896 		txq->stopped = false;
1897 		ath_draintxq(sc, txq);
1898 	}
1899 
1900 	return !npend;
1901 }
1902 
1903 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1904 {
1905 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1906 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1907 }
1908 
1909 /* For each acq entry, for each tid, try to schedule packets
1910  * for transmit until ampdu_depth has reached min Q depth.
1911  */
1912 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1913 {
1914 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1915 	struct ath_atx_tid *tid, *last_tid;
1916 	struct list_head *tid_list;
1917 	bool sent = false;
1918 
1919 	if (txq->mac80211_qnum < 0)
1920 		return;
1921 
1922 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1923 		return;
1924 
1925 	spin_lock_bh(&sc->chan_lock);
1926 	tid_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1927 
1928 	if (list_empty(tid_list)) {
1929 		spin_unlock_bh(&sc->chan_lock);
1930 		return;
1931 	}
1932 
1933 	rcu_read_lock();
1934 
1935 	last_tid = list_entry(tid_list->prev, struct ath_atx_tid, list);
1936 	while (!list_empty(tid_list)) {
1937 		bool stop = false;
1938 
1939 		if (sc->cur_chan->stopped)
1940 			break;
1941 
1942 		tid = list_first_entry(tid_list, struct ath_atx_tid, list);
1943 		list_del_init(&tid->list);
1944 
1945 		if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1946 			sent = true;
1947 
1948 		/*
1949 		 * add tid to round-robin queue if more frames
1950 		 * are pending for the tid
1951 		 */
1952 		if (ath_tid_has_buffered(tid))
1953 			ath_tx_queue_tid(sc, txq, tid);
1954 
1955 		if (stop)
1956 			break;
1957 
1958 		if (tid == last_tid) {
1959 			if (!sent)
1960 				break;
1961 
1962 			sent = false;
1963 			last_tid = list_entry(tid_list->prev,
1964 					      struct ath_atx_tid, list);
1965 		}
1966 	}
1967 
1968 	rcu_read_unlock();
1969 	spin_unlock_bh(&sc->chan_lock);
1970 }
1971 
1972 void ath_txq_schedule_all(struct ath_softc *sc)
1973 {
1974 	struct ath_txq *txq;
1975 	int i;
1976 
1977 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1978 		txq = sc->tx.txq_map[i];
1979 
1980 		spin_lock_bh(&txq->axq_lock);
1981 		ath_txq_schedule(sc, txq);
1982 		spin_unlock_bh(&txq->axq_lock);
1983 	}
1984 }
1985 
1986 /***********/
1987 /* TX, DMA */
1988 /***********/
1989 
1990 /*
1991  * Insert a chain of ath_buf (descriptors) on a txq and
1992  * assume the descriptors are already chained together by caller.
1993  */
1994 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1995 			     struct list_head *head, bool internal)
1996 {
1997 	struct ath_hw *ah = sc->sc_ah;
1998 	struct ath_common *common = ath9k_hw_common(ah);
1999 	struct ath_buf *bf, *bf_last;
2000 	bool puttxbuf = false;
2001 	bool edma;
2002 
2003 	/*
2004 	 * Insert the frame on the outbound list and
2005 	 * pass it on to the hardware.
2006 	 */
2007 
2008 	if (list_empty(head))
2009 		return;
2010 
2011 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2012 	bf = list_first_entry(head, struct ath_buf, list);
2013 	bf_last = list_entry(head->prev, struct ath_buf, list);
2014 
2015 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2016 		txq->axq_qnum, txq->axq_depth);
2017 
2018 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2019 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2020 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2021 		puttxbuf = true;
2022 	} else {
2023 		list_splice_tail_init(head, &txq->axq_q);
2024 
2025 		if (txq->axq_link) {
2026 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2027 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2028 				txq->axq_qnum, txq->axq_link,
2029 				ito64(bf->bf_daddr), bf->bf_desc);
2030 		} else if (!edma)
2031 			puttxbuf = true;
2032 
2033 		txq->axq_link = bf_last->bf_desc;
2034 	}
2035 
2036 	if (puttxbuf) {
2037 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
2038 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2039 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2040 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2041 	}
2042 
2043 	if (!edma || sc->tx99_state) {
2044 		TX_STAT_INC(txq->axq_qnum, txstart);
2045 		ath9k_hw_txstart(ah, txq->axq_qnum);
2046 	}
2047 
2048 	if (!internal) {
2049 		while (bf) {
2050 			txq->axq_depth++;
2051 			if (bf_is_ampdu_not_probing(bf))
2052 				txq->axq_ampdu_depth++;
2053 
2054 			bf_last = bf->bf_lastbf;
2055 			bf = bf_last->bf_next;
2056 			bf_last->bf_next = NULL;
2057 		}
2058 	}
2059 }
2060 
2061 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2062 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2063 {
2064 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2065 	struct ath_frame_info *fi = get_frame_info(skb);
2066 	struct list_head bf_head;
2067 	struct ath_buf *bf = fi->bf;
2068 
2069 	INIT_LIST_HEAD(&bf_head);
2070 	list_add_tail(&bf->list, &bf_head);
2071 	bf->bf_state.bf_type = 0;
2072 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2073 		bf->bf_state.bf_type = BUF_AMPDU;
2074 		ath_tx_addto_baw(sc, tid, bf);
2075 	}
2076 
2077 	bf->bf_next = NULL;
2078 	bf->bf_lastbf = bf;
2079 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2080 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2081 	TX_STAT_INC(txq->axq_qnum, queued);
2082 }
2083 
2084 static void setup_frame_info(struct ieee80211_hw *hw,
2085 			     struct ieee80211_sta *sta,
2086 			     struct sk_buff *skb,
2087 			     int framelen)
2088 {
2089 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2090 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2091 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2092 	const struct ieee80211_rate *rate;
2093 	struct ath_frame_info *fi = get_frame_info(skb);
2094 	struct ath_node *an = NULL;
2095 	enum ath9k_key_type keytype;
2096 	bool short_preamble = false;
2097 	u8 txpower;
2098 
2099 	/*
2100 	 * We check if Short Preamble is needed for the CTS rate by
2101 	 * checking the BSS's global flag.
2102 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2103 	 */
2104 	if (tx_info->control.vif &&
2105 	    tx_info->control.vif->bss_conf.use_short_preamble)
2106 		short_preamble = true;
2107 
2108 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2109 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2110 
2111 	if (sta)
2112 		an = (struct ath_node *) sta->drv_priv;
2113 
2114 	if (tx_info->control.vif) {
2115 		struct ieee80211_vif *vif = tx_info->control.vif;
2116 
2117 		txpower = 2 * vif->bss_conf.txpower;
2118 	} else {
2119 		struct ath_softc *sc = hw->priv;
2120 
2121 		txpower = sc->cur_chan->cur_txpower;
2122 	}
2123 
2124 	memset(fi, 0, sizeof(*fi));
2125 	fi->txq = -1;
2126 	if (hw_key)
2127 		fi->keyix = hw_key->hw_key_idx;
2128 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2129 		fi->keyix = an->ps_key;
2130 	else
2131 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2132 	fi->keytype = keytype;
2133 	fi->framelen = framelen;
2134 	fi->tx_power = txpower;
2135 
2136 	if (!rate)
2137 		return;
2138 	fi->rtscts_rate = rate->hw_value;
2139 	if (short_preamble)
2140 		fi->rtscts_rate |= rate->hw_value_short;
2141 }
2142 
2143 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2144 {
2145 	struct ath_hw *ah = sc->sc_ah;
2146 	struct ath9k_channel *curchan = ah->curchan;
2147 
2148 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2149 	    (chainmask == 0x7) && (rate < 0x90))
2150 		return 0x3;
2151 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2152 		 IS_CCK_RATE(rate))
2153 		return 0x2;
2154 	else
2155 		return chainmask;
2156 }
2157 
2158 /*
2159  * Assign a descriptor (and sequence number if necessary,
2160  * and map buffer for DMA. Frees skb on error
2161  */
2162 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2163 					   struct ath_txq *txq,
2164 					   struct ath_atx_tid *tid,
2165 					   struct sk_buff *skb)
2166 {
2167 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2168 	struct ath_frame_info *fi = get_frame_info(skb);
2169 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2170 	struct ath_buf *bf;
2171 	int fragno;
2172 	u16 seqno;
2173 
2174 	bf = ath_tx_get_buffer(sc);
2175 	if (!bf) {
2176 		ath_dbg(common, XMIT, "TX buffers are full\n");
2177 		return NULL;
2178 	}
2179 
2180 	ATH_TXBUF_RESET(bf);
2181 
2182 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2183 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2184 		seqno = tid->seq_next;
2185 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2186 
2187 		if (fragno)
2188 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2189 
2190 		if (!ieee80211_has_morefrags(hdr->frame_control))
2191 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2192 
2193 		bf->bf_state.seqno = seqno;
2194 	}
2195 
2196 	bf->bf_mpdu = skb;
2197 
2198 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2199 					 skb->len, DMA_TO_DEVICE);
2200 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2201 		bf->bf_mpdu = NULL;
2202 		bf->bf_buf_addr = 0;
2203 		ath_err(ath9k_hw_common(sc->sc_ah),
2204 			"dma_mapping_error() on TX\n");
2205 		ath_tx_return_buffer(sc, bf);
2206 		return NULL;
2207 	}
2208 
2209 	fi->bf = bf;
2210 
2211 	return bf;
2212 }
2213 
2214 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2215 {
2216 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2217 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2218 	struct ieee80211_vif *vif = info->control.vif;
2219 	struct ath_vif *avp;
2220 
2221 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2222 		return;
2223 
2224 	if (!vif)
2225 		return;
2226 
2227 	avp = (struct ath_vif *)vif->drv_priv;
2228 
2229 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2230 		avp->seq_no += 0x10;
2231 
2232 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2233 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2234 }
2235 
2236 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2237 			  struct ath_tx_control *txctl)
2238 {
2239 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2240 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2241 	struct ieee80211_sta *sta = txctl->sta;
2242 	struct ieee80211_vif *vif = info->control.vif;
2243 	struct ath_vif *avp;
2244 	struct ath_softc *sc = hw->priv;
2245 	int frmlen = skb->len + FCS_LEN;
2246 	int padpos, padsize;
2247 
2248 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2249 	if (sta)
2250 		txctl->an = (struct ath_node *)sta->drv_priv;
2251 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2252 		avp = (void *)vif->drv_priv;
2253 		txctl->an = &avp->mcast_node;
2254 	}
2255 
2256 	if (info->control.hw_key)
2257 		frmlen += info->control.hw_key->icv_len;
2258 
2259 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2260 
2261 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2262 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2263 	    !ieee80211_is_data(hdr->frame_control))
2264 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2265 
2266 	/* Add the padding after the header if this is not already done */
2267 	padpos = ieee80211_hdrlen(hdr->frame_control);
2268 	padsize = padpos & 3;
2269 	if (padsize && skb->len > padpos) {
2270 		if (skb_headroom(skb) < padsize)
2271 			return -ENOMEM;
2272 
2273 		skb_push(skb, padsize);
2274 		memmove(skb->data, skb->data + padsize, padpos);
2275 	}
2276 
2277 	setup_frame_info(hw, sta, skb, frmlen);
2278 	return 0;
2279 }
2280 
2281 
2282 /* Upon failure caller should free skb */
2283 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2284 		 struct ath_tx_control *txctl)
2285 {
2286 	struct ieee80211_hdr *hdr;
2287 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2288 	struct ieee80211_sta *sta = txctl->sta;
2289 	struct ieee80211_vif *vif = info->control.vif;
2290 	struct ath_frame_info *fi = get_frame_info(skb);
2291 	struct ath_vif *avp = NULL;
2292 	struct ath_softc *sc = hw->priv;
2293 	struct ath_txq *txq = txctl->txq;
2294 	struct ath_atx_tid *tid = NULL;
2295 	struct ath_buf *bf;
2296 	bool queue, skip_uapsd = false, ps_resp;
2297 	int q, ret;
2298 
2299 	if (vif)
2300 		avp = (void *)vif->drv_priv;
2301 
2302 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2303 		txctl->force_channel = true;
2304 
2305 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2306 
2307 	ret = ath_tx_prepare(hw, skb, txctl);
2308 	if (ret)
2309 	    return ret;
2310 
2311 	hdr = (struct ieee80211_hdr *) skb->data;
2312 	/*
2313 	 * At this point, the vif, hw_key and sta pointers in the tx control
2314 	 * info are no longer valid (overwritten by the ath_frame_info data.
2315 	 */
2316 
2317 	q = skb_get_queue_mapping(skb);
2318 
2319 	ath_txq_lock(sc, txq);
2320 	if (txq == sc->tx.txq_map[q]) {
2321 		fi->txq = q;
2322 		if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2323 		    !txq->stopped) {
2324 			if (ath9k_is_chanctx_enabled())
2325 				ieee80211_stop_queue(sc->hw, info->hw_queue);
2326 			else
2327 				ieee80211_stop_queue(sc->hw, q);
2328 			txq->stopped = true;
2329 		}
2330 	}
2331 
2332 	queue = ieee80211_is_data_present(hdr->frame_control);
2333 
2334 	/* If chanctx, queue all null frames while NOA could be there */
2335 	if (ath9k_is_chanctx_enabled() &&
2336 	    ieee80211_is_nullfunc(hdr->frame_control) &&
2337 	    !txctl->force_channel)
2338 		queue = true;
2339 
2340 	/* Force queueing of all frames that belong to a virtual interface on
2341 	 * a different channel context, to ensure that they are sent on the
2342 	 * correct channel.
2343 	 */
2344 	if (((avp && avp->chanctx != sc->cur_chan) ||
2345 	     sc->cur_chan->stopped) && !txctl->force_channel) {
2346 		if (!txctl->an)
2347 			txctl->an = &avp->mcast_node;
2348 		queue = true;
2349 		skip_uapsd = true;
2350 	}
2351 
2352 	if (txctl->an && queue)
2353 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2354 
2355 	if (!skip_uapsd && ps_resp) {
2356 		ath_txq_unlock(sc, txq);
2357 		txq = sc->tx.uapsdq;
2358 		ath_txq_lock(sc, txq);
2359 	} else if (txctl->an && queue) {
2360 		WARN_ON(tid->txq != txctl->txq);
2361 
2362 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2363 			tid->clear_ps_filter = true;
2364 
2365 		/*
2366 		 * Add this frame to software queue for scheduling later
2367 		 * for aggregation.
2368 		 */
2369 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2370 		__skb_queue_tail(&tid->buf_q, skb);
2371 		if (!txctl->an->sleeping)
2372 			ath_tx_queue_tid(sc, txq, tid);
2373 
2374 		ath_txq_schedule(sc, txq);
2375 		goto out;
2376 	}
2377 
2378 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2379 	if (!bf) {
2380 		ath_txq_skb_done(sc, txq, skb);
2381 		if (txctl->paprd)
2382 			dev_kfree_skb_any(skb);
2383 		else
2384 			ieee80211_free_txskb(sc->hw, skb);
2385 		goto out;
2386 	}
2387 
2388 	bf->bf_state.bfs_paprd = txctl->paprd;
2389 
2390 	if (txctl->paprd)
2391 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2392 
2393 	ath_set_rates(vif, sta, bf);
2394 	ath_tx_send_normal(sc, txq, tid, skb);
2395 
2396 out:
2397 	ath_txq_unlock(sc, txq);
2398 
2399 	return 0;
2400 }
2401 
2402 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2403 		 struct sk_buff *skb)
2404 {
2405 	struct ath_softc *sc = hw->priv;
2406 	struct ath_tx_control txctl = {
2407 		.txq = sc->beacon.cabq
2408 	};
2409 	struct ath_tx_info info = {};
2410 	struct ieee80211_hdr *hdr;
2411 	struct ath_buf *bf_tail = NULL;
2412 	struct ath_buf *bf;
2413 	LIST_HEAD(bf_q);
2414 	int duration = 0;
2415 	int max_duration;
2416 
2417 	max_duration =
2418 		sc->cur_chan->beacon.beacon_interval * 1000 *
2419 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2420 
2421 	do {
2422 		struct ath_frame_info *fi = get_frame_info(skb);
2423 
2424 		if (ath_tx_prepare(hw, skb, &txctl))
2425 			break;
2426 
2427 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2428 		if (!bf)
2429 			break;
2430 
2431 		bf->bf_lastbf = bf;
2432 		ath_set_rates(vif, NULL, bf);
2433 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2434 		duration += info.rates[0].PktDuration;
2435 		if (bf_tail)
2436 			bf_tail->bf_next = bf;
2437 
2438 		list_add_tail(&bf->list, &bf_q);
2439 		bf_tail = bf;
2440 		skb = NULL;
2441 
2442 		if (duration > max_duration)
2443 			break;
2444 
2445 		skb = ieee80211_get_buffered_bc(hw, vif);
2446 	} while(skb);
2447 
2448 	if (skb)
2449 		ieee80211_free_txskb(hw, skb);
2450 
2451 	if (list_empty(&bf_q))
2452 		return;
2453 
2454 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2455 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2456 
2457 	if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) {
2458 		hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2459 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2460 			sizeof(*hdr), DMA_TO_DEVICE);
2461 	}
2462 
2463 	ath_txq_lock(sc, txctl.txq);
2464 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2465 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2466 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2467 	ath_txq_unlock(sc, txctl.txq);
2468 }
2469 
2470 /*****************/
2471 /* TX Completion */
2472 /*****************/
2473 
2474 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2475 			    int tx_flags, struct ath_txq *txq)
2476 {
2477 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2478 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2479 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2480 	int padpos, padsize;
2481 	unsigned long flags;
2482 
2483 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2484 
2485 	if (sc->sc_ah->caldata)
2486 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2487 
2488 	if (!(tx_flags & ATH_TX_ERROR)) {
2489 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2490 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2491 		else
2492 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2493 	}
2494 
2495 	padpos = ieee80211_hdrlen(hdr->frame_control);
2496 	padsize = padpos & 3;
2497 	if (padsize && skb->len>padpos+padsize) {
2498 		/*
2499 		 * Remove MAC header padding before giving the frame back to
2500 		 * mac80211.
2501 		 */
2502 		memmove(skb->data + padsize, skb->data, padpos);
2503 		skb_pull(skb, padsize);
2504 	}
2505 
2506 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2507 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2508 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2509 		ath_dbg(common, PS,
2510 			"Going back to sleep after having received TX status (0x%lx)\n",
2511 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2512 					PS_WAIT_FOR_CAB |
2513 					PS_WAIT_FOR_PSPOLL_DATA |
2514 					PS_WAIT_FOR_TX_ACK));
2515 	}
2516 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2517 
2518 	__skb_queue_tail(&txq->complete_q, skb);
2519 	ath_txq_skb_done(sc, txq, skb);
2520 }
2521 
2522 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2523 				struct ath_txq *txq, struct list_head *bf_q,
2524 				struct ath_tx_status *ts, int txok)
2525 {
2526 	struct sk_buff *skb = bf->bf_mpdu;
2527 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2528 	unsigned long flags;
2529 	int tx_flags = 0;
2530 
2531 	if (!txok)
2532 		tx_flags |= ATH_TX_ERROR;
2533 
2534 	if (ts->ts_status & ATH9K_TXERR_FILT)
2535 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2536 
2537 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2538 	bf->bf_buf_addr = 0;
2539 	if (sc->tx99_state)
2540 		goto skip_tx_complete;
2541 
2542 	if (bf->bf_state.bfs_paprd) {
2543 		if (time_after(jiffies,
2544 				bf->bf_state.bfs_paprd_timestamp +
2545 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2546 			dev_kfree_skb_any(skb);
2547 		else
2548 			complete(&sc->paprd_complete);
2549 	} else {
2550 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2551 		ath_tx_complete(sc, skb, tx_flags, txq);
2552 	}
2553 skip_tx_complete:
2554 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2555 	 * accidentally reference it later.
2556 	 */
2557 	bf->bf_mpdu = NULL;
2558 
2559 	/*
2560 	 * Return the list of ath_buf of this mpdu to free queue
2561 	 */
2562 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2563 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2564 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2565 }
2566 
2567 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2568 			     struct ath_tx_status *ts, int nframes, int nbad,
2569 			     int txok)
2570 {
2571 	struct sk_buff *skb = bf->bf_mpdu;
2572 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2573 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2574 	struct ieee80211_hw *hw = sc->hw;
2575 	struct ath_hw *ah = sc->sc_ah;
2576 	u8 i, tx_rateindex;
2577 
2578 	if (txok)
2579 		tx_info->status.ack_signal = ts->ts_rssi;
2580 
2581 	tx_rateindex = ts->ts_rateindex;
2582 	WARN_ON(tx_rateindex >= hw->max_rates);
2583 
2584 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2585 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2586 
2587 		BUG_ON(nbad > nframes);
2588 	}
2589 	tx_info->status.ampdu_len = nframes;
2590 	tx_info->status.ampdu_ack_len = nframes - nbad;
2591 
2592 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2593 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2594 		/*
2595 		 * If an underrun error is seen assume it as an excessive
2596 		 * retry only if max frame trigger level has been reached
2597 		 * (2 KB for single stream, and 4 KB for dual stream).
2598 		 * Adjust the long retry as if the frame was tried
2599 		 * hw->max_rate_tries times to affect how rate control updates
2600 		 * PER for the failed rate.
2601 		 * In case of congestion on the bus penalizing this type of
2602 		 * underruns should help hardware actually transmit new frames
2603 		 * successfully by eventually preferring slower rates.
2604 		 * This itself should also alleviate congestion on the bus.
2605 		 */
2606 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2607 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2608 		    ieee80211_is_data(hdr->frame_control) &&
2609 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2610 			tx_info->status.rates[tx_rateindex].count =
2611 				hw->max_rate_tries;
2612 	}
2613 
2614 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2615 		tx_info->status.rates[i].count = 0;
2616 		tx_info->status.rates[i].idx = -1;
2617 	}
2618 
2619 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2620 }
2621 
2622 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2623 {
2624 	struct ath_hw *ah = sc->sc_ah;
2625 	struct ath_common *common = ath9k_hw_common(ah);
2626 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2627 	struct list_head bf_head;
2628 	struct ath_desc *ds;
2629 	struct ath_tx_status ts;
2630 	int status;
2631 
2632 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2633 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2634 		txq->axq_link);
2635 
2636 	ath_txq_lock(sc, txq);
2637 	for (;;) {
2638 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2639 			break;
2640 
2641 		if (list_empty(&txq->axq_q)) {
2642 			txq->axq_link = NULL;
2643 			ath_txq_schedule(sc, txq);
2644 			break;
2645 		}
2646 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2647 
2648 		/*
2649 		 * There is a race condition that a BH gets scheduled
2650 		 * after sw writes TxE and before hw re-load the last
2651 		 * descriptor to get the newly chained one.
2652 		 * Software must keep the last DONE descriptor as a
2653 		 * holding descriptor - software does so by marking
2654 		 * it with the STALE flag.
2655 		 */
2656 		bf_held = NULL;
2657 		if (bf->bf_state.stale) {
2658 			bf_held = bf;
2659 			if (list_is_last(&bf_held->list, &txq->axq_q))
2660 				break;
2661 
2662 			bf = list_entry(bf_held->list.next, struct ath_buf,
2663 					list);
2664 		}
2665 
2666 		lastbf = bf->bf_lastbf;
2667 		ds = lastbf->bf_desc;
2668 
2669 		memset(&ts, 0, sizeof(ts));
2670 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2671 		if (status == -EINPROGRESS)
2672 			break;
2673 
2674 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2675 
2676 		/*
2677 		 * Remove ath_buf's of the same transmit unit from txq,
2678 		 * however leave the last descriptor back as the holding
2679 		 * descriptor for hw.
2680 		 */
2681 		lastbf->bf_state.stale = true;
2682 		INIT_LIST_HEAD(&bf_head);
2683 		if (!list_is_singular(&lastbf->list))
2684 			list_cut_position(&bf_head,
2685 				&txq->axq_q, lastbf->list.prev);
2686 
2687 		if (bf_held) {
2688 			list_del(&bf_held->list);
2689 			ath_tx_return_buffer(sc, bf_held);
2690 		}
2691 
2692 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2693 	}
2694 	ath_txq_unlock_complete(sc, txq);
2695 }
2696 
2697 void ath_tx_tasklet(struct ath_softc *sc)
2698 {
2699 	struct ath_hw *ah = sc->sc_ah;
2700 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2701 	int i;
2702 
2703 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2704 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2705 			ath_tx_processq(sc, &sc->tx.txq[i]);
2706 	}
2707 }
2708 
2709 void ath_tx_edma_tasklet(struct ath_softc *sc)
2710 {
2711 	struct ath_tx_status ts;
2712 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2713 	struct ath_hw *ah = sc->sc_ah;
2714 	struct ath_txq *txq;
2715 	struct ath_buf *bf, *lastbf;
2716 	struct list_head bf_head;
2717 	struct list_head *fifo_list;
2718 	int status;
2719 
2720 	for (;;) {
2721 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2722 			break;
2723 
2724 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2725 		if (status == -EINPROGRESS)
2726 			break;
2727 		if (status == -EIO) {
2728 			ath_dbg(common, XMIT, "Error processing tx status\n");
2729 			break;
2730 		}
2731 
2732 		/* Process beacon completions separately */
2733 		if (ts.qid == sc->beacon.beaconq) {
2734 			sc->beacon.tx_processed = true;
2735 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2736 
2737 			if (ath9k_is_chanctx_enabled()) {
2738 				ath_chanctx_event(sc, NULL,
2739 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2740 			}
2741 
2742 			ath9k_csa_update(sc);
2743 			continue;
2744 		}
2745 
2746 		txq = &sc->tx.txq[ts.qid];
2747 
2748 		ath_txq_lock(sc, txq);
2749 
2750 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2751 
2752 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2753 		if (list_empty(fifo_list)) {
2754 			ath_txq_unlock(sc, txq);
2755 			return;
2756 		}
2757 
2758 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2759 		if (bf->bf_state.stale) {
2760 			list_del(&bf->list);
2761 			ath_tx_return_buffer(sc, bf);
2762 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2763 		}
2764 
2765 		lastbf = bf->bf_lastbf;
2766 
2767 		INIT_LIST_HEAD(&bf_head);
2768 		if (list_is_last(&lastbf->list, fifo_list)) {
2769 			list_splice_tail_init(fifo_list, &bf_head);
2770 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2771 
2772 			if (!list_empty(&txq->axq_q)) {
2773 				struct list_head bf_q;
2774 
2775 				INIT_LIST_HEAD(&bf_q);
2776 				txq->axq_link = NULL;
2777 				list_splice_tail_init(&txq->axq_q, &bf_q);
2778 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2779 			}
2780 		} else {
2781 			lastbf->bf_state.stale = true;
2782 			if (bf != lastbf)
2783 				list_cut_position(&bf_head, fifo_list,
2784 						  lastbf->list.prev);
2785 		}
2786 
2787 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2788 		ath_txq_unlock_complete(sc, txq);
2789 	}
2790 }
2791 
2792 /*****************/
2793 /* Init, Cleanup */
2794 /*****************/
2795 
2796 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2797 {
2798 	struct ath_descdma *dd = &sc->txsdma;
2799 	u8 txs_len = sc->sc_ah->caps.txs_len;
2800 
2801 	dd->dd_desc_len = size * txs_len;
2802 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2803 					  &dd->dd_desc_paddr, GFP_KERNEL);
2804 	if (!dd->dd_desc)
2805 		return -ENOMEM;
2806 
2807 	return 0;
2808 }
2809 
2810 static int ath_tx_edma_init(struct ath_softc *sc)
2811 {
2812 	int err;
2813 
2814 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2815 	if (!err)
2816 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2817 					  sc->txsdma.dd_desc_paddr,
2818 					  ATH_TXSTATUS_RING_SIZE);
2819 
2820 	return err;
2821 }
2822 
2823 int ath_tx_init(struct ath_softc *sc, int nbufs)
2824 {
2825 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2826 	int error = 0;
2827 
2828 	spin_lock_init(&sc->tx.txbuflock);
2829 
2830 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2831 				  "tx", nbufs, 1, 1);
2832 	if (error != 0) {
2833 		ath_err(common,
2834 			"Failed to allocate tx descriptors: %d\n", error);
2835 		return error;
2836 	}
2837 
2838 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2839 				  "beacon", ATH_BCBUF, 1, 1);
2840 	if (error != 0) {
2841 		ath_err(common,
2842 			"Failed to allocate beacon descriptors: %d\n", error);
2843 		return error;
2844 	}
2845 
2846 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2847 
2848 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2849 		error = ath_tx_edma_init(sc);
2850 
2851 	return error;
2852 }
2853 
2854 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2855 {
2856 	struct ath_atx_tid *tid;
2857 	int tidno, acno;
2858 
2859 	for (tidno = 0, tid = &an->tid[tidno];
2860 	     tidno < IEEE80211_NUM_TIDS;
2861 	     tidno++, tid++) {
2862 		tid->an        = an;
2863 		tid->tidno     = tidno;
2864 		tid->seq_start = tid->seq_next = 0;
2865 		tid->baw_size  = WME_MAX_BA;
2866 		tid->baw_head  = tid->baw_tail = 0;
2867 		tid->active	   = false;
2868 		tid->clear_ps_filter = true;
2869 		__skb_queue_head_init(&tid->buf_q);
2870 		__skb_queue_head_init(&tid->retry_q);
2871 		INIT_LIST_HEAD(&tid->list);
2872 		acno = TID_TO_WME_AC(tidno);
2873 		tid->txq = sc->tx.txq_map[acno];
2874 	}
2875 }
2876 
2877 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2878 {
2879 	struct ath_atx_tid *tid;
2880 	struct ath_txq *txq;
2881 	int tidno;
2882 
2883 	for (tidno = 0, tid = &an->tid[tidno];
2884 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2885 
2886 		txq = tid->txq;
2887 
2888 		ath_txq_lock(sc, txq);
2889 
2890 		if (!list_empty(&tid->list))
2891 			list_del_init(&tid->list);
2892 
2893 		ath_tid_drain(sc, txq, tid);
2894 		tid->active = false;
2895 
2896 		ath_txq_unlock(sc, txq);
2897 	}
2898 }
2899 
2900 #ifdef CONFIG_ATH9K_TX99
2901 
2902 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2903 		    struct ath_tx_control *txctl)
2904 {
2905 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2906 	struct ath_frame_info *fi = get_frame_info(skb);
2907 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2908 	struct ath_buf *bf;
2909 	int padpos, padsize;
2910 
2911 	padpos = ieee80211_hdrlen(hdr->frame_control);
2912 	padsize = padpos & 3;
2913 
2914 	if (padsize && skb->len > padpos) {
2915 		if (skb_headroom(skb) < padsize) {
2916 			ath_dbg(common, XMIT,
2917 				"tx99 padding failed\n");
2918 			return -EINVAL;
2919 		}
2920 
2921 		skb_push(skb, padsize);
2922 		memmove(skb->data, skb->data + padsize, padpos);
2923 	}
2924 
2925 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2926 	fi->framelen = skb->len + FCS_LEN;
2927 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2928 
2929 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2930 	if (!bf) {
2931 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2932 		return -EINVAL;
2933 	}
2934 
2935 	ath_set_rates(sc->tx99_vif, NULL, bf);
2936 
2937 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2938 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2939 
2940 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2941 
2942 	return 0;
2943 }
2944 
2945 #endif /* CONFIG_ATH9K_TX99 */
2946