1 /* 2 * Copyright (c) 2010-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/export.h> 18 #include "hw.h" 19 #include "ar9003_phy.h" 20 21 void ar9003_paprd_enable(struct ath_hw *ah, bool val) 22 { 23 struct ath9k_channel *chan = ah->curchan; 24 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; 25 26 /* 27 * 3 bits for modalHeader5G.papdRateMaskHt20 28 * is used for sub-band disabling of PAPRD. 29 * 5G band is divided into 3 sub-bands -- upper, 30 * middle, lower. 31 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set 32 * -- disable PAPRD for upper band 5GHz 33 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set 34 * -- disable PAPRD for middle band 5GHz 35 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set 36 * -- disable PAPRD for lower band 5GHz 37 */ 38 39 if (IS_CHAN_5GHZ(chan)) { 40 if (chan->channel >= UPPER_5G_SUB_BAND_START) { 41 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) 42 & BIT(30)) 43 val = false; 44 } else if (chan->channel >= MID_5G_SUB_BAND_START) { 45 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) 46 & BIT(29)) 47 val = false; 48 } else { 49 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20) 50 & BIT(28)) 51 val = false; 52 } 53 } 54 55 if (val) { 56 ah->paprd_table_write_done = true; 57 ath9k_hw_apply_txpower(ah, chan); 58 } 59 60 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0, 61 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 62 if (ah->caps.tx_chainmask & BIT(1)) 63 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1, 64 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 65 if (ah->caps.tx_chainmask & BIT(2)) 66 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2, 67 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val); 68 } 69 EXPORT_SYMBOL(ar9003_paprd_enable); 70 71 static int ar9003_get_training_power_2g(struct ath_hw *ah) 72 { 73 struct ath9k_channel *chan = ah->curchan; 74 unsigned int power, scale, delta; 75 76 scale = ar9003_get_paprd_scale_factor(ah, chan); 77 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5, 78 AR_PHY_POWERTX_RATE5_POWERTXHT20_0); 79 80 delta = abs((int) ah->paprd_target_power - (int) power); 81 if (delta > scale) 82 return -1; 83 84 if (delta < 4) 85 power -= 4 - delta; 86 87 return power; 88 } 89 90 static int ar9003_get_training_power_5g(struct ath_hw *ah) 91 { 92 struct ath_common *common = ath9k_hw_common(ah); 93 struct ath9k_channel *chan = ah->curchan; 94 unsigned int power, scale, delta; 95 96 scale = ar9003_get_paprd_scale_factor(ah, chan); 97 98 if (IS_CHAN_HT40(chan)) 99 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8, 100 AR_PHY_POWERTX_RATE8_POWERTXHT40_5); 101 else 102 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6, 103 AR_PHY_POWERTX_RATE6_POWERTXHT20_5); 104 105 power += scale; 106 delta = abs((int) ah->paprd_target_power - (int) power); 107 if (delta > scale) 108 return -1; 109 110 switch (get_streams(ah->txchainmask)) { 111 case 1: 112 delta = 6; 113 break; 114 case 2: 115 delta = 4; 116 break; 117 case 3: 118 delta = 2; 119 break; 120 default: 121 delta = 0; 122 ath_dbg(common, ATH_DBG_CALIBRATE, 123 "Invalid tx-chainmask: %u\n", ah->txchainmask); 124 } 125 126 power += delta; 127 return power; 128 } 129 130 static int ar9003_paprd_setup_single_table(struct ath_hw *ah) 131 { 132 struct ath_common *common = ath9k_hw_common(ah); 133 static const u32 ctrl0[3] = { 134 AR_PHY_PAPRD_CTRL0_B0, 135 AR_PHY_PAPRD_CTRL0_B1, 136 AR_PHY_PAPRD_CTRL0_B2 137 }; 138 static const u32 ctrl1[3] = { 139 AR_PHY_PAPRD_CTRL1_B0, 140 AR_PHY_PAPRD_CTRL1_B1, 141 AR_PHY_PAPRD_CTRL1_B2 142 }; 143 int training_power; 144 int i, val; 145 146 if (IS_CHAN_2GHZ(ah->curchan)) 147 training_power = ar9003_get_training_power_2g(ah); 148 else 149 training_power = ar9003_get_training_power_5g(ah); 150 151 ath_dbg(common, ATH_DBG_CALIBRATE, 152 "Training power: %d, Target power: %d\n", 153 training_power, ah->paprd_target_power); 154 155 if (training_power < 0) { 156 ath_dbg(common, ATH_DBG_CALIBRATE, 157 "PAPRD target power delta out of range"); 158 return -ERANGE; 159 } 160 ah->paprd_training_power = training_power; 161 162 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK, 163 ah->paprd_ratemask); 164 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK, 165 ah->paprd_ratemask); 166 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK, 167 ah->paprd_ratemask_ht40); 168 169 for (i = 0; i < ah->caps.max_txchains; i++) { 170 REG_RMW_FIELD(ah, ctrl0[i], 171 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1); 172 REG_RMW_FIELD(ah, ctrl1[i], 173 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1); 174 REG_RMW_FIELD(ah, ctrl1[i], 175 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1); 176 REG_RMW_FIELD(ah, ctrl1[i], 177 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 178 REG_RMW_FIELD(ah, ctrl1[i], 179 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181); 180 REG_RMW_FIELD(ah, ctrl1[i], 181 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361); 182 REG_RMW_FIELD(ah, ctrl1[i], 183 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0); 184 REG_RMW_FIELD(ah, ctrl0[i], 185 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); 186 } 187 188 ar9003_paprd_enable(ah, false); 189 190 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 191 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30); 192 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 193 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1); 194 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 195 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1); 196 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 197 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0); 198 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 199 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0); 200 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 201 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28); 202 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1, 203 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1); 204 val = AR_SREV_9462(ah) ? 0x91 : 147; 205 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2, 206 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val); 207 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 208 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4); 209 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 210 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4); 211 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 212 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7); 213 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 214 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1); 215 if (AR_SREV_9485(ah) || AR_SREV_9462(ah)) 216 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 217 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, 218 -3); 219 else 220 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 221 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, 222 -6); 223 val = AR_SREV_9462(ah) ? -10 : -15; 224 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 225 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE, 226 val); 227 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3, 228 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1); 229 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 230 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0); 231 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 232 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400); 233 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4, 234 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES, 235 100); 236 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0, 237 AR_PHY_PAPRD_PRE_POST_SCALING, 261376); 238 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0, 239 AR_PHY_PAPRD_PRE_POST_SCALING, 248079); 240 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0, 241 AR_PHY_PAPRD_PRE_POST_SCALING, 233759); 242 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0, 243 AR_PHY_PAPRD_PRE_POST_SCALING, 220464); 244 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0, 245 AR_PHY_PAPRD_PRE_POST_SCALING, 208194); 246 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0, 247 AR_PHY_PAPRD_PRE_POST_SCALING, 196949); 248 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0, 249 AR_PHY_PAPRD_PRE_POST_SCALING, 185706); 250 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0, 251 AR_PHY_PAPRD_PRE_POST_SCALING, 175487); 252 return 0; 253 } 254 255 static void ar9003_paprd_get_gain_table(struct ath_hw *ah) 256 { 257 u32 *entry = ah->paprd_gain_table_entries; 258 u8 *index = ah->paprd_gain_table_index; 259 u32 reg = AR_PHY_TXGAIN_TABLE; 260 int i; 261 262 memset(entry, 0, sizeof(ah->paprd_gain_table_entries)); 263 memset(index, 0, sizeof(ah->paprd_gain_table_index)); 264 265 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { 266 entry[i] = REG_READ(ah, reg); 267 index[i] = (entry[i] >> 24) & 0xff; 268 reg += 4; 269 } 270 } 271 272 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain, 273 int target_power) 274 { 275 int olpc_gain_delta = 0, cl_gain_mod; 276 int alpha_therm, alpha_volt; 277 int therm_cal_value, volt_cal_value; 278 int therm_value, volt_value; 279 int thermal_gain_corr, voltage_gain_corr; 280 int desired_scale, desired_gain = 0; 281 u32 reg_olpc = 0, reg_cl_gain = 0; 282 283 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 284 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 285 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12, 286 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); 287 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19, 288 AR_PHY_TPC_19_ALPHA_THERM); 289 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19, 290 AR_PHY_TPC_19_ALPHA_VOLT); 291 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 292 AR_PHY_TPC_18_THERM_CAL_VALUE); 293 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18, 294 AR_PHY_TPC_18_VOLT_CAL_VALUE); 295 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 296 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE); 297 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4, 298 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE); 299 300 switch (chain) { 301 case 0: 302 reg_olpc = AR_PHY_TPC_11_B0; 303 reg_cl_gain = AR_PHY_CL_TAB_0; 304 break; 305 case 1: 306 reg_olpc = AR_PHY_TPC_11_B1; 307 reg_cl_gain = AR_PHY_CL_TAB_1; 308 break; 309 case 2: 310 reg_olpc = AR_PHY_TPC_11_B2; 311 reg_cl_gain = AR_PHY_CL_TAB_2; 312 break; 313 default: 314 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, 315 "Invalid chainmask: %d\n", chain); 316 break; 317 } 318 319 olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc, 320 AR_PHY_TPC_11_OLPC_GAIN_DELTA); 321 cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain, 322 AR_PHY_CL_TAB_CL_GAIN_MOD); 323 324 if (olpc_gain_delta >= 128) 325 olpc_gain_delta = olpc_gain_delta - 256; 326 327 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) + 328 (256 / 2)) / 256; 329 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) + 330 (128 / 2)) / 128; 331 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr - 332 voltage_gain_corr + desired_scale + cl_gain_mod; 333 334 return desired_gain; 335 } 336 337 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index) 338 { 339 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain; 340 int padrvgnA, padrvgnB, padrvgnC, padrvgnD; 341 u32 *gain_table_entries = ah->paprd_gain_table_entries; 342 343 selected_gain_entry = gain_table_entries[gain_index]; 344 txbb1dbgain = selected_gain_entry & 0x7; 345 txbb6dbgain = (selected_gain_entry >> 3) & 0x3; 346 txmxrgain = (selected_gain_entry >> 5) & 0xf; 347 padrvgnA = (selected_gain_entry >> 9) & 0xf; 348 padrvgnB = (selected_gain_entry >> 13) & 0xf; 349 padrvgnC = (selected_gain_entry >> 17) & 0xf; 350 padrvgnD = (selected_gain_entry >> 21) & 0x3; 351 352 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 353 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain); 354 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 355 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain); 356 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 357 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain); 358 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 359 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA); 360 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 361 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB); 362 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 363 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC); 364 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 365 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD); 366 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 367 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0); 368 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, 369 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0); 370 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); 371 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0); 372 } 373 374 static inline int find_expn(int num) 375 { 376 return fls(num) - 1; 377 } 378 379 static inline int find_proper_scale(int expn, int N) 380 { 381 return (expn > N) ? expn - 10 : 0; 382 } 383 384 #define NUM_BIN 23 385 386 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain) 387 { 388 unsigned int thresh_accum_cnt; 389 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1]; 390 int PA_in[NUM_BIN + 1]; 391 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1]; 392 unsigned int B1_abs_max, B2_abs_max; 393 int max_index, scale_factor; 394 int y_est[NUM_BIN + 1]; 395 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1]; 396 unsigned int x_tilde_abs; 397 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad; 398 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B; 399 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2; 400 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem; 401 int y5, y3, tmp; 402 int theta_low_bin = 0; 403 int i; 404 405 /* disregard any bin that contains <= 16 samples */ 406 thresh_accum_cnt = 16; 407 scale_factor = 5; 408 max_index = 0; 409 memset(theta, 0, sizeof(theta)); 410 memset(x_est, 0, sizeof(x_est)); 411 memset(Y, 0, sizeof(Y)); 412 memset(y_est, 0, sizeof(y_est)); 413 memset(x_tilde, 0, sizeof(x_tilde)); 414 415 for (i = 0; i < NUM_BIN; i++) { 416 s32 accum_cnt, accum_tx, accum_rx, accum_ang; 417 418 /* number of samples */ 419 accum_cnt = data_L[i] & 0xffff; 420 421 if (accum_cnt <= thresh_accum_cnt) 422 continue; 423 424 /* sum(tx amplitude) */ 425 accum_tx = ((data_L[i] >> 16) & 0xffff) | 426 ((data_U[i] & 0x7ff) << 16); 427 428 /* sum(rx amplitude distance to lower bin edge) */ 429 accum_rx = ((data_U[i] >> 11) & 0x1f) | 430 ((data_L[i + 23] & 0xffff) << 5); 431 432 /* sum(angles) */ 433 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) | 434 ((data_U[i + 23] & 0x7ff) << 16); 435 436 accum_tx <<= scale_factor; 437 accum_rx <<= scale_factor; 438 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >> 439 scale_factor; 440 441 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >> 442 scale_factor) + 443 (1 << scale_factor) * max_index + 16; 444 445 if (accum_ang >= (1 << 26)) 446 accum_ang -= 1 << 27; 447 448 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) / 449 accum_cnt; 450 451 max_index++; 452 } 453 454 /* 455 * Find average theta of first 5 bin and all of those to same value. 456 * Curve is linear at that range. 457 */ 458 for (i = 1; i < 6; i++) 459 theta_low_bin += theta[i]; 460 461 theta_low_bin = theta_low_bin / 5; 462 for (i = 1; i < 6; i++) 463 theta[i] = theta_low_bin; 464 465 /* Set values at origin */ 466 theta[0] = theta_low_bin; 467 for (i = 0; i <= max_index; i++) 468 theta[i] -= theta_low_bin; 469 470 x_est[0] = 0; 471 Y[0] = 0; 472 scale_factor = 8; 473 474 /* low signal gain */ 475 if (x_est[6] == x_est[3]) 476 return false; 477 478 G_fxp = 479 (((Y[6] - Y[3]) * 1 << scale_factor) + 480 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]); 481 482 /* prevent division by zero */ 483 if (G_fxp == 0) 484 return false; 485 486 Y_intercept = 487 (G_fxp * (x_est[0] - x_est[3]) + 488 (1 << scale_factor)) / (1 << scale_factor) + Y[3]; 489 490 for (i = 0; i <= max_index; i++) 491 y_est[i] = Y[i] - Y_intercept; 492 493 for (i = 0; i <= 3; i++) { 494 y_est[i] = i * 32; 495 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp; 496 } 497 498 if (y_est[max_index] == 0) 499 return false; 500 501 x_est_fxp1_nonlin = 502 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] + 503 G_fxp) / G_fxp; 504 505 order_x_by_y = 506 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index]; 507 508 if (order_x_by_y == 0) 509 M = 10; 510 else if (order_x_by_y == 1) 511 M = 9; 512 else 513 M = 8; 514 515 I = (max_index > 15) ? 7 : max_index >> 1; 516 L = max_index - I; 517 scale_factor = 8; 518 sum_y_sqr = 0; 519 sum_y_quad = 0; 520 x_tilde_abs = 0; 521 522 for (i = 0; i <= L; i++) { 523 unsigned int y_sqr; 524 unsigned int y_quad; 525 unsigned int tmp_abs; 526 527 /* prevent division by zero */ 528 if (y_est[i + I] == 0) 529 return false; 530 531 x_est_fxp1_nonlin = 532 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] + 533 G_fxp) / G_fxp; 534 535 x_tilde[i] = 536 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i + 537 I]; 538 x_tilde[i] = 539 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 540 x_tilde[i] = 541 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I]; 542 y_sqr = 543 (y_est[i + I] * y_est[i + I] + 544 (scale_factor * scale_factor)) / (scale_factor * 545 scale_factor); 546 tmp_abs = abs(x_tilde[i]); 547 if (tmp_abs > x_tilde_abs) 548 x_tilde_abs = tmp_abs; 549 550 y_quad = y_sqr * y_sqr; 551 sum_y_sqr = sum_y_sqr + y_sqr; 552 sum_y_quad = sum_y_quad + y_quad; 553 B1_tmp[i] = y_sqr * (L + 1); 554 B2_tmp[i] = y_sqr; 555 } 556 557 B1_abs_max = 0; 558 B2_abs_max = 0; 559 for (i = 0; i <= L; i++) { 560 int abs_val; 561 562 B1_tmp[i] -= sum_y_sqr; 563 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i]; 564 565 abs_val = abs(B1_tmp[i]); 566 if (abs_val > B1_abs_max) 567 B1_abs_max = abs_val; 568 569 abs_val = abs(B2_tmp[i]); 570 if (abs_val > B2_abs_max) 571 B2_abs_max = abs_val; 572 } 573 574 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10); 575 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10); 576 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10); 577 578 beta_raw = 0; 579 alpha_raw = 0; 580 for (i = 0; i <= L; i++) { 581 x_tilde[i] = x_tilde[i] / (1 << Q_x); 582 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1); 583 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2); 584 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i]; 585 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i]; 586 } 587 588 scale_B = 589 ((sum_y_quad / scale_factor) * (L + 1) - 590 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor; 591 592 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10); 593 scale_B = scale_B / (1 << Q_scale_B); 594 if (scale_B == 0) 595 return false; 596 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 597 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 598 beta_raw = beta_raw / (1 << Q_beta); 599 alpha_raw = alpha_raw / (1 << Q_alpha); 600 alpha = (alpha_raw << 10) / scale_B; 601 beta = (beta_raw << 10) / scale_B; 602 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B; 603 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B; 604 order1_5x = order_1 / 5; 605 order2_3x = order_2 / 3; 606 order1_5x_rem = order_1 - 5 * order1_5x; 607 order2_3x_rem = order_2 - 3 * order2_3x; 608 609 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 610 tmp = i * 32; 611 y5 = ((beta * tmp) >> 6) >> order1_5x; 612 y5 = (y5 * tmp) >> order1_5x; 613 y5 = (y5 * tmp) >> order1_5x; 614 y5 = (y5 * tmp) >> order1_5x; 615 y5 = (y5 * tmp) >> order1_5x; 616 y5 = y5 >> order1_5x_rem; 617 y3 = (alpha * tmp) >> order2_3x; 618 y3 = (y3 * tmp) >> order2_3x; 619 y3 = (y3 * tmp) >> order2_3x; 620 y3 = y3 >> order2_3x_rem; 621 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp; 622 623 if (i >= 2) { 624 tmp = PA_in[i] - PA_in[i - 1]; 625 if (tmp < 0) 626 PA_in[i] = 627 PA_in[i - 1] + (PA_in[i - 1] - 628 PA_in[i - 2]); 629 } 630 631 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400; 632 } 633 634 beta_raw = 0; 635 alpha_raw = 0; 636 637 for (i = 0; i <= L; i++) { 638 int theta_tilde = 639 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I]; 640 theta_tilde = 641 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 642 theta_tilde = 643 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I]; 644 beta_raw = beta_raw + B1_tmp[i] * theta_tilde; 645 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde; 646 } 647 648 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10); 649 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10); 650 beta_raw = beta_raw / (1 << Q_beta); 651 alpha_raw = alpha_raw / (1 << Q_alpha); 652 653 alpha = (alpha_raw << 10) / scale_B; 654 beta = (beta_raw << 10) / scale_B; 655 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5; 656 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5; 657 order1_5x = order_1 / 5; 658 order2_3x = order_2 / 3; 659 order1_5x_rem = order_1 - 5 * order1_5x; 660 order2_3x_rem = order_2 - 3 * order2_3x; 661 662 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 663 int PA_angle; 664 665 /* pa_table[4] is calculated from PA_angle for i=5 */ 666 if (i == 4) 667 continue; 668 669 tmp = i * 32; 670 if (beta > 0) 671 y5 = (((beta * tmp - 64) >> 6) - 672 (1 << order1_5x)) / (1 << order1_5x); 673 else 674 y5 = ((((beta * tmp - 64) >> 6) + 675 (1 << order1_5x)) / (1 << order1_5x)); 676 677 y5 = (y5 * tmp) / (1 << order1_5x); 678 y5 = (y5 * tmp) / (1 << order1_5x); 679 y5 = (y5 * tmp) / (1 << order1_5x); 680 y5 = (y5 * tmp) / (1 << order1_5x); 681 y5 = y5 / (1 << order1_5x_rem); 682 683 if (beta > 0) 684 y3 = (alpha * tmp - 685 (1 << order2_3x)) / (1 << order2_3x); 686 else 687 y3 = (alpha * tmp + 688 (1 << order2_3x)) / (1 << order2_3x); 689 y3 = (y3 * tmp) / (1 << order2_3x); 690 y3 = (y3 * tmp) / (1 << order2_3x); 691 y3 = y3 / (1 << order2_3x_rem); 692 693 if (i < 4) { 694 PA_angle = 0; 695 } else { 696 PA_angle = y5 + y3; 697 if (PA_angle < -150) 698 PA_angle = -150; 699 else if (PA_angle > 150) 700 PA_angle = 150; 701 } 702 703 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff); 704 if (i == 5) { 705 PA_angle = (PA_angle + 2) >> 1; 706 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) + 707 (PA_angle & 0x7ff); 708 } 709 } 710 711 *gain = G_fxp; 712 return true; 713 } 714 715 void ar9003_paprd_populate_single_table(struct ath_hw *ah, 716 struct ath9k_hw_cal_data *caldata, 717 int chain) 718 { 719 u32 *paprd_table_val = caldata->pa_table[chain]; 720 u32 small_signal_gain = caldata->small_signal_gain[chain]; 721 u32 training_power = ah->paprd_training_power; 722 u32 reg = 0; 723 int i; 724 725 if (chain == 0) 726 reg = AR_PHY_PAPRD_MEM_TAB_B0; 727 else if (chain == 1) 728 reg = AR_PHY_PAPRD_MEM_TAB_B1; 729 else if (chain == 2) 730 reg = AR_PHY_PAPRD_MEM_TAB_B2; 731 732 for (i = 0; i < PAPRD_TABLE_SZ; i++) { 733 REG_WRITE(ah, reg, paprd_table_val[i]); 734 reg = reg + 4; 735 } 736 737 if (chain == 0) 738 reg = AR_PHY_PA_GAIN123_B0; 739 else if (chain == 1) 740 reg = AR_PHY_PA_GAIN123_B1; 741 else 742 reg = AR_PHY_PA_GAIN123_B2; 743 744 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain); 745 746 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0, 747 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 748 training_power); 749 750 if (ah->caps.tx_chainmask & BIT(1)) 751 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1, 752 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 753 training_power); 754 755 if (ah->caps.tx_chainmask & BIT(2)) 756 /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */ 757 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2, 758 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL, 759 training_power); 760 } 761 EXPORT_SYMBOL(ar9003_paprd_populate_single_table); 762 763 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain) 764 { 765 unsigned int i, desired_gain, gain_index; 766 unsigned int train_power = ah->paprd_training_power; 767 768 desired_gain = ar9003_get_desired_gain(ah, chain, train_power); 769 770 gain_index = 0; 771 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) { 772 if (ah->paprd_gain_table_index[i] >= desired_gain) 773 break; 774 gain_index++; 775 } 776 777 ar9003_tx_force_gain(ah, gain_index); 778 779 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 780 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 781 782 return 0; 783 } 784 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table); 785 786 int ar9003_paprd_create_curve(struct ath_hw *ah, 787 struct ath9k_hw_cal_data *caldata, int chain) 788 { 789 u16 *small_signal_gain = &caldata->small_signal_gain[chain]; 790 u32 *pa_table = caldata->pa_table[chain]; 791 u32 *data_L, *data_U; 792 int i, status = 0; 793 u32 *buf; 794 u32 reg; 795 796 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain])); 797 798 buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC); 799 if (!buf) 800 return -ENOMEM; 801 802 data_L = &buf[0]; 803 data_U = &buf[48]; 804 805 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 806 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 807 808 reg = AR_PHY_CHAN_INFO_TAB_0; 809 for (i = 0; i < 48; i++) 810 data_L[i] = REG_READ(ah, reg + (i << 2)); 811 812 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY, 813 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ); 814 815 for (i = 0; i < 48; i++) 816 data_U[i] = REG_READ(ah, reg + (i << 2)); 817 818 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain)) 819 status = -2; 820 821 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1, 822 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 823 824 kfree(buf); 825 826 return status; 827 } 828 EXPORT_SYMBOL(ar9003_paprd_create_curve); 829 830 int ar9003_paprd_init_table(struct ath_hw *ah) 831 { 832 int ret; 833 834 ret = ar9003_paprd_setup_single_table(ah); 835 if (ret < 0) 836 return ret; 837 838 ar9003_paprd_get_gain_table(ah); 839 return 0; 840 } 841 EXPORT_SYMBOL(ar9003_paprd_init_table); 842 843 bool ar9003_paprd_is_done(struct ath_hw *ah) 844 { 845 int paprd_done, agc2_pwr; 846 paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, 847 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE); 848 849 if (paprd_done == 0x1) { 850 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1, 851 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR); 852 853 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE, 854 "AGC2_PWR = 0x%x training done = 0x%x\n", 855 agc2_pwr, paprd_done); 856 /* 857 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE' 858 * when the training is completely done, otherwise retraining is 859 * done to make sure the value is in ideal range 860 */ 861 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE) 862 paprd_done = 0; 863 } 864 865 return !!paprd_done; 866 } 867 EXPORT_SYMBOL(ar9003_paprd_is_done); 868