xref: /linux/drivers/net/wireless/ath/ath9k/ar9003_paprd.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/export.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 
21 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22 {
23 	struct ath9k_channel *chan = ah->curchan;
24 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
25 
26 	/*
27 	 * 3 bits for modalHeader5G.papdRateMaskHt20
28 	 * is used for sub-band disabling of PAPRD.
29 	 * 5G band is divided into 3 sub-bands -- upper,
30 	 * middle, lower.
31 	 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
32 	 * -- disable PAPRD for upper band 5GHz
33 	 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
34 	 * -- disable PAPRD for middle band 5GHz
35 	 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
36 	 * -- disable PAPRD for lower band 5GHz
37 	 */
38 
39 	if (IS_CHAN_5GHZ(chan)) {
40 		if (chan->channel >= UPPER_5G_SUB_BAND_START) {
41 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
42 								  & BIT(30))
43 				val = false;
44 		} else if (chan->channel >= MID_5G_SUB_BAND_START) {
45 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
46 								  & BIT(29))
47 				val = false;
48 		} else {
49 			if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
50 								  & BIT(28))
51 				val = false;
52 		}
53 	}
54 
55 	if (val) {
56 		ah->paprd_table_write_done = true;
57 		ath9k_hw_apply_txpower(ah, chan);
58 	}
59 
60 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
61 		      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
62 	if (ah->caps.tx_chainmask & BIT(1))
63 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
64 			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
65 	if (ah->caps.tx_chainmask & BIT(2))
66 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
67 			      AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68 }
69 EXPORT_SYMBOL(ar9003_paprd_enable);
70 
71 static int ar9003_get_training_power_2g(struct ath_hw *ah)
72 {
73 	struct ath9k_channel *chan = ah->curchan;
74 	unsigned int power, scale, delta;
75 
76 	scale = ar9003_get_paprd_scale_factor(ah, chan);
77 	power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
78 			       AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
79 
80 	delta = abs((int) ah->paprd_target_power - (int) power);
81 	if (delta > scale)
82 		return -1;
83 
84 	if (delta < 4)
85 		power -= 4 - delta;
86 
87 	return power;
88 }
89 
90 static int ar9003_get_training_power_5g(struct ath_hw *ah)
91 {
92 	struct ath_common *common = ath9k_hw_common(ah);
93 	struct ath9k_channel *chan = ah->curchan;
94 	unsigned int power, scale, delta;
95 
96 	scale = ar9003_get_paprd_scale_factor(ah, chan);
97 
98 	if (IS_CHAN_HT40(chan))
99 		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
100 			AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
101 	else
102 		power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
103 			AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
104 
105 	power += scale;
106 	delta = abs((int) ah->paprd_target_power - (int) power);
107 	if (delta > scale)
108 		return -1;
109 
110 	switch (get_streams(ah->txchainmask)) {
111 	case 1:
112 		delta = 6;
113 		break;
114 	case 2:
115 		delta = 4;
116 		break;
117 	case 3:
118 		delta = 2;
119 		break;
120 	default:
121 		delta = 0;
122 		ath_dbg(common, ATH_DBG_CALIBRATE,
123 		"Invalid tx-chainmask: %u\n", ah->txchainmask);
124 	}
125 
126 	power += delta;
127 	return power;
128 }
129 
130 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
131 {
132 	struct ath_common *common = ath9k_hw_common(ah);
133 	static const u32 ctrl0[3] = {
134 		AR_PHY_PAPRD_CTRL0_B0,
135 		AR_PHY_PAPRD_CTRL0_B1,
136 		AR_PHY_PAPRD_CTRL0_B2
137 	};
138 	static const u32 ctrl1[3] = {
139 		AR_PHY_PAPRD_CTRL1_B0,
140 		AR_PHY_PAPRD_CTRL1_B1,
141 		AR_PHY_PAPRD_CTRL1_B2
142 	};
143 	int training_power;
144 	int i, val;
145 
146 	if (IS_CHAN_2GHZ(ah->curchan))
147 		training_power = ar9003_get_training_power_2g(ah);
148 	else
149 		training_power = ar9003_get_training_power_5g(ah);
150 
151 	ath_dbg(common, ATH_DBG_CALIBRATE,
152 		"Training power: %d, Target power: %d\n",
153 		training_power, ah->paprd_target_power);
154 
155 	if (training_power < 0) {
156 		ath_dbg(common, ATH_DBG_CALIBRATE,
157 			"PAPRD target power delta out of range");
158 		return -ERANGE;
159 	}
160 	ah->paprd_training_power = training_power;
161 
162 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
163 		      ah->paprd_ratemask);
164 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
165 		      ah->paprd_ratemask);
166 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
167 		      ah->paprd_ratemask_ht40);
168 
169 	for (i = 0; i < ah->caps.max_txchains; i++) {
170 		REG_RMW_FIELD(ah, ctrl0[i],
171 			      AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
172 		REG_RMW_FIELD(ah, ctrl1[i],
173 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
174 		REG_RMW_FIELD(ah, ctrl1[i],
175 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
176 		REG_RMW_FIELD(ah, ctrl1[i],
177 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
178 		REG_RMW_FIELD(ah, ctrl1[i],
179 			      AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
180 		REG_RMW_FIELD(ah, ctrl1[i],
181 			      AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
182 		REG_RMW_FIELD(ah, ctrl1[i],
183 			      AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
184 		REG_RMW_FIELD(ah, ctrl0[i],
185 			      AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
186 	}
187 
188 	ar9003_paprd_enable(ah, false);
189 
190 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
191 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
192 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
193 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
194 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
195 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
196 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
197 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
198 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
199 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
200 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
201 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
202 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
203 		      AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
204 	val = AR_SREV_9462(ah) ? 0x91 : 147;
205 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
206 		      AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
207 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
208 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
209 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
210 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
211 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
212 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
213 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
214 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
215 	if (AR_SREV_9485(ah) || AR_SREV_9462(ah))
216 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
217 			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
218 			      -3);
219 	else
220 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
221 			      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
222 			      -6);
223 	val = AR_SREV_9462(ah) ? -10 : -15;
224 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
225 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
226 		      val);
227 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
228 		      AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
229 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
230 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
231 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
232 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
233 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
234 		      AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
235 		      100);
236 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
237 		      AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
238 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
239 		      AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
240 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
241 		      AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
242 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
243 		      AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
244 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
245 		      AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
246 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
247 		      AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
248 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
249 		      AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
250 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
251 		      AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
252 	return 0;
253 }
254 
255 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
256 {
257 	u32 *entry = ah->paprd_gain_table_entries;
258 	u8 *index = ah->paprd_gain_table_index;
259 	u32 reg = AR_PHY_TXGAIN_TABLE;
260 	int i;
261 
262 	memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
263 	memset(index, 0, sizeof(ah->paprd_gain_table_index));
264 
265 	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
266 		entry[i] = REG_READ(ah, reg);
267 		index[i] = (entry[i] >> 24) & 0xff;
268 		reg += 4;
269 	}
270 }
271 
272 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
273 					    int target_power)
274 {
275 	int olpc_gain_delta = 0, cl_gain_mod;
276 	int alpha_therm, alpha_volt;
277 	int therm_cal_value, volt_cal_value;
278 	int therm_value, volt_value;
279 	int thermal_gain_corr, voltage_gain_corr;
280 	int desired_scale, desired_gain = 0;
281 	u32 reg_olpc  = 0, reg_cl_gain  = 0;
282 
283 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
284 		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
285 	desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
286 				       AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
287 	alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
288 				     AR_PHY_TPC_19_ALPHA_THERM);
289 	alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
290 				    AR_PHY_TPC_19_ALPHA_VOLT);
291 	therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
292 					 AR_PHY_TPC_18_THERM_CAL_VALUE);
293 	volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
294 					AR_PHY_TPC_18_VOLT_CAL_VALUE);
295 	therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
296 				     AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
297 	volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
298 				    AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
299 
300 	switch (chain) {
301 	case 0:
302 		reg_olpc = AR_PHY_TPC_11_B0;
303 		reg_cl_gain = AR_PHY_CL_TAB_0;
304 		break;
305 	case 1:
306 		reg_olpc = AR_PHY_TPC_11_B1;
307 		reg_cl_gain = AR_PHY_CL_TAB_1;
308 		break;
309 	case 2:
310 		reg_olpc = AR_PHY_TPC_11_B2;
311 		reg_cl_gain = AR_PHY_CL_TAB_2;
312 		break;
313 	default:
314 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
315 		"Invalid chainmask: %d\n", chain);
316 		break;
317 	}
318 
319 	olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
320 					 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
321 	cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
322 					 AR_PHY_CL_TAB_CL_GAIN_MOD);
323 
324 	if (olpc_gain_delta >= 128)
325 		olpc_gain_delta = olpc_gain_delta - 256;
326 
327 	thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
328 			     (256 / 2)) / 256;
329 	voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
330 			     (128 / 2)) / 128;
331 	desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
332 	    voltage_gain_corr + desired_scale + cl_gain_mod;
333 
334 	return desired_gain;
335 }
336 
337 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
338 {
339 	int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
340 	int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
341 	u32 *gain_table_entries = ah->paprd_gain_table_entries;
342 
343 	selected_gain_entry = gain_table_entries[gain_index];
344 	txbb1dbgain = selected_gain_entry & 0x7;
345 	txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
346 	txmxrgain = (selected_gain_entry >> 5) & 0xf;
347 	padrvgnA = (selected_gain_entry >> 9) & 0xf;
348 	padrvgnB = (selected_gain_entry >> 13) & 0xf;
349 	padrvgnC = (selected_gain_entry >> 17) & 0xf;
350 	padrvgnD = (selected_gain_entry >> 21) & 0x3;
351 
352 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
353 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
354 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
355 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
356 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
357 		      AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
358 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
359 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
360 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
361 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
362 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
363 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
364 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
365 		      AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
366 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
367 		      AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
368 	REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
369 		      AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
370 	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
371 	REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
372 }
373 
374 static inline int find_expn(int num)
375 {
376 	return fls(num) - 1;
377 }
378 
379 static inline int find_proper_scale(int expn, int N)
380 {
381 	return (expn > N) ? expn - 10 : 0;
382 }
383 
384 #define NUM_BIN 23
385 
386 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
387 {
388 	unsigned int thresh_accum_cnt;
389 	int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
390 	int PA_in[NUM_BIN + 1];
391 	int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
392 	unsigned int B1_abs_max, B2_abs_max;
393 	int max_index, scale_factor;
394 	int y_est[NUM_BIN + 1];
395 	int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
396 	unsigned int x_tilde_abs;
397 	int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
398 	int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
399 	int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
400 	int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
401 	int y5, y3, tmp;
402 	int theta_low_bin = 0;
403 	int i;
404 
405 	/* disregard any bin that contains <= 16 samples */
406 	thresh_accum_cnt = 16;
407 	scale_factor = 5;
408 	max_index = 0;
409 	memset(theta, 0, sizeof(theta));
410 	memset(x_est, 0, sizeof(x_est));
411 	memset(Y, 0, sizeof(Y));
412 	memset(y_est, 0, sizeof(y_est));
413 	memset(x_tilde, 0, sizeof(x_tilde));
414 
415 	for (i = 0; i < NUM_BIN; i++) {
416 		s32 accum_cnt, accum_tx, accum_rx, accum_ang;
417 
418 		/* number of samples */
419 		accum_cnt = data_L[i] & 0xffff;
420 
421 		if (accum_cnt <= thresh_accum_cnt)
422 			continue;
423 
424 		/* sum(tx amplitude) */
425 		accum_tx = ((data_L[i] >> 16) & 0xffff) |
426 		    ((data_U[i] & 0x7ff) << 16);
427 
428 		/* sum(rx amplitude distance to lower bin edge) */
429 		accum_rx = ((data_U[i] >> 11) & 0x1f) |
430 		    ((data_L[i + 23] & 0xffff) << 5);
431 
432 		/* sum(angles) */
433 		accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
434 		    ((data_U[i + 23] & 0x7ff) << 16);
435 
436 		accum_tx <<= scale_factor;
437 		accum_rx <<= scale_factor;
438 		x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
439 		    scale_factor;
440 
441 		Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
442 			    scale_factor) +
443 			    (1 << scale_factor) * max_index + 16;
444 
445 		if (accum_ang >= (1 << 26))
446 			accum_ang -= 1 << 27;
447 
448 		theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
449 		    accum_cnt;
450 
451 		max_index++;
452 	}
453 
454 	/*
455 	 * Find average theta of first 5 bin and all of those to same value.
456 	 * Curve is linear at that range.
457 	 */
458 	for (i = 1; i < 6; i++)
459 		theta_low_bin += theta[i];
460 
461 	theta_low_bin = theta_low_bin / 5;
462 	for (i = 1; i < 6; i++)
463 		theta[i] = theta_low_bin;
464 
465 	/* Set values at origin */
466 	theta[0] = theta_low_bin;
467 	for (i = 0; i <= max_index; i++)
468 		theta[i] -= theta_low_bin;
469 
470 	x_est[0] = 0;
471 	Y[0] = 0;
472 	scale_factor = 8;
473 
474 	/* low signal gain */
475 	if (x_est[6] == x_est[3])
476 		return false;
477 
478 	G_fxp =
479 	    (((Y[6] - Y[3]) * 1 << scale_factor) +
480 	     (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
481 
482 	/* prevent division by zero */
483 	if (G_fxp == 0)
484 		return false;
485 
486 	Y_intercept =
487 	    (G_fxp * (x_est[0] - x_est[3]) +
488 	     (1 << scale_factor)) / (1 << scale_factor) + Y[3];
489 
490 	for (i = 0; i <= max_index; i++)
491 		y_est[i] = Y[i] - Y_intercept;
492 
493 	for (i = 0; i <= 3; i++) {
494 		y_est[i] = i * 32;
495 		x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
496 	}
497 
498 	if (y_est[max_index] == 0)
499 		return false;
500 
501 	x_est_fxp1_nonlin =
502 	    x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
503 				G_fxp) / G_fxp;
504 
505 	order_x_by_y =
506 	    (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
507 
508 	if (order_x_by_y == 0)
509 		M = 10;
510 	else if (order_x_by_y == 1)
511 		M = 9;
512 	else
513 		M = 8;
514 
515 	I = (max_index > 15) ? 7 : max_index >> 1;
516 	L = max_index - I;
517 	scale_factor = 8;
518 	sum_y_sqr = 0;
519 	sum_y_quad = 0;
520 	x_tilde_abs = 0;
521 
522 	for (i = 0; i <= L; i++) {
523 		unsigned int y_sqr;
524 		unsigned int y_quad;
525 		unsigned int tmp_abs;
526 
527 		/* prevent division by zero */
528 		if (y_est[i + I] == 0)
529 			return false;
530 
531 		x_est_fxp1_nonlin =
532 		    x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
533 				    G_fxp) / G_fxp;
534 
535 		x_tilde[i] =
536 		    (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
537 									  I];
538 		x_tilde[i] =
539 		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
540 		x_tilde[i] =
541 		    (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
542 		y_sqr =
543 		    (y_est[i + I] * y_est[i + I] +
544 		     (scale_factor * scale_factor)) / (scale_factor *
545 						       scale_factor);
546 		tmp_abs = abs(x_tilde[i]);
547 		if (tmp_abs > x_tilde_abs)
548 			x_tilde_abs = tmp_abs;
549 
550 		y_quad = y_sqr * y_sqr;
551 		sum_y_sqr = sum_y_sqr + y_sqr;
552 		sum_y_quad = sum_y_quad + y_quad;
553 		B1_tmp[i] = y_sqr * (L + 1);
554 		B2_tmp[i] = y_sqr;
555 	}
556 
557 	B1_abs_max = 0;
558 	B2_abs_max = 0;
559 	for (i = 0; i <= L; i++) {
560 		int abs_val;
561 
562 		B1_tmp[i] -= sum_y_sqr;
563 		B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
564 
565 		abs_val = abs(B1_tmp[i]);
566 		if (abs_val > B1_abs_max)
567 			B1_abs_max = abs_val;
568 
569 		abs_val = abs(B2_tmp[i]);
570 		if (abs_val > B2_abs_max)
571 			B2_abs_max = abs_val;
572 	}
573 
574 	Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
575 	Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
576 	Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
577 
578 	beta_raw = 0;
579 	alpha_raw = 0;
580 	for (i = 0; i <= L; i++) {
581 		x_tilde[i] = x_tilde[i] / (1 << Q_x);
582 		B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
583 		B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
584 		beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
585 		alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
586 	}
587 
588 	scale_B =
589 	    ((sum_y_quad / scale_factor) * (L + 1) -
590 	     (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
591 
592 	Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
593 	scale_B = scale_B / (1 << Q_scale_B);
594 	if (scale_B == 0)
595 		return false;
596 	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
597 	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
598 	beta_raw = beta_raw / (1 << Q_beta);
599 	alpha_raw = alpha_raw / (1 << Q_alpha);
600 	alpha = (alpha_raw << 10) / scale_B;
601 	beta = (beta_raw << 10) / scale_B;
602 	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
603 	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
604 	order1_5x = order_1 / 5;
605 	order2_3x = order_2 / 3;
606 	order1_5x_rem = order_1 - 5 * order1_5x;
607 	order2_3x_rem = order_2 - 3 * order2_3x;
608 
609 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
610 		tmp = i * 32;
611 		y5 = ((beta * tmp) >> 6) >> order1_5x;
612 		y5 = (y5 * tmp) >> order1_5x;
613 		y5 = (y5 * tmp) >> order1_5x;
614 		y5 = (y5 * tmp) >> order1_5x;
615 		y5 = (y5 * tmp) >> order1_5x;
616 		y5 = y5 >> order1_5x_rem;
617 		y3 = (alpha * tmp) >> order2_3x;
618 		y3 = (y3 * tmp) >> order2_3x;
619 		y3 = (y3 * tmp) >> order2_3x;
620 		y3 = y3 >> order2_3x_rem;
621 		PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
622 
623 		if (i >= 2) {
624 			tmp = PA_in[i] - PA_in[i - 1];
625 			if (tmp < 0)
626 				PA_in[i] =
627 				    PA_in[i - 1] + (PA_in[i - 1] -
628 						    PA_in[i - 2]);
629 		}
630 
631 		PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
632 	}
633 
634 	beta_raw = 0;
635 	alpha_raw = 0;
636 
637 	for (i = 0; i <= L; i++) {
638 		int theta_tilde =
639 		    ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
640 		theta_tilde =
641 		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
642 		theta_tilde =
643 		    ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
644 		beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
645 		alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
646 	}
647 
648 	Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
649 	Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
650 	beta_raw = beta_raw / (1 << Q_beta);
651 	alpha_raw = alpha_raw / (1 << Q_alpha);
652 
653 	alpha = (alpha_raw << 10) / scale_B;
654 	beta = (beta_raw << 10) / scale_B;
655 	order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
656 	order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
657 	order1_5x = order_1 / 5;
658 	order2_3x = order_2 / 3;
659 	order1_5x_rem = order_1 - 5 * order1_5x;
660 	order2_3x_rem = order_2 - 3 * order2_3x;
661 
662 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
663 		int PA_angle;
664 
665 		/* pa_table[4] is calculated from PA_angle for i=5 */
666 		if (i == 4)
667 			continue;
668 
669 		tmp = i * 32;
670 		if (beta > 0)
671 			y5 = (((beta * tmp - 64) >> 6) -
672 			      (1 << order1_5x)) / (1 << order1_5x);
673 		else
674 			y5 = ((((beta * tmp - 64) >> 6) +
675 			       (1 << order1_5x)) / (1 << order1_5x));
676 
677 		y5 = (y5 * tmp) / (1 << order1_5x);
678 		y5 = (y5 * tmp) / (1 << order1_5x);
679 		y5 = (y5 * tmp) / (1 << order1_5x);
680 		y5 = (y5 * tmp) / (1 << order1_5x);
681 		y5 = y5 / (1 << order1_5x_rem);
682 
683 		if (beta > 0)
684 			y3 = (alpha * tmp -
685 			      (1 << order2_3x)) / (1 << order2_3x);
686 		else
687 			y3 = (alpha * tmp +
688 			      (1 << order2_3x)) / (1 << order2_3x);
689 		y3 = (y3 * tmp) / (1 << order2_3x);
690 		y3 = (y3 * tmp) / (1 << order2_3x);
691 		y3 = y3 / (1 << order2_3x_rem);
692 
693 		if (i < 4) {
694 			PA_angle = 0;
695 		} else {
696 			PA_angle = y5 + y3;
697 			if (PA_angle < -150)
698 				PA_angle = -150;
699 			else if (PA_angle > 150)
700 				PA_angle = 150;
701 		}
702 
703 		pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
704 		if (i == 5) {
705 			PA_angle = (PA_angle + 2) >> 1;
706 			pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
707 			    (PA_angle & 0x7ff);
708 		}
709 	}
710 
711 	*gain = G_fxp;
712 	return true;
713 }
714 
715 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
716 					struct ath9k_hw_cal_data *caldata,
717 					int chain)
718 {
719 	u32 *paprd_table_val = caldata->pa_table[chain];
720 	u32 small_signal_gain = caldata->small_signal_gain[chain];
721 	u32 training_power = ah->paprd_training_power;
722 	u32 reg = 0;
723 	int i;
724 
725 	if (chain == 0)
726 		reg = AR_PHY_PAPRD_MEM_TAB_B0;
727 	else if (chain == 1)
728 		reg = AR_PHY_PAPRD_MEM_TAB_B1;
729 	else if (chain == 2)
730 		reg = AR_PHY_PAPRD_MEM_TAB_B2;
731 
732 	for (i = 0; i < PAPRD_TABLE_SZ; i++) {
733 		REG_WRITE(ah, reg, paprd_table_val[i]);
734 		reg = reg + 4;
735 	}
736 
737 	if (chain == 0)
738 		reg = AR_PHY_PA_GAIN123_B0;
739 	else if (chain == 1)
740 		reg = AR_PHY_PA_GAIN123_B1;
741 	else
742 		reg = AR_PHY_PA_GAIN123_B2;
743 
744 	REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
745 
746 	REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
747 		      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
748 		      training_power);
749 
750 	if (ah->caps.tx_chainmask & BIT(1))
751 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
752 			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
753 			      training_power);
754 
755 	if (ah->caps.tx_chainmask & BIT(2))
756 		/* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
757 		REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
758 			      AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
759 			      training_power);
760 }
761 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
762 
763 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
764 {
765 	unsigned int i, desired_gain, gain_index;
766 	unsigned int train_power = ah->paprd_training_power;
767 
768 	desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
769 
770 	gain_index = 0;
771 	for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
772 		if (ah->paprd_gain_table_index[i] >= desired_gain)
773 			break;
774 		gain_index++;
775 	}
776 
777 	ar9003_tx_force_gain(ah, gain_index);
778 
779 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
780 			AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
785 
786 int ar9003_paprd_create_curve(struct ath_hw *ah,
787 			      struct ath9k_hw_cal_data *caldata, int chain)
788 {
789 	u16 *small_signal_gain = &caldata->small_signal_gain[chain];
790 	u32 *pa_table = caldata->pa_table[chain];
791 	u32 *data_L, *data_U;
792 	int i, status = 0;
793 	u32 *buf;
794 	u32 reg;
795 
796 	memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
797 
798 	buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
799 	if (!buf)
800 		return -ENOMEM;
801 
802 	data_L = &buf[0];
803 	data_U = &buf[48];
804 
805 	REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
806 		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
807 
808 	reg = AR_PHY_CHAN_INFO_TAB_0;
809 	for (i = 0; i < 48; i++)
810 		data_L[i] = REG_READ(ah, reg + (i << 2));
811 
812 	REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
813 		    AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
814 
815 	for (i = 0; i < 48; i++)
816 		data_U[i] = REG_READ(ah, reg + (i << 2));
817 
818 	if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
819 		status = -2;
820 
821 	REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
822 		    AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
823 
824 	kfree(buf);
825 
826 	return status;
827 }
828 EXPORT_SYMBOL(ar9003_paprd_create_curve);
829 
830 int ar9003_paprd_init_table(struct ath_hw *ah)
831 {
832 	int ret;
833 
834 	ret = ar9003_paprd_setup_single_table(ah);
835 	if (ret < 0)
836 	    return ret;
837 
838 	ar9003_paprd_get_gain_table(ah);
839 	return 0;
840 }
841 EXPORT_SYMBOL(ar9003_paprd_init_table);
842 
843 bool ar9003_paprd_is_done(struct ath_hw *ah)
844 {
845 	int paprd_done, agc2_pwr;
846 	paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
847 				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
848 
849 	if (paprd_done == 0x1) {
850 		agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
851 				AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
852 
853 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
854 			"AGC2_PWR = 0x%x training done = 0x%x\n",
855 			agc2_pwr, paprd_done);
856 	/*
857 	 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
858 	 * when the training is completely done, otherwise retraining is
859 	 * done to make sure the value is in ideal range
860 	 */
861 		if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
862 			paprd_done = 0;
863 	}
864 
865 	return !!paprd_done;
866 }
867 EXPORT_SYMBOL(ar9003_paprd_is_done);
868