1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/export.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20
ar9003_paprd_enable(struct ath_hw * ah,bool val)21 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22 {
23 struct ath9k_channel *chan = ah->curchan;
24 bool is2ghz = IS_CHAN_2GHZ(chan);
25
26 /*
27 * 3 bits for modalHeader5G.papdRateMaskHt20
28 * is used for sub-band disabling of PAPRD.
29 * 5G band is divided into 3 sub-bands -- upper,
30 * middle, lower.
31 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
32 * -- disable PAPRD for upper band 5GHz
33 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
34 * -- disable PAPRD for middle band 5GHz
35 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
36 * -- disable PAPRD for lower band 5GHz
37 */
38
39 if (!is2ghz) {
40 if (chan->channel >= UPPER_5G_SUB_BAND_START) {
41 if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz)
42 & BIT(30))
43 val = false;
44 } else if (chan->channel >= MID_5G_SUB_BAND_START) {
45 if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz)
46 & BIT(29))
47 val = false;
48 } else {
49 if (ar9003_get_paprd_rate_mask_ht20(ah, is2ghz)
50 & BIT(28))
51 val = false;
52 }
53 }
54
55 if (val) {
56 ah->paprd_table_write_done = true;
57 ath9k_hw_apply_txpower(ah, chan, false);
58 }
59
60 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
61 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
62 if (ah->caps.tx_chainmask & BIT(1))
63 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
64 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
65 if (ah->caps.tx_chainmask & BIT(2))
66 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
67 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68 }
69 EXPORT_SYMBOL(ar9003_paprd_enable);
70
ar9003_get_training_power_2g(struct ath_hw * ah)71 static int ar9003_get_training_power_2g(struct ath_hw *ah)
72 {
73 struct ath9k_channel *chan = ah->curchan;
74 unsigned int power, scale, delta;
75
76 scale = ar9003_get_paprd_scale_factor(ah, chan);
77
78 if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
79 AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
80 power = ah->paprd_target_power + 2;
81 } else if (AR_SREV_9485(ah)) {
82 power = 25;
83 } else {
84 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
85 AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
86
87 delta = abs((int) ah->paprd_target_power - (int) power);
88 if (delta > scale)
89 return -1;
90
91 if (delta < 4)
92 power -= 4 - delta;
93 }
94
95 return power;
96 }
97
ar9003_get_training_power_5g(struct ath_hw * ah)98 static int ar9003_get_training_power_5g(struct ath_hw *ah)
99 {
100 struct ath_common *common = ath9k_hw_common(ah);
101 struct ath9k_channel *chan = ah->curchan;
102 unsigned int power, scale, delta;
103
104 scale = ar9003_get_paprd_scale_factor(ah, chan);
105
106 if (IS_CHAN_HT40(chan))
107 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
108 AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
109 else
110 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
111 AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
112
113 power += scale;
114 delta = abs((int) ah->paprd_target_power - (int) power);
115 if (delta > scale)
116 return -1;
117
118 switch (get_streams(ah->txchainmask)) {
119 case 1:
120 delta = 6;
121 break;
122 case 2:
123 delta = 4;
124 break;
125 case 3:
126 delta = 2;
127 break;
128 default:
129 delta = 0;
130 ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
131 ah->txchainmask);
132 }
133
134 power += delta;
135 return power;
136 }
137
ar9003_paprd_setup_single_table(struct ath_hw * ah)138 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
139 {
140 struct ath_common *common = ath9k_hw_common(ah);
141 static const u32 ctrl0[3] = {
142 AR_PHY_PAPRD_CTRL0_B0,
143 AR_PHY_PAPRD_CTRL0_B1,
144 AR_PHY_PAPRD_CTRL0_B2
145 };
146 static const u32 ctrl1[3] = {
147 AR_PHY_PAPRD_CTRL1_B0,
148 AR_PHY_PAPRD_CTRL1_B1,
149 AR_PHY_PAPRD_CTRL1_B2
150 };
151 int training_power;
152 int i, val;
153 u32 am2pm_mask = ah->paprd_ratemask;
154
155 if (IS_CHAN_2GHZ(ah->curchan))
156 training_power = ar9003_get_training_power_2g(ah);
157 else
158 training_power = ar9003_get_training_power_5g(ah);
159
160 ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
161 training_power, ah->paprd_target_power);
162
163 if (training_power < 0) {
164 ath_dbg(common, CALIBRATE,
165 "PAPRD target power delta out of range\n");
166 return -ERANGE;
167 }
168 ah->paprd_training_power = training_power;
169
170 if (AR_SREV_9330(ah))
171 am2pm_mask = 0;
172
173 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
174 ah->paprd_ratemask);
175 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
176 am2pm_mask);
177 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
178 ah->paprd_ratemask_ht40);
179
180 ath_dbg(common, CALIBRATE, "PAPRD HT20 mask: 0x%x, HT40 mask: 0x%x\n",
181 ah->paprd_ratemask, ah->paprd_ratemask_ht40);
182
183 for (i = 0; i < ah->caps.max_txchains; i++) {
184 REG_RMW_FIELD(ah, ctrl0[i],
185 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
186 REG_RMW_FIELD(ah, ctrl1[i],
187 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
188 REG_RMW_FIELD(ah, ctrl1[i],
189 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
190 REG_RMW_FIELD(ah, ctrl1[i],
191 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
192 REG_RMW_FIELD(ah, ctrl1[i],
193 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
194 REG_RMW_FIELD(ah, ctrl1[i],
195 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
196 REG_RMW_FIELD(ah, ctrl1[i],
197 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
198 REG_RMW_FIELD(ah, ctrl0[i],
199 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
200 }
201
202 ar9003_paprd_enable(ah, false);
203
204 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
205 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
206 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
207 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
209 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
211 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
213 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
214 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
215 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
216 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1(ah),
217 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
218
219 if (AR_SREV_9485(ah)) {
220 val = 148;
221 } else {
222 if (IS_CHAN_2GHZ(ah->curchan)) {
223 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
224 val = 145;
225 else
226 val = 147;
227 } else {
228 val = 137;
229 }
230 }
231
232 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2(ah),
233 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
234 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
235 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
236 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
237 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
238 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
239 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
240 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
241 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
242
243 if (AR_SREV_9485(ah) ||
244 AR_SREV_9462(ah) ||
245 AR_SREV_9565(ah) ||
246 AR_SREV_9550(ah) ||
247 AR_SREV_9330(ah) ||
248 AR_SREV_9340(ah))
249 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
250 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -3);
251 else
252 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
253 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -6);
254
255 val = -10;
256
257 if (IS_CHAN_2GHZ(ah->curchan) && !AR_SREV_9462(ah) && !AR_SREV_9565(ah))
258 val = -15;
259
260 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
261 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
262 val);
263 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
264 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
265 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4(ah),
266 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
267 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4(ah),
268 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
269 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4(ah),
270 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
271 100);
272 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
273 AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
274 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
275 AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
276 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
277 AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
278 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
279 AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
280 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
281 AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
282 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
283 AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
284 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
285 AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
286 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
287 AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
288 return 0;
289 }
290
ar9003_paprd_get_gain_table(struct ath_hw * ah)291 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
292 {
293 u32 *entry = ah->paprd_gain_table_entries;
294 u8 *index = ah->paprd_gain_table_index;
295 u32 reg = AR_PHY_TXGAIN_TABLE;
296 int i;
297
298 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
299 entry[i] = REG_READ(ah, reg);
300 index[i] = (entry[i] >> 24) & 0xff;
301 reg += 4;
302 }
303 }
304
ar9003_get_desired_gain(struct ath_hw * ah,int chain,int target_power)305 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
306 int target_power)
307 {
308 int olpc_gain_delta = 0, cl_gain_mod;
309 int alpha_therm, alpha_volt;
310 int therm_cal_value, volt_cal_value;
311 int therm_value, volt_value;
312 int thermal_gain_corr, voltage_gain_corr;
313 int desired_scale, desired_gain = 0;
314 u32 reg_olpc = 0, reg_cl_gain = 0;
315
316 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
317 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
318 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
319 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
320 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
321 AR_PHY_TPC_19_ALPHA_THERM);
322 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
323 AR_PHY_TPC_19_ALPHA_VOLT);
324 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
325 AR_PHY_TPC_18_THERM_CAL_VALUE);
326 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
327 AR_PHY_TPC_18_VOLT_CAL_VALUE);
328 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
329 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
330 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
331 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
332
333 switch (chain) {
334 case 0:
335 reg_olpc = AR_PHY_TPC_11_B0;
336 reg_cl_gain = AR_PHY_CL_TAB_0;
337 break;
338 case 1:
339 reg_olpc = AR_PHY_TPC_11_B1;
340 reg_cl_gain = AR_PHY_CL_TAB_1;
341 break;
342 case 2:
343 reg_olpc = AR_PHY_TPC_11_B2;
344 reg_cl_gain = AR_PHY_CL_TAB_2;
345 break;
346 default:
347 ath_dbg(ath9k_hw_common(ah), CALIBRATE,
348 "Invalid chainmask: %d\n", chain);
349 break;
350 }
351
352 olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
353 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
354 cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
355 AR_PHY_CL_TAB_CL_GAIN_MOD);
356
357 if (olpc_gain_delta >= 128)
358 olpc_gain_delta = olpc_gain_delta - 256;
359
360 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
361 (256 / 2)) / 256;
362 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
363 (128 / 2)) / 128;
364 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
365 voltage_gain_corr + desired_scale + cl_gain_mod;
366
367 return desired_gain;
368 }
369
ar9003_tx_force_gain(struct ath_hw * ah,unsigned int gain_index)370 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
371 {
372 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
373 int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
374 u32 *gain_table_entries = ah->paprd_gain_table_entries;
375
376 selected_gain_entry = gain_table_entries[gain_index];
377 txbb1dbgain = selected_gain_entry & 0x7;
378 txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
379 txmxrgain = (selected_gain_entry >> 5) & 0xf;
380 padrvgnA = (selected_gain_entry >> 9) & 0xf;
381 padrvgnB = (selected_gain_entry >> 13) & 0xf;
382 padrvgnC = (selected_gain_entry >> 17) & 0xf;
383 padrvgnD = (selected_gain_entry >> 21) & 0x3;
384
385 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
386 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
387 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
388 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
389 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
390 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
391 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
392 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
393 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
394 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
395 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
396 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
397 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
398 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
399 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
400 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
401 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
402 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
403 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
404 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
405 }
406
find_expn(int num)407 static inline int find_expn(int num)
408 {
409 return fls(num) - 1;
410 }
411
find_proper_scale(int expn,int N)412 static inline int find_proper_scale(int expn, int N)
413 {
414 return (expn > N) ? expn - 10 : 0;
415 }
416
417 #define NUM_BIN 23
418
create_pa_curve(u32 * data_L,u32 * data_U,u32 * pa_table,u16 * gain)419 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
420 {
421 unsigned int thresh_accum_cnt;
422 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
423 int PA_in[NUM_BIN + 1];
424 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
425 unsigned int B1_abs_max, B2_abs_max;
426 int max_index, scale_factor;
427 int y_est[NUM_BIN + 1];
428 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
429 unsigned int x_tilde_abs;
430 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
431 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
432 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
433 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
434 int y5, y3, tmp;
435 int theta_low_bin = 0;
436 int i;
437
438 /* disregard any bin that contains <= 16 samples */
439 thresh_accum_cnt = 16;
440 scale_factor = 5;
441 max_index = 0;
442 memset(theta, 0, sizeof(theta));
443 memset(x_est, 0, sizeof(x_est));
444 memset(Y, 0, sizeof(Y));
445 memset(y_est, 0, sizeof(y_est));
446 memset(x_tilde, 0, sizeof(x_tilde));
447
448 for (i = 0; i < NUM_BIN; i++) {
449 s32 accum_cnt, accum_tx, accum_rx, accum_ang;
450
451 /* number of samples */
452 accum_cnt = data_L[i] & 0xffff;
453
454 if (accum_cnt <= thresh_accum_cnt)
455 continue;
456
457 max_index++;
458
459 /* sum(tx amplitude) */
460 accum_tx = ((data_L[i] >> 16) & 0xffff) |
461 ((data_U[i] & 0x7ff) << 16);
462
463 /* sum(rx amplitude distance to lower bin edge) */
464 accum_rx = ((data_U[i] >> 11) & 0x1f) |
465 ((data_L[i + 23] & 0xffff) << 5);
466
467 /* sum(angles) */
468 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
469 ((data_U[i + 23] & 0x7ff) << 16);
470
471 accum_tx <<= scale_factor;
472 accum_rx <<= scale_factor;
473 x_est[max_index] =
474 (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
475 scale_factor;
476
477 Y[max_index] =
478 ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
479 scale_factor) +
480 (1 << scale_factor) * i + 16;
481
482 if (accum_ang >= (1 << 26))
483 accum_ang -= 1 << 27;
484
485 theta[max_index] =
486 ((accum_ang * (1 << scale_factor)) + accum_cnt) /
487 accum_cnt;
488 }
489
490 /*
491 * Find average theta of first 5 bin and all of those to same value.
492 * Curve is linear at that range.
493 */
494 for (i = 1; i < 6; i++)
495 theta_low_bin += theta[i];
496
497 theta_low_bin = theta_low_bin / 5;
498 for (i = 1; i < 6; i++)
499 theta[i] = theta_low_bin;
500
501 /* Set values at origin */
502 theta[0] = theta_low_bin;
503 for (i = 0; i <= max_index; i++)
504 theta[i] -= theta_low_bin;
505
506 x_est[0] = 0;
507 Y[0] = 0;
508 scale_factor = 8;
509
510 /* low signal gain */
511 if (x_est[6] == x_est[3])
512 return false;
513
514 G_fxp =
515 (((Y[6] - Y[3]) * 1 << scale_factor) +
516 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
517
518 /* prevent division by zero */
519 if (G_fxp == 0)
520 return false;
521
522 Y_intercept =
523 (G_fxp * (x_est[0] - x_est[3]) +
524 (1 << scale_factor)) / (1 << scale_factor) + Y[3];
525
526 for (i = 0; i <= max_index; i++)
527 y_est[i] = Y[i] - Y_intercept;
528
529 for (i = 0; i <= 3; i++) {
530 y_est[i] = i * 32;
531 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
532 }
533
534 if (y_est[max_index] == 0)
535 return false;
536
537 x_est_fxp1_nonlin =
538 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
539 G_fxp) / G_fxp;
540
541 order_x_by_y =
542 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
543
544 if (order_x_by_y == 0)
545 M = 10;
546 else if (order_x_by_y == 1)
547 M = 9;
548 else
549 M = 8;
550
551 I = (max_index > 15) ? 7 : max_index >> 1;
552 L = max_index - I;
553 scale_factor = 8;
554 sum_y_sqr = 0;
555 sum_y_quad = 0;
556 x_tilde_abs = 0;
557
558 for (i = 0; i <= L; i++) {
559 unsigned int y_sqr;
560 unsigned int y_quad;
561 unsigned int tmp_abs;
562
563 /* prevent division by zero */
564 if (y_est[i + I] == 0)
565 return false;
566
567 x_est_fxp1_nonlin =
568 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
569 G_fxp) / G_fxp;
570
571 x_tilde[i] =
572 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
573 I];
574 x_tilde[i] =
575 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
576 x_tilde[i] =
577 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
578 y_sqr =
579 (y_est[i + I] * y_est[i + I] +
580 (scale_factor * scale_factor)) / (scale_factor *
581 scale_factor);
582 tmp_abs = abs(x_tilde[i]);
583 if (tmp_abs > x_tilde_abs)
584 x_tilde_abs = tmp_abs;
585
586 y_quad = y_sqr * y_sqr;
587 sum_y_sqr = sum_y_sqr + y_sqr;
588 sum_y_quad = sum_y_quad + y_quad;
589 B1_tmp[i] = y_sqr * (L + 1);
590 B2_tmp[i] = y_sqr;
591 }
592
593 B1_abs_max = 0;
594 B2_abs_max = 0;
595 for (i = 0; i <= L; i++) {
596 int abs_val;
597
598 B1_tmp[i] -= sum_y_sqr;
599 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
600
601 abs_val = abs(B1_tmp[i]);
602 if (abs_val > B1_abs_max)
603 B1_abs_max = abs_val;
604
605 abs_val = abs(B2_tmp[i]);
606 if (abs_val > B2_abs_max)
607 B2_abs_max = abs_val;
608 }
609
610 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
611 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
612 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
613
614 beta_raw = 0;
615 alpha_raw = 0;
616 for (i = 0; i <= L; i++) {
617 x_tilde[i] = x_tilde[i] / (1 << Q_x);
618 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
619 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
620 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
621 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
622 }
623
624 scale_B =
625 ((sum_y_quad / scale_factor) * (L + 1) -
626 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
627
628 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
629 scale_B = scale_B / (1 << Q_scale_B);
630 if (scale_B == 0)
631 return false;
632 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
633 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
634 beta_raw = beta_raw / (1 << Q_beta);
635 alpha_raw = alpha_raw / (1 << Q_alpha);
636 alpha = (alpha_raw << 10) / scale_B;
637 beta = (beta_raw << 10) / scale_B;
638 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
639 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
640 order1_5x = order_1 / 5;
641 order2_3x = order_2 / 3;
642 order1_5x_rem = order_1 - 5 * order1_5x;
643 order2_3x_rem = order_2 - 3 * order2_3x;
644
645 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
646 tmp = i * 32;
647 y5 = ((beta * tmp) >> 6) >> order1_5x;
648 y5 = (y5 * tmp) >> order1_5x;
649 y5 = (y5 * tmp) >> order1_5x;
650 y5 = (y5 * tmp) >> order1_5x;
651 y5 = (y5 * tmp) >> order1_5x;
652 y5 = y5 >> order1_5x_rem;
653 y3 = (alpha * tmp) >> order2_3x;
654 y3 = (y3 * tmp) >> order2_3x;
655 y3 = (y3 * tmp) >> order2_3x;
656 y3 = y3 >> order2_3x_rem;
657 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
658
659 if (i >= 2) {
660 tmp = PA_in[i] - PA_in[i - 1];
661 if (tmp < 0)
662 PA_in[i] =
663 PA_in[i - 1] + (PA_in[i - 1] -
664 PA_in[i - 2]);
665 }
666
667 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
668 }
669
670 beta_raw = 0;
671 alpha_raw = 0;
672
673 for (i = 0; i <= L; i++) {
674 int theta_tilde =
675 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
676 theta_tilde =
677 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
678 theta_tilde =
679 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
680 beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
681 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
682 }
683
684 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
685 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
686 beta_raw = beta_raw / (1 << Q_beta);
687 alpha_raw = alpha_raw / (1 << Q_alpha);
688
689 alpha = (alpha_raw << 10) / scale_B;
690 beta = (beta_raw << 10) / scale_B;
691 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
692 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
693 order1_5x = order_1 / 5;
694 order2_3x = order_2 / 3;
695 order1_5x_rem = order_1 - 5 * order1_5x;
696 order2_3x_rem = order_2 - 3 * order2_3x;
697
698 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
699 int PA_angle;
700
701 /* pa_table[4] is calculated from PA_angle for i=5 */
702 if (i == 4)
703 continue;
704
705 tmp = i * 32;
706 if (beta > 0)
707 y5 = (((beta * tmp - 64) >> 6) -
708 (1 << order1_5x)) / (1 << order1_5x);
709 else
710 y5 = ((((beta * tmp - 64) >> 6) +
711 (1 << order1_5x)) / (1 << order1_5x));
712
713 y5 = (y5 * tmp) / (1 << order1_5x);
714 y5 = (y5 * tmp) / (1 << order1_5x);
715 y5 = (y5 * tmp) / (1 << order1_5x);
716 y5 = (y5 * tmp) / (1 << order1_5x);
717 y5 = y5 / (1 << order1_5x_rem);
718
719 if (beta > 0)
720 y3 = (alpha * tmp -
721 (1 << order2_3x)) / (1 << order2_3x);
722 else
723 y3 = (alpha * tmp +
724 (1 << order2_3x)) / (1 << order2_3x);
725 y3 = (y3 * tmp) / (1 << order2_3x);
726 y3 = (y3 * tmp) / (1 << order2_3x);
727 y3 = y3 / (1 << order2_3x_rem);
728
729 if (i < 4) {
730 PA_angle = 0;
731 } else {
732 PA_angle = y5 + y3;
733 if (PA_angle < -150)
734 PA_angle = -150;
735 else if (PA_angle > 150)
736 PA_angle = 150;
737 }
738
739 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
740 if (i == 5) {
741 PA_angle = (PA_angle + 2) >> 1;
742 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
743 (PA_angle & 0x7ff);
744 }
745 }
746
747 *gain = G_fxp;
748 return true;
749 }
750
ar9003_paprd_populate_single_table(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)751 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
752 struct ath9k_hw_cal_data *caldata,
753 int chain)
754 {
755 u32 *paprd_table_val = caldata->pa_table[chain];
756 u32 small_signal_gain = caldata->small_signal_gain[chain];
757 u32 training_power = ah->paprd_training_power;
758 u32 reg = 0;
759 int i;
760
761 if (chain == 0)
762 reg = AR_PHY_PAPRD_MEM_TAB_B0;
763 else if (chain == 1)
764 reg = AR_PHY_PAPRD_MEM_TAB_B1;
765 else if (chain == 2)
766 reg = AR_PHY_PAPRD_MEM_TAB_B2;
767
768 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
769 REG_WRITE(ah, reg, paprd_table_val[i]);
770 reg = reg + 4;
771 }
772
773 if (chain == 0)
774 reg = AR_PHY_PA_GAIN123_B0;
775 else if (chain == 1)
776 reg = AR_PHY_PA_GAIN123_B1;
777 else
778 reg = AR_PHY_PA_GAIN123_B2;
779
780 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
781
782 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
783 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
784 training_power);
785
786 if (ah->caps.tx_chainmask & BIT(1))
787 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
788 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
789 training_power);
790
791 if (ah->caps.tx_chainmask & BIT(2))
792 /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
793 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
794 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
795 training_power);
796 }
797 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
798
ar9003_paprd_setup_gain_table(struct ath_hw * ah,int chain)799 void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
800 {
801 unsigned int i, desired_gain, gain_index;
802 unsigned int train_power = ah->paprd_training_power;
803
804 desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
805
806 gain_index = 0;
807 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
808 if (ah->paprd_gain_table_index[i] >= desired_gain)
809 break;
810 gain_index++;
811 }
812
813 ar9003_tx_force_gain(ah, gain_index);
814
815 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
816 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
817 }
818 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
819
ar9003_paprd_retrain_pa_in(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)820 static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
821 struct ath9k_hw_cal_data *caldata,
822 int chain)
823 {
824 u32 *pa_in = caldata->pa_table[chain];
825 int capdiv_offset, quick_drop_offset;
826 int capdiv2g, quick_drop;
827 int count = 0;
828 int i;
829
830 if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
831 return false;
832
833 capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
834 AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
835
836 quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
837 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
838
839 if (quick_drop)
840 quick_drop -= 0x40;
841
842 for (i = 0; i < NUM_BIN + 1; i++) {
843 if (pa_in[i] == 1400)
844 count++;
845 }
846
847 if (AR_SREV_9485(ah)) {
848 if (pa_in[23] < 800) {
849 capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
850 capdiv2g += capdiv_offset;
851 if (capdiv2g > 7) {
852 capdiv2g = 7;
853 if (pa_in[23] < 600) {
854 quick_drop++;
855 if (quick_drop > 0)
856 quick_drop = 0;
857 }
858 }
859 } else if (pa_in[23] == 1400) {
860 quick_drop_offset = min_t(int, count / 3, 2);
861 quick_drop += quick_drop_offset;
862 capdiv2g += quick_drop_offset / 2;
863
864 if (capdiv2g > 7)
865 capdiv2g = 7;
866
867 if (quick_drop > 0) {
868 quick_drop = 0;
869 capdiv2g -= quick_drop_offset;
870 if (capdiv2g < 0)
871 capdiv2g = 0;
872 }
873 } else {
874 return false;
875 }
876 } else if (AR_SREV_9330(ah)) {
877 if (pa_in[23] < 1000) {
878 capdiv_offset = (1000 - pa_in[23]) / 100;
879 capdiv2g += capdiv_offset;
880 if (capdiv_offset > 3) {
881 capdiv_offset = 1;
882 quick_drop--;
883 }
884
885 capdiv2g += capdiv_offset;
886 if (capdiv2g > 6)
887 capdiv2g = 6;
888 if (quick_drop < -4)
889 quick_drop = -4;
890 } else if (pa_in[23] == 1400) {
891 if (count > 3) {
892 quick_drop++;
893 capdiv2g -= count / 4;
894 if (quick_drop > -2)
895 quick_drop = -2;
896 } else {
897 capdiv2g--;
898 }
899
900 if (capdiv2g < 0)
901 capdiv2g = 0;
902 } else {
903 return false;
904 }
905 }
906
907 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
908 AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
909 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3(ah),
910 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
911 quick_drop);
912
913 return true;
914 }
915
ar9003_paprd_create_curve(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)916 int ar9003_paprd_create_curve(struct ath_hw *ah,
917 struct ath9k_hw_cal_data *caldata, int chain)
918 {
919 u16 *small_signal_gain = &caldata->small_signal_gain[chain];
920 u32 *pa_table = caldata->pa_table[chain];
921 u32 *data_L, *data_U;
922 int i, status = 0;
923 u32 *buf;
924 u32 reg;
925
926 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
927
928 buf = kmalloc_array(2 * 48, sizeof(u32), GFP_KERNEL);
929 if (!buf)
930 return -ENOMEM;
931
932 data_L = &buf[0];
933 data_U = &buf[48];
934
935 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY(ah),
936 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
937
938 reg = AR_PHY_CHAN_INFO_TAB_0;
939 for (i = 0; i < 48; i++)
940 data_L[i] = REG_READ(ah, reg + (i << 2));
941
942 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY(ah),
943 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
944
945 for (i = 0; i < 48; i++)
946 data_U[i] = REG_READ(ah, reg + (i << 2));
947
948 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
949 status = -2;
950
951 if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
952 status = -EINPROGRESS;
953
954 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
955 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
956
957 kfree(buf);
958
959 return status;
960 }
961 EXPORT_SYMBOL(ar9003_paprd_create_curve);
962
ar9003_paprd_init_table(struct ath_hw * ah)963 int ar9003_paprd_init_table(struct ath_hw *ah)
964 {
965 int ret;
966
967 ret = ar9003_paprd_setup_single_table(ah);
968 if (ret < 0)
969 return ret;
970
971 ar9003_paprd_get_gain_table(ah);
972 return 0;
973 }
974 EXPORT_SYMBOL(ar9003_paprd_init_table);
975
ar9003_paprd_is_done(struct ath_hw * ah)976 bool ar9003_paprd_is_done(struct ath_hw *ah)
977 {
978 int paprd_done, agc2_pwr;
979
980 paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
981 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
982
983 if (AR_SREV_9485(ah))
984 goto exit;
985
986 if (paprd_done == 0x1) {
987 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1(ah),
988 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
989
990 ath_dbg(ath9k_hw_common(ah), CALIBRATE,
991 "AGC2_PWR = 0x%x training done = 0x%x\n",
992 agc2_pwr, paprd_done);
993 /*
994 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
995 * when the training is completely done, otherwise retraining is
996 * done to make sure the value is in ideal range
997 */
998 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
999 paprd_done = 0;
1000 }
1001 exit:
1002 return !!paprd_done;
1003 }
1004 EXPORT_SYMBOL(ar9003_paprd_is_done);
1005
ar9003_is_paprd_enabled(struct ath_hw * ah)1006 bool ar9003_is_paprd_enabled(struct ath_hw *ah)
1007 {
1008 if ((ah->caps.hw_caps & ATH9K_HW_CAP_PAPRD) && ah->config.enable_paprd)
1009 return true;
1010
1011 return false;
1012 }
1013 EXPORT_SYMBOL(ar9003_is_paprd_enabled);
1014