1 /* 2 * 6pack.c This module implements the 6pack protocol for kernel-based 3 * devices like TTY. It interfaces between a raw TTY and the 4 * kernel's AX.25 protocol layers. 5 * 6 * Authors: Andreas K�nsgen <ajk@iehk.rwth-aachen.de> 7 * Ralf Baechle DL5RB <ralf@linux-mips.org> 8 * 9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by 10 * 11 * Laurence Culhane, <loz@holmes.demon.co.uk> 12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> 13 */ 14 15 #include <linux/config.h> 16 #include <linux/module.h> 17 #include <asm/system.h> 18 #include <asm/uaccess.h> 19 #include <linux/bitops.h> 20 #include <linux/string.h> 21 #include <linux/mm.h> 22 #include <linux/interrupt.h> 23 #include <linux/in.h> 24 #include <linux/tty.h> 25 #include <linux/errno.h> 26 #include <linux/netdevice.h> 27 #include <linux/timer.h> 28 #include <net/ax25.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/rtnetlink.h> 32 #include <linux/spinlock.h> 33 #include <linux/if_arp.h> 34 #include <linux/init.h> 35 #include <linux/ip.h> 36 #include <linux/tcp.h> 37 #include <asm/semaphore.h> 38 #include <asm/atomic.h> 39 40 #define SIXPACK_VERSION "Revision: 0.3.0" 41 42 /* sixpack priority commands */ 43 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */ 44 #define SIXP_TX_URUN 0x48 /* transmit overrun */ 45 #define SIXP_RX_ORUN 0x50 /* receive overrun */ 46 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */ 47 48 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */ 49 50 /* masks to get certain bits out of the status bytes sent by the TNC */ 51 52 #define SIXP_CMD_MASK 0xC0 53 #define SIXP_CHN_MASK 0x07 54 #define SIXP_PRIO_CMD_MASK 0x80 55 #define SIXP_STD_CMD_MASK 0x40 56 #define SIXP_PRIO_DATA_MASK 0x38 57 #define SIXP_TX_MASK 0x20 58 #define SIXP_RX_MASK 0x10 59 #define SIXP_RX_DCD_MASK 0x18 60 #define SIXP_LEDS_ON 0x78 61 #define SIXP_LEDS_OFF 0x60 62 #define SIXP_CON 0x08 63 #define SIXP_STA 0x10 64 65 #define SIXP_FOUND_TNC 0xe9 66 #define SIXP_CON_ON 0x68 67 #define SIXP_DCD_MASK 0x08 68 #define SIXP_DAMA_OFF 0 69 70 /* default level 2 parameters */ 71 #define SIXP_TXDELAY (HZ/4) /* in 1 s */ 72 #define SIXP_PERSIST 50 /* in 256ths */ 73 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */ 74 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */ 75 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */ 76 77 /* 6pack configuration. */ 78 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */ 79 #define SIXP_MTU 256 /* Default MTU */ 80 81 enum sixpack_flags { 82 SIXPF_ERROR, /* Parity, etc. error */ 83 }; 84 85 struct sixpack { 86 /* Various fields. */ 87 struct tty_struct *tty; /* ptr to TTY structure */ 88 struct net_device *dev; /* easy for intr handling */ 89 90 /* These are pointers to the malloc()ed frame buffers. */ 91 unsigned char *rbuff; /* receiver buffer */ 92 int rcount; /* received chars counter */ 93 unsigned char *xbuff; /* transmitter buffer */ 94 unsigned char *xhead; /* next byte to XMIT */ 95 int xleft; /* bytes left in XMIT queue */ 96 97 unsigned char raw_buf[4]; 98 unsigned char cooked_buf[400]; 99 100 unsigned int rx_count; 101 unsigned int rx_count_cooked; 102 103 /* 6pack interface statistics. */ 104 struct net_device_stats stats; 105 106 int mtu; /* Our mtu (to spot changes!) */ 107 int buffsize; /* Max buffers sizes */ 108 109 unsigned long flags; /* Flag values/ mode etc */ 110 unsigned char mode; /* 6pack mode */ 111 112 /* 6pack stuff */ 113 unsigned char tx_delay; 114 unsigned char persistence; 115 unsigned char slottime; 116 unsigned char duplex; 117 unsigned char led_state; 118 unsigned char status; 119 unsigned char status1; 120 unsigned char status2; 121 unsigned char tx_enable; 122 unsigned char tnc_state; 123 124 struct timer_list tx_t; 125 struct timer_list resync_t; 126 atomic_t refcnt; 127 struct semaphore dead_sem; 128 spinlock_t lock; 129 }; 130 131 #define AX25_6PACK_HEADER_LEN 0 132 133 static void sixpack_decode(struct sixpack *, unsigned char[], int); 134 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char); 135 136 /* 137 * Perform the persistence/slottime algorithm for CSMA access. If the 138 * persistence check was successful, write the data to the serial driver. 139 * Note that in case of DAMA operation, the data is not sent here. 140 */ 141 142 static void sp_xmit_on_air(unsigned long channel) 143 { 144 struct sixpack *sp = (struct sixpack *) channel; 145 int actual, when = sp->slottime; 146 static unsigned char random; 147 148 random = random * 17 + 41; 149 150 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { 151 sp->led_state = 0x70; 152 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 153 sp->tx_enable = 1; 154 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2); 155 sp->xleft -= actual; 156 sp->xhead += actual; 157 sp->led_state = 0x60; 158 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 159 sp->status2 = 0; 160 } else 161 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100); 162 } 163 164 /* ----> 6pack timer interrupt handler and friends. <---- */ 165 166 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */ 167 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len) 168 { 169 unsigned char *msg, *p = icp; 170 int actual, count; 171 172 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 173 msg = "oversized transmit packet!"; 174 goto out_drop; 175 } 176 177 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ 178 msg = "oversized transmit packet!"; 179 goto out_drop; 180 } 181 182 if (p[0] > 5) { 183 msg = "invalid KISS command"; 184 goto out_drop; 185 } 186 187 if ((p[0] != 0) && (len > 2)) { 188 msg = "KISS control packet too long"; 189 goto out_drop; 190 } 191 192 if ((p[0] == 0) && (len < 15)) { 193 msg = "bad AX.25 packet to transmit"; 194 goto out_drop; 195 } 196 197 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); 198 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 199 200 switch (p[0]) { 201 case 1: sp->tx_delay = p[1]; 202 return; 203 case 2: sp->persistence = p[1]; 204 return; 205 case 3: sp->slottime = p[1]; 206 return; 207 case 4: /* ignored */ 208 return; 209 case 5: sp->duplex = p[1]; 210 return; 211 } 212 213 if (p[0] != 0) 214 return; 215 216 /* 217 * In case of fullduplex or DAMA operation, we don't take care about the 218 * state of the DCD or of any timers, as the determination of the 219 * correct time to send is the job of the AX.25 layer. We send 220 * immediately after data has arrived. 221 */ 222 if (sp->duplex == 1) { 223 sp->led_state = 0x70; 224 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 225 sp->tx_enable = 1; 226 actual = sp->tty->driver->write(sp->tty, sp->xbuff, count); 227 sp->xleft = count - actual; 228 sp->xhead = sp->xbuff + actual; 229 sp->led_state = 0x60; 230 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 231 } else { 232 sp->xleft = count; 233 sp->xhead = sp->xbuff; 234 sp->status2 = count; 235 sp_xmit_on_air((unsigned long)sp); 236 } 237 238 return; 239 240 out_drop: 241 sp->stats.tx_dropped++; 242 netif_start_queue(sp->dev); 243 if (net_ratelimit()) 244 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg); 245 } 246 247 /* Encapsulate an IP datagram and kick it into a TTY queue. */ 248 249 static int sp_xmit(struct sk_buff *skb, struct net_device *dev) 250 { 251 struct sixpack *sp = netdev_priv(dev); 252 253 spin_lock_bh(&sp->lock); 254 /* We were not busy, so we are now... :-) */ 255 netif_stop_queue(dev); 256 sp->stats.tx_bytes += skb->len; 257 sp_encaps(sp, skb->data, skb->len); 258 spin_unlock_bh(&sp->lock); 259 260 dev_kfree_skb(skb); 261 262 return 0; 263 } 264 265 static int sp_open_dev(struct net_device *dev) 266 { 267 struct sixpack *sp = netdev_priv(dev); 268 269 if (sp->tty == NULL) 270 return -ENODEV; 271 return 0; 272 } 273 274 /* Close the low-level part of the 6pack channel. */ 275 static int sp_close(struct net_device *dev) 276 { 277 struct sixpack *sp = netdev_priv(dev); 278 279 spin_lock_bh(&sp->lock); 280 if (sp->tty) { 281 /* TTY discipline is running. */ 282 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); 283 } 284 netif_stop_queue(dev); 285 spin_unlock_bh(&sp->lock); 286 287 return 0; 288 } 289 290 /* Return the frame type ID */ 291 static int sp_header(struct sk_buff *skb, struct net_device *dev, 292 unsigned short type, void *daddr, void *saddr, unsigned len) 293 { 294 #ifdef CONFIG_INET 295 if (type != htons(ETH_P_AX25)) 296 return ax25_hard_header(skb, dev, type, daddr, saddr, len); 297 #endif 298 return 0; 299 } 300 301 static struct net_device_stats *sp_get_stats(struct net_device *dev) 302 { 303 struct sixpack *sp = netdev_priv(dev); 304 return &sp->stats; 305 } 306 307 static int sp_set_mac_address(struct net_device *dev, void *addr) 308 { 309 struct sockaddr_ax25 *sa = addr; 310 311 netif_tx_lock_bh(dev); 312 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); 313 netif_tx_unlock_bh(dev); 314 315 return 0; 316 } 317 318 static int sp_rebuild_header(struct sk_buff *skb) 319 { 320 #ifdef CONFIG_INET 321 return ax25_rebuild_header(skb); 322 #else 323 return 0; 324 #endif 325 } 326 327 static void sp_setup(struct net_device *dev) 328 { 329 static char ax25_bcast[AX25_ADDR_LEN] = 330 {'Q'<<1,'S'<<1,'T'<<1,' '<<1,' '<<1,' '<<1,'0'<<1}; 331 static char ax25_test[AX25_ADDR_LEN] = 332 {'L'<<1,'I'<<1,'N'<<1,'U'<<1,'X'<<1,' '<<1,'1'<<1}; 333 334 /* Finish setting up the DEVICE info. */ 335 dev->mtu = SIXP_MTU; 336 dev->hard_start_xmit = sp_xmit; 337 dev->open = sp_open_dev; 338 dev->destructor = free_netdev; 339 dev->stop = sp_close; 340 dev->hard_header = sp_header; 341 dev->get_stats = sp_get_stats; 342 dev->set_mac_address = sp_set_mac_address; 343 dev->hard_header_len = AX25_MAX_HEADER_LEN; 344 dev->addr_len = AX25_ADDR_LEN; 345 dev->type = ARPHRD_AX25; 346 dev->tx_queue_len = 10; 347 dev->rebuild_header = sp_rebuild_header; 348 dev->tx_timeout = NULL; 349 350 /* Only activated in AX.25 mode */ 351 memcpy(dev->broadcast, ax25_bcast, AX25_ADDR_LEN); 352 memcpy(dev->dev_addr, ax25_test, AX25_ADDR_LEN); 353 354 SET_MODULE_OWNER(dev); 355 356 dev->flags = 0; 357 } 358 359 /* Send one completely decapsulated IP datagram to the IP layer. */ 360 361 /* 362 * This is the routine that sends the received data to the kernel AX.25. 363 * 'cmd' is the KISS command. For AX.25 data, it is zero. 364 */ 365 366 static void sp_bump(struct sixpack *sp, char cmd) 367 { 368 struct sk_buff *skb; 369 int count; 370 unsigned char *ptr; 371 372 count = sp->rcount + 1; 373 374 sp->stats.rx_bytes += count; 375 376 if ((skb = dev_alloc_skb(count)) == NULL) 377 goto out_mem; 378 379 ptr = skb_put(skb, count); 380 *ptr++ = cmd; /* KISS command */ 381 382 memcpy(ptr, sp->cooked_buf + 1, count); 383 skb->protocol = ax25_type_trans(skb, sp->dev); 384 netif_rx(skb); 385 sp->dev->last_rx = jiffies; 386 sp->stats.rx_packets++; 387 388 return; 389 390 out_mem: 391 sp->stats.rx_dropped++; 392 } 393 394 395 /* ----------------------------------------------------------------------- */ 396 397 /* 398 * We have a potential race on dereferencing tty->disc_data, because the tty 399 * layer provides no locking at all - thus one cpu could be running 400 * sixpack_receive_buf while another calls sixpack_close, which zeroes 401 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The 402 * best way to fix this is to use a rwlock in the tty struct, but for now we 403 * use a single global rwlock for all ttys in ppp line discipline. 404 */ 405 static DEFINE_RWLOCK(disc_data_lock); 406 407 static struct sixpack *sp_get(struct tty_struct *tty) 408 { 409 struct sixpack *sp; 410 411 read_lock(&disc_data_lock); 412 sp = tty->disc_data; 413 if (sp) 414 atomic_inc(&sp->refcnt); 415 read_unlock(&disc_data_lock); 416 417 return sp; 418 } 419 420 static void sp_put(struct sixpack *sp) 421 { 422 if (atomic_dec_and_test(&sp->refcnt)) 423 up(&sp->dead_sem); 424 } 425 426 /* 427 * Called by the TTY driver when there's room for more data. If we have 428 * more packets to send, we send them here. 429 */ 430 static void sixpack_write_wakeup(struct tty_struct *tty) 431 { 432 struct sixpack *sp = sp_get(tty); 433 int actual; 434 435 if (!sp) 436 return; 437 if (sp->xleft <= 0) { 438 /* Now serial buffer is almost free & we can start 439 * transmission of another packet */ 440 sp->stats.tx_packets++; 441 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 442 sp->tx_enable = 0; 443 netif_wake_queue(sp->dev); 444 goto out; 445 } 446 447 if (sp->tx_enable) { 448 actual = tty->driver->write(tty, sp->xhead, sp->xleft); 449 sp->xleft -= actual; 450 sp->xhead += actual; 451 } 452 453 out: 454 sp_put(sp); 455 } 456 457 /* ----------------------------------------------------------------------- */ 458 459 /* 460 * Handle the 'receiver data ready' interrupt. 461 * This function is called by the 'tty_io' module in the kernel when 462 * a block of 6pack data has been received, which can now be decapsulated 463 * and sent on to some IP layer for further processing. 464 */ 465 static void sixpack_receive_buf(struct tty_struct *tty, 466 const unsigned char *cp, char *fp, int count) 467 { 468 struct sixpack *sp; 469 unsigned char buf[512]; 470 int count1; 471 472 if (!count) 473 return; 474 475 sp = sp_get(tty); 476 if (!sp) 477 return; 478 479 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf)); 480 481 /* Read the characters out of the buffer */ 482 483 count1 = count; 484 while (count) { 485 count--; 486 if (fp && *fp++) { 487 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) 488 sp->stats.rx_errors++; 489 continue; 490 } 491 } 492 sixpack_decode(sp, buf, count1); 493 494 sp_put(sp); 495 if (test_and_clear_bit(TTY_THROTTLED, &tty->flags) 496 && tty->driver->unthrottle) 497 tty->driver->unthrottle(tty); 498 } 499 500 /* 501 * Try to resync the TNC. Called by the resync timer defined in 502 * decode_prio_command 503 */ 504 505 #define TNC_UNINITIALIZED 0 506 #define TNC_UNSYNC_STARTUP 1 507 #define TNC_UNSYNCED 2 508 #define TNC_IN_SYNC 3 509 510 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 511 { 512 char *msg; 513 514 switch (new_tnc_state) { 515 default: /* gcc oh piece-o-crap ... */ 516 case TNC_UNSYNC_STARTUP: 517 msg = "Synchronizing with TNC"; 518 break; 519 case TNC_UNSYNCED: 520 msg = "Lost synchronization with TNC\n"; 521 break; 522 case TNC_IN_SYNC: 523 msg = "Found TNC"; 524 break; 525 } 526 527 sp->tnc_state = new_tnc_state; 528 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg); 529 } 530 531 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state) 532 { 533 int old_tnc_state = sp->tnc_state; 534 535 if (old_tnc_state != new_tnc_state) 536 __tnc_set_sync_state(sp, new_tnc_state); 537 } 538 539 static void resync_tnc(unsigned long channel) 540 { 541 struct sixpack *sp = (struct sixpack *) channel; 542 static char resync_cmd = 0xe8; 543 544 /* clear any data that might have been received */ 545 546 sp->rx_count = 0; 547 sp->rx_count_cooked = 0; 548 549 /* reset state machine */ 550 551 sp->status = 1; 552 sp->status1 = 1; 553 sp->status2 = 0; 554 555 /* resync the TNC */ 556 557 sp->led_state = 0x60; 558 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 559 sp->tty->driver->write(sp->tty, &resync_cmd, 1); 560 561 562 /* Start resync timer again -- the TNC might be still absent */ 563 564 del_timer(&sp->resync_t); 565 sp->resync_t.data = (unsigned long) sp; 566 sp->resync_t.function = resync_tnc; 567 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 568 add_timer(&sp->resync_t); 569 } 570 571 static inline int tnc_init(struct sixpack *sp) 572 { 573 unsigned char inbyte = 0xe8; 574 575 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP); 576 577 sp->tty->driver->write(sp->tty, &inbyte, 1); 578 579 del_timer(&sp->resync_t); 580 sp->resync_t.data = (unsigned long) sp; 581 sp->resync_t.function = resync_tnc; 582 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT; 583 add_timer(&sp->resync_t); 584 585 return 0; 586 } 587 588 /* 589 * Open the high-level part of the 6pack channel. 590 * This function is called by the TTY module when the 591 * 6pack line discipline is called for. Because we are 592 * sure the tty line exists, we only have to link it to 593 * a free 6pcack channel... 594 */ 595 static int sixpack_open(struct tty_struct *tty) 596 { 597 char *rbuff = NULL, *xbuff = NULL; 598 struct net_device *dev; 599 struct sixpack *sp; 600 unsigned long len; 601 int err = 0; 602 603 if (!capable(CAP_NET_ADMIN)) 604 return -EPERM; 605 606 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup); 607 if (!dev) { 608 err = -ENOMEM; 609 goto out; 610 } 611 612 sp = netdev_priv(dev); 613 sp->dev = dev; 614 615 spin_lock_init(&sp->lock); 616 atomic_set(&sp->refcnt, 1); 617 init_MUTEX_LOCKED(&sp->dead_sem); 618 619 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ 620 621 len = dev->mtu * 2; 622 623 rbuff = kmalloc(len + 4, GFP_KERNEL); 624 xbuff = kmalloc(len + 4, GFP_KERNEL); 625 626 if (rbuff == NULL || xbuff == NULL) { 627 err = -ENOBUFS; 628 goto out_free; 629 } 630 631 spin_lock_bh(&sp->lock); 632 633 sp->tty = tty; 634 635 sp->rbuff = rbuff; 636 sp->xbuff = xbuff; 637 638 sp->mtu = AX25_MTU + 73; 639 sp->buffsize = len; 640 sp->rcount = 0; 641 sp->rx_count = 0; 642 sp->rx_count_cooked = 0; 643 sp->xleft = 0; 644 645 sp->flags = 0; /* Clear ESCAPE & ERROR flags */ 646 647 sp->duplex = 0; 648 sp->tx_delay = SIXP_TXDELAY; 649 sp->persistence = SIXP_PERSIST; 650 sp->slottime = SIXP_SLOTTIME; 651 sp->led_state = 0x60; 652 sp->status = 1; 653 sp->status1 = 1; 654 sp->status2 = 0; 655 sp->tx_enable = 0; 656 657 netif_start_queue(dev); 658 659 init_timer(&sp->tx_t); 660 sp->tx_t.function = sp_xmit_on_air; 661 sp->tx_t.data = (unsigned long) sp; 662 663 init_timer(&sp->resync_t); 664 665 spin_unlock_bh(&sp->lock); 666 667 /* Done. We have linked the TTY line to a channel. */ 668 tty->disc_data = sp; 669 tty->receive_room = 65536; 670 671 /* Now we're ready to register. */ 672 if (register_netdev(dev)) 673 goto out_free; 674 675 tnc_init(sp); 676 677 return 0; 678 679 out_free: 680 kfree(xbuff); 681 kfree(rbuff); 682 683 if (dev) 684 free_netdev(dev); 685 686 out: 687 return err; 688 } 689 690 691 /* 692 * Close down a 6pack channel. 693 * This means flushing out any pending queues, and then restoring the 694 * TTY line discipline to what it was before it got hooked to 6pack 695 * (which usually is TTY again). 696 */ 697 static void sixpack_close(struct tty_struct *tty) 698 { 699 struct sixpack *sp; 700 701 write_lock(&disc_data_lock); 702 sp = tty->disc_data; 703 tty->disc_data = NULL; 704 write_unlock(&disc_data_lock); 705 if (sp == 0) 706 return; 707 708 /* 709 * We have now ensured that nobody can start using ap from now on, but 710 * we have to wait for all existing users to finish. 711 */ 712 if (!atomic_dec_and_test(&sp->refcnt)) 713 down(&sp->dead_sem); 714 715 unregister_netdev(sp->dev); 716 717 del_timer(&sp->tx_t); 718 del_timer(&sp->resync_t); 719 720 /* Free all 6pack frame buffers. */ 721 kfree(sp->rbuff); 722 kfree(sp->xbuff); 723 } 724 725 /* Perform I/O control on an active 6pack channel. */ 726 static int sixpack_ioctl(struct tty_struct *tty, struct file *file, 727 unsigned int cmd, unsigned long arg) 728 { 729 struct sixpack *sp = sp_get(tty); 730 struct net_device *dev = sp->dev; 731 unsigned int tmp, err; 732 733 if (!sp) 734 return -ENXIO; 735 736 switch(cmd) { 737 case SIOCGIFNAME: 738 err = copy_to_user((void __user *) arg, dev->name, 739 strlen(dev->name) + 1) ? -EFAULT : 0; 740 break; 741 742 case SIOCGIFENCAP: 743 err = put_user(0, (int __user *) arg); 744 break; 745 746 case SIOCSIFENCAP: 747 if (get_user(tmp, (int __user *) arg)) { 748 err = -EFAULT; 749 break; 750 } 751 752 sp->mode = tmp; 753 dev->addr_len = AX25_ADDR_LEN; 754 dev->hard_header_len = AX25_KISS_HEADER_LEN + 755 AX25_MAX_HEADER_LEN + 3; 756 dev->type = ARPHRD_AX25; 757 758 err = 0; 759 break; 760 761 case SIOCSIFHWADDR: { 762 char addr[AX25_ADDR_LEN]; 763 764 if (copy_from_user(&addr, 765 (void __user *) arg, AX25_ADDR_LEN)) { 766 err = -EFAULT; 767 break; 768 } 769 770 netif_tx_lock_bh(dev); 771 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN); 772 netif_tx_unlock_bh(dev); 773 774 err = 0; 775 break; 776 } 777 778 /* Allow stty to read, but not set, the serial port */ 779 case TCGETS: 780 case TCGETA: 781 err = n_tty_ioctl(tty, (struct file *) file, cmd, arg); 782 break; 783 784 default: 785 err = -ENOIOCTLCMD; 786 } 787 788 sp_put(sp); 789 790 return err; 791 } 792 793 static struct tty_ldisc sp_ldisc = { 794 .owner = THIS_MODULE, 795 .magic = TTY_LDISC_MAGIC, 796 .name = "6pack", 797 .open = sixpack_open, 798 .close = sixpack_close, 799 .ioctl = sixpack_ioctl, 800 .receive_buf = sixpack_receive_buf, 801 .write_wakeup = sixpack_write_wakeup, 802 }; 803 804 /* Initialize 6pack control device -- register 6pack line discipline */ 805 806 static char msg_banner[] __initdata = KERN_INFO \ 807 "AX.25: 6pack driver, " SIXPACK_VERSION "\n"; 808 static char msg_regfail[] __initdata = KERN_ERR \ 809 "6pack: can't register line discipline (err = %d)\n"; 810 811 static int __init sixpack_init_driver(void) 812 { 813 int status; 814 815 printk(msg_banner); 816 817 /* Register the provided line protocol discipline */ 818 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0) 819 printk(msg_regfail, status); 820 821 return status; 822 } 823 824 static const char msg_unregfail[] __exitdata = KERN_ERR \ 825 "6pack: can't unregister line discipline (err = %d)\n"; 826 827 static void __exit sixpack_exit_driver(void) 828 { 829 int ret; 830 831 if ((ret = tty_unregister_ldisc(N_6PACK))) 832 printk(msg_unregfail, ret); 833 } 834 835 /* encode an AX.25 packet into 6pack */ 836 837 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw, 838 int length, unsigned char tx_delay) 839 { 840 int count = 0; 841 unsigned char checksum = 0, buf[400]; 842 int raw_count = 0; 843 844 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK; 845 tx_buf_raw[raw_count++] = SIXP_SEOF; 846 847 buf[0] = tx_delay; 848 for (count = 1; count < length; count++) 849 buf[count] = tx_buf[count]; 850 851 for (count = 0; count < length; count++) 852 checksum += buf[count]; 853 buf[length] = (unsigned char) 0xff - checksum; 854 855 for (count = 0; count <= length; count++) { 856 if ((count % 3) == 0) { 857 tx_buf_raw[raw_count++] = (buf[count] & 0x3f); 858 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30); 859 } else if ((count % 3) == 1) { 860 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f); 861 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c); 862 } else { 863 tx_buf_raw[raw_count++] |= (buf[count] & 0x03); 864 tx_buf_raw[raw_count++] = (buf[count] >> 2); 865 } 866 } 867 if ((length % 3) != 2) 868 raw_count++; 869 tx_buf_raw[raw_count++] = SIXP_SEOF; 870 return raw_count; 871 } 872 873 /* decode 4 sixpack-encoded bytes into 3 data bytes */ 874 875 static void decode_data(struct sixpack *sp, unsigned char inbyte) 876 { 877 unsigned char *buf; 878 879 if (sp->rx_count != 3) { 880 sp->raw_buf[sp->rx_count++] = inbyte; 881 882 return; 883 } 884 885 buf = sp->raw_buf; 886 sp->cooked_buf[sp->rx_count_cooked++] = 887 buf[0] | ((buf[1] << 2) & 0xc0); 888 sp->cooked_buf[sp->rx_count_cooked++] = 889 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0); 890 sp->cooked_buf[sp->rx_count_cooked++] = 891 (buf[2] & 0x03) | (inbyte << 2); 892 sp->rx_count = 0; 893 } 894 895 /* identify and execute a 6pack priority command byte */ 896 897 static void decode_prio_command(struct sixpack *sp, unsigned char cmd) 898 { 899 unsigned char channel; 900 int actual; 901 902 channel = cmd & SIXP_CHN_MASK; 903 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */ 904 905 /* RX and DCD flags can only be set in the same prio command, 906 if the DCD flag has been set without the RX flag in the previous 907 prio command. If DCD has not been set before, something in the 908 transmission has gone wrong. In this case, RX and DCD are 909 cleared in order to prevent the decode_data routine from 910 reading further data that might be corrupt. */ 911 912 if (((sp->status & SIXP_DCD_MASK) == 0) && 913 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) { 914 if (sp->status != 1) 915 printk(KERN_DEBUG "6pack: protocol violation\n"); 916 else 917 sp->status = 0; 918 cmd &= !SIXP_RX_DCD_MASK; 919 } 920 sp->status = cmd & SIXP_PRIO_DATA_MASK; 921 } else { /* output watchdog char if idle */ 922 if ((sp->status2 != 0) && (sp->duplex == 1)) { 923 sp->led_state = 0x70; 924 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 925 sp->tx_enable = 1; 926 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2); 927 sp->xleft -= actual; 928 sp->xhead += actual; 929 sp->led_state = 0x60; 930 sp->status2 = 0; 931 932 } 933 } 934 935 /* needed to trigger the TNC watchdog */ 936 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 937 938 /* if the state byte has been received, the TNC is present, 939 so the resync timer can be reset. */ 940 941 if (sp->tnc_state == TNC_IN_SYNC) { 942 del_timer(&sp->resync_t); 943 sp->resync_t.data = (unsigned long) sp; 944 sp->resync_t.function = resync_tnc; 945 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT; 946 add_timer(&sp->resync_t); 947 } 948 949 sp->status1 = cmd & SIXP_PRIO_DATA_MASK; 950 } 951 952 /* identify and execute a standard 6pack command byte */ 953 954 static void decode_std_command(struct sixpack *sp, unsigned char cmd) 955 { 956 unsigned char checksum = 0, rest = 0, channel; 957 short i; 958 959 channel = cmd & SIXP_CHN_MASK; 960 switch (cmd & SIXP_CMD_MASK) { /* normal command */ 961 case SIXP_SEOF: 962 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) { 963 if ((sp->status & SIXP_RX_DCD_MASK) == 964 SIXP_RX_DCD_MASK) { 965 sp->led_state = 0x68; 966 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 967 } 968 } else { 969 sp->led_state = 0x60; 970 /* fill trailing bytes with zeroes */ 971 sp->tty->driver->write(sp->tty, &sp->led_state, 1); 972 rest = sp->rx_count; 973 if (rest != 0) 974 for (i = rest; i <= 3; i++) 975 decode_data(sp, 0); 976 if (rest == 2) 977 sp->rx_count_cooked -= 2; 978 else if (rest == 3) 979 sp->rx_count_cooked -= 1; 980 for (i = 0; i < sp->rx_count_cooked; i++) 981 checksum += sp->cooked_buf[i]; 982 if (checksum != SIXP_CHKSUM) { 983 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum); 984 } else { 985 sp->rcount = sp->rx_count_cooked-2; 986 sp_bump(sp, 0); 987 } 988 sp->rx_count_cooked = 0; 989 } 990 break; 991 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n"); 992 break; 993 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n"); 994 break; 995 case SIXP_RX_BUF_OVL: 996 printk(KERN_DEBUG "6pack: RX buffer overflow\n"); 997 } 998 } 999 1000 /* decode a 6pack packet */ 1001 1002 static void 1003 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count) 1004 { 1005 unsigned char inbyte; 1006 int count1; 1007 1008 for (count1 = 0; count1 < count; count1++) { 1009 inbyte = pre_rbuff[count1]; 1010 if (inbyte == SIXP_FOUND_TNC) { 1011 tnc_set_sync_state(sp, TNC_IN_SYNC); 1012 del_timer(&sp->resync_t); 1013 } 1014 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0) 1015 decode_prio_command(sp, inbyte); 1016 else if ((inbyte & SIXP_STD_CMD_MASK) != 0) 1017 decode_std_command(sp, inbyte); 1018 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) 1019 decode_data(sp, inbyte); 1020 } 1021 } 1022 1023 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>"); 1024 MODULE_DESCRIPTION("6pack driver for AX.25"); 1025 MODULE_LICENSE("GPL"); 1026 MODULE_ALIAS_LDISC(N_6PACK); 1027 1028 module_init(sixpack_init_driver); 1029 module_exit(sixpack_exit_driver); 1030