1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * 6pack.c This module implements the 6pack protocol for kernel-based
4 * devices like TTY. It interfaces between a raw TTY and the
5 * kernel's AX.25 protocol layers.
6 *
7 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
8 * Ralf Baechle DL5RB <ralf@linux-mips.org>
9 *
10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11 *
12 * Laurence Culhane, <loz@holmes.demon.co.uk>
13 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
14 */
15
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/in.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <net/ax25.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/spinlock.h>
33 #include <linux/if_arp.h>
34 #include <linux/init.h>
35 #include <linux/ip.h>
36 #include <linux/tcp.h>
37 #include <linux/semaphore.h>
38 #include <linux/refcount.h>
39
40 /* sixpack priority commands */
41 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
42 #define SIXP_TX_URUN 0x48 /* transmit overrun */
43 #define SIXP_RX_ORUN 0x50 /* receive overrun */
44 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
45
46 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
47
48 /* masks to get certain bits out of the status bytes sent by the TNC */
49
50 #define SIXP_CMD_MASK 0xC0
51 #define SIXP_CHN_MASK 0x07
52 #define SIXP_PRIO_CMD_MASK 0x80
53 #define SIXP_STD_CMD_MASK 0x40
54 #define SIXP_PRIO_DATA_MASK 0x38
55 #define SIXP_TX_MASK 0x20
56 #define SIXP_RX_MASK 0x10
57 #define SIXP_RX_DCD_MASK 0x18
58 #define SIXP_LEDS_ON 0x78
59 #define SIXP_LEDS_OFF 0x60
60 #define SIXP_CON 0x08
61 #define SIXP_STA 0x10
62
63 #define SIXP_FOUND_TNC 0xe9
64 #define SIXP_CON_ON 0x68
65 #define SIXP_DCD_MASK 0x08
66 #define SIXP_DAMA_OFF 0
67
68 /* default level 2 parameters */
69 #define SIXP_TXDELAY 25 /* 250 ms */
70 #define SIXP_PERSIST 50 /* in 256ths */
71 #define SIXP_SLOTTIME 10 /* 100 ms */
72 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
73 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
74
75 /* 6pack configuration. */
76 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
77 #define SIXP_MTU 256 /* Default MTU */
78
79 enum sixpack_flags {
80 SIXPF_ERROR, /* Parity, etc. error */
81 };
82
83 struct sixpack {
84 /* Various fields. */
85 struct tty_struct *tty; /* ptr to TTY structure */
86 struct net_device *dev; /* easy for intr handling */
87
88 /* These are pointers to the malloc()ed frame buffers. */
89 int rcount; /* received chars counter */
90 unsigned char *xbuff; /* transmitter buffer */
91 unsigned char *xhead; /* next byte to XMIT */
92 int xleft; /* bytes left in XMIT queue */
93
94 u8 raw_buf[4];
95 u8 cooked_buf[400];
96
97 unsigned int rx_count;
98 unsigned int rx_count_cooked;
99 spinlock_t rxlock;
100
101 unsigned long flags; /* Flag values/ mode etc */
102 unsigned char mode; /* 6pack mode */
103
104 /* 6pack stuff */
105 unsigned char tx_delay;
106 unsigned char persistence;
107 unsigned char slottime;
108 unsigned char duplex;
109 unsigned char led_state;
110 u8 status;
111 u8 status1;
112 unsigned char status2;
113 unsigned char tx_enable;
114 unsigned char tnc_state;
115
116 struct timer_list tx_t;
117 struct timer_list resync_t;
118 refcount_t refcnt;
119 struct completion dead;
120 spinlock_t lock;
121 };
122
123 #define AX25_6PACK_HEADER_LEN 0
124
125 static void sixpack_decode(struct sixpack *, const u8 *, size_t);
126 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
127
128 /*
129 * Perform the persistence/slottime algorithm for CSMA access. If the
130 * persistence check was successful, write the data to the serial driver.
131 * Note that in case of DAMA operation, the data is not sent here.
132 */
133
sp_xmit_on_air(struct timer_list * t)134 static void sp_xmit_on_air(struct timer_list *t)
135 {
136 struct sixpack *sp = from_timer(sp, t, tx_t);
137 int actual, when = sp->slottime;
138 static unsigned char random;
139
140 random = random * 17 + 41;
141
142 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
143 sp->led_state = 0x70;
144 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
145 sp->tx_enable = 1;
146 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
147 sp->xleft -= actual;
148 sp->xhead += actual;
149 sp->led_state = 0x60;
150 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151 sp->status2 = 0;
152 } else
153 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
154 }
155
156 /* ----> 6pack timer interrupt handler and friends. <---- */
157
158 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
sp_encaps(struct sixpack * sp,unsigned char * icp,int len)159 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
160 {
161 unsigned char *msg, *p = icp;
162 int actual, count;
163
164 if (len > AX25_MTU + 73) {
165 msg = "oversized transmit packet!";
166 goto out_drop;
167 }
168
169 if (p[0] > 5) {
170 msg = "invalid KISS command";
171 goto out_drop;
172 }
173
174 if ((p[0] != 0) && (len > 2)) {
175 msg = "KISS control packet too long";
176 goto out_drop;
177 }
178
179 if ((p[0] == 0) && (len < 15)) {
180 msg = "bad AX.25 packet to transmit";
181 goto out_drop;
182 }
183
184 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
185 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
186
187 switch (p[0]) {
188 case 1: sp->tx_delay = p[1];
189 return;
190 case 2: sp->persistence = p[1];
191 return;
192 case 3: sp->slottime = p[1];
193 return;
194 case 4: /* ignored */
195 return;
196 case 5: sp->duplex = p[1];
197 return;
198 }
199
200 if (p[0] != 0)
201 return;
202
203 /*
204 * In case of fullduplex or DAMA operation, we don't take care about the
205 * state of the DCD or of any timers, as the determination of the
206 * correct time to send is the job of the AX.25 layer. We send
207 * immediately after data has arrived.
208 */
209 if (sp->duplex == 1) {
210 sp->led_state = 0x70;
211 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
212 sp->tx_enable = 1;
213 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
214 sp->xleft = count - actual;
215 sp->xhead = sp->xbuff + actual;
216 sp->led_state = 0x60;
217 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
218 } else {
219 sp->xleft = count;
220 sp->xhead = sp->xbuff;
221 sp->status2 = count;
222 sp_xmit_on_air(&sp->tx_t);
223 }
224
225 return;
226
227 out_drop:
228 sp->dev->stats.tx_dropped++;
229 netif_start_queue(sp->dev);
230 if (net_ratelimit())
231 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
232 }
233
234 /* Encapsulate an IP datagram and kick it into a TTY queue. */
235
sp_xmit(struct sk_buff * skb,struct net_device * dev)236 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
237 {
238 struct sixpack *sp = netdev_priv(dev);
239
240 if (skb->protocol == htons(ETH_P_IP))
241 return ax25_ip_xmit(skb);
242
243 spin_lock_bh(&sp->lock);
244 /* We were not busy, so we are now... :-) */
245 netif_stop_queue(dev);
246 dev->stats.tx_bytes += skb->len;
247 sp_encaps(sp, skb->data, skb->len);
248 spin_unlock_bh(&sp->lock);
249
250 dev_kfree_skb(skb);
251
252 return NETDEV_TX_OK;
253 }
254
sp_open_dev(struct net_device * dev)255 static int sp_open_dev(struct net_device *dev)
256 {
257 struct sixpack *sp = netdev_priv(dev);
258
259 if (sp->tty == NULL)
260 return -ENODEV;
261 return 0;
262 }
263
264 /* Close the low-level part of the 6pack channel. */
sp_close(struct net_device * dev)265 static int sp_close(struct net_device *dev)
266 {
267 struct sixpack *sp = netdev_priv(dev);
268
269 spin_lock_bh(&sp->lock);
270 if (sp->tty) {
271 /* TTY discipline is running. */
272 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
273 }
274 netif_stop_queue(dev);
275 spin_unlock_bh(&sp->lock);
276
277 return 0;
278 }
279
sp_set_mac_address(struct net_device * dev,void * addr)280 static int sp_set_mac_address(struct net_device *dev, void *addr)
281 {
282 struct sockaddr_ax25 *sa = addr;
283
284 netif_tx_lock_bh(dev);
285 netif_addr_lock(dev);
286 __dev_addr_set(dev, &sa->sax25_call, AX25_ADDR_LEN);
287 netif_addr_unlock(dev);
288 netif_tx_unlock_bh(dev);
289
290 return 0;
291 }
292
293 static const struct net_device_ops sp_netdev_ops = {
294 .ndo_open = sp_open_dev,
295 .ndo_stop = sp_close,
296 .ndo_start_xmit = sp_xmit,
297 .ndo_set_mac_address = sp_set_mac_address,
298 };
299
sp_setup(struct net_device * dev)300 static void sp_setup(struct net_device *dev)
301 {
302 /* Finish setting up the DEVICE info. */
303 dev->netdev_ops = &sp_netdev_ops;
304 dev->mtu = SIXP_MTU;
305 dev->hard_header_len = AX25_MAX_HEADER_LEN;
306 dev->header_ops = &ax25_header_ops;
307
308 dev->addr_len = AX25_ADDR_LEN;
309 dev->type = ARPHRD_AX25;
310 dev->tx_queue_len = 10;
311
312 /* Only activated in AX.25 mode */
313 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
314 dev_addr_set(dev, (u8 *)&ax25_defaddr);
315
316 dev->flags = 0;
317 }
318
319 /* Send one completely decapsulated IP datagram to the IP layer. */
320
321 /*
322 * This is the routine that sends the received data to the kernel AX.25.
323 * 'cmd' is the KISS command. For AX.25 data, it is zero.
324 */
325
sp_bump(struct sixpack * sp,char cmd)326 static void sp_bump(struct sixpack *sp, char cmd)
327 {
328 struct sk_buff *skb;
329 int count;
330 u8 *ptr;
331
332 count = sp->rcount + 1;
333
334 sp->dev->stats.rx_bytes += count;
335
336 if ((skb = dev_alloc_skb(count + 1)) == NULL)
337 goto out_mem;
338
339 ptr = skb_put(skb, count + 1);
340 *ptr++ = cmd; /* KISS command */
341
342 memcpy(ptr, sp->cooked_buf + 1, count);
343 skb->protocol = ax25_type_trans(skb, sp->dev);
344 netif_rx(skb);
345 sp->dev->stats.rx_packets++;
346
347 return;
348
349 out_mem:
350 sp->dev->stats.rx_dropped++;
351 }
352
353
354 /* ----------------------------------------------------------------------- */
355
356 /*
357 * We have a potential race on dereferencing tty->disc_data, because the tty
358 * layer provides no locking at all - thus one cpu could be running
359 * sixpack_receive_buf while another calls sixpack_close, which zeroes
360 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
361 * best way to fix this is to use a rwlock in the tty struct, but for now we
362 * use a single global rwlock for all ttys in ppp line discipline.
363 */
364 static DEFINE_RWLOCK(disc_data_lock);
365
sp_get(struct tty_struct * tty)366 static struct sixpack *sp_get(struct tty_struct *tty)
367 {
368 struct sixpack *sp;
369
370 read_lock(&disc_data_lock);
371 sp = tty->disc_data;
372 if (sp)
373 refcount_inc(&sp->refcnt);
374 read_unlock(&disc_data_lock);
375
376 return sp;
377 }
378
sp_put(struct sixpack * sp)379 static void sp_put(struct sixpack *sp)
380 {
381 if (refcount_dec_and_test(&sp->refcnt))
382 complete(&sp->dead);
383 }
384
385 /*
386 * Called by the TTY driver when there's room for more data. If we have
387 * more packets to send, we send them here.
388 */
sixpack_write_wakeup(struct tty_struct * tty)389 static void sixpack_write_wakeup(struct tty_struct *tty)
390 {
391 struct sixpack *sp = sp_get(tty);
392 int actual;
393
394 if (!sp)
395 return;
396 if (sp->xleft <= 0) {
397 /* Now serial buffer is almost free & we can start
398 * transmission of another packet */
399 sp->dev->stats.tx_packets++;
400 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
401 sp->tx_enable = 0;
402 netif_wake_queue(sp->dev);
403 goto out;
404 }
405
406 if (sp->tx_enable) {
407 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
408 sp->xleft -= actual;
409 sp->xhead += actual;
410 }
411
412 out:
413 sp_put(sp);
414 }
415
416 /* ----------------------------------------------------------------------- */
417
418 /*
419 * Handle the 'receiver data ready' interrupt.
420 * This function is called by the tty module in the kernel when
421 * a block of 6pack data has been received, which can now be decapsulated
422 * and sent on to some IP layer for further processing.
423 */
sixpack_receive_buf(struct tty_struct * tty,const u8 * cp,const u8 * fp,size_t count)424 static void sixpack_receive_buf(struct tty_struct *tty, const u8 *cp,
425 const u8 *fp, size_t count)
426 {
427 struct sixpack *sp;
428 size_t count1;
429
430 if (!count)
431 return;
432
433 sp = sp_get(tty);
434 if (!sp)
435 return;
436
437 /* Read the characters out of the buffer */
438 count1 = count;
439 while (count) {
440 count--;
441 if (fp && *fp++) {
442 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
443 sp->dev->stats.rx_errors++;
444 continue;
445 }
446 }
447 sixpack_decode(sp, cp, count1);
448
449 sp_put(sp);
450 tty_unthrottle(tty);
451 }
452
453 /*
454 * Try to resync the TNC. Called by the resync timer defined in
455 * decode_prio_command
456 */
457
458 #define TNC_UNINITIALIZED 0
459 #define TNC_UNSYNC_STARTUP 1
460 #define TNC_UNSYNCED 2
461 #define TNC_IN_SYNC 3
462
__tnc_set_sync_state(struct sixpack * sp,int new_tnc_state)463 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
464 {
465 char *msg;
466
467 switch (new_tnc_state) {
468 default: /* gcc oh piece-o-crap ... */
469 case TNC_UNSYNC_STARTUP:
470 msg = "Synchronizing with TNC";
471 break;
472 case TNC_UNSYNCED:
473 msg = "Lost synchronization with TNC\n";
474 break;
475 case TNC_IN_SYNC:
476 msg = "Found TNC";
477 break;
478 }
479
480 sp->tnc_state = new_tnc_state;
481 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
482 }
483
tnc_set_sync_state(struct sixpack * sp,int new_tnc_state)484 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
485 {
486 int old_tnc_state = sp->tnc_state;
487
488 if (old_tnc_state != new_tnc_state)
489 __tnc_set_sync_state(sp, new_tnc_state);
490 }
491
resync_tnc(struct timer_list * t)492 static void resync_tnc(struct timer_list *t)
493 {
494 struct sixpack *sp = from_timer(sp, t, resync_t);
495 static char resync_cmd = 0xe8;
496
497 /* clear any data that might have been received */
498
499 sp->rx_count = 0;
500 sp->rx_count_cooked = 0;
501
502 /* reset state machine */
503
504 sp->status = 1;
505 sp->status1 = 1;
506 sp->status2 = 0;
507
508 /* resync the TNC */
509
510 sp->led_state = 0x60;
511 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
512 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
513
514
515 /* Start resync timer again -- the TNC might be still absent */
516 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
517 }
518
tnc_init(struct sixpack * sp)519 static inline int tnc_init(struct sixpack *sp)
520 {
521 unsigned char inbyte = 0xe8;
522
523 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
524
525 sp->tty->ops->write(sp->tty, &inbyte, 1);
526
527 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
528
529 return 0;
530 }
531
532 /*
533 * Open the high-level part of the 6pack channel.
534 * This function is called by the TTY module when the
535 * 6pack line discipline is called for. Because we are
536 * sure the tty line exists, we only have to link it to
537 * a free 6pcack channel...
538 */
sixpack_open(struct tty_struct * tty)539 static int sixpack_open(struct tty_struct *tty)
540 {
541 char *xbuff = NULL;
542 struct net_device *dev;
543 struct sixpack *sp;
544 unsigned long len;
545 int err = 0;
546
547 if (!capable(CAP_NET_ADMIN))
548 return -EPERM;
549 if (tty->ops->write == NULL)
550 return -EOPNOTSUPP;
551
552 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
553 sp_setup);
554 if (!dev) {
555 err = -ENOMEM;
556 goto out;
557 }
558
559 sp = netdev_priv(dev);
560 sp->dev = dev;
561
562 spin_lock_init(&sp->lock);
563 spin_lock_init(&sp->rxlock);
564 refcount_set(&sp->refcnt, 1);
565 init_completion(&sp->dead);
566
567 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
568
569 len = dev->mtu * 2;
570
571 xbuff = kmalloc(len + 4, GFP_KERNEL);
572 if (xbuff == NULL) {
573 err = -ENOBUFS;
574 goto out_free;
575 }
576
577 spin_lock_bh(&sp->lock);
578
579 sp->tty = tty;
580
581 sp->xbuff = xbuff;
582
583 sp->rcount = 0;
584 sp->rx_count = 0;
585 sp->rx_count_cooked = 0;
586 sp->xleft = 0;
587
588 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
589
590 sp->duplex = 0;
591 sp->tx_delay = SIXP_TXDELAY;
592 sp->persistence = SIXP_PERSIST;
593 sp->slottime = SIXP_SLOTTIME;
594 sp->led_state = 0x60;
595 sp->status = 1;
596 sp->status1 = 1;
597 sp->status2 = 0;
598 sp->tx_enable = 0;
599
600 netif_start_queue(dev);
601
602 timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
603
604 timer_setup(&sp->resync_t, resync_tnc, 0);
605
606 spin_unlock_bh(&sp->lock);
607
608 /* Done. We have linked the TTY line to a channel. */
609 tty->disc_data = sp;
610 tty->receive_room = 65536;
611
612 /* Now we're ready to register. */
613 err = register_netdev(dev);
614 if (err)
615 goto out_free;
616
617 tnc_init(sp);
618
619 return 0;
620
621 out_free:
622 kfree(xbuff);
623
624 free_netdev(dev);
625
626 out:
627 return err;
628 }
629
630
631 /*
632 * Close down a 6pack channel.
633 * This means flushing out any pending queues, and then restoring the
634 * TTY line discipline to what it was before it got hooked to 6pack
635 * (which usually is TTY again).
636 */
sixpack_close(struct tty_struct * tty)637 static void sixpack_close(struct tty_struct *tty)
638 {
639 struct sixpack *sp;
640
641 write_lock_irq(&disc_data_lock);
642 sp = tty->disc_data;
643 tty->disc_data = NULL;
644 write_unlock_irq(&disc_data_lock);
645 if (!sp)
646 return;
647
648 /*
649 * We have now ensured that nobody can start using ap from now on, but
650 * we have to wait for all existing users to finish.
651 */
652 if (!refcount_dec_and_test(&sp->refcnt))
653 wait_for_completion(&sp->dead);
654
655 /* We must stop the queue to avoid potentially scribbling
656 * on the free buffers. The sp->dead completion is not sufficient
657 * to protect us from sp->xbuff access.
658 */
659 netif_stop_queue(sp->dev);
660
661 unregister_netdev(sp->dev);
662
663 del_timer_sync(&sp->tx_t);
664 del_timer_sync(&sp->resync_t);
665
666 /* Free all 6pack frame buffers after unreg. */
667 kfree(sp->xbuff);
668
669 free_netdev(sp->dev);
670 }
671
672 /* Perform I/O control on an active 6pack channel. */
sixpack_ioctl(struct tty_struct * tty,unsigned int cmd,unsigned long arg)673 static int sixpack_ioctl(struct tty_struct *tty, unsigned int cmd,
674 unsigned long arg)
675 {
676 struct sixpack *sp = sp_get(tty);
677 struct net_device *dev;
678 unsigned int tmp, err;
679
680 if (!sp)
681 return -ENXIO;
682 dev = sp->dev;
683
684 switch(cmd) {
685 case SIOCGIFNAME:
686 err = copy_to_user((void __user *) arg, dev->name,
687 strlen(dev->name) + 1) ? -EFAULT : 0;
688 break;
689
690 case SIOCGIFENCAP:
691 err = put_user(0, (int __user *) arg);
692 break;
693
694 case SIOCSIFENCAP:
695 if (get_user(tmp, (int __user *) arg)) {
696 err = -EFAULT;
697 break;
698 }
699
700 sp->mode = tmp;
701 dev->addr_len = AX25_ADDR_LEN;
702 dev->hard_header_len = AX25_KISS_HEADER_LEN +
703 AX25_MAX_HEADER_LEN + 3;
704 dev->type = ARPHRD_AX25;
705
706 err = 0;
707 break;
708
709 case SIOCSIFHWADDR: {
710 char addr[AX25_ADDR_LEN];
711
712 if (copy_from_user(&addr,
713 (void __user *)arg, AX25_ADDR_LEN)) {
714 err = -EFAULT;
715 break;
716 }
717
718 netif_tx_lock_bh(dev);
719 __dev_addr_set(dev, &addr, AX25_ADDR_LEN);
720 netif_tx_unlock_bh(dev);
721 err = 0;
722 break;
723 }
724 default:
725 err = tty_mode_ioctl(tty, cmd, arg);
726 }
727
728 sp_put(sp);
729
730 return err;
731 }
732
733 static struct tty_ldisc_ops sp_ldisc = {
734 .owner = THIS_MODULE,
735 .num = N_6PACK,
736 .name = "6pack",
737 .open = sixpack_open,
738 .close = sixpack_close,
739 .ioctl = sixpack_ioctl,
740 .receive_buf = sixpack_receive_buf,
741 .write_wakeup = sixpack_write_wakeup,
742 };
743
744 /* Initialize 6pack control device -- register 6pack line discipline */
745
sixpack_init_driver(void)746 static int __init sixpack_init_driver(void)
747 {
748 int status;
749
750 /* Register the provided line protocol discipline */
751 status = tty_register_ldisc(&sp_ldisc);
752 if (status)
753 pr_err("6pack: can't register line discipline (err = %d)\n", status);
754
755 return status;
756 }
757
sixpack_exit_driver(void)758 static void __exit sixpack_exit_driver(void)
759 {
760 tty_unregister_ldisc(&sp_ldisc);
761 }
762
763 /* encode an AX.25 packet into 6pack */
764
encode_sixpack(unsigned char * tx_buf,unsigned char * tx_buf_raw,int length,unsigned char tx_delay)765 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
766 int length, unsigned char tx_delay)
767 {
768 int count = 0;
769 unsigned char checksum = 0, buf[400];
770 int raw_count = 0;
771
772 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
773 tx_buf_raw[raw_count++] = SIXP_SEOF;
774
775 buf[0] = tx_delay;
776 for (count = 1; count < length; count++)
777 buf[count] = tx_buf[count];
778
779 for (count = 0; count < length; count++)
780 checksum += buf[count];
781 buf[length] = (unsigned char) 0xff - checksum;
782
783 for (count = 0; count <= length; count++) {
784 if ((count % 3) == 0) {
785 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
786 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
787 } else if ((count % 3) == 1) {
788 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
789 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
790 } else {
791 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
792 tx_buf_raw[raw_count++] = (buf[count] >> 2);
793 }
794 }
795 if ((length % 3) != 2)
796 raw_count++;
797 tx_buf_raw[raw_count++] = SIXP_SEOF;
798 return raw_count;
799 }
800
801 /* decode 4 sixpack-encoded bytes into 3 data bytes */
802
decode_data(struct sixpack * sp,u8 inbyte)803 static void decode_data(struct sixpack *sp, u8 inbyte)
804 {
805 u8 *buf;
806
807 if (sp->rx_count != 3) {
808 sp->raw_buf[sp->rx_count++] = inbyte;
809
810 return;
811 }
812
813 if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
814 pr_err("6pack: cooked buffer overrun, data loss\n");
815 sp->rx_count = 0;
816 return;
817 }
818
819 buf = sp->raw_buf;
820 sp->cooked_buf[sp->rx_count_cooked++] =
821 buf[0] | ((buf[1] << 2) & 0xc0);
822 sp->cooked_buf[sp->rx_count_cooked++] =
823 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
824 sp->cooked_buf[sp->rx_count_cooked++] =
825 (buf[2] & 0x03) | (inbyte << 2);
826 sp->rx_count = 0;
827 }
828
829 /* identify and execute a 6pack priority command byte */
830
decode_prio_command(struct sixpack * sp,u8 cmd)831 static void decode_prio_command(struct sixpack *sp, u8 cmd)
832 {
833 ssize_t actual;
834
835 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
836
837 /* RX and DCD flags can only be set in the same prio command,
838 if the DCD flag has been set without the RX flag in the previous
839 prio command. If DCD has not been set before, something in the
840 transmission has gone wrong. In this case, RX and DCD are
841 cleared in order to prevent the decode_data routine from
842 reading further data that might be corrupt. */
843
844 if (((sp->status & SIXP_DCD_MASK) == 0) &&
845 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
846 if (sp->status != 1)
847 printk(KERN_DEBUG "6pack: protocol violation\n");
848 else
849 sp->status = 0;
850 cmd &= ~SIXP_RX_DCD_MASK;
851 }
852 sp->status = cmd & SIXP_PRIO_DATA_MASK;
853 } else { /* output watchdog char if idle */
854 if ((sp->status2 != 0) && (sp->duplex == 1)) {
855 sp->led_state = 0x70;
856 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
857 sp->tx_enable = 1;
858 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
859 sp->xleft -= actual;
860 sp->xhead += actual;
861 sp->led_state = 0x60;
862 sp->status2 = 0;
863
864 }
865 }
866
867 /* needed to trigger the TNC watchdog */
868 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
869
870 /* if the state byte has been received, the TNC is present,
871 so the resync timer can be reset. */
872
873 if (sp->tnc_state == TNC_IN_SYNC)
874 mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
875
876 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
877 }
878
879 /* identify and execute a standard 6pack command byte */
880
decode_std_command(struct sixpack * sp,u8 cmd)881 static void decode_std_command(struct sixpack *sp, u8 cmd)
882 {
883 u8 checksum = 0, rest = 0;
884 short i;
885
886 switch (cmd & SIXP_CMD_MASK) { /* normal command */
887 case SIXP_SEOF:
888 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
889 if ((sp->status & SIXP_RX_DCD_MASK) ==
890 SIXP_RX_DCD_MASK) {
891 sp->led_state = 0x68;
892 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
893 }
894 } else {
895 sp->led_state = 0x60;
896 /* fill trailing bytes with zeroes */
897 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
898 spin_lock_bh(&sp->rxlock);
899 rest = sp->rx_count;
900 if (rest != 0)
901 for (i = rest; i <= 3; i++)
902 decode_data(sp, 0);
903 if (rest == 2)
904 sp->rx_count_cooked -= 2;
905 else if (rest == 3)
906 sp->rx_count_cooked -= 1;
907 for (i = 0; i < sp->rx_count_cooked; i++)
908 checksum += sp->cooked_buf[i];
909 if (checksum != SIXP_CHKSUM) {
910 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
911 } else {
912 sp->rcount = sp->rx_count_cooked-2;
913 sp_bump(sp, 0);
914 }
915 sp->rx_count_cooked = 0;
916 spin_unlock_bh(&sp->rxlock);
917 }
918 break;
919 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
920 break;
921 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
922 break;
923 case SIXP_RX_BUF_OVL:
924 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
925 }
926 }
927
928 /* decode a 6pack packet */
929
930 static void
sixpack_decode(struct sixpack * sp,const u8 * pre_rbuff,size_t count)931 sixpack_decode(struct sixpack *sp, const u8 *pre_rbuff, size_t count)
932 {
933 size_t count1;
934 u8 inbyte;
935
936 for (count1 = 0; count1 < count; count1++) {
937 inbyte = pre_rbuff[count1];
938 if (inbyte == SIXP_FOUND_TNC) {
939 tnc_set_sync_state(sp, TNC_IN_SYNC);
940 del_timer(&sp->resync_t);
941 }
942 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
943 decode_prio_command(sp, inbyte);
944 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
945 decode_std_command(sp, inbyte);
946 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) {
947 spin_lock_bh(&sp->rxlock);
948 decode_data(sp, inbyte);
949 spin_unlock_bh(&sp->rxlock);
950 }
951 }
952 }
953
954 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
955 MODULE_DESCRIPTION("6pack driver for AX.25");
956 MODULE_LICENSE("GPL");
957 MODULE_ALIAS_LDISC(N_6PACK);
958
959 module_init(sixpack_init_driver);
960 module_exit(sixpack_exit_driver);
961