xref: /linux/drivers/net/hamradio/6pack.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <linux/uaccess.h>
17 #include <linux/bitops.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/in.h>
22 #include <linux/tty.h>
23 #include <linux/errno.h>
24 #include <linux/netdevice.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <linux/compat.h>
38 #include <linux/refcount.h>
39 
40 #define SIXPACK_VERSION    "Revision: 0.3.0"
41 
42 /* sixpack priority commands */
43 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
44 #define SIXP_TX_URUN		0x48	/* transmit overrun */
45 #define SIXP_RX_ORUN		0x50	/* receive overrun */
46 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
47 
48 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
49 
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51 
52 #define SIXP_CMD_MASK		0xC0
53 #define SIXP_CHN_MASK		0x07
54 #define SIXP_PRIO_CMD_MASK	0x80
55 #define SIXP_STD_CMD_MASK	0x40
56 #define SIXP_PRIO_DATA_MASK	0x38
57 #define SIXP_TX_MASK		0x20
58 #define SIXP_RX_MASK		0x10
59 #define SIXP_RX_DCD_MASK	0x18
60 #define SIXP_LEDS_ON		0x78
61 #define SIXP_LEDS_OFF		0x60
62 #define SIXP_CON		0x08
63 #define SIXP_STA		0x10
64 
65 #define SIXP_FOUND_TNC		0xe9
66 #define SIXP_CON_ON		0x68
67 #define SIXP_DCD_MASK		0x08
68 #define SIXP_DAMA_OFF		0
69 
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
72 #define SIXP_PERSIST			50	/* in 256ths */
73 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
74 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
76 
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
79 #define SIXP_MTU			256	/* Default MTU */
80 
81 enum sixpack_flags {
82 	SIXPF_ERROR,	/* Parity, etc. error	*/
83 };
84 
85 struct sixpack {
86 	/* Various fields. */
87 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
88 	struct net_device	*dev;		/* easy for intr handling  */
89 
90 	/* These are pointers to the malloc()ed frame buffers. */
91 	unsigned char		*rbuff;		/* receiver buffer	*/
92 	int			rcount;         /* received chars counter  */
93 	unsigned char		*xbuff;		/* transmitter buffer	*/
94 	unsigned char		*xhead;         /* next byte to XMIT */
95 	int			xleft;          /* bytes left in XMIT queue  */
96 
97 	unsigned char		raw_buf[4];
98 	unsigned char		cooked_buf[400];
99 
100 	unsigned int		rx_count;
101 	unsigned int		rx_count_cooked;
102 
103 	int			mtu;		/* Our mtu (to spot changes!) */
104 	int			buffsize;       /* Max buffers sizes */
105 
106 	unsigned long		flags;		/* Flag values/ mode etc */
107 	unsigned char		mode;		/* 6pack mode */
108 
109 	/* 6pack stuff */
110 	unsigned char		tx_delay;
111 	unsigned char		persistence;
112 	unsigned char		slottime;
113 	unsigned char		duplex;
114 	unsigned char		led_state;
115 	unsigned char		status;
116 	unsigned char		status1;
117 	unsigned char		status2;
118 	unsigned char		tx_enable;
119 	unsigned char		tnc_state;
120 
121 	struct timer_list	tx_t;
122 	struct timer_list	resync_t;
123 	refcount_t		refcnt;
124 	struct semaphore	dead_sem;
125 	spinlock_t		lock;
126 };
127 
128 #define AX25_6PACK_HEADER_LEN 0
129 
130 static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132 
133 /*
134  * Perform the persistence/slottime algorithm for CSMA access. If the
135  * persistence check was successful, write the data to the serial driver.
136  * Note that in case of DAMA operation, the data is not sent here.
137  */
138 
139 static void sp_xmit_on_air(struct timer_list *t)
140 {
141 	struct sixpack *sp = from_timer(sp, t, tx_t);
142 	int actual, when = sp->slottime;
143 	static unsigned char random;
144 
145 	random = random * 17 + 41;
146 
147 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 		sp->led_state = 0x70;
149 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 		sp->tx_enable = 1;
151 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 		sp->xleft -= actual;
153 		sp->xhead += actual;
154 		sp->led_state = 0x60;
155 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 		sp->status2 = 0;
157 	} else
158 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159 }
160 
161 /* ----> 6pack timer interrupt handler and friends. <---- */
162 
163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 {
166 	unsigned char *msg, *p = icp;
167 	int actual, count;
168 
169 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 		msg = "oversized transmit packet!";
171 		goto out_drop;
172 	}
173 
174 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 		msg = "oversized transmit packet!";
176 		goto out_drop;
177 	}
178 
179 	if (p[0] > 5) {
180 		msg = "invalid KISS command";
181 		goto out_drop;
182 	}
183 
184 	if ((p[0] != 0) && (len > 2)) {
185 		msg = "KISS control packet too long";
186 		goto out_drop;
187 	}
188 
189 	if ((p[0] == 0) && (len < 15)) {
190 		msg = "bad AX.25 packet to transmit";
191 		goto out_drop;
192 	}
193 
194 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196 
197 	switch (p[0]) {
198 	case 1:	sp->tx_delay = p[1];
199 		return;
200 	case 2:	sp->persistence = p[1];
201 		return;
202 	case 3:	sp->slottime = p[1];
203 		return;
204 	case 4:	/* ignored */
205 		return;
206 	case 5:	sp->duplex = p[1];
207 		return;
208 	}
209 
210 	if (p[0] != 0)
211 		return;
212 
213 	/*
214 	 * In case of fullduplex or DAMA operation, we don't take care about the
215 	 * state of the DCD or of any timers, as the determination of the
216 	 * correct time to send is the job of the AX.25 layer. We send
217 	 * immediately after data has arrived.
218 	 */
219 	if (sp->duplex == 1) {
220 		sp->led_state = 0x70;
221 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 		sp->tx_enable = 1;
223 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 		sp->xleft = count - actual;
225 		sp->xhead = sp->xbuff + actual;
226 		sp->led_state = 0x60;
227 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 	} else {
229 		sp->xleft = count;
230 		sp->xhead = sp->xbuff;
231 		sp->status2 = count;
232 		sp_xmit_on_air(&sp->tx_t);
233 	}
234 
235 	return;
236 
237 out_drop:
238 	sp->dev->stats.tx_dropped++;
239 	netif_start_queue(sp->dev);
240 	if (net_ratelimit())
241 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242 }
243 
244 /* Encapsulate an IP datagram and kick it into a TTY queue. */
245 
246 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247 {
248 	struct sixpack *sp = netdev_priv(dev);
249 
250 	if (skb->protocol == htons(ETH_P_IP))
251 		return ax25_ip_xmit(skb);
252 
253 	spin_lock_bh(&sp->lock);
254 	/* We were not busy, so we are now... :-) */
255 	netif_stop_queue(dev);
256 	dev->stats.tx_bytes += skb->len;
257 	sp_encaps(sp, skb->data, skb->len);
258 	spin_unlock_bh(&sp->lock);
259 
260 	dev_kfree_skb(skb);
261 
262 	return NETDEV_TX_OK;
263 }
264 
265 static int sp_open_dev(struct net_device *dev)
266 {
267 	struct sixpack *sp = netdev_priv(dev);
268 
269 	if (sp->tty == NULL)
270 		return -ENODEV;
271 	return 0;
272 }
273 
274 /* Close the low-level part of the 6pack channel. */
275 static int sp_close(struct net_device *dev)
276 {
277 	struct sixpack *sp = netdev_priv(dev);
278 
279 	spin_lock_bh(&sp->lock);
280 	if (sp->tty) {
281 		/* TTY discipline is running. */
282 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283 	}
284 	netif_stop_queue(dev);
285 	spin_unlock_bh(&sp->lock);
286 
287 	return 0;
288 }
289 
290 static int sp_set_mac_address(struct net_device *dev, void *addr)
291 {
292 	struct sockaddr_ax25 *sa = addr;
293 
294 	netif_tx_lock_bh(dev);
295 	netif_addr_lock(dev);
296 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297 	netif_addr_unlock(dev);
298 	netif_tx_unlock_bh(dev);
299 
300 	return 0;
301 }
302 
303 static const struct net_device_ops sp_netdev_ops = {
304 	.ndo_open		= sp_open_dev,
305 	.ndo_stop		= sp_close,
306 	.ndo_start_xmit		= sp_xmit,
307 	.ndo_set_mac_address    = sp_set_mac_address,
308 };
309 
310 static void sp_setup(struct net_device *dev)
311 {
312 	/* Finish setting up the DEVICE info. */
313 	dev->netdev_ops		= &sp_netdev_ops;
314 	dev->needs_free_netdev	= true;
315 	dev->mtu		= SIXP_MTU;
316 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
317 	dev->header_ops 	= &ax25_header_ops;
318 
319 	dev->addr_len		= AX25_ADDR_LEN;
320 	dev->type		= ARPHRD_AX25;
321 	dev->tx_queue_len	= 10;
322 
323 	/* Only activated in AX.25 mode */
324 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326 
327 	dev->flags		= 0;
328 }
329 
330 /* Send one completely decapsulated IP datagram to the IP layer. */
331 
332 /*
333  * This is the routine that sends the received data to the kernel AX.25.
334  * 'cmd' is the KISS command. For AX.25 data, it is zero.
335  */
336 
337 static void sp_bump(struct sixpack *sp, char cmd)
338 {
339 	struct sk_buff *skb;
340 	int count;
341 	unsigned char *ptr;
342 
343 	count = sp->rcount + 1;
344 
345 	sp->dev->stats.rx_bytes += count;
346 
347 	if ((skb = dev_alloc_skb(count)) == NULL)
348 		goto out_mem;
349 
350 	ptr = skb_put(skb, count);
351 	*ptr++ = cmd;	/* KISS command */
352 
353 	memcpy(ptr, sp->cooked_buf + 1, count);
354 	skb->protocol = ax25_type_trans(skb, sp->dev);
355 	netif_rx(skb);
356 	sp->dev->stats.rx_packets++;
357 
358 	return;
359 
360 out_mem:
361 	sp->dev->stats.rx_dropped++;
362 }
363 
364 
365 /* ----------------------------------------------------------------------- */
366 
367 /*
368  * We have a potential race on dereferencing tty->disc_data, because the tty
369  * layer provides no locking at all - thus one cpu could be running
370  * sixpack_receive_buf while another calls sixpack_close, which zeroes
371  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
372  * best way to fix this is to use a rwlock in the tty struct, but for now we
373  * use a single global rwlock for all ttys in ppp line discipline.
374  */
375 static DEFINE_RWLOCK(disc_data_lock);
376 
377 static struct sixpack *sp_get(struct tty_struct *tty)
378 {
379 	struct sixpack *sp;
380 
381 	read_lock(&disc_data_lock);
382 	sp = tty->disc_data;
383 	if (sp)
384 		refcount_inc(&sp->refcnt);
385 	read_unlock(&disc_data_lock);
386 
387 	return sp;
388 }
389 
390 static void sp_put(struct sixpack *sp)
391 {
392 	if (refcount_dec_and_test(&sp->refcnt))
393 		up(&sp->dead_sem);
394 }
395 
396 /*
397  * Called by the TTY driver when there's room for more data.  If we have
398  * more packets to send, we send them here.
399  */
400 static void sixpack_write_wakeup(struct tty_struct *tty)
401 {
402 	struct sixpack *sp = sp_get(tty);
403 	int actual;
404 
405 	if (!sp)
406 		return;
407 	if (sp->xleft <= 0)  {
408 		/* Now serial buffer is almost free & we can start
409 		 * transmission of another packet */
410 		sp->dev->stats.tx_packets++;
411 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412 		sp->tx_enable = 0;
413 		netif_wake_queue(sp->dev);
414 		goto out;
415 	}
416 
417 	if (sp->tx_enable) {
418 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419 		sp->xleft -= actual;
420 		sp->xhead += actual;
421 	}
422 
423 out:
424 	sp_put(sp);
425 }
426 
427 /* ----------------------------------------------------------------------- */
428 
429 /*
430  * Handle the 'receiver data ready' interrupt.
431  * This function is called by the tty module in the kernel when
432  * a block of 6pack data has been received, which can now be decapsulated
433  * and sent on to some IP layer for further processing.
434  */
435 static void sixpack_receive_buf(struct tty_struct *tty,
436 	const unsigned char *cp, char *fp, int count)
437 {
438 	struct sixpack *sp;
439 	int count1;
440 
441 	if (!count)
442 		return;
443 
444 	sp = sp_get(tty);
445 	if (!sp)
446 		return;
447 
448 	/* Read the characters out of the buffer */
449 	count1 = count;
450 	while (count) {
451 		count--;
452 		if (fp && *fp++) {
453 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
454 				sp->dev->stats.rx_errors++;
455 			continue;
456 		}
457 	}
458 	sixpack_decode(sp, cp, count1);
459 
460 	sp_put(sp);
461 	tty_unthrottle(tty);
462 }
463 
464 /*
465  * Try to resync the TNC. Called by the resync timer defined in
466  * decode_prio_command
467  */
468 
469 #define TNC_UNINITIALIZED	0
470 #define TNC_UNSYNC_STARTUP	1
471 #define TNC_UNSYNCED		2
472 #define TNC_IN_SYNC		3
473 
474 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
475 {
476 	char *msg;
477 
478 	switch (new_tnc_state) {
479 	default:			/* gcc oh piece-o-crap ... */
480 	case TNC_UNSYNC_STARTUP:
481 		msg = "Synchronizing with TNC";
482 		break;
483 	case TNC_UNSYNCED:
484 		msg = "Lost synchronization with TNC\n";
485 		break;
486 	case TNC_IN_SYNC:
487 		msg = "Found TNC";
488 		break;
489 	}
490 
491 	sp->tnc_state = new_tnc_state;
492 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
493 }
494 
495 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
496 {
497 	int old_tnc_state = sp->tnc_state;
498 
499 	if (old_tnc_state != new_tnc_state)
500 		__tnc_set_sync_state(sp, new_tnc_state);
501 }
502 
503 static void resync_tnc(struct timer_list *t)
504 {
505 	struct sixpack *sp = from_timer(sp, t, resync_t);
506 	static char resync_cmd = 0xe8;
507 
508 	/* clear any data that might have been received */
509 
510 	sp->rx_count = 0;
511 	sp->rx_count_cooked = 0;
512 
513 	/* reset state machine */
514 
515 	sp->status = 1;
516 	sp->status1 = 1;
517 	sp->status2 = 0;
518 
519 	/* resync the TNC */
520 
521 	sp->led_state = 0x60;
522 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
523 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
524 
525 
526 	/* Start resync timer again -- the TNC might be still absent */
527 
528 	del_timer(&sp->resync_t);
529 	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
530 	add_timer(&sp->resync_t);
531 }
532 
533 static inline int tnc_init(struct sixpack *sp)
534 {
535 	unsigned char inbyte = 0xe8;
536 
537 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
538 
539 	sp->tty->ops->write(sp->tty, &inbyte, 1);
540 
541 	del_timer(&sp->resync_t);
542 	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
543 	add_timer(&sp->resync_t);
544 
545 	return 0;
546 }
547 
548 /*
549  * Open the high-level part of the 6pack channel.
550  * This function is called by the TTY module when the
551  * 6pack line discipline is called for.  Because we are
552  * sure the tty line exists, we only have to link it to
553  * a free 6pcack channel...
554  */
555 static int sixpack_open(struct tty_struct *tty)
556 {
557 	char *rbuff = NULL, *xbuff = NULL;
558 	struct net_device *dev;
559 	struct sixpack *sp;
560 	unsigned long len;
561 	int err = 0;
562 
563 	if (!capable(CAP_NET_ADMIN))
564 		return -EPERM;
565 	if (tty->ops->write == NULL)
566 		return -EOPNOTSUPP;
567 
568 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
569 			   sp_setup);
570 	if (!dev) {
571 		err = -ENOMEM;
572 		goto out;
573 	}
574 
575 	sp = netdev_priv(dev);
576 	sp->dev = dev;
577 
578 	spin_lock_init(&sp->lock);
579 	refcount_set(&sp->refcnt, 1);
580 	sema_init(&sp->dead_sem, 0);
581 
582 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
583 
584 	len = dev->mtu * 2;
585 
586 	rbuff = kmalloc(len + 4, GFP_KERNEL);
587 	xbuff = kmalloc(len + 4, GFP_KERNEL);
588 
589 	if (rbuff == NULL || xbuff == NULL) {
590 		err = -ENOBUFS;
591 		goto out_free;
592 	}
593 
594 	spin_lock_bh(&sp->lock);
595 
596 	sp->tty = tty;
597 
598 	sp->rbuff	= rbuff;
599 	sp->xbuff	= xbuff;
600 
601 	sp->mtu		= AX25_MTU + 73;
602 	sp->buffsize	= len;
603 	sp->rcount	= 0;
604 	sp->rx_count	= 0;
605 	sp->rx_count_cooked = 0;
606 	sp->xleft	= 0;
607 
608 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
609 
610 	sp->duplex	= 0;
611 	sp->tx_delay    = SIXP_TXDELAY;
612 	sp->persistence = SIXP_PERSIST;
613 	sp->slottime    = SIXP_SLOTTIME;
614 	sp->led_state   = 0x60;
615 	sp->status      = 1;
616 	sp->status1     = 1;
617 	sp->status2     = 0;
618 	sp->tx_enable   = 0;
619 
620 	netif_start_queue(dev);
621 
622 	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
623 
624 	timer_setup(&sp->resync_t, resync_tnc, 0);
625 
626 	spin_unlock_bh(&sp->lock);
627 
628 	/* Done.  We have linked the TTY line to a channel. */
629 	tty->disc_data = sp;
630 	tty->receive_room = 65536;
631 
632 	/* Now we're ready to register. */
633 	err = register_netdev(dev);
634 	if (err)
635 		goto out_free;
636 
637 	tnc_init(sp);
638 
639 	return 0;
640 
641 out_free:
642 	kfree(xbuff);
643 	kfree(rbuff);
644 
645 	free_netdev(dev);
646 
647 out:
648 	return err;
649 }
650 
651 
652 /*
653  * Close down a 6pack channel.
654  * This means flushing out any pending queues, and then restoring the
655  * TTY line discipline to what it was before it got hooked to 6pack
656  * (which usually is TTY again).
657  */
658 static void sixpack_close(struct tty_struct *tty)
659 {
660 	struct sixpack *sp;
661 
662 	write_lock_bh(&disc_data_lock);
663 	sp = tty->disc_data;
664 	tty->disc_data = NULL;
665 	write_unlock_bh(&disc_data_lock);
666 	if (!sp)
667 		return;
668 
669 	/*
670 	 * We have now ensured that nobody can start using ap from now on, but
671 	 * we have to wait for all existing users to finish.
672 	 */
673 	if (!refcount_dec_and_test(&sp->refcnt))
674 		down(&sp->dead_sem);
675 
676 	/* We must stop the queue to avoid potentially scribbling
677 	 * on the free buffers. The sp->dead_sem is not sufficient
678 	 * to protect us from sp->xbuff access.
679 	 */
680 	netif_stop_queue(sp->dev);
681 
682 	del_timer_sync(&sp->tx_t);
683 	del_timer_sync(&sp->resync_t);
684 
685 	/* Free all 6pack frame buffers. */
686 	kfree(sp->rbuff);
687 	kfree(sp->xbuff);
688 
689 	unregister_netdev(sp->dev);
690 }
691 
692 /* Perform I/O control on an active 6pack channel. */
693 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
694 	unsigned int cmd, unsigned long arg)
695 {
696 	struct sixpack *sp = sp_get(tty);
697 	struct net_device *dev;
698 	unsigned int tmp, err;
699 
700 	if (!sp)
701 		return -ENXIO;
702 	dev = sp->dev;
703 
704 	switch(cmd) {
705 	case SIOCGIFNAME:
706 		err = copy_to_user((void __user *) arg, dev->name,
707 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
708 		break;
709 
710 	case SIOCGIFENCAP:
711 		err = put_user(0, (int __user *) arg);
712 		break;
713 
714 	case SIOCSIFENCAP:
715 		if (get_user(tmp, (int __user *) arg)) {
716 			err = -EFAULT;
717 			break;
718 		}
719 
720 		sp->mode = tmp;
721 		dev->addr_len        = AX25_ADDR_LEN;
722 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
723 		                       AX25_MAX_HEADER_LEN + 3;
724 		dev->type            = ARPHRD_AX25;
725 
726 		err = 0;
727 		break;
728 
729 	 case SIOCSIFHWADDR: {
730 		char addr[AX25_ADDR_LEN];
731 
732 		if (copy_from_user(&addr,
733 		                   (void __user *) arg, AX25_ADDR_LEN)) {
734 				err = -EFAULT;
735 				break;
736 			}
737 
738 			netif_tx_lock_bh(dev);
739 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
740 			netif_tx_unlock_bh(dev);
741 
742 			err = 0;
743 			break;
744 		}
745 
746 	default:
747 		err = tty_mode_ioctl(tty, file, cmd, arg);
748 	}
749 
750 	sp_put(sp);
751 
752 	return err;
753 }
754 
755 #ifdef CONFIG_COMPAT
756 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
757 				unsigned int cmd, unsigned long arg)
758 {
759 	switch (cmd) {
760 	case SIOCGIFNAME:
761 	case SIOCGIFENCAP:
762 	case SIOCSIFENCAP:
763 	case SIOCSIFHWADDR:
764 		return sixpack_ioctl(tty, file, cmd,
765 				(unsigned long)compat_ptr(arg));
766 	}
767 
768 	return -ENOIOCTLCMD;
769 }
770 #endif
771 
772 static struct tty_ldisc_ops sp_ldisc = {
773 	.owner		= THIS_MODULE,
774 	.magic		= TTY_LDISC_MAGIC,
775 	.name		= "6pack",
776 	.open		= sixpack_open,
777 	.close		= sixpack_close,
778 	.ioctl		= sixpack_ioctl,
779 #ifdef CONFIG_COMPAT
780 	.compat_ioctl	= sixpack_compat_ioctl,
781 #endif
782 	.receive_buf	= sixpack_receive_buf,
783 	.write_wakeup	= sixpack_write_wakeup,
784 };
785 
786 /* Initialize 6pack control device -- register 6pack line discipline */
787 
788 static const char msg_banner[]  __initconst = KERN_INFO \
789 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
790 static const char msg_regfail[] __initconst = KERN_ERR  \
791 	"6pack: can't register line discipline (err = %d)\n";
792 
793 static int __init sixpack_init_driver(void)
794 {
795 	int status;
796 
797 	printk(msg_banner);
798 
799 	/* Register the provided line protocol discipline */
800 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
801 		printk(msg_regfail, status);
802 
803 	return status;
804 }
805 
806 static const char msg_unregfail[] = KERN_ERR \
807 	"6pack: can't unregister line discipline (err = %d)\n";
808 
809 static void __exit sixpack_exit_driver(void)
810 {
811 	int ret;
812 
813 	if ((ret = tty_unregister_ldisc(N_6PACK)))
814 		printk(msg_unregfail, ret);
815 }
816 
817 /* encode an AX.25 packet into 6pack */
818 
819 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
820 	int length, unsigned char tx_delay)
821 {
822 	int count = 0;
823 	unsigned char checksum = 0, buf[400];
824 	int raw_count = 0;
825 
826 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
827 	tx_buf_raw[raw_count++] = SIXP_SEOF;
828 
829 	buf[0] = tx_delay;
830 	for (count = 1; count < length; count++)
831 		buf[count] = tx_buf[count];
832 
833 	for (count = 0; count < length; count++)
834 		checksum += buf[count];
835 	buf[length] = (unsigned char) 0xff - checksum;
836 
837 	for (count = 0; count <= length; count++) {
838 		if ((count % 3) == 0) {
839 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
840 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
841 		} else if ((count % 3) == 1) {
842 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
843 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
844 		} else {
845 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
846 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
847 		}
848 	}
849 	if ((length % 3) != 2)
850 		raw_count++;
851 	tx_buf_raw[raw_count++] = SIXP_SEOF;
852 	return raw_count;
853 }
854 
855 /* decode 4 sixpack-encoded bytes into 3 data bytes */
856 
857 static void decode_data(struct sixpack *sp, unsigned char inbyte)
858 {
859 	unsigned char *buf;
860 
861 	if (sp->rx_count != 3) {
862 		sp->raw_buf[sp->rx_count++] = inbyte;
863 
864 		return;
865 	}
866 
867 	buf = sp->raw_buf;
868 	sp->cooked_buf[sp->rx_count_cooked++] =
869 		buf[0] | ((buf[1] << 2) & 0xc0);
870 	sp->cooked_buf[sp->rx_count_cooked++] =
871 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
872 	sp->cooked_buf[sp->rx_count_cooked++] =
873 		(buf[2] & 0x03) | (inbyte << 2);
874 	sp->rx_count = 0;
875 }
876 
877 /* identify and execute a 6pack priority command byte */
878 
879 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
880 {
881 	int actual;
882 
883 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
884 
885 	/* RX and DCD flags can only be set in the same prio command,
886 	   if the DCD flag has been set without the RX flag in the previous
887 	   prio command. If DCD has not been set before, something in the
888 	   transmission has gone wrong. In this case, RX and DCD are
889 	   cleared in order to prevent the decode_data routine from
890 	   reading further data that might be corrupt. */
891 
892 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
893 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
894 				if (sp->status != 1)
895 					printk(KERN_DEBUG "6pack: protocol violation\n");
896 				else
897 					sp->status = 0;
898 				cmd &= ~SIXP_RX_DCD_MASK;
899 		}
900 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
901 	} else { /* output watchdog char if idle */
902 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
903 			sp->led_state = 0x70;
904 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
905 			sp->tx_enable = 1;
906 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
907 			sp->xleft -= actual;
908 			sp->xhead += actual;
909 			sp->led_state = 0x60;
910 			sp->status2 = 0;
911 
912 		}
913 	}
914 
915 	/* needed to trigger the TNC watchdog */
916 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
917 
918         /* if the state byte has been received, the TNC is present,
919            so the resync timer can be reset. */
920 
921 	if (sp->tnc_state == TNC_IN_SYNC) {
922 		del_timer(&sp->resync_t);
923 		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
924 		add_timer(&sp->resync_t);
925 	}
926 
927 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
928 }
929 
930 /* identify and execute a standard 6pack command byte */
931 
932 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
933 {
934 	unsigned char checksum = 0, rest = 0;
935 	short i;
936 
937 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
938 	case SIXP_SEOF:
939 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
940 			if ((sp->status & SIXP_RX_DCD_MASK) ==
941 				SIXP_RX_DCD_MASK) {
942 				sp->led_state = 0x68;
943 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
944 			}
945 		} else {
946 			sp->led_state = 0x60;
947 			/* fill trailing bytes with zeroes */
948 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
949 			rest = sp->rx_count;
950 			if (rest != 0)
951 				 for (i = rest; i <= 3; i++)
952 					decode_data(sp, 0);
953 			if (rest == 2)
954 				sp->rx_count_cooked -= 2;
955 			else if (rest == 3)
956 				sp->rx_count_cooked -= 1;
957 			for (i = 0; i < sp->rx_count_cooked; i++)
958 				checksum += sp->cooked_buf[i];
959 			if (checksum != SIXP_CHKSUM) {
960 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
961 			} else {
962 				sp->rcount = sp->rx_count_cooked-2;
963 				sp_bump(sp, 0);
964 			}
965 			sp->rx_count_cooked = 0;
966 		}
967 		break;
968 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
969 		break;
970 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
971 		break;
972 	case SIXP_RX_BUF_OVL:
973 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
974 	}
975 }
976 
977 /* decode a 6pack packet */
978 
979 static void
980 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
981 {
982 	unsigned char inbyte;
983 	int count1;
984 
985 	for (count1 = 0; count1 < count; count1++) {
986 		inbyte = pre_rbuff[count1];
987 		if (inbyte == SIXP_FOUND_TNC) {
988 			tnc_set_sync_state(sp, TNC_IN_SYNC);
989 			del_timer(&sp->resync_t);
990 		}
991 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
992 			decode_prio_command(sp, inbyte);
993 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
994 			decode_std_command(sp, inbyte);
995 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
996 			decode_data(sp, inbyte);
997 	}
998 }
999 
1000 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1001 MODULE_DESCRIPTION("6pack driver for AX.25");
1002 MODULE_LICENSE("GPL");
1003 MODULE_ALIAS_LDISC(N_6PACK);
1004 
1005 module_init(sixpack_init_driver);
1006 module_exit(sixpack_exit_driver);
1007