xref: /linux/drivers/net/hamradio/6pack.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * 6pack.c	This module implements the 6pack protocol for kernel-based
3  *		devices like TTY. It interfaces between a raw TTY and the
4  *		kernel's AX.25 protocol layers.
5  *
6  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
7  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
8  *
9  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10  *
11  *		Laurence Culhane, <loz@holmes.demon.co.uk>
12  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13  */
14 
15 #include <linux/module.h>
16 #include <asm/system.h>
17 #include <asm/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/in.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <net/ax25.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/spinlock.h>
33 #include <linux/if_arp.h>
34 #include <linux/init.h>
35 #include <linux/ip.h>
36 #include <linux/tcp.h>
37 #include <linux/semaphore.h>
38 #include <linux/compat.h>
39 #include <asm/atomic.h>
40 
41 #define SIXPACK_VERSION    "Revision: 0.3.0"
42 
43 /* sixpack priority commands */
44 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
45 #define SIXP_TX_URUN		0x48	/* transmit overrun */
46 #define SIXP_RX_ORUN		0x50	/* receive overrun */
47 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
48 
49 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
50 
51 /* masks to get certain bits out of the status bytes sent by the TNC */
52 
53 #define SIXP_CMD_MASK		0xC0
54 #define SIXP_CHN_MASK		0x07
55 #define SIXP_PRIO_CMD_MASK	0x80
56 #define SIXP_STD_CMD_MASK	0x40
57 #define SIXP_PRIO_DATA_MASK	0x38
58 #define SIXP_TX_MASK		0x20
59 #define SIXP_RX_MASK		0x10
60 #define SIXP_RX_DCD_MASK	0x18
61 #define SIXP_LEDS_ON		0x78
62 #define SIXP_LEDS_OFF		0x60
63 #define SIXP_CON		0x08
64 #define SIXP_STA		0x10
65 
66 #define SIXP_FOUND_TNC		0xe9
67 #define SIXP_CON_ON		0x68
68 #define SIXP_DCD_MASK		0x08
69 #define SIXP_DAMA_OFF		0
70 
71 /* default level 2 parameters */
72 #define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
73 #define SIXP_PERSIST			50	/* in 256ths */
74 #define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
75 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
76 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
77 
78 /* 6pack configuration. */
79 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
80 #define SIXP_MTU			256	/* Default MTU */
81 
82 enum sixpack_flags {
83 	SIXPF_ERROR,	/* Parity, etc. error	*/
84 };
85 
86 struct sixpack {
87 	/* Various fields. */
88 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
89 	struct net_device	*dev;		/* easy for intr handling  */
90 
91 	/* These are pointers to the malloc()ed frame buffers. */
92 	unsigned char		*rbuff;		/* receiver buffer	*/
93 	int			rcount;         /* received chars counter  */
94 	unsigned char		*xbuff;		/* transmitter buffer	*/
95 	unsigned char		*xhead;         /* next byte to XMIT */
96 	int			xleft;          /* bytes left in XMIT queue  */
97 
98 	unsigned char		raw_buf[4];
99 	unsigned char		cooked_buf[400];
100 
101 	unsigned int		rx_count;
102 	unsigned int		rx_count_cooked;
103 
104 	int			mtu;		/* Our mtu (to spot changes!) */
105 	int			buffsize;       /* Max buffers sizes */
106 
107 	unsigned long		flags;		/* Flag values/ mode etc */
108 	unsigned char		mode;		/* 6pack mode */
109 
110 	/* 6pack stuff */
111 	unsigned char		tx_delay;
112 	unsigned char		persistence;
113 	unsigned char		slottime;
114 	unsigned char		duplex;
115 	unsigned char		led_state;
116 	unsigned char		status;
117 	unsigned char		status1;
118 	unsigned char		status2;
119 	unsigned char		tx_enable;
120 	unsigned char		tnc_state;
121 
122 	struct timer_list	tx_t;
123 	struct timer_list	resync_t;
124 	atomic_t		refcnt;
125 	struct semaphore	dead_sem;
126 	spinlock_t		lock;
127 };
128 
129 #define AX25_6PACK_HEADER_LEN 0
130 
131 static void sixpack_decode(struct sixpack *, unsigned char[], int);
132 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
133 
134 /*
135  * Perform the persistence/slottime algorithm for CSMA access. If the
136  * persistence check was successful, write the data to the serial driver.
137  * Note that in case of DAMA operation, the data is not sent here.
138  */
139 
140 static void sp_xmit_on_air(unsigned long channel)
141 {
142 	struct sixpack *sp = (struct sixpack *) channel;
143 	int actual, when = sp->slottime;
144 	static unsigned char random;
145 
146 	random = random * 17 + 41;
147 
148 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
149 		sp->led_state = 0x70;
150 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151 		sp->tx_enable = 1;
152 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
153 		sp->xleft -= actual;
154 		sp->xhead += actual;
155 		sp->led_state = 0x60;
156 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
157 		sp->status2 = 0;
158 	} else
159 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
160 }
161 
162 /* ----> 6pack timer interrupt handler and friends. <---- */
163 
164 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
165 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
166 {
167 	unsigned char *msg, *p = icp;
168 	int actual, count;
169 
170 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
171 		msg = "oversized transmit packet!";
172 		goto out_drop;
173 	}
174 
175 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
176 		msg = "oversized transmit packet!";
177 		goto out_drop;
178 	}
179 
180 	if (p[0] > 5) {
181 		msg = "invalid KISS command";
182 		goto out_drop;
183 	}
184 
185 	if ((p[0] != 0) && (len > 2)) {
186 		msg = "KISS control packet too long";
187 		goto out_drop;
188 	}
189 
190 	if ((p[0] == 0) && (len < 15)) {
191 		msg = "bad AX.25 packet to transmit";
192 		goto out_drop;
193 	}
194 
195 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
196 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
197 
198 	switch (p[0]) {
199 	case 1:	sp->tx_delay = p[1];
200 		return;
201 	case 2:	sp->persistence = p[1];
202 		return;
203 	case 3:	sp->slottime = p[1];
204 		return;
205 	case 4:	/* ignored */
206 		return;
207 	case 5:	sp->duplex = p[1];
208 		return;
209 	}
210 
211 	if (p[0] != 0)
212 		return;
213 
214 	/*
215 	 * In case of fullduplex or DAMA operation, we don't take care about the
216 	 * state of the DCD or of any timers, as the determination of the
217 	 * correct time to send is the job of the AX.25 layer. We send
218 	 * immediately after data has arrived.
219 	 */
220 	if (sp->duplex == 1) {
221 		sp->led_state = 0x70;
222 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
223 		sp->tx_enable = 1;
224 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
225 		sp->xleft = count - actual;
226 		sp->xhead = sp->xbuff + actual;
227 		sp->led_state = 0x60;
228 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
229 	} else {
230 		sp->xleft = count;
231 		sp->xhead = sp->xbuff;
232 		sp->status2 = count;
233 		sp_xmit_on_air((unsigned long)sp);
234 	}
235 
236 	return;
237 
238 out_drop:
239 	sp->dev->stats.tx_dropped++;
240 	netif_start_queue(sp->dev);
241 	if (net_ratelimit())
242 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
243 }
244 
245 /* Encapsulate an IP datagram and kick it into a TTY queue. */
246 
247 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
248 {
249 	struct sixpack *sp = netdev_priv(dev);
250 
251 	spin_lock_bh(&sp->lock);
252 	/* We were not busy, so we are now... :-) */
253 	netif_stop_queue(dev);
254 	dev->stats.tx_bytes += skb->len;
255 	sp_encaps(sp, skb->data, skb->len);
256 	spin_unlock_bh(&sp->lock);
257 
258 	dev_kfree_skb(skb);
259 
260 	return NETDEV_TX_OK;
261 }
262 
263 static int sp_open_dev(struct net_device *dev)
264 {
265 	struct sixpack *sp = netdev_priv(dev);
266 
267 	if (sp->tty == NULL)
268 		return -ENODEV;
269 	return 0;
270 }
271 
272 /* Close the low-level part of the 6pack channel. */
273 static int sp_close(struct net_device *dev)
274 {
275 	struct sixpack *sp = netdev_priv(dev);
276 
277 	spin_lock_bh(&sp->lock);
278 	if (sp->tty) {
279 		/* TTY discipline is running. */
280 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
281 	}
282 	netif_stop_queue(dev);
283 	spin_unlock_bh(&sp->lock);
284 
285 	return 0;
286 }
287 
288 /* Return the frame type ID */
289 static int sp_header(struct sk_buff *skb, struct net_device *dev,
290 		     unsigned short type, const void *daddr,
291 		     const void *saddr, unsigned len)
292 {
293 #ifdef CONFIG_INET
294 	if (type != ETH_P_AX25)
295 		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
296 #endif
297 	return 0;
298 }
299 
300 static int sp_set_mac_address(struct net_device *dev, void *addr)
301 {
302 	struct sockaddr_ax25 *sa = addr;
303 
304 	netif_tx_lock_bh(dev);
305 	netif_addr_lock(dev);
306 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
307 	netif_addr_unlock(dev);
308 	netif_tx_unlock_bh(dev);
309 
310 	return 0;
311 }
312 
313 static int sp_rebuild_header(struct sk_buff *skb)
314 {
315 #ifdef CONFIG_INET
316 	return ax25_rebuild_header(skb);
317 #else
318 	return 0;
319 #endif
320 }
321 
322 static const struct header_ops sp_header_ops = {
323 	.create		= sp_header,
324 	.rebuild	= sp_rebuild_header,
325 };
326 
327 static const struct net_device_ops sp_netdev_ops = {
328 	.ndo_open		= sp_open_dev,
329 	.ndo_stop		= sp_close,
330 	.ndo_start_xmit		= sp_xmit,
331 	.ndo_set_mac_address    = sp_set_mac_address,
332 };
333 
334 static void sp_setup(struct net_device *dev)
335 {
336 	/* Finish setting up the DEVICE info. */
337 	dev->netdev_ops		= &sp_netdev_ops;
338 	dev->destructor		= free_netdev;
339 	dev->mtu		= SIXP_MTU;
340 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
341 	dev->header_ops 	= &sp_header_ops;
342 
343 	dev->addr_len		= AX25_ADDR_LEN;
344 	dev->type		= ARPHRD_AX25;
345 	dev->tx_queue_len	= 10;
346 
347 	/* Only activated in AX.25 mode */
348 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
349 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
350 
351 	dev->flags		= 0;
352 }
353 
354 /* Send one completely decapsulated IP datagram to the IP layer. */
355 
356 /*
357  * This is the routine that sends the received data to the kernel AX.25.
358  * 'cmd' is the KISS command. For AX.25 data, it is zero.
359  */
360 
361 static void sp_bump(struct sixpack *sp, char cmd)
362 {
363 	struct sk_buff *skb;
364 	int count;
365 	unsigned char *ptr;
366 
367 	count = sp->rcount + 1;
368 
369 	sp->dev->stats.rx_bytes += count;
370 
371 	if ((skb = dev_alloc_skb(count)) == NULL)
372 		goto out_mem;
373 
374 	ptr = skb_put(skb, count);
375 	*ptr++ = cmd;	/* KISS command */
376 
377 	memcpy(ptr, sp->cooked_buf + 1, count);
378 	skb->protocol = ax25_type_trans(skb, sp->dev);
379 	netif_rx(skb);
380 	sp->dev->stats.rx_packets++;
381 
382 	return;
383 
384 out_mem:
385 	sp->dev->stats.rx_dropped++;
386 }
387 
388 
389 /* ----------------------------------------------------------------------- */
390 
391 /*
392  * We have a potential race on dereferencing tty->disc_data, because the tty
393  * layer provides no locking at all - thus one cpu could be running
394  * sixpack_receive_buf while another calls sixpack_close, which zeroes
395  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
396  * best way to fix this is to use a rwlock in the tty struct, but for now we
397  * use a single global rwlock for all ttys in ppp line discipline.
398  */
399 static DEFINE_RWLOCK(disc_data_lock);
400 
401 static struct sixpack *sp_get(struct tty_struct *tty)
402 {
403 	struct sixpack *sp;
404 
405 	read_lock(&disc_data_lock);
406 	sp = tty->disc_data;
407 	if (sp)
408 		atomic_inc(&sp->refcnt);
409 	read_unlock(&disc_data_lock);
410 
411 	return sp;
412 }
413 
414 static void sp_put(struct sixpack *sp)
415 {
416 	if (atomic_dec_and_test(&sp->refcnt))
417 		up(&sp->dead_sem);
418 }
419 
420 /*
421  * Called by the TTY driver when there's room for more data.  If we have
422  * more packets to send, we send them here.
423  */
424 static void sixpack_write_wakeup(struct tty_struct *tty)
425 {
426 	struct sixpack *sp = sp_get(tty);
427 	int actual;
428 
429 	if (!sp)
430 		return;
431 	if (sp->xleft <= 0)  {
432 		/* Now serial buffer is almost free & we can start
433 		 * transmission of another packet */
434 		sp->dev->stats.tx_packets++;
435 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
436 		sp->tx_enable = 0;
437 		netif_wake_queue(sp->dev);
438 		goto out;
439 	}
440 
441 	if (sp->tx_enable) {
442 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
443 		sp->xleft -= actual;
444 		sp->xhead += actual;
445 	}
446 
447 out:
448 	sp_put(sp);
449 }
450 
451 /* ----------------------------------------------------------------------- */
452 
453 /*
454  * Handle the 'receiver data ready' interrupt.
455  * This function is called by the 'tty_io' module in the kernel when
456  * a block of 6pack data has been received, which can now be decapsulated
457  * and sent on to some IP layer for further processing.
458  */
459 static unsigned int sixpack_receive_buf(struct tty_struct *tty,
460 	const unsigned char *cp, char *fp, int count)
461 {
462 	struct sixpack *sp;
463 	unsigned char buf[512];
464 	int count1;
465 
466 	if (!count)
467 		return 0;
468 
469 	sp = sp_get(tty);
470 	if (!sp)
471 		return -ENODEV;
472 
473 	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
474 
475 	/* Read the characters out of the buffer */
476 
477 	count1 = count;
478 	while (count) {
479 		count--;
480 		if (fp && *fp++) {
481 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
482 				sp->dev->stats.rx_errors++;
483 			continue;
484 		}
485 	}
486 	sixpack_decode(sp, buf, count1);
487 
488 	sp_put(sp);
489 	tty_unthrottle(tty);
490 
491 	return count1;
492 }
493 
494 /*
495  * Try to resync the TNC. Called by the resync timer defined in
496  * decode_prio_command
497  */
498 
499 #define TNC_UNINITIALIZED	0
500 #define TNC_UNSYNC_STARTUP	1
501 #define TNC_UNSYNCED		2
502 #define TNC_IN_SYNC		3
503 
504 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
505 {
506 	char *msg;
507 
508 	switch (new_tnc_state) {
509 	default:			/* gcc oh piece-o-crap ... */
510 	case TNC_UNSYNC_STARTUP:
511 		msg = "Synchronizing with TNC";
512 		break;
513 	case TNC_UNSYNCED:
514 		msg = "Lost synchronization with TNC\n";
515 		break;
516 	case TNC_IN_SYNC:
517 		msg = "Found TNC";
518 		break;
519 	}
520 
521 	sp->tnc_state = new_tnc_state;
522 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
523 }
524 
525 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
526 {
527 	int old_tnc_state = sp->tnc_state;
528 
529 	if (old_tnc_state != new_tnc_state)
530 		__tnc_set_sync_state(sp, new_tnc_state);
531 }
532 
533 static void resync_tnc(unsigned long channel)
534 {
535 	struct sixpack *sp = (struct sixpack *) channel;
536 	static char resync_cmd = 0xe8;
537 
538 	/* clear any data that might have been received */
539 
540 	sp->rx_count = 0;
541 	sp->rx_count_cooked = 0;
542 
543 	/* reset state machine */
544 
545 	sp->status = 1;
546 	sp->status1 = 1;
547 	sp->status2 = 0;
548 
549 	/* resync the TNC */
550 
551 	sp->led_state = 0x60;
552 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
553 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
554 
555 
556 	/* Start resync timer again -- the TNC might be still absent */
557 
558 	del_timer(&sp->resync_t);
559 	sp->resync_t.data	= (unsigned long) sp;
560 	sp->resync_t.function	= resync_tnc;
561 	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
562 	add_timer(&sp->resync_t);
563 }
564 
565 static inline int tnc_init(struct sixpack *sp)
566 {
567 	unsigned char inbyte = 0xe8;
568 
569 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
570 
571 	sp->tty->ops->write(sp->tty, &inbyte, 1);
572 
573 	del_timer(&sp->resync_t);
574 	sp->resync_t.data = (unsigned long) sp;
575 	sp->resync_t.function = resync_tnc;
576 	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
577 	add_timer(&sp->resync_t);
578 
579 	return 0;
580 }
581 
582 /*
583  * Open the high-level part of the 6pack channel.
584  * This function is called by the TTY module when the
585  * 6pack line discipline is called for.  Because we are
586  * sure the tty line exists, we only have to link it to
587  * a free 6pcack channel...
588  */
589 static int sixpack_open(struct tty_struct *tty)
590 {
591 	char *rbuff = NULL, *xbuff = NULL;
592 	struct net_device *dev;
593 	struct sixpack *sp;
594 	unsigned long len;
595 	int err = 0;
596 
597 	if (!capable(CAP_NET_ADMIN))
598 		return -EPERM;
599 	if (tty->ops->write == NULL)
600 		return -EOPNOTSUPP;
601 
602 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
603 	if (!dev) {
604 		err = -ENOMEM;
605 		goto out;
606 	}
607 
608 	sp = netdev_priv(dev);
609 	sp->dev = dev;
610 
611 	spin_lock_init(&sp->lock);
612 	atomic_set(&sp->refcnt, 1);
613 	sema_init(&sp->dead_sem, 0);
614 
615 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
616 
617 	len = dev->mtu * 2;
618 
619 	rbuff = kmalloc(len + 4, GFP_KERNEL);
620 	xbuff = kmalloc(len + 4, GFP_KERNEL);
621 
622 	if (rbuff == NULL || xbuff == NULL) {
623 		err = -ENOBUFS;
624 		goto out_free;
625 	}
626 
627 	spin_lock_bh(&sp->lock);
628 
629 	sp->tty = tty;
630 
631 	sp->rbuff	= rbuff;
632 	sp->xbuff	= xbuff;
633 
634 	sp->mtu		= AX25_MTU + 73;
635 	sp->buffsize	= len;
636 	sp->rcount	= 0;
637 	sp->rx_count	= 0;
638 	sp->rx_count_cooked = 0;
639 	sp->xleft	= 0;
640 
641 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
642 
643 	sp->duplex	= 0;
644 	sp->tx_delay    = SIXP_TXDELAY;
645 	sp->persistence = SIXP_PERSIST;
646 	sp->slottime    = SIXP_SLOTTIME;
647 	sp->led_state   = 0x60;
648 	sp->status      = 1;
649 	sp->status1     = 1;
650 	sp->status2     = 0;
651 	sp->tx_enable   = 0;
652 
653 	netif_start_queue(dev);
654 
655 	init_timer(&sp->tx_t);
656 	sp->tx_t.function = sp_xmit_on_air;
657 	sp->tx_t.data = (unsigned long) sp;
658 
659 	init_timer(&sp->resync_t);
660 
661 	spin_unlock_bh(&sp->lock);
662 
663 	/* Done.  We have linked the TTY line to a channel. */
664 	tty->disc_data = sp;
665 	tty->receive_room = 65536;
666 
667 	/* Now we're ready to register. */
668 	if (register_netdev(dev))
669 		goto out_free;
670 
671 	tnc_init(sp);
672 
673 	return 0;
674 
675 out_free:
676 	kfree(xbuff);
677 	kfree(rbuff);
678 
679 	if (dev)
680 		free_netdev(dev);
681 
682 out:
683 	return err;
684 }
685 
686 
687 /*
688  * Close down a 6pack channel.
689  * This means flushing out any pending queues, and then restoring the
690  * TTY line discipline to what it was before it got hooked to 6pack
691  * (which usually is TTY again).
692  */
693 static void sixpack_close(struct tty_struct *tty)
694 {
695 	struct sixpack *sp;
696 
697 	write_lock(&disc_data_lock);
698 	sp = tty->disc_data;
699 	tty->disc_data = NULL;
700 	write_unlock(&disc_data_lock);
701 	if (!sp)
702 		return;
703 
704 	/*
705 	 * We have now ensured that nobody can start using ap from now on, but
706 	 * we have to wait for all existing users to finish.
707 	 */
708 	if (!atomic_dec_and_test(&sp->refcnt))
709 		down(&sp->dead_sem);
710 
711 	unregister_netdev(sp->dev);
712 
713 	del_timer(&sp->tx_t);
714 	del_timer(&sp->resync_t);
715 
716 	/* Free all 6pack frame buffers. */
717 	kfree(sp->rbuff);
718 	kfree(sp->xbuff);
719 }
720 
721 /* Perform I/O control on an active 6pack channel. */
722 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
723 	unsigned int cmd, unsigned long arg)
724 {
725 	struct sixpack *sp = sp_get(tty);
726 	struct net_device *dev;
727 	unsigned int tmp, err;
728 
729 	if (!sp)
730 		return -ENXIO;
731 	dev = sp->dev;
732 
733 	switch(cmd) {
734 	case SIOCGIFNAME:
735 		err = copy_to_user((void __user *) arg, dev->name,
736 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
737 		break;
738 
739 	case SIOCGIFENCAP:
740 		err = put_user(0, (int __user *) arg);
741 		break;
742 
743 	case SIOCSIFENCAP:
744 		if (get_user(tmp, (int __user *) arg)) {
745 			err = -EFAULT;
746 			break;
747 		}
748 
749 		sp->mode = tmp;
750 		dev->addr_len        = AX25_ADDR_LEN;
751 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
752 		                       AX25_MAX_HEADER_LEN + 3;
753 		dev->type            = ARPHRD_AX25;
754 
755 		err = 0;
756 		break;
757 
758 	 case SIOCSIFHWADDR: {
759 		char addr[AX25_ADDR_LEN];
760 
761 		if (copy_from_user(&addr,
762 		                   (void __user *) arg, AX25_ADDR_LEN)) {
763 				err = -EFAULT;
764 				break;
765 			}
766 
767 			netif_tx_lock_bh(dev);
768 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
769 			netif_tx_unlock_bh(dev);
770 
771 			err = 0;
772 			break;
773 		}
774 
775 	default:
776 		err = tty_mode_ioctl(tty, file, cmd, arg);
777 	}
778 
779 	sp_put(sp);
780 
781 	return err;
782 }
783 
784 #ifdef CONFIG_COMPAT
785 static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
786 				unsigned int cmd, unsigned long arg)
787 {
788 	switch (cmd) {
789 	case SIOCGIFNAME:
790 	case SIOCGIFENCAP:
791 	case SIOCSIFENCAP:
792 	case SIOCSIFHWADDR:
793 		return sixpack_ioctl(tty, file, cmd,
794 				(unsigned long)compat_ptr(arg));
795 	}
796 
797 	return -ENOIOCTLCMD;
798 }
799 #endif
800 
801 static struct tty_ldisc_ops sp_ldisc = {
802 	.owner		= THIS_MODULE,
803 	.magic		= TTY_LDISC_MAGIC,
804 	.name		= "6pack",
805 	.open		= sixpack_open,
806 	.close		= sixpack_close,
807 	.ioctl		= sixpack_ioctl,
808 #ifdef CONFIG_COMPAT
809 	.compat_ioctl	= sixpack_compat_ioctl,
810 #endif
811 	.receive_buf	= sixpack_receive_buf,
812 	.write_wakeup	= sixpack_write_wakeup,
813 };
814 
815 /* Initialize 6pack control device -- register 6pack line discipline */
816 
817 static const char msg_banner[]  __initdata = KERN_INFO \
818 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
819 static const char msg_regfail[] __initdata = KERN_ERR  \
820 	"6pack: can't register line discipline (err = %d)\n";
821 
822 static int __init sixpack_init_driver(void)
823 {
824 	int status;
825 
826 	printk(msg_banner);
827 
828 	/* Register the provided line protocol discipline */
829 	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
830 		printk(msg_regfail, status);
831 
832 	return status;
833 }
834 
835 static const char msg_unregfail[] __exitdata = KERN_ERR \
836 	"6pack: can't unregister line discipline (err = %d)\n";
837 
838 static void __exit sixpack_exit_driver(void)
839 {
840 	int ret;
841 
842 	if ((ret = tty_unregister_ldisc(N_6PACK)))
843 		printk(msg_unregfail, ret);
844 }
845 
846 /* encode an AX.25 packet into 6pack */
847 
848 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
849 	int length, unsigned char tx_delay)
850 {
851 	int count = 0;
852 	unsigned char checksum = 0, buf[400];
853 	int raw_count = 0;
854 
855 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
856 	tx_buf_raw[raw_count++] = SIXP_SEOF;
857 
858 	buf[0] = tx_delay;
859 	for (count = 1; count < length; count++)
860 		buf[count] = tx_buf[count];
861 
862 	for (count = 0; count < length; count++)
863 		checksum += buf[count];
864 	buf[length] = (unsigned char) 0xff - checksum;
865 
866 	for (count = 0; count <= length; count++) {
867 		if ((count % 3) == 0) {
868 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
869 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
870 		} else if ((count % 3) == 1) {
871 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
872 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
873 		} else {
874 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
875 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
876 		}
877 	}
878 	if ((length % 3) != 2)
879 		raw_count++;
880 	tx_buf_raw[raw_count++] = SIXP_SEOF;
881 	return raw_count;
882 }
883 
884 /* decode 4 sixpack-encoded bytes into 3 data bytes */
885 
886 static void decode_data(struct sixpack *sp, unsigned char inbyte)
887 {
888 	unsigned char *buf;
889 
890 	if (sp->rx_count != 3) {
891 		sp->raw_buf[sp->rx_count++] = inbyte;
892 
893 		return;
894 	}
895 
896 	buf = sp->raw_buf;
897 	sp->cooked_buf[sp->rx_count_cooked++] =
898 		buf[0] | ((buf[1] << 2) & 0xc0);
899 	sp->cooked_buf[sp->rx_count_cooked++] =
900 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
901 	sp->cooked_buf[sp->rx_count_cooked++] =
902 		(buf[2] & 0x03) | (inbyte << 2);
903 	sp->rx_count = 0;
904 }
905 
906 /* identify and execute a 6pack priority command byte */
907 
908 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
909 {
910 	unsigned char channel;
911 	int actual;
912 
913 	channel = cmd & SIXP_CHN_MASK;
914 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
915 
916 	/* RX and DCD flags can only be set in the same prio command,
917 	   if the DCD flag has been set without the RX flag in the previous
918 	   prio command. If DCD has not been set before, something in the
919 	   transmission has gone wrong. In this case, RX and DCD are
920 	   cleared in order to prevent the decode_data routine from
921 	   reading further data that might be corrupt. */
922 
923 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
924 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
925 				if (sp->status != 1)
926 					printk(KERN_DEBUG "6pack: protocol violation\n");
927 				else
928 					sp->status = 0;
929 				cmd &= ~SIXP_RX_DCD_MASK;
930 		}
931 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
932 	} else { /* output watchdog char if idle */
933 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
934 			sp->led_state = 0x70;
935 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
936 			sp->tx_enable = 1;
937 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
938 			sp->xleft -= actual;
939 			sp->xhead += actual;
940 			sp->led_state = 0x60;
941 			sp->status2 = 0;
942 
943 		}
944 	}
945 
946 	/* needed to trigger the TNC watchdog */
947 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
948 
949         /* if the state byte has been received, the TNC is present,
950            so the resync timer can be reset. */
951 
952 	if (sp->tnc_state == TNC_IN_SYNC) {
953 		del_timer(&sp->resync_t);
954 		sp->resync_t.data	= (unsigned long) sp;
955 		sp->resync_t.function	= resync_tnc;
956 		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
957 		add_timer(&sp->resync_t);
958 	}
959 
960 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
961 }
962 
963 /* identify and execute a standard 6pack command byte */
964 
965 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
966 {
967 	unsigned char checksum = 0, rest = 0, channel;
968 	short i;
969 
970 	channel = cmd & SIXP_CHN_MASK;
971 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
972 	case SIXP_SEOF:
973 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
974 			if ((sp->status & SIXP_RX_DCD_MASK) ==
975 				SIXP_RX_DCD_MASK) {
976 				sp->led_state = 0x68;
977 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
978 			}
979 		} else {
980 			sp->led_state = 0x60;
981 			/* fill trailing bytes with zeroes */
982 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
983 			rest = sp->rx_count;
984 			if (rest != 0)
985 				 for (i = rest; i <= 3; i++)
986 					decode_data(sp, 0);
987 			if (rest == 2)
988 				sp->rx_count_cooked -= 2;
989 			else if (rest == 3)
990 				sp->rx_count_cooked -= 1;
991 			for (i = 0; i < sp->rx_count_cooked; i++)
992 				checksum += sp->cooked_buf[i];
993 			if (checksum != SIXP_CHKSUM) {
994 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
995 			} else {
996 				sp->rcount = sp->rx_count_cooked-2;
997 				sp_bump(sp, 0);
998 			}
999 			sp->rx_count_cooked = 0;
1000 		}
1001 		break;
1002 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1003 		break;
1004 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1005 		break;
1006 	case SIXP_RX_BUF_OVL:
1007 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1008 	}
1009 }
1010 
1011 /* decode a 6pack packet */
1012 
1013 static void
1014 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1015 {
1016 	unsigned char inbyte;
1017 	int count1;
1018 
1019 	for (count1 = 0; count1 < count; count1++) {
1020 		inbyte = pre_rbuff[count1];
1021 		if (inbyte == SIXP_FOUND_TNC) {
1022 			tnc_set_sync_state(sp, TNC_IN_SYNC);
1023 			del_timer(&sp->resync_t);
1024 		}
1025 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1026 			decode_prio_command(sp, inbyte);
1027 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1028 			decode_std_command(sp, inbyte);
1029 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1030 			decode_data(sp, inbyte);
1031 	}
1032 }
1033 
1034 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1035 MODULE_DESCRIPTION("6pack driver for AX.25");
1036 MODULE_LICENSE("GPL");
1037 MODULE_ALIAS_LDISC(N_6PACK);
1038 
1039 module_init(sixpack_init_driver);
1040 module_exit(sixpack_exit_driver);
1041