xref: /linux/drivers/net/ethernet/sun/sunqe.c (revision 0ea5c948cb64bab5bc7a5516774eb8536f05aa0d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* sunqe.c: Sparc QuadEthernet 10baseT SBUS card driver.
3  *          Once again I am out to prove that every ethernet
4  *          controller out there can be most efficiently programmed
5  *          if you make it look like a LANCE.
6  *
7  * Copyright (C) 1996, 1999, 2003, 2006, 2008 David S. Miller (davem@davemloft.net)
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
17 #include <linux/in.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/crc32.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/ethtool.h>
27 #include <linux/bitops.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/of.h>
30 #include <linux/pgtable.h>
31 #include <linux/platform_device.h>
32 
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/byteorder.h>
36 #include <asm/idprom.h>
37 #include <asm/openprom.h>
38 #include <asm/oplib.h>
39 #include <asm/auxio.h>
40 #include <asm/irq.h>
41 
42 #include "sunqe.h"
43 
44 #define DRV_NAME	"sunqe"
45 #define DRV_VERSION	"4.1"
46 #define DRV_RELDATE	"August 27, 2008"
47 #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
48 
49 static char version[] =
50 	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
51 
52 MODULE_VERSION(DRV_VERSION);
53 MODULE_AUTHOR(DRV_AUTHOR);
54 MODULE_DESCRIPTION("Sun QuadEthernet 10baseT SBUS card driver");
55 MODULE_LICENSE("GPL");
56 
57 static struct sunqec *root_qec_dev;
58 
59 static void qe_set_multicast(struct net_device *dev);
60 
61 #define QEC_RESET_TRIES 200
62 
qec_global_reset(void __iomem * gregs)63 static inline int qec_global_reset(void __iomem *gregs)
64 {
65 	int tries = QEC_RESET_TRIES;
66 
67 	sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL);
68 	while (--tries) {
69 		u32 tmp = sbus_readl(gregs + GLOB_CTRL);
70 		if (tmp & GLOB_CTRL_RESET) {
71 			udelay(20);
72 			continue;
73 		}
74 		break;
75 	}
76 	if (tries)
77 		return 0;
78 	printk(KERN_ERR "QuadEther: AIEEE cannot reset the QEC!\n");
79 	return -1;
80 }
81 
82 #define MACE_RESET_RETRIES 200
83 #define QE_RESET_RETRIES   200
84 
qe_stop(struct sunqe * qep)85 static inline int qe_stop(struct sunqe *qep)
86 {
87 	void __iomem *cregs = qep->qcregs;
88 	void __iomem *mregs = qep->mregs;
89 	int tries;
90 
91 	/* Reset the MACE, then the QEC channel. */
92 	sbus_writeb(MREGS_BCONFIG_RESET, mregs + MREGS_BCONFIG);
93 	tries = MACE_RESET_RETRIES;
94 	while (--tries) {
95 		u8 tmp = sbus_readb(mregs + MREGS_BCONFIG);
96 		if (tmp & MREGS_BCONFIG_RESET) {
97 			udelay(20);
98 			continue;
99 		}
100 		break;
101 	}
102 	if (!tries) {
103 		printk(KERN_ERR "QuadEther: AIEEE cannot reset the MACE!\n");
104 		return -1;
105 	}
106 
107 	sbus_writel(CREG_CTRL_RESET, cregs + CREG_CTRL);
108 	tries = QE_RESET_RETRIES;
109 	while (--tries) {
110 		u32 tmp = sbus_readl(cregs + CREG_CTRL);
111 		if (tmp & CREG_CTRL_RESET) {
112 			udelay(20);
113 			continue;
114 		}
115 		break;
116 	}
117 	if (!tries) {
118 		printk(KERN_ERR "QuadEther: Cannot reset QE channel!\n");
119 		return -1;
120 	}
121 	return 0;
122 }
123 
qe_init_rings(struct sunqe * qep)124 static void qe_init_rings(struct sunqe *qep)
125 {
126 	struct qe_init_block *qb = qep->qe_block;
127 	struct sunqe_buffers *qbufs = qep->buffers;
128 	__u32 qbufs_dvma = (__u32)qep->buffers_dvma;
129 	int i;
130 
131 	qep->rx_new = qep->rx_old = qep->tx_new = qep->tx_old = 0;
132 	memset(qb, 0, sizeof(struct qe_init_block));
133 	memset(qbufs, 0, sizeof(struct sunqe_buffers));
134 	for (i = 0; i < RX_RING_SIZE; i++) {
135 		qb->qe_rxd[i].rx_addr = qbufs_dvma + qebuf_offset(rx_buf, i);
136 		qb->qe_rxd[i].rx_flags =
137 			(RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
138 	}
139 }
140 
qe_init(struct sunqe * qep,int from_irq)141 static int qe_init(struct sunqe *qep, int from_irq)
142 {
143 	struct sunqec *qecp = qep->parent;
144 	void __iomem *cregs = qep->qcregs;
145 	void __iomem *mregs = qep->mregs;
146 	void __iomem *gregs = qecp->gregs;
147 	const unsigned char *e = &qep->dev->dev_addr[0];
148 	__u32 qblk_dvma = (__u32)qep->qblock_dvma;
149 	u32 tmp;
150 	int i;
151 
152 	/* Shut it up. */
153 	if (qe_stop(qep))
154 		return -EAGAIN;
155 
156 	/* Setup initial rx/tx init block pointers. */
157 	sbus_writel(qblk_dvma + qib_offset(qe_rxd, 0), cregs + CREG_RXDS);
158 	sbus_writel(qblk_dvma + qib_offset(qe_txd, 0), cregs + CREG_TXDS);
159 
160 	/* Enable/mask the various irq's. */
161 	sbus_writel(0, cregs + CREG_RIMASK);
162 	sbus_writel(1, cregs + CREG_TIMASK);
163 
164 	sbus_writel(0, cregs + CREG_QMASK);
165 	sbus_writel(CREG_MMASK_RXCOLL, cregs + CREG_MMASK);
166 
167 	/* Setup the FIFO pointers into QEC local memory. */
168 	tmp = qep->channel * sbus_readl(gregs + GLOB_MSIZE);
169 	sbus_writel(tmp, cregs + CREG_RXRBUFPTR);
170 	sbus_writel(tmp, cregs + CREG_RXWBUFPTR);
171 
172 	tmp = sbus_readl(cregs + CREG_RXRBUFPTR) +
173 		sbus_readl(gregs + GLOB_RSIZE);
174 	sbus_writel(tmp, cregs + CREG_TXRBUFPTR);
175 	sbus_writel(tmp, cregs + CREG_TXWBUFPTR);
176 
177 	/* Clear the channel collision counter. */
178 	sbus_writel(0, cregs + CREG_CCNT);
179 
180 	/* For 10baseT, inter frame space nor throttle seems to be necessary. */
181 	sbus_writel(0, cregs + CREG_PIPG);
182 
183 	/* Now dork with the AMD MACE. */
184 	sbus_writeb(MREGS_PHYCONFIG_AUTO, mregs + MREGS_PHYCONFIG);
185 	sbus_writeb(MREGS_TXFCNTL_AUTOPAD, mregs + MREGS_TXFCNTL);
186 	sbus_writeb(0, mregs + MREGS_RXFCNTL);
187 
188 	/* The QEC dma's the rx'd packets from local memory out to main memory,
189 	 * and therefore it interrupts when the packet reception is "complete".
190 	 * So don't listen for the MACE talking about it.
191 	 */
192 	sbus_writeb(MREGS_IMASK_COLL | MREGS_IMASK_RXIRQ, mregs + MREGS_IMASK);
193 	sbus_writeb(MREGS_BCONFIG_BSWAP | MREGS_BCONFIG_64TS, mregs + MREGS_BCONFIG);
194 	sbus_writeb((MREGS_FCONFIG_TXF16 | MREGS_FCONFIG_RXF32 |
195 		     MREGS_FCONFIG_RFWU | MREGS_FCONFIG_TFWU),
196 		    mregs + MREGS_FCONFIG);
197 
198 	/* Only usable interface on QuadEther is twisted pair. */
199 	sbus_writeb(MREGS_PLSCONFIG_TP, mregs + MREGS_PLSCONFIG);
200 
201 	/* Tell MACE we are changing the ether address. */
202 	sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_PARESET,
203 		    mregs + MREGS_IACONFIG);
204 	while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
205 		barrier();
206 	sbus_writeb(e[0], mregs + MREGS_ETHADDR);
207 	sbus_writeb(e[1], mregs + MREGS_ETHADDR);
208 	sbus_writeb(e[2], mregs + MREGS_ETHADDR);
209 	sbus_writeb(e[3], mregs + MREGS_ETHADDR);
210 	sbus_writeb(e[4], mregs + MREGS_ETHADDR);
211 	sbus_writeb(e[5], mregs + MREGS_ETHADDR);
212 
213 	/* Clear out the address filter. */
214 	sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
215 		    mregs + MREGS_IACONFIG);
216 	while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
217 		barrier();
218 	for (i = 0; i < 8; i++)
219 		sbus_writeb(0, mregs + MREGS_FILTER);
220 
221 	/* Address changes are now complete. */
222 	sbus_writeb(0, mregs + MREGS_IACONFIG);
223 
224 	qe_init_rings(qep);
225 
226 	/* Wait a little bit for the link to come up... */
227 	mdelay(5);
228 	if (!(sbus_readb(mregs + MREGS_PHYCONFIG) & MREGS_PHYCONFIG_LTESTDIS)) {
229 		int tries = 50;
230 
231 		while (--tries) {
232 			u8 tmp;
233 
234 			mdelay(5);
235 			barrier();
236 			tmp = sbus_readb(mregs + MREGS_PHYCONFIG);
237 			if ((tmp & MREGS_PHYCONFIG_LSTAT) != 0)
238 				break;
239 		}
240 		if (tries == 0)
241 			printk(KERN_NOTICE "%s: Warning, link state is down.\n", qep->dev->name);
242 	}
243 
244 	/* Missed packet counter is cleared on a read. */
245 	sbus_readb(mregs + MREGS_MPCNT);
246 
247 	/* Reload multicast information, this will enable the receiver
248 	 * and transmitter.
249 	 */
250 	qe_set_multicast(qep->dev);
251 
252 	/* QEC should now start to show interrupts. */
253 	return 0;
254 }
255 
256 /* Grrr, certain error conditions completely lock up the AMD MACE,
257  * so when we get these we _must_ reset the chip.
258  */
qe_is_bolixed(struct sunqe * qep,u32 qe_status)259 static int qe_is_bolixed(struct sunqe *qep, u32 qe_status)
260 {
261 	struct net_device *dev = qep->dev;
262 	int mace_hwbug_workaround = 0;
263 
264 	if (qe_status & CREG_STAT_EDEFER) {
265 		printk(KERN_ERR "%s: Excessive transmit defers.\n", dev->name);
266 		dev->stats.tx_errors++;
267 	}
268 
269 	if (qe_status & CREG_STAT_CLOSS) {
270 		printk(KERN_ERR "%s: Carrier lost, link down?\n", dev->name);
271 		dev->stats.tx_errors++;
272 		dev->stats.tx_carrier_errors++;
273 	}
274 
275 	if (qe_status & CREG_STAT_ERETRIES) {
276 		printk(KERN_ERR "%s: Excessive transmit retries (more than 16).\n", dev->name);
277 		dev->stats.tx_errors++;
278 		mace_hwbug_workaround = 1;
279 	}
280 
281 	if (qe_status & CREG_STAT_LCOLL) {
282 		printk(KERN_ERR "%s: Late transmit collision.\n", dev->name);
283 		dev->stats.tx_errors++;
284 		dev->stats.collisions++;
285 		mace_hwbug_workaround = 1;
286 	}
287 
288 	if (qe_status & CREG_STAT_FUFLOW) {
289 		printk(KERN_ERR "%s: Transmit fifo underflow, driver bug.\n", dev->name);
290 		dev->stats.tx_errors++;
291 		mace_hwbug_workaround = 1;
292 	}
293 
294 	if (qe_status & CREG_STAT_JERROR) {
295 		printk(KERN_ERR "%s: Jabber error.\n", dev->name);
296 	}
297 
298 	if (qe_status & CREG_STAT_BERROR) {
299 		printk(KERN_ERR "%s: Babble error.\n", dev->name);
300 	}
301 
302 	if (qe_status & CREG_STAT_CCOFLOW) {
303 		dev->stats.tx_errors += 256;
304 		dev->stats.collisions += 256;
305 	}
306 
307 	if (qe_status & CREG_STAT_TXDERROR) {
308 		printk(KERN_ERR "%s: Transmit descriptor is bogus, driver bug.\n", dev->name);
309 		dev->stats.tx_errors++;
310 		dev->stats.tx_aborted_errors++;
311 		mace_hwbug_workaround = 1;
312 	}
313 
314 	if (qe_status & CREG_STAT_TXLERR) {
315 		printk(KERN_ERR "%s: Transmit late error.\n", dev->name);
316 		dev->stats.tx_errors++;
317 		mace_hwbug_workaround = 1;
318 	}
319 
320 	if (qe_status & CREG_STAT_TXPERR) {
321 		printk(KERN_ERR "%s: Transmit DMA parity error.\n", dev->name);
322 		dev->stats.tx_errors++;
323 		dev->stats.tx_aborted_errors++;
324 		mace_hwbug_workaround = 1;
325 	}
326 
327 	if (qe_status & CREG_STAT_TXSERR) {
328 		printk(KERN_ERR "%s: Transmit DMA sbus error ack.\n", dev->name);
329 		dev->stats.tx_errors++;
330 		dev->stats.tx_aborted_errors++;
331 		mace_hwbug_workaround = 1;
332 	}
333 
334 	if (qe_status & CREG_STAT_RCCOFLOW) {
335 		dev->stats.rx_errors += 256;
336 		dev->stats.collisions += 256;
337 	}
338 
339 	if (qe_status & CREG_STAT_RUOFLOW) {
340 		dev->stats.rx_errors += 256;
341 		dev->stats.rx_over_errors += 256;
342 	}
343 
344 	if (qe_status & CREG_STAT_MCOFLOW) {
345 		dev->stats.rx_errors += 256;
346 		dev->stats.rx_missed_errors += 256;
347 	}
348 
349 	if (qe_status & CREG_STAT_RXFOFLOW) {
350 		printk(KERN_ERR "%s: Receive fifo overflow.\n", dev->name);
351 		dev->stats.rx_errors++;
352 		dev->stats.rx_over_errors++;
353 	}
354 
355 	if (qe_status & CREG_STAT_RLCOLL) {
356 		printk(KERN_ERR "%s: Late receive collision.\n", dev->name);
357 		dev->stats.rx_errors++;
358 		dev->stats.collisions++;
359 	}
360 
361 	if (qe_status & CREG_STAT_FCOFLOW) {
362 		dev->stats.rx_errors += 256;
363 		dev->stats.rx_frame_errors += 256;
364 	}
365 
366 	if (qe_status & CREG_STAT_CECOFLOW) {
367 		dev->stats.rx_errors += 256;
368 		dev->stats.rx_crc_errors += 256;
369 	}
370 
371 	if (qe_status & CREG_STAT_RXDROP) {
372 		printk(KERN_ERR "%s: Receive packet dropped.\n", dev->name);
373 		dev->stats.rx_errors++;
374 		dev->stats.rx_dropped++;
375 		dev->stats.rx_missed_errors++;
376 	}
377 
378 	if (qe_status & CREG_STAT_RXSMALL) {
379 		printk(KERN_ERR "%s: Receive buffer too small, driver bug.\n", dev->name);
380 		dev->stats.rx_errors++;
381 		dev->stats.rx_length_errors++;
382 	}
383 
384 	if (qe_status & CREG_STAT_RXLERR) {
385 		printk(KERN_ERR "%s: Receive late error.\n", dev->name);
386 		dev->stats.rx_errors++;
387 		mace_hwbug_workaround = 1;
388 	}
389 
390 	if (qe_status & CREG_STAT_RXPERR) {
391 		printk(KERN_ERR "%s: Receive DMA parity error.\n", dev->name);
392 		dev->stats.rx_errors++;
393 		dev->stats.rx_missed_errors++;
394 		mace_hwbug_workaround = 1;
395 	}
396 
397 	if (qe_status & CREG_STAT_RXSERR) {
398 		printk(KERN_ERR "%s: Receive DMA sbus error ack.\n", dev->name);
399 		dev->stats.rx_errors++;
400 		dev->stats.rx_missed_errors++;
401 		mace_hwbug_workaround = 1;
402 	}
403 
404 	if (mace_hwbug_workaround)
405 		qe_init(qep, 1);
406 	return mace_hwbug_workaround;
407 }
408 
409 /* Per-QE receive interrupt service routine.  Just like on the happy meal
410  * we receive directly into skb's with a small packet copy water mark.
411  */
qe_rx(struct sunqe * qep)412 static void qe_rx(struct sunqe *qep)
413 {
414 	struct qe_rxd *rxbase = &qep->qe_block->qe_rxd[0];
415 	struct net_device *dev = qep->dev;
416 	struct qe_rxd *this;
417 	struct sunqe_buffers *qbufs = qep->buffers;
418 	__u32 qbufs_dvma = (__u32)qep->buffers_dvma;
419 	int elem = qep->rx_new;
420 	u32 flags;
421 
422 	this = &rxbase[elem];
423 	while (!((flags = this->rx_flags) & RXD_OWN)) {
424 		struct sk_buff *skb;
425 		unsigned char *this_qbuf =
426 			&qbufs->rx_buf[elem & (RX_RING_SIZE - 1)][0];
427 		__u32 this_qbuf_dvma = qbufs_dvma +
428 			qebuf_offset(rx_buf, (elem & (RX_RING_SIZE - 1)));
429 		struct qe_rxd *end_rxd =
430 			&rxbase[(elem+RX_RING_SIZE)&(RX_RING_MAXSIZE-1)];
431 		int len = (flags & RXD_LENGTH) - 4;  /* QE adds ether FCS size to len */
432 
433 		/* Check for errors. */
434 		if (len < ETH_ZLEN) {
435 			dev->stats.rx_errors++;
436 			dev->stats.rx_length_errors++;
437 			dev->stats.rx_dropped++;
438 		} else {
439 			skb = netdev_alloc_skb(dev, len + 2);
440 			if (skb == NULL) {
441 				dev->stats.rx_dropped++;
442 			} else {
443 				skb_reserve(skb, 2);
444 				skb_put(skb, len);
445 				skb_copy_to_linear_data(skb, this_qbuf,
446 						 len);
447 				skb->protocol = eth_type_trans(skb, qep->dev);
448 				netif_rx(skb);
449 				dev->stats.rx_packets++;
450 				dev->stats.rx_bytes += len;
451 			}
452 		}
453 		end_rxd->rx_addr = this_qbuf_dvma;
454 		end_rxd->rx_flags = (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
455 
456 		elem = NEXT_RX(elem);
457 		this = &rxbase[elem];
458 	}
459 	qep->rx_new = elem;
460 }
461 
462 static void qe_tx_reclaim(struct sunqe *qep);
463 
464 /* Interrupts for all QE's get filtered out via the QEC master controller,
465  * so we just run through each qe and check to see who is signaling
466  * and thus needs to be serviced.
467  */
qec_interrupt(int irq,void * dev_id)468 static irqreturn_t qec_interrupt(int irq, void *dev_id)
469 {
470 	struct sunqec *qecp = dev_id;
471 	u32 qec_status;
472 	int channel = 0;
473 
474 	/* Latch the status now. */
475 	qec_status = sbus_readl(qecp->gregs + GLOB_STAT);
476 	while (channel < 4) {
477 		if (qec_status & 0xf) {
478 			struct sunqe *qep = qecp->qes[channel];
479 			u32 qe_status;
480 
481 			qe_status = sbus_readl(qep->qcregs + CREG_STAT);
482 			if (qe_status & CREG_STAT_ERRORS) {
483 				if (qe_is_bolixed(qep, qe_status))
484 					goto next;
485 			}
486 			if (qe_status & CREG_STAT_RXIRQ)
487 				qe_rx(qep);
488 			if (netif_queue_stopped(qep->dev) &&
489 			    (qe_status & CREG_STAT_TXIRQ)) {
490 				spin_lock(&qep->lock);
491 				qe_tx_reclaim(qep);
492 				if (TX_BUFFS_AVAIL(qep) > 0) {
493 					/* Wake net queue and return to
494 					 * lazy tx reclaim.
495 					 */
496 					netif_wake_queue(qep->dev);
497 					sbus_writel(1, qep->qcregs + CREG_TIMASK);
498 				}
499 				spin_unlock(&qep->lock);
500 			}
501 	next:
502 			;
503 		}
504 		qec_status >>= 4;
505 		channel++;
506 	}
507 
508 	return IRQ_HANDLED;
509 }
510 
qe_open(struct net_device * dev)511 static int qe_open(struct net_device *dev)
512 {
513 	struct sunqe *qep = netdev_priv(dev);
514 
515 	qep->mconfig = (MREGS_MCONFIG_TXENAB |
516 			MREGS_MCONFIG_RXENAB |
517 			MREGS_MCONFIG_MBAENAB);
518 	return qe_init(qep, 0);
519 }
520 
qe_close(struct net_device * dev)521 static int qe_close(struct net_device *dev)
522 {
523 	struct sunqe *qep = netdev_priv(dev);
524 
525 	qe_stop(qep);
526 	return 0;
527 }
528 
529 /* Reclaim TX'd frames from the ring.  This must always run under
530  * the IRQ protected qep->lock.
531  */
qe_tx_reclaim(struct sunqe * qep)532 static void qe_tx_reclaim(struct sunqe *qep)
533 {
534 	struct qe_txd *txbase = &qep->qe_block->qe_txd[0];
535 	int elem = qep->tx_old;
536 
537 	while (elem != qep->tx_new) {
538 		u32 flags = txbase[elem].tx_flags;
539 
540 		if (flags & TXD_OWN)
541 			break;
542 		elem = NEXT_TX(elem);
543 	}
544 	qep->tx_old = elem;
545 }
546 
qe_tx_timeout(struct net_device * dev,unsigned int txqueue)547 static void qe_tx_timeout(struct net_device *dev, unsigned int txqueue)
548 {
549 	struct sunqe *qep = netdev_priv(dev);
550 	int tx_full;
551 
552 	spin_lock_irq(&qep->lock);
553 
554 	/* Try to reclaim, if that frees up some tx
555 	 * entries, we're fine.
556 	 */
557 	qe_tx_reclaim(qep);
558 	tx_full = TX_BUFFS_AVAIL(qep) <= 0;
559 
560 	spin_unlock_irq(&qep->lock);
561 
562 	if (! tx_full)
563 		goto out;
564 
565 	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
566 	qe_init(qep, 1);
567 
568 out:
569 	netif_wake_queue(dev);
570 }
571 
572 /* Get a packet queued to go onto the wire. */
qe_start_xmit(struct sk_buff * skb,struct net_device * dev)573 static netdev_tx_t qe_start_xmit(struct sk_buff *skb, struct net_device *dev)
574 {
575 	struct sunqe *qep = netdev_priv(dev);
576 	struct sunqe_buffers *qbufs = qep->buffers;
577 	__u32 txbuf_dvma, qbufs_dvma = (__u32)qep->buffers_dvma;
578 	unsigned char *txbuf;
579 	int len, entry;
580 
581 	spin_lock_irq(&qep->lock);
582 
583 	qe_tx_reclaim(qep);
584 
585 	len = skb->len;
586 	entry = qep->tx_new;
587 
588 	txbuf = &qbufs->tx_buf[entry & (TX_RING_SIZE - 1)][0];
589 	txbuf_dvma = qbufs_dvma +
590 		qebuf_offset(tx_buf, (entry & (TX_RING_SIZE - 1)));
591 
592 	/* Avoid a race... */
593 	qep->qe_block->qe_txd[entry].tx_flags = TXD_UPDATE;
594 
595 	skb_copy_from_linear_data(skb, txbuf, len);
596 
597 	qep->qe_block->qe_txd[entry].tx_addr = txbuf_dvma;
598 	qep->qe_block->qe_txd[entry].tx_flags =
599 		(TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH));
600 	qep->tx_new = NEXT_TX(entry);
601 
602 	/* Get it going. */
603 	sbus_writel(CREG_CTRL_TWAKEUP, qep->qcregs + CREG_CTRL);
604 
605 	dev->stats.tx_packets++;
606 	dev->stats.tx_bytes += len;
607 
608 	if (TX_BUFFS_AVAIL(qep) <= 0) {
609 		/* Halt the net queue and enable tx interrupts.
610 		 * When the tx queue empties the tx irq handler
611 		 * will wake up the queue and return us back to
612 		 * the lazy tx reclaim scheme.
613 		 */
614 		netif_stop_queue(dev);
615 		sbus_writel(0, qep->qcregs + CREG_TIMASK);
616 	}
617 	spin_unlock_irq(&qep->lock);
618 
619 	dev_kfree_skb(skb);
620 
621 	return NETDEV_TX_OK;
622 }
623 
qe_set_multicast(struct net_device * dev)624 static void qe_set_multicast(struct net_device *dev)
625 {
626 	struct sunqe *qep = netdev_priv(dev);
627 	struct netdev_hw_addr *ha;
628 	u8 new_mconfig = qep->mconfig;
629 	int i;
630 	u32 crc;
631 
632 	/* Lock out others. */
633 	netif_stop_queue(dev);
634 
635 	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
636 		sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
637 			    qep->mregs + MREGS_IACONFIG);
638 		while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
639 			barrier();
640 		for (i = 0; i < 8; i++)
641 			sbus_writeb(0xff, qep->mregs + MREGS_FILTER);
642 		sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
643 	} else if (dev->flags & IFF_PROMISC) {
644 		new_mconfig |= MREGS_MCONFIG_PROMISC;
645 	} else {
646 		u16 hash_table[4];
647 		u8 *hbytes = (unsigned char *) &hash_table[0];
648 
649 		memset(hash_table, 0, sizeof(hash_table));
650 		netdev_for_each_mc_addr(ha, dev) {
651 			crc = ether_crc_le(6, ha->addr);
652 			crc >>= 26;
653 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
654 		}
655 		/* Program the qe with the new filter value. */
656 		sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
657 			    qep->mregs + MREGS_IACONFIG);
658 		while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
659 			barrier();
660 		for (i = 0; i < 8; i++) {
661 			u8 tmp = *hbytes++;
662 			sbus_writeb(tmp, qep->mregs + MREGS_FILTER);
663 		}
664 		sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
665 	}
666 
667 	/* Any change of the logical address filter, the physical address,
668 	 * or enabling/disabling promiscuous mode causes the MACE to disable
669 	 * the receiver.  So we must re-enable them here or else the MACE
670 	 * refuses to listen to anything on the network.  Sheesh, took
671 	 * me a day or two to find this bug.
672 	 */
673 	qep->mconfig = new_mconfig;
674 	sbus_writeb(qep->mconfig, qep->mregs + MREGS_MCONFIG);
675 
676 	/* Let us get going again. */
677 	netif_wake_queue(dev);
678 }
679 
680 /* Ethtool support... */
qe_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)681 static void qe_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
682 {
683 	const struct linux_prom_registers *regs;
684 	struct sunqe *qep = netdev_priv(dev);
685 	struct platform_device *op;
686 
687 	strscpy(info->driver, "sunqe", sizeof(info->driver));
688 	strscpy(info->version, "3.0", sizeof(info->version));
689 
690 	op = qep->op;
691 	regs = of_get_property(op->dev.of_node, "reg", NULL);
692 	if (regs)
693 		snprintf(info->bus_info, sizeof(info->bus_info), "SBUS:%d",
694 			 regs->which_io);
695 
696 }
697 
qe_get_link(struct net_device * dev)698 static u32 qe_get_link(struct net_device *dev)
699 {
700 	struct sunqe *qep = netdev_priv(dev);
701 	void __iomem *mregs = qep->mregs;
702 	u8 phyconfig;
703 
704 	spin_lock_irq(&qep->lock);
705 	phyconfig = sbus_readb(mregs + MREGS_PHYCONFIG);
706 	spin_unlock_irq(&qep->lock);
707 
708 	return phyconfig & MREGS_PHYCONFIG_LSTAT;
709 }
710 
711 static const struct ethtool_ops qe_ethtool_ops = {
712 	.get_drvinfo		= qe_get_drvinfo,
713 	.get_link		= qe_get_link,
714 };
715 
716 /* This is only called once at boot time for each card probed. */
qec_init_once(struct sunqec * qecp,struct platform_device * op)717 static void qec_init_once(struct sunqec *qecp, struct platform_device *op)
718 {
719 	u8 bsizes = qecp->qec_bursts;
720 
721 	if (sbus_can_burst64() && (bsizes & DMA_BURST64)) {
722 		sbus_writel(GLOB_CTRL_B64, qecp->gregs + GLOB_CTRL);
723 	} else if (bsizes & DMA_BURST32) {
724 		sbus_writel(GLOB_CTRL_B32, qecp->gregs + GLOB_CTRL);
725 	} else {
726 		sbus_writel(GLOB_CTRL_B16, qecp->gregs + GLOB_CTRL);
727 	}
728 
729 	/* Packetsize only used in 100baseT BigMAC configurations,
730 	 * set it to zero just to be on the safe side.
731 	 */
732 	sbus_writel(GLOB_PSIZE_2048, qecp->gregs + GLOB_PSIZE);
733 
734 	/* Set the local memsize register, divided up to one piece per QE channel. */
735 	sbus_writel((resource_size(&op->resource[1]) >> 2),
736 		    qecp->gregs + GLOB_MSIZE);
737 
738 	/* Divide up the local QEC memory amongst the 4 QE receiver and
739 	 * transmitter FIFOs.  Basically it is (total / 2 / num_channels).
740 	 */
741 	sbus_writel((resource_size(&op->resource[1]) >> 2) >> 1,
742 		    qecp->gregs + GLOB_TSIZE);
743 	sbus_writel((resource_size(&op->resource[1]) >> 2) >> 1,
744 		    qecp->gregs + GLOB_RSIZE);
745 }
746 
qec_get_burst(struct device_node * dp)747 static u8 qec_get_burst(struct device_node *dp)
748 {
749 	u8 bsizes, bsizes_more;
750 
751 	/* Find and set the burst sizes for the QEC, since it
752 	 * does the actual dma for all 4 channels.
753 	 */
754 	bsizes = of_getintprop_default(dp, "burst-sizes", 0xff);
755 	bsizes &= 0xff;
756 	bsizes_more = of_getintprop_default(dp->parent, "burst-sizes", 0xff);
757 
758 	if (bsizes_more != 0xff)
759 		bsizes &= bsizes_more;
760 	if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 ||
761 	    (bsizes & DMA_BURST32)==0)
762 		bsizes = (DMA_BURST32 - 1);
763 
764 	return bsizes;
765 }
766 
get_qec(struct platform_device * child)767 static struct sunqec *get_qec(struct platform_device *child)
768 {
769 	struct platform_device *op = to_platform_device(child->dev.parent);
770 	struct sunqec *qecp;
771 
772 	qecp = platform_get_drvdata(op);
773 	if (!qecp) {
774 		qecp = kzalloc(sizeof(struct sunqec), GFP_KERNEL);
775 		if (qecp) {
776 			u32 ctrl;
777 
778 			qecp->op = op;
779 			qecp->gregs = of_ioremap(&op->resource[0], 0,
780 						 GLOB_REG_SIZE,
781 						 "QEC Global Registers");
782 			if (!qecp->gregs)
783 				goto fail;
784 
785 			/* Make sure the QEC is in MACE mode. */
786 			ctrl = sbus_readl(qecp->gregs + GLOB_CTRL);
787 			ctrl &= 0xf0000000;
788 			if (ctrl != GLOB_CTRL_MMODE) {
789 				printk(KERN_ERR "qec: Not in MACE mode!\n");
790 				goto fail;
791 			}
792 
793 			if (qec_global_reset(qecp->gregs))
794 				goto fail;
795 
796 			qecp->qec_bursts = qec_get_burst(op->dev.of_node);
797 
798 			qec_init_once(qecp, op);
799 
800 			if (request_irq(op->archdata.irqs[0], qec_interrupt,
801 					IRQF_SHARED, "qec", (void *) qecp)) {
802 				printk(KERN_ERR "qec: Can't register irq.\n");
803 				goto fail;
804 			}
805 
806 			platform_set_drvdata(op, qecp);
807 
808 			qecp->next_module = root_qec_dev;
809 			root_qec_dev = qecp;
810 		}
811 	}
812 
813 	return qecp;
814 
815 fail:
816 	if (qecp->gregs)
817 		of_iounmap(&op->resource[0], qecp->gregs, GLOB_REG_SIZE);
818 	kfree(qecp);
819 	return NULL;
820 }
821 
822 static const struct net_device_ops qec_ops = {
823 	.ndo_open		= qe_open,
824 	.ndo_stop		= qe_close,
825 	.ndo_start_xmit		= qe_start_xmit,
826 	.ndo_set_rx_mode	= qe_set_multicast,
827 	.ndo_tx_timeout		= qe_tx_timeout,
828 	.ndo_set_mac_address	= eth_mac_addr,
829 	.ndo_validate_addr	= eth_validate_addr,
830 };
831 
qec_ether_init(struct platform_device * op)832 static int qec_ether_init(struct platform_device *op)
833 {
834 	static unsigned version_printed;
835 	struct net_device *dev;
836 	struct sunqec *qecp;
837 	struct sunqe *qe;
838 	int i, res;
839 
840 	if (version_printed++ == 0)
841 		printk(KERN_INFO "%s", version);
842 
843 	dev = alloc_etherdev(sizeof(struct sunqe));
844 	if (!dev)
845 		return -ENOMEM;
846 
847 	eth_hw_addr_set(dev, idprom->id_ethaddr);
848 
849 	qe = netdev_priv(dev);
850 
851 	res = -ENODEV;
852 
853 	i = of_getintprop_default(op->dev.of_node, "channel#", -1);
854 	if (i == -1)
855 		goto fail;
856 	qe->channel = i;
857 	spin_lock_init(&qe->lock);
858 
859 	qecp = get_qec(op);
860 	if (!qecp)
861 		goto fail;
862 
863 	qecp->qes[qe->channel] = qe;
864 	qe->dev = dev;
865 	qe->parent = qecp;
866 	qe->op = op;
867 
868 	res = -ENOMEM;
869 	qe->qcregs = of_ioremap(&op->resource[0], 0,
870 				CREG_REG_SIZE, "QEC Channel Registers");
871 	if (!qe->qcregs) {
872 		printk(KERN_ERR "qe: Cannot map channel registers.\n");
873 		goto fail;
874 	}
875 
876 	qe->mregs = of_ioremap(&op->resource[1], 0,
877 			       MREGS_REG_SIZE, "QE MACE Registers");
878 	if (!qe->mregs) {
879 		printk(KERN_ERR "qe: Cannot map MACE registers.\n");
880 		goto fail;
881 	}
882 
883 	qe->qe_block = dma_alloc_coherent(&op->dev, PAGE_SIZE,
884 					  &qe->qblock_dvma, GFP_ATOMIC);
885 	qe->buffers = dma_alloc_coherent(&op->dev, sizeof(struct sunqe_buffers),
886 					 &qe->buffers_dvma, GFP_ATOMIC);
887 	if (qe->qe_block == NULL || qe->qblock_dvma == 0 ||
888 	    qe->buffers == NULL || qe->buffers_dvma == 0)
889 		goto fail;
890 
891 	/* Stop this QE. */
892 	qe_stop(qe);
893 
894 	SET_NETDEV_DEV(dev, &op->dev);
895 
896 	dev->watchdog_timeo = 5*HZ;
897 	dev->irq = op->archdata.irqs[0];
898 	dev->dma = 0;
899 	dev->ethtool_ops = &qe_ethtool_ops;
900 	dev->netdev_ops = &qec_ops;
901 
902 	res = register_netdev(dev);
903 	if (res)
904 		goto fail;
905 
906 	platform_set_drvdata(op, qe);
907 
908 	printk(KERN_INFO "%s: qe channel[%d] %pM\n", dev->name, qe->channel,
909 	       dev->dev_addr);
910 	return 0;
911 
912 fail:
913 	if (qe->qcregs)
914 		of_iounmap(&op->resource[0], qe->qcregs, CREG_REG_SIZE);
915 	if (qe->mregs)
916 		of_iounmap(&op->resource[1], qe->mregs, MREGS_REG_SIZE);
917 	if (qe->qe_block)
918 		dma_free_coherent(&op->dev, PAGE_SIZE,
919 				  qe->qe_block, qe->qblock_dvma);
920 	if (qe->buffers)
921 		dma_free_coherent(&op->dev,
922 				  sizeof(struct sunqe_buffers),
923 				  qe->buffers,
924 				  qe->buffers_dvma);
925 
926 	free_netdev(dev);
927 
928 	return res;
929 }
930 
qec_sbus_probe(struct platform_device * op)931 static int qec_sbus_probe(struct platform_device *op)
932 {
933 	return qec_ether_init(op);
934 }
935 
qec_sbus_remove(struct platform_device * op)936 static void qec_sbus_remove(struct platform_device *op)
937 {
938 	struct sunqe *qp = platform_get_drvdata(op);
939 	struct net_device *net_dev = qp->dev;
940 
941 	unregister_netdev(net_dev);
942 
943 	of_iounmap(&op->resource[0], qp->qcregs, CREG_REG_SIZE);
944 	of_iounmap(&op->resource[1], qp->mregs, MREGS_REG_SIZE);
945 	dma_free_coherent(&op->dev, PAGE_SIZE,
946 			  qp->qe_block, qp->qblock_dvma);
947 	dma_free_coherent(&op->dev, sizeof(struct sunqe_buffers),
948 			  qp->buffers, qp->buffers_dvma);
949 
950 	free_netdev(net_dev);
951 }
952 
953 static const struct of_device_id qec_sbus_match[] = {
954 	{
955 		.name = "qe",
956 	},
957 	{},
958 };
959 
960 MODULE_DEVICE_TABLE(of, qec_sbus_match);
961 
962 static struct platform_driver qec_sbus_driver = {
963 	.driver = {
964 		.name = "qec",
965 		.of_match_table = qec_sbus_match,
966 	},
967 	.probe		= qec_sbus_probe,
968 	.remove_new	= qec_sbus_remove,
969 };
970 
qec_init(void)971 static int __init qec_init(void)
972 {
973 	return platform_driver_register(&qec_sbus_driver);
974 }
975 
qec_exit(void)976 static void __exit qec_exit(void)
977 {
978 	platform_driver_unregister(&qec_sbus_driver);
979 
980 	while (root_qec_dev) {
981 		struct sunqec *next = root_qec_dev->next_module;
982 		struct platform_device *op = root_qec_dev->op;
983 
984 		free_irq(op->archdata.irqs[0], (void *) root_qec_dev);
985 		of_iounmap(&op->resource[0], root_qec_dev->gregs,
986 			   GLOB_REG_SIZE);
987 		kfree(root_qec_dev);
988 
989 		root_qec_dev = next;
990 	}
991 }
992 
993 module_init(qec_init);
994 module_exit(qec_exit);
995