1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2006-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/delay.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/seq_file.h> 14 #include <linux/crc32.h> 15 #include "net_driver.h" 16 #include "bitfield.h" 17 #include "efx.h" 18 #include "rx_common.h" 19 #include "tx_common.h" 20 #include "nic.h" 21 #include "farch_regs.h" 22 #include "sriov.h" 23 #include "siena_sriov.h" 24 #include "io.h" 25 #include "workarounds.h" 26 27 /* Falcon-architecture (SFC9000-family) support */ 28 29 /************************************************************************** 30 * 31 * Configurable values 32 * 33 ************************************************************************** 34 */ 35 36 /* This is set to 16 for a good reason. In summary, if larger than 37 * 16, the descriptor cache holds more than a default socket 38 * buffer's worth of packets (for UDP we can only have at most one 39 * socket buffer's worth outstanding). This combined with the fact 40 * that we only get 1 TX event per descriptor cache means the NIC 41 * goes idle. 42 */ 43 #define TX_DC_ENTRIES 16 44 #define TX_DC_ENTRIES_ORDER 1 45 46 #define RX_DC_ENTRIES 64 47 #define RX_DC_ENTRIES_ORDER 3 48 49 /* If EFX_MAX_INT_ERRORS internal errors occur within 50 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and 51 * disable it. 52 */ 53 #define EFX_INT_ERROR_EXPIRE 3600 54 #define EFX_MAX_INT_ERRORS 5 55 56 /* Depth of RX flush request fifo */ 57 #define EFX_RX_FLUSH_COUNT 4 58 59 /* Driver generated events */ 60 #define _EFX_CHANNEL_MAGIC_TEST 0x000101 61 #define _EFX_CHANNEL_MAGIC_FILL 0x000102 62 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103 63 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104 64 65 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) 66 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) 67 68 #define EFX_CHANNEL_MAGIC_TEST(_channel) \ 69 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel) 70 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \ 71 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \ 72 efx_rx_queue_index(_rx_queue)) 73 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ 74 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \ 75 efx_rx_queue_index(_rx_queue)) 76 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ 77 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \ 78 (_tx_queue)->queue) 79 80 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic); 81 82 /************************************************************************** 83 * 84 * Hardware access 85 * 86 **************************************************************************/ 87 88 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, 89 unsigned int index) 90 { 91 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, 92 value, index); 93 } 94 95 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, 96 const efx_oword_t *mask) 97 { 98 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || 99 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); 100 } 101 102 int efx_farch_test_registers(struct efx_nic *efx, 103 const struct efx_farch_register_test *regs, 104 size_t n_regs) 105 { 106 unsigned address = 0; 107 int i, j; 108 efx_oword_t mask, imask, original, reg, buf; 109 110 for (i = 0; i < n_regs; ++i) { 111 address = regs[i].address; 112 mask = imask = regs[i].mask; 113 EFX_INVERT_OWORD(imask); 114 115 efx_reado(efx, &original, address); 116 117 /* bit sweep on and off */ 118 for (j = 0; j < 128; j++) { 119 if (!EFX_EXTRACT_OWORD32(mask, j, j)) 120 continue; 121 122 /* Test this testable bit can be set in isolation */ 123 EFX_AND_OWORD(reg, original, mask); 124 EFX_SET_OWORD32(reg, j, j, 1); 125 126 efx_writeo(efx, ®, address); 127 efx_reado(efx, &buf, address); 128 129 if (efx_masked_compare_oword(®, &buf, &mask)) 130 goto fail; 131 132 /* Test this testable bit can be cleared in isolation */ 133 EFX_OR_OWORD(reg, original, mask); 134 EFX_SET_OWORD32(reg, j, j, 0); 135 136 efx_writeo(efx, ®, address); 137 efx_reado(efx, &buf, address); 138 139 if (efx_masked_compare_oword(®, &buf, &mask)) 140 goto fail; 141 } 142 143 efx_writeo(efx, &original, address); 144 } 145 146 return 0; 147 148 fail: 149 netif_err(efx, hw, efx->net_dev, 150 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT 151 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), 152 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); 153 return -EIO; 154 } 155 156 /************************************************************************** 157 * 158 * Special buffer handling 159 * Special buffers are used for event queues and the TX and RX 160 * descriptor rings. 161 * 162 *************************************************************************/ 163 164 /* 165 * Initialise a special buffer 166 * 167 * This will define a buffer (previously allocated via 168 * efx_alloc_special_buffer()) in the buffer table, allowing 169 * it to be used for event queues, descriptor rings etc. 170 */ 171 static void 172 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) 173 { 174 efx_qword_t buf_desc; 175 unsigned int index; 176 dma_addr_t dma_addr; 177 int i; 178 179 EFX_WARN_ON_PARANOID(!buffer->buf.addr); 180 181 /* Write buffer descriptors to NIC */ 182 for (i = 0; i < buffer->entries; i++) { 183 index = buffer->index + i; 184 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE); 185 netif_dbg(efx, probe, efx->net_dev, 186 "mapping special buffer %d at %llx\n", 187 index, (unsigned long long)dma_addr); 188 EFX_POPULATE_QWORD_3(buf_desc, 189 FRF_AZ_BUF_ADR_REGION, 0, 190 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, 191 FRF_AZ_BUF_OWNER_ID_FBUF, 0); 192 efx_write_buf_tbl(efx, &buf_desc, index); 193 } 194 } 195 196 /* Unmaps a buffer and clears the buffer table entries */ 197 static void 198 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) 199 { 200 efx_oword_t buf_tbl_upd; 201 unsigned int start = buffer->index; 202 unsigned int end = (buffer->index + buffer->entries - 1); 203 204 if (!buffer->entries) 205 return; 206 207 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", 208 buffer->index, buffer->index + buffer->entries - 1); 209 210 EFX_POPULATE_OWORD_4(buf_tbl_upd, 211 FRF_AZ_BUF_UPD_CMD, 0, 212 FRF_AZ_BUF_CLR_CMD, 1, 213 FRF_AZ_BUF_CLR_END_ID, end, 214 FRF_AZ_BUF_CLR_START_ID, start); 215 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); 216 } 217 218 /* 219 * Allocate a new special buffer 220 * 221 * This allocates memory for a new buffer, clears it and allocates a 222 * new buffer ID range. It does not write into the buffer table. 223 * 224 * This call will allocate 4KB buffers, since 8KB buffers can't be 225 * used for event queues and descriptor rings. 226 */ 227 static int efx_alloc_special_buffer(struct efx_nic *efx, 228 struct efx_special_buffer *buffer, 229 unsigned int len) 230 { 231 #ifdef CONFIG_SFC_SIENA_SRIOV 232 struct siena_nic_data *nic_data = efx->nic_data; 233 #endif 234 len = ALIGN(len, EFX_BUF_SIZE); 235 236 if (efx_siena_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL)) 237 return -ENOMEM; 238 buffer->entries = len / EFX_BUF_SIZE; 239 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1)); 240 241 /* Select new buffer ID */ 242 buffer->index = efx->next_buffer_table; 243 efx->next_buffer_table += buffer->entries; 244 #ifdef CONFIG_SFC_SIENA_SRIOV 245 BUG_ON(efx_siena_sriov_enabled(efx) && 246 nic_data->vf_buftbl_base < efx->next_buffer_table); 247 #endif 248 249 netif_dbg(efx, probe, efx->net_dev, 250 "allocating special buffers %d-%d at %llx+%x " 251 "(virt %p phys %llx)\n", buffer->index, 252 buffer->index + buffer->entries - 1, 253 (u64)buffer->buf.dma_addr, len, 254 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); 255 256 return 0; 257 } 258 259 static void 260 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) 261 { 262 if (!buffer->buf.addr) 263 return; 264 265 netif_dbg(efx, hw, efx->net_dev, 266 "deallocating special buffers %d-%d at %llx+%x " 267 "(virt %p phys %llx)\n", buffer->index, 268 buffer->index + buffer->entries - 1, 269 (u64)buffer->buf.dma_addr, buffer->buf.len, 270 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); 271 272 efx_siena_free_buffer(efx, &buffer->buf); 273 buffer->entries = 0; 274 } 275 276 /************************************************************************** 277 * 278 * TX path 279 * 280 **************************************************************************/ 281 282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ 283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue) 284 { 285 unsigned write_ptr; 286 efx_dword_t reg; 287 288 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 289 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); 290 efx_writed_page(tx_queue->efx, ®, 291 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); 292 } 293 294 /* Write pointer and first descriptor for TX descriptor ring */ 295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue, 296 const efx_qword_t *txd) 297 { 298 unsigned write_ptr; 299 efx_oword_t reg; 300 301 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); 302 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); 303 304 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 305 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, 306 FRF_AZ_TX_DESC_WPTR, write_ptr); 307 reg.qword[0] = *txd; 308 efx_writeo_page(tx_queue->efx, ®, 309 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); 310 } 311 312 313 /* For each entry inserted into the software descriptor ring, create a 314 * descriptor in the hardware TX descriptor ring (in host memory), and 315 * write a doorbell. 316 */ 317 void efx_farch_tx_write(struct efx_tx_queue *tx_queue) 318 { 319 struct efx_tx_buffer *buffer; 320 efx_qword_t *txd; 321 unsigned write_ptr; 322 unsigned old_write_count = tx_queue->write_count; 323 324 tx_queue->xmit_pending = false; 325 if (unlikely(tx_queue->write_count == tx_queue->insert_count)) 326 return; 327 328 do { 329 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 330 buffer = &tx_queue->buffer[write_ptr]; 331 txd = efx_tx_desc(tx_queue, write_ptr); 332 ++tx_queue->write_count; 333 334 EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION); 335 336 /* Create TX descriptor ring entry */ 337 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); 338 EFX_POPULATE_QWORD_4(*txd, 339 FSF_AZ_TX_KER_CONT, 340 buffer->flags & EFX_TX_BUF_CONT, 341 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, 342 FSF_AZ_TX_KER_BUF_REGION, 0, 343 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); 344 } while (tx_queue->write_count != tx_queue->insert_count); 345 346 wmb(); /* Ensure descriptors are written before they are fetched */ 347 348 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { 349 txd = efx_tx_desc(tx_queue, 350 old_write_count & tx_queue->ptr_mask); 351 efx_farch_push_tx_desc(tx_queue, txd); 352 ++tx_queue->pushes; 353 } else { 354 efx_farch_notify_tx_desc(tx_queue); 355 } 356 } 357 358 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue, 359 dma_addr_t dma_addr, unsigned int len) 360 { 361 /* Don't cross 4K boundaries with descriptors. */ 362 unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1; 363 364 len = min(limit, len); 365 366 return len; 367 } 368 369 370 /* Allocate hardware resources for a TX queue */ 371 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue) 372 { 373 struct efx_nic *efx = tx_queue->efx; 374 unsigned entries; 375 376 tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OUTER_CSUM : 0) | 377 ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0); 378 entries = tx_queue->ptr_mask + 1; 379 return efx_alloc_special_buffer(efx, &tx_queue->txd, 380 entries * sizeof(efx_qword_t)); 381 } 382 383 void efx_farch_tx_init(struct efx_tx_queue *tx_queue) 384 { 385 int csum = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM; 386 struct efx_nic *efx = tx_queue->efx; 387 efx_oword_t reg; 388 389 /* Pin TX descriptor ring */ 390 efx_init_special_buffer(efx, &tx_queue->txd); 391 392 /* Push TX descriptor ring to card */ 393 EFX_POPULATE_OWORD_10(reg, 394 FRF_AZ_TX_DESCQ_EN, 1, 395 FRF_AZ_TX_ISCSI_DDIG_EN, 0, 396 FRF_AZ_TX_ISCSI_HDIG_EN, 0, 397 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, 398 FRF_AZ_TX_DESCQ_EVQ_ID, 399 tx_queue->channel->channel, 400 FRF_AZ_TX_DESCQ_OWNER_ID, 0, 401 FRF_AZ_TX_DESCQ_LABEL, tx_queue->label, 402 FRF_AZ_TX_DESCQ_SIZE, 403 __ffs(tx_queue->txd.entries), 404 FRF_AZ_TX_DESCQ_TYPE, 0, 405 FRF_BZ_TX_NON_IP_DROP_DIS, 1); 406 407 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); 408 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum); 409 410 efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, 411 tx_queue->queue); 412 413 EFX_POPULATE_OWORD_1(reg, 414 FRF_BZ_TX_PACE, 415 (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ? 416 FFE_BZ_TX_PACE_OFF : 417 FFE_BZ_TX_PACE_RESERVED); 418 efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, tx_queue->queue); 419 420 tx_queue->tso_version = 1; 421 } 422 423 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue) 424 { 425 struct efx_nic *efx = tx_queue->efx; 426 efx_oword_t tx_flush_descq; 427 428 WARN_ON(atomic_read(&tx_queue->flush_outstanding)); 429 atomic_set(&tx_queue->flush_outstanding, 1); 430 431 EFX_POPULATE_OWORD_2(tx_flush_descq, 432 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, 433 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); 434 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); 435 } 436 437 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue) 438 { 439 struct efx_nic *efx = tx_queue->efx; 440 efx_oword_t tx_desc_ptr; 441 442 /* Remove TX descriptor ring from card */ 443 EFX_ZERO_OWORD(tx_desc_ptr); 444 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, 445 tx_queue->queue); 446 447 /* Unpin TX descriptor ring */ 448 efx_fini_special_buffer(efx, &tx_queue->txd); 449 } 450 451 /* Free buffers backing TX queue */ 452 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue) 453 { 454 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); 455 } 456 457 /************************************************************************** 458 * 459 * RX path 460 * 461 **************************************************************************/ 462 463 /* This creates an entry in the RX descriptor queue */ 464 static inline void 465 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) 466 { 467 struct efx_rx_buffer *rx_buf; 468 efx_qword_t *rxd; 469 470 rxd = efx_rx_desc(rx_queue, index); 471 rx_buf = efx_rx_buffer(rx_queue, index); 472 EFX_POPULATE_QWORD_3(*rxd, 473 FSF_AZ_RX_KER_BUF_SIZE, 474 rx_buf->len - 475 rx_queue->efx->type->rx_buffer_padding, 476 FSF_AZ_RX_KER_BUF_REGION, 0, 477 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); 478 } 479 480 /* This writes to the RX_DESC_WPTR register for the specified receive 481 * descriptor ring. 482 */ 483 void efx_farch_rx_write(struct efx_rx_queue *rx_queue) 484 { 485 struct efx_nic *efx = rx_queue->efx; 486 efx_dword_t reg; 487 unsigned write_ptr; 488 489 while (rx_queue->notified_count != rx_queue->added_count) { 490 efx_farch_build_rx_desc( 491 rx_queue, 492 rx_queue->notified_count & rx_queue->ptr_mask); 493 ++rx_queue->notified_count; 494 } 495 496 wmb(); 497 write_ptr = rx_queue->added_count & rx_queue->ptr_mask; 498 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); 499 efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, 500 efx_rx_queue_index(rx_queue)); 501 } 502 503 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue) 504 { 505 struct efx_nic *efx = rx_queue->efx; 506 unsigned entries; 507 508 entries = rx_queue->ptr_mask + 1; 509 return efx_alloc_special_buffer(efx, &rx_queue->rxd, 510 entries * sizeof(efx_qword_t)); 511 } 512 513 void efx_farch_rx_init(struct efx_rx_queue *rx_queue) 514 { 515 efx_oword_t rx_desc_ptr; 516 struct efx_nic *efx = rx_queue->efx; 517 bool jumbo_en; 518 519 /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */ 520 jumbo_en = efx->rx_scatter; 521 522 netif_dbg(efx, hw, efx->net_dev, 523 "RX queue %d ring in special buffers %d-%d\n", 524 efx_rx_queue_index(rx_queue), rx_queue->rxd.index, 525 rx_queue->rxd.index + rx_queue->rxd.entries - 1); 526 527 rx_queue->scatter_n = 0; 528 529 /* Pin RX descriptor ring */ 530 efx_init_special_buffer(efx, &rx_queue->rxd); 531 532 /* Push RX descriptor ring to card */ 533 EFX_POPULATE_OWORD_10(rx_desc_ptr, 534 FRF_AZ_RX_ISCSI_DDIG_EN, true, 535 FRF_AZ_RX_ISCSI_HDIG_EN, true, 536 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, 537 FRF_AZ_RX_DESCQ_EVQ_ID, 538 efx_rx_queue_channel(rx_queue)->channel, 539 FRF_AZ_RX_DESCQ_OWNER_ID, 0, 540 FRF_AZ_RX_DESCQ_LABEL, 541 efx_rx_queue_index(rx_queue), 542 FRF_AZ_RX_DESCQ_SIZE, 543 __ffs(rx_queue->rxd.entries), 544 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , 545 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, 546 FRF_AZ_RX_DESCQ_EN, 1); 547 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, 548 efx_rx_queue_index(rx_queue)); 549 } 550 551 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue) 552 { 553 struct efx_nic *efx = rx_queue->efx; 554 efx_oword_t rx_flush_descq; 555 556 EFX_POPULATE_OWORD_2(rx_flush_descq, 557 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, 558 FRF_AZ_RX_FLUSH_DESCQ, 559 efx_rx_queue_index(rx_queue)); 560 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); 561 } 562 563 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue) 564 { 565 efx_oword_t rx_desc_ptr; 566 struct efx_nic *efx = rx_queue->efx; 567 568 /* Remove RX descriptor ring from card */ 569 EFX_ZERO_OWORD(rx_desc_ptr); 570 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, 571 efx_rx_queue_index(rx_queue)); 572 573 /* Unpin RX descriptor ring */ 574 efx_fini_special_buffer(efx, &rx_queue->rxd); 575 } 576 577 /* Free buffers backing RX queue */ 578 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue) 579 { 580 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); 581 } 582 583 /************************************************************************** 584 * 585 * Flush handling 586 * 587 **************************************************************************/ 588 589 /* efx_farch_flush_queues() must be woken up when all flushes are completed, 590 * or more RX flushes can be kicked off. 591 */ 592 static bool efx_farch_flush_wake(struct efx_nic *efx) 593 { 594 /* Ensure that all updates are visible to efx_farch_flush_queues() */ 595 smp_mb(); 596 597 return (atomic_read(&efx->active_queues) == 0 || 598 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT 599 && atomic_read(&efx->rxq_flush_pending) > 0)); 600 } 601 602 static bool efx_check_tx_flush_complete(struct efx_nic *efx) 603 { 604 bool i = true; 605 efx_oword_t txd_ptr_tbl; 606 struct efx_channel *channel; 607 struct efx_tx_queue *tx_queue; 608 609 efx_for_each_channel(channel, efx) { 610 efx_for_each_channel_tx_queue(tx_queue, channel) { 611 efx_reado_table(efx, &txd_ptr_tbl, 612 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); 613 if (EFX_OWORD_FIELD(txd_ptr_tbl, 614 FRF_AZ_TX_DESCQ_FLUSH) || 615 EFX_OWORD_FIELD(txd_ptr_tbl, 616 FRF_AZ_TX_DESCQ_EN)) { 617 netif_dbg(efx, hw, efx->net_dev, 618 "flush did not complete on TXQ %d\n", 619 tx_queue->queue); 620 i = false; 621 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, 622 1, 0)) { 623 /* The flush is complete, but we didn't 624 * receive a flush completion event 625 */ 626 netif_dbg(efx, hw, efx->net_dev, 627 "flush complete on TXQ %d, so drain " 628 "the queue\n", tx_queue->queue); 629 /* Don't need to increment active_queues as it 630 * has already been incremented for the queues 631 * which did not drain 632 */ 633 efx_farch_magic_event(channel, 634 EFX_CHANNEL_MAGIC_TX_DRAIN( 635 tx_queue)); 636 } 637 } 638 } 639 640 return i; 641 } 642 643 /* Flush all the transmit queues, and continue flushing receive queues until 644 * they're all flushed. Wait for the DRAIN events to be received so that there 645 * are no more RX and TX events left on any channel. */ 646 static int efx_farch_do_flush(struct efx_nic *efx) 647 { 648 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ 649 struct efx_channel *channel; 650 struct efx_rx_queue *rx_queue; 651 struct efx_tx_queue *tx_queue; 652 int rc = 0; 653 654 efx_for_each_channel(channel, efx) { 655 efx_for_each_channel_tx_queue(tx_queue, channel) { 656 efx_farch_flush_tx_queue(tx_queue); 657 } 658 efx_for_each_channel_rx_queue(rx_queue, channel) { 659 rx_queue->flush_pending = true; 660 atomic_inc(&efx->rxq_flush_pending); 661 } 662 } 663 664 while (timeout && atomic_read(&efx->active_queues) > 0) { 665 /* If SRIOV is enabled, then offload receive queue flushing to 666 * the firmware (though we will still have to poll for 667 * completion). If that fails, fall back to the old scheme. 668 */ 669 if (efx_siena_sriov_enabled(efx)) { 670 rc = efx_siena_mcdi_flush_rxqs(efx); 671 if (!rc) 672 goto wait; 673 } 674 675 /* The hardware supports four concurrent rx flushes, each of 676 * which may need to be retried if there is an outstanding 677 * descriptor fetch 678 */ 679 efx_for_each_channel(channel, efx) { 680 efx_for_each_channel_rx_queue(rx_queue, channel) { 681 if (atomic_read(&efx->rxq_flush_outstanding) >= 682 EFX_RX_FLUSH_COUNT) 683 break; 684 685 if (rx_queue->flush_pending) { 686 rx_queue->flush_pending = false; 687 atomic_dec(&efx->rxq_flush_pending); 688 atomic_inc(&efx->rxq_flush_outstanding); 689 efx_farch_flush_rx_queue(rx_queue); 690 } 691 } 692 } 693 694 wait: 695 timeout = wait_event_timeout(efx->flush_wq, 696 efx_farch_flush_wake(efx), 697 timeout); 698 } 699 700 if (atomic_read(&efx->active_queues) && 701 !efx_check_tx_flush_complete(efx)) { 702 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " 703 "(rx %d+%d)\n", atomic_read(&efx->active_queues), 704 atomic_read(&efx->rxq_flush_outstanding), 705 atomic_read(&efx->rxq_flush_pending)); 706 rc = -ETIMEDOUT; 707 708 atomic_set(&efx->active_queues, 0); 709 atomic_set(&efx->rxq_flush_pending, 0); 710 atomic_set(&efx->rxq_flush_outstanding, 0); 711 } 712 713 return rc; 714 } 715 716 int efx_farch_fini_dmaq(struct efx_nic *efx) 717 { 718 struct efx_channel *channel; 719 struct efx_tx_queue *tx_queue; 720 struct efx_rx_queue *rx_queue; 721 int rc = 0; 722 723 /* Do not attempt to write to the NIC during EEH recovery */ 724 if (efx->state != STATE_RECOVERY) { 725 /* Only perform flush if DMA is enabled */ 726 if (efx->pci_dev->is_busmaster) { 727 efx->type->prepare_flush(efx); 728 rc = efx_farch_do_flush(efx); 729 efx->type->finish_flush(efx); 730 } 731 732 efx_for_each_channel(channel, efx) { 733 efx_for_each_channel_rx_queue(rx_queue, channel) 734 efx_farch_rx_fini(rx_queue); 735 efx_for_each_channel_tx_queue(tx_queue, channel) 736 efx_farch_tx_fini(tx_queue); 737 } 738 } 739 740 return rc; 741 } 742 743 /* Reset queue and flush accounting after FLR 744 * 745 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus 746 * mastering was disabled), in which case we don't receive (RXQ) flush 747 * completion events. This means that efx->rxq_flush_outstanding remained at 4 748 * after the FLR; also, efx->active_queues was non-zero (as no flush completion 749 * events were received, and we didn't go through efx_check_tx_flush_complete()) 750 * If we don't fix this up, on the next call to efx_siena_realloc_channels() we 751 * won't flush any RX queues because efx->rxq_flush_outstanding is at the limit 752 * of 4 for batched flush requests; and the efx->active_queues gets messed up 753 * because we keep incrementing for the newly initialised queues, but it never 754 * went to zero previously. Then we get a timeout every time we try to restart 755 * the queues, as it doesn't go back to zero when we should be flushing the 756 * queues. 757 */ 758 void efx_farch_finish_flr(struct efx_nic *efx) 759 { 760 atomic_set(&efx->rxq_flush_pending, 0); 761 atomic_set(&efx->rxq_flush_outstanding, 0); 762 atomic_set(&efx->active_queues, 0); 763 } 764 765 766 /************************************************************************** 767 * 768 * Event queue processing 769 * Event queues are processed by per-channel tasklets. 770 * 771 **************************************************************************/ 772 773 /* Update a channel's event queue's read pointer (RPTR) register 774 * 775 * This writes the EVQ_RPTR_REG register for the specified channel's 776 * event queue. 777 */ 778 void efx_farch_ev_read_ack(struct efx_channel *channel) 779 { 780 efx_dword_t reg; 781 struct efx_nic *efx = channel->efx; 782 783 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, 784 channel->eventq_read_ptr & channel->eventq_mask); 785 786 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size 787 * of 4 bytes, but it is really 16 bytes just like later revisions. 788 */ 789 efx_writed(efx, ®, 790 efx->type->evq_rptr_tbl_base + 791 FR_BZ_EVQ_RPTR_STEP * channel->channel); 792 } 793 794 /* Use HW to insert a SW defined event */ 795 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq, 796 efx_qword_t *event) 797 { 798 efx_oword_t drv_ev_reg; 799 800 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || 801 FRF_AZ_DRV_EV_DATA_WIDTH != 64); 802 drv_ev_reg.u32[0] = event->u32[0]; 803 drv_ev_reg.u32[1] = event->u32[1]; 804 drv_ev_reg.u32[2] = 0; 805 drv_ev_reg.u32[3] = 0; 806 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); 807 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); 808 } 809 810 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic) 811 { 812 efx_qword_t event; 813 814 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, 815 FSE_AZ_EV_CODE_DRV_GEN_EV, 816 FSF_AZ_DRV_GEN_EV_MAGIC, magic); 817 efx_farch_generate_event(channel->efx, channel->channel, &event); 818 } 819 820 /* Handle a transmit completion event 821 * 822 * The NIC batches TX completion events; the message we receive is of 823 * the form "complete all TX events up to this index". 824 */ 825 static void 826 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) 827 { 828 unsigned int tx_ev_desc_ptr; 829 unsigned int tx_ev_q_label; 830 struct efx_tx_queue *tx_queue; 831 struct efx_nic *efx = channel->efx; 832 833 if (unlikely(READ_ONCE(efx->reset_pending))) 834 return; 835 836 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { 837 /* Transmit completion */ 838 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); 839 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); 840 tx_queue = channel->tx_queue + 841 (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL); 842 efx_siena_xmit_done(tx_queue, tx_ev_desc_ptr); 843 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { 844 /* Rewrite the FIFO write pointer */ 845 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); 846 tx_queue = channel->tx_queue + 847 (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL); 848 849 netif_tx_lock(efx->net_dev); 850 efx_farch_notify_tx_desc(tx_queue); 851 netif_tx_unlock(efx->net_dev); 852 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) { 853 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 854 } else { 855 netif_err(efx, tx_err, efx->net_dev, 856 "channel %d unexpected TX event " 857 EFX_QWORD_FMT"\n", channel->channel, 858 EFX_QWORD_VAL(*event)); 859 } 860 } 861 862 /* Detect errors included in the rx_evt_pkt_ok bit. */ 863 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue, 864 const efx_qword_t *event) 865 { 866 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 867 struct efx_nic *efx = rx_queue->efx; 868 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; 869 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; 870 bool rx_ev_frm_trunc, rx_ev_tobe_disc; 871 bool rx_ev_other_err, rx_ev_pause_frm; 872 873 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); 874 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, 875 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); 876 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, 877 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); 878 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, 879 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); 880 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); 881 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); 882 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); 883 884 /* Every error apart from tobe_disc and pause_frm */ 885 rx_ev_other_err = (rx_ev_tcp_udp_chksum_err | 886 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | 887 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); 888 889 /* Count errors that are not in MAC stats. Ignore expected 890 * checksum errors during self-test. */ 891 if (rx_ev_frm_trunc) 892 ++channel->n_rx_frm_trunc; 893 else if (rx_ev_tobe_disc) 894 ++channel->n_rx_tobe_disc; 895 else if (!efx->loopback_selftest) { 896 if (rx_ev_ip_hdr_chksum_err) 897 ++channel->n_rx_ip_hdr_chksum_err; 898 else if (rx_ev_tcp_udp_chksum_err) 899 ++channel->n_rx_tcp_udp_chksum_err; 900 } 901 902 /* TOBE_DISC is expected on unicast mismatches; don't print out an 903 * error message. FRM_TRUNC indicates RXDP dropped the packet due 904 * to a FIFO overflow. 905 */ 906 #ifdef DEBUG 907 if (rx_ev_other_err && net_ratelimit()) { 908 netif_dbg(efx, rx_err, efx->net_dev, 909 " RX queue %d unexpected RX event " 910 EFX_QWORD_FMT "%s%s%s%s%s%s%s\n", 911 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), 912 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", 913 rx_ev_ip_hdr_chksum_err ? 914 " [IP_HDR_CHKSUM_ERR]" : "", 915 rx_ev_tcp_udp_chksum_err ? 916 " [TCP_UDP_CHKSUM_ERR]" : "", 917 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", 918 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", 919 rx_ev_tobe_disc ? " [TOBE_DISC]" : "", 920 rx_ev_pause_frm ? " [PAUSE]" : ""); 921 } 922 #else 923 (void) rx_ev_other_err; 924 #endif 925 926 if (efx->net_dev->features & NETIF_F_RXALL) 927 /* don't discard frame for CRC error */ 928 rx_ev_eth_crc_err = false; 929 930 /* The frame must be discarded if any of these are true. */ 931 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | 932 rx_ev_tobe_disc | rx_ev_pause_frm) ? 933 EFX_RX_PKT_DISCARD : 0; 934 } 935 936 /* Handle receive events that are not in-order. Return true if this 937 * can be handled as a partial packet discard, false if it's more 938 * serious. 939 */ 940 static bool 941 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) 942 { 943 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 944 struct efx_nic *efx = rx_queue->efx; 945 unsigned expected, dropped; 946 947 if (rx_queue->scatter_n && 948 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & 949 rx_queue->ptr_mask)) { 950 ++channel->n_rx_nodesc_trunc; 951 return true; 952 } 953 954 expected = rx_queue->removed_count & rx_queue->ptr_mask; 955 dropped = (index - expected) & rx_queue->ptr_mask; 956 netif_info(efx, rx_err, efx->net_dev, 957 "dropped %d events (index=%d expected=%d)\n", 958 dropped, index, expected); 959 960 efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE); 961 return false; 962 } 963 964 /* Handle a packet received event 965 * 966 * The NIC gives a "discard" flag if it's a unicast packet with the 967 * wrong destination address 968 * Also "is multicast" and "matches multicast filter" flags can be used to 969 * discard non-matching multicast packets. 970 */ 971 static void 972 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) 973 { 974 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; 975 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; 976 unsigned expected_ptr; 977 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; 978 u16 flags; 979 struct efx_rx_queue *rx_queue; 980 struct efx_nic *efx = channel->efx; 981 982 if (unlikely(READ_ONCE(efx->reset_pending))) 983 return; 984 985 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); 986 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); 987 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != 988 channel->channel); 989 990 rx_queue = efx_channel_get_rx_queue(channel); 991 992 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); 993 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & 994 rx_queue->ptr_mask); 995 996 /* Check for partial drops and other errors */ 997 if (unlikely(rx_ev_desc_ptr != expected_ptr) || 998 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { 999 if (rx_ev_desc_ptr != expected_ptr && 1000 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) 1001 return; 1002 1003 /* Discard all pending fragments */ 1004 if (rx_queue->scatter_n) { 1005 efx_siena_rx_packet( 1006 rx_queue, 1007 rx_queue->removed_count & rx_queue->ptr_mask, 1008 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); 1009 rx_queue->removed_count += rx_queue->scatter_n; 1010 rx_queue->scatter_n = 0; 1011 } 1012 1013 /* Return if there is no new fragment */ 1014 if (rx_ev_desc_ptr != expected_ptr) 1015 return; 1016 1017 /* Discard new fragment if not SOP */ 1018 if (!rx_ev_sop) { 1019 efx_siena_rx_packet( 1020 rx_queue, 1021 rx_queue->removed_count & rx_queue->ptr_mask, 1022 1, 0, EFX_RX_PKT_DISCARD); 1023 ++rx_queue->removed_count; 1024 return; 1025 } 1026 } 1027 1028 ++rx_queue->scatter_n; 1029 if (rx_ev_cont) 1030 return; 1031 1032 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); 1033 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); 1034 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); 1035 1036 if (likely(rx_ev_pkt_ok)) { 1037 /* If packet is marked as OK then we can rely on the 1038 * hardware checksum and classification. 1039 */ 1040 flags = 0; 1041 switch (rx_ev_hdr_type) { 1042 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP: 1043 flags |= EFX_RX_PKT_TCP; 1044 fallthrough; 1045 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP: 1046 flags |= EFX_RX_PKT_CSUMMED; 1047 fallthrough; 1048 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: 1049 case FSE_AZ_RX_EV_HDR_TYPE_OTHER: 1050 break; 1051 } 1052 } else { 1053 flags = efx_farch_handle_rx_not_ok(rx_queue, event); 1054 } 1055 1056 /* Detect multicast packets that didn't match the filter */ 1057 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); 1058 if (rx_ev_mcast_pkt) { 1059 unsigned int rx_ev_mcast_hash_match = 1060 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); 1061 1062 if (unlikely(!rx_ev_mcast_hash_match)) { 1063 ++channel->n_rx_mcast_mismatch; 1064 flags |= EFX_RX_PKT_DISCARD; 1065 } 1066 } 1067 1068 channel->irq_mod_score += 2; 1069 1070 /* Handle received packet */ 1071 efx_siena_rx_packet(rx_queue, 1072 rx_queue->removed_count & rx_queue->ptr_mask, 1073 rx_queue->scatter_n, rx_ev_byte_cnt, flags); 1074 rx_queue->removed_count += rx_queue->scatter_n; 1075 rx_queue->scatter_n = 0; 1076 } 1077 1078 /* If this flush done event corresponds to a &struct efx_tx_queue, then 1079 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue 1080 * of all transmit completions. 1081 */ 1082 static void 1083 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) 1084 { 1085 struct efx_tx_queue *tx_queue; 1086 struct efx_channel *channel; 1087 int qid; 1088 1089 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); 1090 if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) { 1091 channel = efx_get_tx_channel(efx, qid / EFX_MAX_TXQ_PER_CHANNEL); 1092 tx_queue = channel->tx_queue + (qid % EFX_MAX_TXQ_PER_CHANNEL); 1093 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) 1094 efx_farch_magic_event(tx_queue->channel, 1095 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); 1096 } 1097 } 1098 1099 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush 1100 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add 1101 * the RX queue back to the mask of RX queues in need of flushing. 1102 */ 1103 static void 1104 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) 1105 { 1106 struct efx_channel *channel; 1107 struct efx_rx_queue *rx_queue; 1108 int qid; 1109 bool failed; 1110 1111 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); 1112 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); 1113 if (qid >= efx->n_channels) 1114 return; 1115 channel = efx_get_channel(efx, qid); 1116 if (!efx_channel_has_rx_queue(channel)) 1117 return; 1118 rx_queue = efx_channel_get_rx_queue(channel); 1119 1120 if (failed) { 1121 netif_info(efx, hw, efx->net_dev, 1122 "RXQ %d flush retry\n", qid); 1123 rx_queue->flush_pending = true; 1124 atomic_inc(&efx->rxq_flush_pending); 1125 } else { 1126 efx_farch_magic_event(efx_rx_queue_channel(rx_queue), 1127 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); 1128 } 1129 atomic_dec(&efx->rxq_flush_outstanding); 1130 if (efx_farch_flush_wake(efx)) 1131 wake_up(&efx->flush_wq); 1132 } 1133 1134 static void 1135 efx_farch_handle_drain_event(struct efx_channel *channel) 1136 { 1137 struct efx_nic *efx = channel->efx; 1138 1139 WARN_ON(atomic_read(&efx->active_queues) == 0); 1140 atomic_dec(&efx->active_queues); 1141 if (efx_farch_flush_wake(efx)) 1142 wake_up(&efx->flush_wq); 1143 } 1144 1145 static void efx_farch_handle_generated_event(struct efx_channel *channel, 1146 efx_qword_t *event) 1147 { 1148 struct efx_nic *efx = channel->efx; 1149 struct efx_rx_queue *rx_queue = 1150 efx_channel_has_rx_queue(channel) ? 1151 efx_channel_get_rx_queue(channel) : NULL; 1152 unsigned magic, code; 1153 1154 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); 1155 code = _EFX_CHANNEL_MAGIC_CODE(magic); 1156 1157 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { 1158 channel->event_test_cpu = raw_smp_processor_id(); 1159 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { 1160 /* The queue must be empty, so we won't receive any rx 1161 * events, so efx_process_channel() won't refill the 1162 * queue. Refill it here */ 1163 efx_siena_fast_push_rx_descriptors(rx_queue, true); 1164 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { 1165 efx_farch_handle_drain_event(channel); 1166 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) { 1167 efx_farch_handle_drain_event(channel); 1168 } else { 1169 netif_dbg(efx, hw, efx->net_dev, "channel %d received " 1170 "generated event "EFX_QWORD_FMT"\n", 1171 channel->channel, EFX_QWORD_VAL(*event)); 1172 } 1173 } 1174 1175 static void 1176 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) 1177 { 1178 struct efx_nic *efx = channel->efx; 1179 unsigned int ev_sub_code; 1180 unsigned int ev_sub_data; 1181 1182 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); 1183 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); 1184 1185 switch (ev_sub_code) { 1186 case FSE_AZ_TX_DESCQ_FLS_DONE_EV: 1187 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", 1188 channel->channel, ev_sub_data); 1189 efx_farch_handle_tx_flush_done(efx, event); 1190 #ifdef CONFIG_SFC_SIENA_SRIOV 1191 efx_siena_sriov_tx_flush_done(efx, event); 1192 #endif 1193 break; 1194 case FSE_AZ_RX_DESCQ_FLS_DONE_EV: 1195 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", 1196 channel->channel, ev_sub_data); 1197 efx_farch_handle_rx_flush_done(efx, event); 1198 #ifdef CONFIG_SFC_SIENA_SRIOV 1199 efx_siena_sriov_rx_flush_done(efx, event); 1200 #endif 1201 break; 1202 case FSE_AZ_EVQ_INIT_DONE_EV: 1203 netif_dbg(efx, hw, efx->net_dev, 1204 "channel %d EVQ %d initialised\n", 1205 channel->channel, ev_sub_data); 1206 break; 1207 case FSE_AZ_SRM_UPD_DONE_EV: 1208 netif_vdbg(efx, hw, efx->net_dev, 1209 "channel %d SRAM update done\n", channel->channel); 1210 break; 1211 case FSE_AZ_WAKE_UP_EV: 1212 netif_vdbg(efx, hw, efx->net_dev, 1213 "channel %d RXQ %d wakeup event\n", 1214 channel->channel, ev_sub_data); 1215 break; 1216 case FSE_AZ_TIMER_EV: 1217 netif_vdbg(efx, hw, efx->net_dev, 1218 "channel %d RX queue %d timer expired\n", 1219 channel->channel, ev_sub_data); 1220 break; 1221 case FSE_AA_RX_RECOVER_EV: 1222 netif_err(efx, rx_err, efx->net_dev, 1223 "channel %d seen DRIVER RX_RESET event. " 1224 "Resetting.\n", channel->channel); 1225 atomic_inc(&efx->rx_reset); 1226 efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE); 1227 break; 1228 case FSE_BZ_RX_DSC_ERROR_EV: 1229 if (ev_sub_data < EFX_VI_BASE) { 1230 netif_err(efx, rx_err, efx->net_dev, 1231 "RX DMA Q %d reports descriptor fetch error." 1232 " RX Q %d is disabled.\n", ev_sub_data, 1233 ev_sub_data); 1234 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1235 } 1236 #ifdef CONFIG_SFC_SIENA_SRIOV 1237 else 1238 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data); 1239 #endif 1240 break; 1241 case FSE_BZ_TX_DSC_ERROR_EV: 1242 if (ev_sub_data < EFX_VI_BASE) { 1243 netif_err(efx, tx_err, efx->net_dev, 1244 "TX DMA Q %d reports descriptor fetch error." 1245 " TX Q %d is disabled.\n", ev_sub_data, 1246 ev_sub_data); 1247 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1248 } 1249 #ifdef CONFIG_SFC_SIENA_SRIOV 1250 else 1251 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data); 1252 #endif 1253 break; 1254 default: 1255 netif_vdbg(efx, hw, efx->net_dev, 1256 "channel %d unknown driver event code %d " 1257 "data %04x\n", channel->channel, ev_sub_code, 1258 ev_sub_data); 1259 break; 1260 } 1261 } 1262 1263 int efx_farch_ev_process(struct efx_channel *channel, int budget) 1264 { 1265 struct efx_nic *efx = channel->efx; 1266 unsigned int read_ptr; 1267 efx_qword_t event, *p_event; 1268 int ev_code; 1269 int spent = 0; 1270 1271 if (budget <= 0) 1272 return spent; 1273 1274 read_ptr = channel->eventq_read_ptr; 1275 1276 for (;;) { 1277 p_event = efx_event(channel, read_ptr); 1278 event = *p_event; 1279 1280 if (!efx_event_present(&event)) 1281 /* End of events */ 1282 break; 1283 1284 netif_vdbg(channel->efx, intr, channel->efx->net_dev, 1285 "channel %d event is "EFX_QWORD_FMT"\n", 1286 channel->channel, EFX_QWORD_VAL(event)); 1287 1288 /* Clear this event by marking it all ones */ 1289 EFX_SET_QWORD(*p_event); 1290 1291 ++read_ptr; 1292 1293 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); 1294 1295 switch (ev_code) { 1296 case FSE_AZ_EV_CODE_RX_EV: 1297 efx_farch_handle_rx_event(channel, &event); 1298 if (++spent == budget) 1299 goto out; 1300 break; 1301 case FSE_AZ_EV_CODE_TX_EV: 1302 efx_farch_handle_tx_event(channel, &event); 1303 break; 1304 case FSE_AZ_EV_CODE_DRV_GEN_EV: 1305 efx_farch_handle_generated_event(channel, &event); 1306 break; 1307 case FSE_AZ_EV_CODE_DRIVER_EV: 1308 efx_farch_handle_driver_event(channel, &event); 1309 break; 1310 #ifdef CONFIG_SFC_SIENA_SRIOV 1311 case FSE_CZ_EV_CODE_USER_EV: 1312 efx_siena_sriov_event(channel, &event); 1313 break; 1314 #endif 1315 case FSE_CZ_EV_CODE_MCDI_EV: 1316 efx_siena_mcdi_process_event(channel, &event); 1317 break; 1318 case FSE_AZ_EV_CODE_GLOBAL_EV: 1319 if (efx->type->handle_global_event && 1320 efx->type->handle_global_event(channel, &event)) 1321 break; 1322 fallthrough; 1323 default: 1324 netif_err(channel->efx, hw, channel->efx->net_dev, 1325 "channel %d unknown event type %d (data " 1326 EFX_QWORD_FMT ")\n", channel->channel, 1327 ev_code, EFX_QWORD_VAL(event)); 1328 } 1329 } 1330 1331 out: 1332 channel->eventq_read_ptr = read_ptr; 1333 return spent; 1334 } 1335 1336 /* Allocate buffer table entries for event queue */ 1337 int efx_farch_ev_probe(struct efx_channel *channel) 1338 { 1339 struct efx_nic *efx = channel->efx; 1340 unsigned entries; 1341 1342 entries = channel->eventq_mask + 1; 1343 return efx_alloc_special_buffer(efx, &channel->eventq, 1344 entries * sizeof(efx_qword_t)); 1345 } 1346 1347 int efx_farch_ev_init(struct efx_channel *channel) 1348 { 1349 efx_oword_t reg; 1350 struct efx_nic *efx = channel->efx; 1351 1352 netif_dbg(efx, hw, efx->net_dev, 1353 "channel %d event queue in special buffers %d-%d\n", 1354 channel->channel, channel->eventq.index, 1355 channel->eventq.index + channel->eventq.entries - 1); 1356 1357 EFX_POPULATE_OWORD_3(reg, 1358 FRF_CZ_TIMER_Q_EN, 1, 1359 FRF_CZ_HOST_NOTIFY_MODE, 0, 1360 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); 1361 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); 1362 1363 /* Pin event queue buffer */ 1364 efx_init_special_buffer(efx, &channel->eventq); 1365 1366 /* Fill event queue with all ones (i.e. empty events) */ 1367 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); 1368 1369 /* Push event queue to card */ 1370 EFX_POPULATE_OWORD_3(reg, 1371 FRF_AZ_EVQ_EN, 1, 1372 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), 1373 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); 1374 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, 1375 channel->channel); 1376 1377 return 0; 1378 } 1379 1380 void efx_farch_ev_fini(struct efx_channel *channel) 1381 { 1382 efx_oword_t reg; 1383 struct efx_nic *efx = channel->efx; 1384 1385 /* Remove event queue from card */ 1386 EFX_ZERO_OWORD(reg); 1387 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, 1388 channel->channel); 1389 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); 1390 1391 /* Unpin event queue */ 1392 efx_fini_special_buffer(efx, &channel->eventq); 1393 } 1394 1395 /* Free buffers backing event queue */ 1396 void efx_farch_ev_remove(struct efx_channel *channel) 1397 { 1398 efx_free_special_buffer(channel->efx, &channel->eventq); 1399 } 1400 1401 1402 void efx_farch_ev_test_generate(struct efx_channel *channel) 1403 { 1404 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); 1405 } 1406 1407 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue) 1408 { 1409 efx_farch_magic_event(efx_rx_queue_channel(rx_queue), 1410 EFX_CHANNEL_MAGIC_FILL(rx_queue)); 1411 } 1412 1413 /************************************************************************** 1414 * 1415 * Hardware interrupts 1416 * The hardware interrupt handler does very little work; all the event 1417 * queue processing is carried out by per-channel tasklets. 1418 * 1419 **************************************************************************/ 1420 1421 /* Enable/disable/generate interrupts */ 1422 static inline void efx_farch_interrupts(struct efx_nic *efx, 1423 bool enabled, bool force) 1424 { 1425 efx_oword_t int_en_reg_ker; 1426 1427 EFX_POPULATE_OWORD_3(int_en_reg_ker, 1428 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, 1429 FRF_AZ_KER_INT_KER, force, 1430 FRF_AZ_DRV_INT_EN_KER, enabled); 1431 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); 1432 } 1433 1434 void efx_farch_irq_enable_master(struct efx_nic *efx) 1435 { 1436 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); 1437 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ 1438 1439 efx_farch_interrupts(efx, true, false); 1440 } 1441 1442 void efx_farch_irq_disable_master(struct efx_nic *efx) 1443 { 1444 /* Disable interrupts */ 1445 efx_farch_interrupts(efx, false, false); 1446 } 1447 1448 /* Generate a test interrupt 1449 * Interrupt must already have been enabled, otherwise nasty things 1450 * may happen. 1451 */ 1452 int efx_farch_irq_test_generate(struct efx_nic *efx) 1453 { 1454 efx_farch_interrupts(efx, true, true); 1455 return 0; 1456 } 1457 1458 /* Process a fatal interrupt 1459 * Disable bus mastering ASAP and schedule a reset 1460 */ 1461 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx) 1462 { 1463 efx_oword_t *int_ker = efx->irq_status.addr; 1464 efx_oword_t fatal_intr; 1465 int error, mem_perr; 1466 1467 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); 1468 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); 1469 1470 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " 1471 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), 1472 EFX_OWORD_VAL(fatal_intr), 1473 error ? "disabling bus mastering" : "no recognised error"); 1474 1475 /* If this is a memory parity error dump which blocks are offending */ 1476 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || 1477 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); 1478 if (mem_perr) { 1479 efx_oword_t reg; 1480 efx_reado(efx, ®, FR_AZ_MEM_STAT); 1481 netif_err(efx, hw, efx->net_dev, 1482 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", 1483 EFX_OWORD_VAL(reg)); 1484 } 1485 1486 /* Disable both devices */ 1487 pci_clear_master(efx->pci_dev); 1488 efx_farch_irq_disable_master(efx); 1489 1490 /* Count errors and reset or disable the NIC accordingly */ 1491 if (efx->int_error_count == 0 || 1492 time_after(jiffies, efx->int_error_expire)) { 1493 efx->int_error_count = 0; 1494 efx->int_error_expire = 1495 jiffies + EFX_INT_ERROR_EXPIRE * HZ; 1496 } 1497 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { 1498 netif_err(efx, hw, efx->net_dev, 1499 "SYSTEM ERROR - reset scheduled\n"); 1500 efx_siena_schedule_reset(efx, RESET_TYPE_INT_ERROR); 1501 } else { 1502 netif_err(efx, hw, efx->net_dev, 1503 "SYSTEM ERROR - max number of errors seen." 1504 "NIC will be disabled\n"); 1505 efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE); 1506 } 1507 1508 return IRQ_HANDLED; 1509 } 1510 1511 /* Handle a legacy interrupt 1512 * Acknowledges the interrupt and schedule event queue processing. 1513 */ 1514 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id) 1515 { 1516 struct efx_nic *efx = dev_id; 1517 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); 1518 efx_oword_t *int_ker = efx->irq_status.addr; 1519 irqreturn_t result = IRQ_NONE; 1520 struct efx_channel *channel; 1521 efx_dword_t reg; 1522 u32 queues; 1523 int syserr; 1524 1525 /* Read the ISR which also ACKs the interrupts */ 1526 efx_readd(efx, ®, FR_BZ_INT_ISR0); 1527 queues = EFX_EXTRACT_DWORD(reg, 0, 31); 1528 1529 /* Legacy interrupts are disabled too late by the EEH kernel 1530 * code. Disable them earlier. 1531 * If an EEH error occurred, the read will have returned all ones. 1532 */ 1533 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_siena_try_recovery(efx) && 1534 !efx->eeh_disabled_legacy_irq) { 1535 disable_irq_nosync(efx->legacy_irq); 1536 efx->eeh_disabled_legacy_irq = true; 1537 } 1538 1539 /* Handle non-event-queue sources */ 1540 if (queues & (1U << efx->irq_level) && soft_enabled) { 1541 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); 1542 if (unlikely(syserr)) 1543 return efx_farch_fatal_interrupt(efx); 1544 efx->last_irq_cpu = raw_smp_processor_id(); 1545 } 1546 1547 if (queues != 0) { 1548 efx->irq_zero_count = 0; 1549 1550 /* Schedule processing of any interrupting queues */ 1551 if (likely(soft_enabled)) { 1552 efx_for_each_channel(channel, efx) { 1553 if (queues & 1) 1554 efx_schedule_channel_irq(channel); 1555 queues >>= 1; 1556 } 1557 } 1558 result = IRQ_HANDLED; 1559 1560 } else { 1561 efx_qword_t *event; 1562 1563 /* Legacy ISR read can return zero once (SF bug 15783) */ 1564 1565 /* We can't return IRQ_HANDLED more than once on seeing ISR=0 1566 * because this might be a shared interrupt. */ 1567 if (efx->irq_zero_count++ == 0) 1568 result = IRQ_HANDLED; 1569 1570 /* Ensure we schedule or rearm all event queues */ 1571 if (likely(soft_enabled)) { 1572 efx_for_each_channel(channel, efx) { 1573 event = efx_event(channel, 1574 channel->eventq_read_ptr); 1575 if (efx_event_present(event)) 1576 efx_schedule_channel_irq(channel); 1577 else 1578 efx_farch_ev_read_ack(channel); 1579 } 1580 } 1581 } 1582 1583 if (result == IRQ_HANDLED) 1584 netif_vdbg(efx, intr, efx->net_dev, 1585 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", 1586 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); 1587 1588 return result; 1589 } 1590 1591 /* Handle an MSI interrupt 1592 * 1593 * Handle an MSI hardware interrupt. This routine schedules event 1594 * queue processing. No interrupt acknowledgement cycle is necessary. 1595 * Also, we never need to check that the interrupt is for us, since 1596 * MSI interrupts cannot be shared. 1597 */ 1598 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id) 1599 { 1600 struct efx_msi_context *context = dev_id; 1601 struct efx_nic *efx = context->efx; 1602 efx_oword_t *int_ker = efx->irq_status.addr; 1603 int syserr; 1604 1605 netif_vdbg(efx, intr, efx->net_dev, 1606 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", 1607 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); 1608 1609 if (!likely(READ_ONCE(efx->irq_soft_enabled))) 1610 return IRQ_HANDLED; 1611 1612 /* Handle non-event-queue sources */ 1613 if (context->index == efx->irq_level) { 1614 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); 1615 if (unlikely(syserr)) 1616 return efx_farch_fatal_interrupt(efx); 1617 efx->last_irq_cpu = raw_smp_processor_id(); 1618 } 1619 1620 /* Schedule processing of the channel */ 1621 efx_schedule_channel_irq(efx->channel[context->index]); 1622 1623 return IRQ_HANDLED; 1624 } 1625 1626 /* Setup RSS indirection table. 1627 * This maps from the hash value of the packet to RXQ 1628 */ 1629 void efx_farch_rx_push_indir_table(struct efx_nic *efx) 1630 { 1631 size_t i = 0; 1632 efx_dword_t dword; 1633 1634 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) != 1635 FR_BZ_RX_INDIRECTION_TBL_ROWS); 1636 1637 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { 1638 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, 1639 efx->rss_context.rx_indir_table[i]); 1640 efx_writed(efx, &dword, 1641 FR_BZ_RX_INDIRECTION_TBL + 1642 FR_BZ_RX_INDIRECTION_TBL_STEP * i); 1643 } 1644 } 1645 1646 void efx_farch_rx_pull_indir_table(struct efx_nic *efx) 1647 { 1648 size_t i = 0; 1649 efx_dword_t dword; 1650 1651 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) != 1652 FR_BZ_RX_INDIRECTION_TBL_ROWS); 1653 1654 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { 1655 efx_readd(efx, &dword, 1656 FR_BZ_RX_INDIRECTION_TBL + 1657 FR_BZ_RX_INDIRECTION_TBL_STEP * i); 1658 efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE); 1659 } 1660 } 1661 1662 /* Looks at available SRAM resources and works out how many queues we 1663 * can support, and where things like descriptor caches should live. 1664 * 1665 * SRAM is split up as follows: 1666 * 0 buftbl entries for channels 1667 * efx->vf_buftbl_base buftbl entries for SR-IOV 1668 * efx->rx_dc_base RX descriptor caches 1669 * efx->tx_dc_base TX descriptor caches 1670 */ 1671 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw) 1672 { 1673 unsigned vi_count, total_tx_channels; 1674 #ifdef CONFIG_SFC_SIENA_SRIOV 1675 struct siena_nic_data *nic_data; 1676 unsigned buftbl_min; 1677 #endif 1678 1679 total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels; 1680 vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL); 1681 1682 #ifdef CONFIG_SFC_SIENA_SRIOV 1683 nic_data = efx->nic_data; 1684 /* Account for the buffer table entries backing the datapath channels 1685 * and the descriptor caches for those channels. 1686 */ 1687 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE + 1688 total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE + 1689 efx->n_channels * EFX_MAX_EVQ_SIZE) 1690 * sizeof(efx_qword_t) / EFX_BUF_SIZE); 1691 if (efx->type->sriov_wanted) { 1692 if (efx->type->sriov_wanted(efx)) { 1693 unsigned vi_dc_entries, buftbl_free; 1694 unsigned entries_per_vf, vf_limit; 1695 1696 nic_data->vf_buftbl_base = buftbl_min; 1697 1698 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES; 1699 vi_count = max(vi_count, EFX_VI_BASE); 1700 buftbl_free = (sram_lim_qw - buftbl_min - 1701 vi_count * vi_dc_entries); 1702 1703 entries_per_vf = ((vi_dc_entries + 1704 EFX_VF_BUFTBL_PER_VI) * 1705 efx_vf_size(efx)); 1706 vf_limit = min(buftbl_free / entries_per_vf, 1707 (1024U - EFX_VI_BASE) >> efx->vi_scale); 1708 1709 if (efx->vf_count > vf_limit) { 1710 netif_err(efx, probe, efx->net_dev, 1711 "Reducing VF count from from %d to %d\n", 1712 efx->vf_count, vf_limit); 1713 efx->vf_count = vf_limit; 1714 } 1715 vi_count += efx->vf_count * efx_vf_size(efx); 1716 } 1717 } 1718 #endif 1719 1720 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; 1721 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; 1722 } 1723 1724 u32 efx_farch_fpga_ver(struct efx_nic *efx) 1725 { 1726 efx_oword_t altera_build; 1727 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); 1728 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); 1729 } 1730 1731 void efx_farch_init_common(struct efx_nic *efx) 1732 { 1733 efx_oword_t temp; 1734 1735 /* Set positions of descriptor caches in SRAM. */ 1736 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); 1737 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); 1738 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); 1739 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); 1740 1741 /* Set TX descriptor cache size. */ 1742 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); 1743 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); 1744 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); 1745 1746 /* Set RX descriptor cache size. Set low watermark to size-8, as 1747 * this allows most efficient prefetching. 1748 */ 1749 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); 1750 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); 1751 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); 1752 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); 1753 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); 1754 1755 /* Program INT_KER address */ 1756 EFX_POPULATE_OWORD_2(temp, 1757 FRF_AZ_NORM_INT_VEC_DIS_KER, 1758 EFX_INT_MODE_USE_MSI(efx), 1759 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); 1760 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); 1761 1762 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) 1763 /* Use an interrupt level unused by event queues */ 1764 efx->irq_level = 0x1f; 1765 else 1766 /* Use a valid MSI-X vector */ 1767 efx->irq_level = 0; 1768 1769 /* Enable all the genuinely fatal interrupts. (They are still 1770 * masked by the overall interrupt mask, controlled by 1771 * falcon_interrupts()). 1772 * 1773 * Note: All other fatal interrupts are enabled 1774 */ 1775 EFX_POPULATE_OWORD_3(temp, 1776 FRF_AZ_ILL_ADR_INT_KER_EN, 1, 1777 FRF_AZ_RBUF_OWN_INT_KER_EN, 1, 1778 FRF_AZ_TBUF_OWN_INT_KER_EN, 1); 1779 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); 1780 EFX_INVERT_OWORD(temp); 1781 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); 1782 1783 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be 1784 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. 1785 */ 1786 efx_reado(efx, &temp, FR_AZ_TX_RESERVED); 1787 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); 1788 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); 1789 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); 1790 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); 1791 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); 1792 /* Enable SW_EV to inherit in char driver - assume harmless here */ 1793 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); 1794 /* Prefetch threshold 2 => fetch when descriptor cache half empty */ 1795 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); 1796 /* Disable hardware watchdog which can misfire */ 1797 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); 1798 /* Squash TX of packets of 16 bytes or less */ 1799 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); 1800 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); 1801 1802 EFX_POPULATE_OWORD_4(temp, 1803 /* Default values */ 1804 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, 1805 FRF_BZ_TX_PACE_SB_AF, 0xb, 1806 FRF_BZ_TX_PACE_FB_BASE, 0, 1807 /* Allow large pace values in the fast bin. */ 1808 FRF_BZ_TX_PACE_BIN_TH, 1809 FFE_BZ_TX_PACE_RESERVED); 1810 efx_writeo(efx, &temp, FR_BZ_TX_PACE); 1811 } 1812 1813 /************************************************************************** 1814 * 1815 * Filter tables 1816 * 1817 ************************************************************************** 1818 */ 1819 1820 /* "Fudge factors" - difference between programmed value and actual depth. 1821 * Due to pipelined implementation we need to program H/W with a value that 1822 * is larger than the hop limit we want. 1823 */ 1824 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3 1825 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1 1826 1827 /* Hard maximum search limit. Hardware will time-out beyond 200-something. 1828 * We also need to avoid infinite loops in efx_farch_filter_search() when the 1829 * table is full. 1830 */ 1831 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200 1832 1833 /* Don't try very hard to find space for performance hints, as this is 1834 * counter-productive. */ 1835 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5 1836 1837 enum efx_farch_filter_type { 1838 EFX_FARCH_FILTER_TCP_FULL = 0, 1839 EFX_FARCH_FILTER_TCP_WILD, 1840 EFX_FARCH_FILTER_UDP_FULL, 1841 EFX_FARCH_FILTER_UDP_WILD, 1842 EFX_FARCH_FILTER_MAC_FULL = 4, 1843 EFX_FARCH_FILTER_MAC_WILD, 1844 EFX_FARCH_FILTER_UC_DEF = 8, 1845 EFX_FARCH_FILTER_MC_DEF, 1846 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */ 1847 }; 1848 1849 enum efx_farch_filter_table_id { 1850 EFX_FARCH_FILTER_TABLE_RX_IP = 0, 1851 EFX_FARCH_FILTER_TABLE_RX_MAC, 1852 EFX_FARCH_FILTER_TABLE_RX_DEF, 1853 EFX_FARCH_FILTER_TABLE_TX_MAC, 1854 EFX_FARCH_FILTER_TABLE_COUNT, 1855 }; 1856 1857 enum efx_farch_filter_index { 1858 EFX_FARCH_FILTER_INDEX_UC_DEF, 1859 EFX_FARCH_FILTER_INDEX_MC_DEF, 1860 EFX_FARCH_FILTER_SIZE_RX_DEF, 1861 }; 1862 1863 struct efx_farch_filter_spec { 1864 u8 type:4; 1865 u8 priority:4; 1866 u8 flags; 1867 u16 dmaq_id; 1868 u32 data[3]; 1869 }; 1870 1871 struct efx_farch_filter_table { 1872 enum efx_farch_filter_table_id id; 1873 u32 offset; /* address of table relative to BAR */ 1874 unsigned size; /* number of entries */ 1875 unsigned step; /* step between entries */ 1876 unsigned used; /* number currently used */ 1877 unsigned long *used_bitmap; 1878 struct efx_farch_filter_spec *spec; 1879 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT]; 1880 }; 1881 1882 struct efx_farch_filter_state { 1883 struct rw_semaphore lock; /* Protects table contents */ 1884 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT]; 1885 }; 1886 1887 static void 1888 efx_farch_filter_table_clear_entry(struct efx_nic *efx, 1889 struct efx_farch_filter_table *table, 1890 unsigned int filter_idx); 1891 1892 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit 1893 * key derived from the n-tuple. The initial LFSR state is 0xffff. */ 1894 static u16 efx_farch_filter_hash(u32 key) 1895 { 1896 u16 tmp; 1897 1898 /* First 16 rounds */ 1899 tmp = 0x1fff ^ key >> 16; 1900 tmp = tmp ^ tmp >> 3 ^ tmp >> 6; 1901 tmp = tmp ^ tmp >> 9; 1902 /* Last 16 rounds */ 1903 tmp = tmp ^ tmp << 13 ^ key; 1904 tmp = tmp ^ tmp >> 3 ^ tmp >> 6; 1905 return tmp ^ tmp >> 9; 1906 } 1907 1908 /* To allow for hash collisions, filter search continues at these 1909 * increments from the first possible entry selected by the hash. */ 1910 static u16 efx_farch_filter_increment(u32 key) 1911 { 1912 return key * 2 - 1; 1913 } 1914 1915 static enum efx_farch_filter_table_id 1916 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec) 1917 { 1918 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != 1919 (EFX_FARCH_FILTER_TCP_FULL >> 2)); 1920 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != 1921 (EFX_FARCH_FILTER_TCP_WILD >> 2)); 1922 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != 1923 (EFX_FARCH_FILTER_UDP_FULL >> 2)); 1924 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != 1925 (EFX_FARCH_FILTER_UDP_WILD >> 2)); 1926 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != 1927 (EFX_FARCH_FILTER_MAC_FULL >> 2)); 1928 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != 1929 (EFX_FARCH_FILTER_MAC_WILD >> 2)); 1930 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC != 1931 EFX_FARCH_FILTER_TABLE_RX_MAC + 2); 1932 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0); 1933 } 1934 1935 static void efx_farch_filter_push_rx_config(struct efx_nic *efx) 1936 { 1937 struct efx_farch_filter_state *state = efx->filter_state; 1938 struct efx_farch_filter_table *table; 1939 efx_oword_t filter_ctl; 1940 1941 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); 1942 1943 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; 1944 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, 1945 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] + 1946 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 1947 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, 1948 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] + 1949 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 1950 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, 1951 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] + 1952 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 1953 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, 1954 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] + 1955 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 1956 1957 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; 1958 if (table->size) { 1959 EFX_SET_OWORD_FIELD( 1960 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, 1961 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + 1962 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 1963 EFX_SET_OWORD_FIELD( 1964 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, 1965 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + 1966 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 1967 } 1968 1969 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; 1970 if (table->size) { 1971 EFX_SET_OWORD_FIELD( 1972 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID, 1973 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id); 1974 EFX_SET_OWORD_FIELD( 1975 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED, 1976 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & 1977 EFX_FILTER_FLAG_RX_RSS)); 1978 EFX_SET_OWORD_FIELD( 1979 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID, 1980 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id); 1981 EFX_SET_OWORD_FIELD( 1982 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED, 1983 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & 1984 EFX_FILTER_FLAG_RX_RSS)); 1985 1986 /* There is a single bit to enable RX scatter for all 1987 * unmatched packets. Only set it if scatter is 1988 * enabled in both filter specs. 1989 */ 1990 EFX_SET_OWORD_FIELD( 1991 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, 1992 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & 1993 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & 1994 EFX_FILTER_FLAG_RX_SCATTER)); 1995 } else { 1996 /* We don't expose 'default' filters because unmatched 1997 * packets always go to the queue number found in the 1998 * RSS table. But we still need to set the RX scatter 1999 * bit here. 2000 */ 2001 EFX_SET_OWORD_FIELD( 2002 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, 2003 efx->rx_scatter); 2004 } 2005 2006 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); 2007 } 2008 2009 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx) 2010 { 2011 struct efx_farch_filter_state *state = efx->filter_state; 2012 struct efx_farch_filter_table *table; 2013 efx_oword_t tx_cfg; 2014 2015 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG); 2016 2017 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; 2018 if (table->size) { 2019 EFX_SET_OWORD_FIELD( 2020 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE, 2021 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + 2022 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 2023 EFX_SET_OWORD_FIELD( 2024 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE, 2025 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + 2026 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 2027 } 2028 2029 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG); 2030 } 2031 2032 static int 2033 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec, 2034 const struct efx_filter_spec *gen_spec) 2035 { 2036 bool is_full = false; 2037 2038 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context) 2039 return -EINVAL; 2040 2041 spec->priority = gen_spec->priority; 2042 spec->flags = gen_spec->flags; 2043 spec->dmaq_id = gen_spec->dmaq_id; 2044 2045 switch (gen_spec->match_flags) { 2046 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 2047 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 2048 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT): 2049 is_full = true; 2050 fallthrough; 2051 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 2052 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): { 2053 __be32 rhost, host1, host2; 2054 __be16 rport, port1, port2; 2055 2056 EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX)); 2057 2058 if (gen_spec->ether_type != htons(ETH_P_IP)) 2059 return -EPROTONOSUPPORT; 2060 if (gen_spec->loc_port == 0 || 2061 (is_full && gen_spec->rem_port == 0)) 2062 return -EADDRNOTAVAIL; 2063 switch (gen_spec->ip_proto) { 2064 case IPPROTO_TCP: 2065 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL : 2066 EFX_FARCH_FILTER_TCP_WILD); 2067 break; 2068 case IPPROTO_UDP: 2069 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL : 2070 EFX_FARCH_FILTER_UDP_WILD); 2071 break; 2072 default: 2073 return -EPROTONOSUPPORT; 2074 } 2075 2076 /* Filter is constructed in terms of source and destination, 2077 * with the odd wrinkle that the ports are swapped in a UDP 2078 * wildcard filter. We need to convert from local and remote 2079 * (= zero for wildcard) addresses. 2080 */ 2081 rhost = is_full ? gen_spec->rem_host[0] : 0; 2082 rport = is_full ? gen_spec->rem_port : 0; 2083 host1 = rhost; 2084 host2 = gen_spec->loc_host[0]; 2085 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) { 2086 port1 = gen_spec->loc_port; 2087 port2 = rport; 2088 } else { 2089 port1 = rport; 2090 port2 = gen_spec->loc_port; 2091 } 2092 spec->data[0] = ntohl(host1) << 16 | ntohs(port1); 2093 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16; 2094 spec->data[2] = ntohl(host2); 2095 2096 break; 2097 } 2098 2099 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID: 2100 is_full = true; 2101 fallthrough; 2102 case EFX_FILTER_MATCH_LOC_MAC: 2103 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL : 2104 EFX_FARCH_FILTER_MAC_WILD); 2105 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0; 2106 spec->data[1] = (gen_spec->loc_mac[2] << 24 | 2107 gen_spec->loc_mac[3] << 16 | 2108 gen_spec->loc_mac[4] << 8 | 2109 gen_spec->loc_mac[5]); 2110 spec->data[2] = (gen_spec->loc_mac[0] << 8 | 2111 gen_spec->loc_mac[1]); 2112 break; 2113 2114 case EFX_FILTER_MATCH_LOC_MAC_IG: 2115 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ? 2116 EFX_FARCH_FILTER_MC_DEF : 2117 EFX_FARCH_FILTER_UC_DEF); 2118 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */ 2119 break; 2120 2121 default: 2122 return -EPROTONOSUPPORT; 2123 } 2124 2125 return 0; 2126 } 2127 2128 static void 2129 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec, 2130 const struct efx_farch_filter_spec *spec) 2131 { 2132 bool is_full = false; 2133 2134 /* *gen_spec should be completely initialised, to be consistent 2135 * with efx_filter_init_{rx,tx}() and in case we want to copy 2136 * it back to userland. 2137 */ 2138 memset(gen_spec, 0, sizeof(*gen_spec)); 2139 2140 gen_spec->priority = spec->priority; 2141 gen_spec->flags = spec->flags; 2142 gen_spec->dmaq_id = spec->dmaq_id; 2143 2144 switch (spec->type) { 2145 case EFX_FARCH_FILTER_TCP_FULL: 2146 case EFX_FARCH_FILTER_UDP_FULL: 2147 is_full = true; 2148 fallthrough; 2149 case EFX_FARCH_FILTER_TCP_WILD: 2150 case EFX_FARCH_FILTER_UDP_WILD: { 2151 __be32 host1, host2; 2152 __be16 port1, port2; 2153 2154 gen_spec->match_flags = 2155 EFX_FILTER_MATCH_ETHER_TYPE | 2156 EFX_FILTER_MATCH_IP_PROTO | 2157 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT; 2158 if (is_full) 2159 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST | 2160 EFX_FILTER_MATCH_REM_PORT); 2161 gen_spec->ether_type = htons(ETH_P_IP); 2162 gen_spec->ip_proto = 2163 (spec->type == EFX_FARCH_FILTER_TCP_FULL || 2164 spec->type == EFX_FARCH_FILTER_TCP_WILD) ? 2165 IPPROTO_TCP : IPPROTO_UDP; 2166 2167 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16); 2168 port1 = htons(spec->data[0]); 2169 host2 = htonl(spec->data[2]); 2170 port2 = htons(spec->data[1] >> 16); 2171 if (spec->flags & EFX_FILTER_FLAG_TX) { 2172 gen_spec->loc_host[0] = host1; 2173 gen_spec->rem_host[0] = host2; 2174 } else { 2175 gen_spec->loc_host[0] = host2; 2176 gen_spec->rem_host[0] = host1; 2177 } 2178 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^ 2179 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) { 2180 gen_spec->loc_port = port1; 2181 gen_spec->rem_port = port2; 2182 } else { 2183 gen_spec->loc_port = port2; 2184 gen_spec->rem_port = port1; 2185 } 2186 2187 break; 2188 } 2189 2190 case EFX_FARCH_FILTER_MAC_FULL: 2191 is_full = true; 2192 fallthrough; 2193 case EFX_FARCH_FILTER_MAC_WILD: 2194 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC; 2195 if (is_full) 2196 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID; 2197 gen_spec->loc_mac[0] = spec->data[2] >> 8; 2198 gen_spec->loc_mac[1] = spec->data[2]; 2199 gen_spec->loc_mac[2] = spec->data[1] >> 24; 2200 gen_spec->loc_mac[3] = spec->data[1] >> 16; 2201 gen_spec->loc_mac[4] = spec->data[1] >> 8; 2202 gen_spec->loc_mac[5] = spec->data[1]; 2203 gen_spec->outer_vid = htons(spec->data[0]); 2204 break; 2205 2206 case EFX_FARCH_FILTER_UC_DEF: 2207 case EFX_FARCH_FILTER_MC_DEF: 2208 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG; 2209 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF; 2210 break; 2211 2212 default: 2213 WARN_ON(1); 2214 break; 2215 } 2216 } 2217 2218 static void 2219 efx_farch_filter_init_rx_auto(struct efx_nic *efx, 2220 struct efx_farch_filter_spec *spec) 2221 { 2222 /* If there's only one channel then disable RSS for non VF 2223 * traffic, thereby allowing VFs to use RSS when the PF can't. 2224 */ 2225 spec->priority = EFX_FILTER_PRI_AUTO; 2226 spec->flags = (EFX_FILTER_FLAG_RX | 2227 (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) | 2228 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0)); 2229 spec->dmaq_id = 0; 2230 } 2231 2232 /* Build a filter entry and return its n-tuple key. */ 2233 static u32 efx_farch_filter_build(efx_oword_t *filter, 2234 struct efx_farch_filter_spec *spec) 2235 { 2236 u32 data3; 2237 2238 switch (efx_farch_filter_spec_table_id(spec)) { 2239 case EFX_FARCH_FILTER_TABLE_RX_IP: { 2240 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL || 2241 spec->type == EFX_FARCH_FILTER_UDP_WILD); 2242 EFX_POPULATE_OWORD_7( 2243 *filter, 2244 FRF_BZ_RSS_EN, 2245 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), 2246 FRF_BZ_SCATTER_EN, 2247 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), 2248 FRF_BZ_TCP_UDP, is_udp, 2249 FRF_BZ_RXQ_ID, spec->dmaq_id, 2250 EFX_DWORD_2, spec->data[2], 2251 EFX_DWORD_1, spec->data[1], 2252 EFX_DWORD_0, spec->data[0]); 2253 data3 = is_udp; 2254 break; 2255 } 2256 2257 case EFX_FARCH_FILTER_TABLE_RX_MAC: { 2258 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; 2259 EFX_POPULATE_OWORD_7( 2260 *filter, 2261 FRF_CZ_RMFT_RSS_EN, 2262 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), 2263 FRF_CZ_RMFT_SCATTER_EN, 2264 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), 2265 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id, 2266 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, 2267 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2], 2268 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1], 2269 FRF_CZ_RMFT_VLAN_ID, spec->data[0]); 2270 data3 = is_wild; 2271 break; 2272 } 2273 2274 case EFX_FARCH_FILTER_TABLE_TX_MAC: { 2275 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; 2276 EFX_POPULATE_OWORD_5(*filter, 2277 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id, 2278 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild, 2279 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2], 2280 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1], 2281 FRF_CZ_TMFT_VLAN_ID, spec->data[0]); 2282 data3 = is_wild | spec->dmaq_id << 1; 2283 break; 2284 } 2285 2286 default: 2287 BUG(); 2288 } 2289 2290 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3; 2291 } 2292 2293 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left, 2294 const struct efx_farch_filter_spec *right) 2295 { 2296 if (left->type != right->type || 2297 memcmp(left->data, right->data, sizeof(left->data))) 2298 return false; 2299 2300 if (left->flags & EFX_FILTER_FLAG_TX && 2301 left->dmaq_id != right->dmaq_id) 2302 return false; 2303 2304 return true; 2305 } 2306 2307 /* 2308 * Construct/deconstruct external filter IDs. At least the RX filter 2309 * IDs must be ordered by matching priority, for RX NFC semantics. 2310 * 2311 * Deconstruction needs to be robust against invalid IDs so that 2312 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can 2313 * accept user-provided IDs. 2314 */ 2315 2316 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5 2317 2318 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = { 2319 [EFX_FARCH_FILTER_TCP_FULL] = 0, 2320 [EFX_FARCH_FILTER_UDP_FULL] = 0, 2321 [EFX_FARCH_FILTER_TCP_WILD] = 1, 2322 [EFX_FARCH_FILTER_UDP_WILD] = 1, 2323 [EFX_FARCH_FILTER_MAC_FULL] = 2, 2324 [EFX_FARCH_FILTER_MAC_WILD] = 3, 2325 [EFX_FARCH_FILTER_UC_DEF] = 4, 2326 [EFX_FARCH_FILTER_MC_DEF] = 4, 2327 }; 2328 2329 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = { 2330 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */ 2331 EFX_FARCH_FILTER_TABLE_RX_IP, 2332 EFX_FARCH_FILTER_TABLE_RX_MAC, 2333 EFX_FARCH_FILTER_TABLE_RX_MAC, 2334 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */ 2335 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */ 2336 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */ 2337 }; 2338 2339 #define EFX_FARCH_FILTER_INDEX_WIDTH 13 2340 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1) 2341 2342 static inline u32 2343 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec, 2344 unsigned int index) 2345 { 2346 unsigned int range; 2347 2348 range = efx_farch_filter_type_match_pri[spec->type]; 2349 if (!(spec->flags & EFX_FILTER_FLAG_RX)) 2350 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT; 2351 2352 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index; 2353 } 2354 2355 static inline enum efx_farch_filter_table_id 2356 efx_farch_filter_id_table_id(u32 id) 2357 { 2358 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH; 2359 2360 if (range < ARRAY_SIZE(efx_farch_filter_range_table)) 2361 return efx_farch_filter_range_table[range]; 2362 else 2363 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */ 2364 } 2365 2366 static inline unsigned int efx_farch_filter_id_index(u32 id) 2367 { 2368 return id & EFX_FARCH_FILTER_INDEX_MASK; 2369 } 2370 2371 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx) 2372 { 2373 struct efx_farch_filter_state *state = efx->filter_state; 2374 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1; 2375 enum efx_farch_filter_table_id table_id; 2376 2377 do { 2378 table_id = efx_farch_filter_range_table[range]; 2379 if (state->table[table_id].size != 0) 2380 return range << EFX_FARCH_FILTER_INDEX_WIDTH | 2381 state->table[table_id].size; 2382 } while (range--); 2383 2384 return 0; 2385 } 2386 2387 s32 efx_farch_filter_insert(struct efx_nic *efx, 2388 struct efx_filter_spec *gen_spec, 2389 bool replace_equal) 2390 { 2391 struct efx_farch_filter_state *state = efx->filter_state; 2392 struct efx_farch_filter_table *table; 2393 struct efx_farch_filter_spec spec; 2394 efx_oword_t filter; 2395 int rep_index, ins_index; 2396 unsigned int depth = 0; 2397 int rc; 2398 2399 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec); 2400 if (rc) 2401 return rc; 2402 2403 down_write(&state->lock); 2404 2405 table = &state->table[efx_farch_filter_spec_table_id(&spec)]; 2406 if (table->size == 0) { 2407 rc = -EINVAL; 2408 goto out_unlock; 2409 } 2410 2411 netif_vdbg(efx, hw, efx->net_dev, 2412 "%s: type %d search_limit=%d", __func__, spec.type, 2413 table->search_limit[spec.type]); 2414 2415 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { 2416 /* One filter spec per type */ 2417 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0); 2418 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF != 2419 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF); 2420 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF; 2421 ins_index = rep_index; 2422 } else { 2423 /* Search concurrently for 2424 * (1) a filter to be replaced (rep_index): any filter 2425 * with the same match values, up to the current 2426 * search depth for this type, and 2427 * (2) the insertion point (ins_index): (1) or any 2428 * free slot before it or up to the maximum search 2429 * depth for this priority 2430 * We fail if we cannot find (2). 2431 * 2432 * We can stop once either 2433 * (a) we find (1), in which case we have definitely 2434 * found (2) as well; or 2435 * (b) we have searched exhaustively for (1), and have 2436 * either found (2) or searched exhaustively for it 2437 */ 2438 u32 key = efx_farch_filter_build(&filter, &spec); 2439 unsigned int hash = efx_farch_filter_hash(key); 2440 unsigned int incr = efx_farch_filter_increment(key); 2441 unsigned int max_rep_depth = table->search_limit[spec.type]; 2442 unsigned int max_ins_depth = 2443 spec.priority <= EFX_FILTER_PRI_HINT ? 2444 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX : 2445 EFX_FARCH_FILTER_CTL_SRCH_MAX; 2446 unsigned int i = hash & (table->size - 1); 2447 2448 ins_index = -1; 2449 depth = 1; 2450 2451 for (;;) { 2452 if (!test_bit(i, table->used_bitmap)) { 2453 if (ins_index < 0) 2454 ins_index = i; 2455 } else if (efx_farch_filter_equal(&spec, 2456 &table->spec[i])) { 2457 /* Case (a) */ 2458 if (ins_index < 0) 2459 ins_index = i; 2460 rep_index = i; 2461 break; 2462 } 2463 2464 if (depth >= max_rep_depth && 2465 (ins_index >= 0 || depth >= max_ins_depth)) { 2466 /* Case (b) */ 2467 if (ins_index < 0) { 2468 rc = -EBUSY; 2469 goto out_unlock; 2470 } 2471 rep_index = -1; 2472 break; 2473 } 2474 2475 i = (i + incr) & (table->size - 1); 2476 ++depth; 2477 } 2478 } 2479 2480 /* If we found a filter to be replaced, check whether we 2481 * should do so 2482 */ 2483 if (rep_index >= 0) { 2484 struct efx_farch_filter_spec *saved_spec = 2485 &table->spec[rep_index]; 2486 2487 if (spec.priority == saved_spec->priority && !replace_equal) { 2488 rc = -EEXIST; 2489 goto out_unlock; 2490 } 2491 if (spec.priority < saved_spec->priority) { 2492 rc = -EPERM; 2493 goto out_unlock; 2494 } 2495 if (saved_spec->priority == EFX_FILTER_PRI_AUTO || 2496 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) 2497 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; 2498 } 2499 2500 /* Insert the filter */ 2501 if (ins_index != rep_index) { 2502 __set_bit(ins_index, table->used_bitmap); 2503 ++table->used; 2504 } 2505 table->spec[ins_index] = spec; 2506 2507 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { 2508 efx_farch_filter_push_rx_config(efx); 2509 } else { 2510 if (table->search_limit[spec.type] < depth) { 2511 table->search_limit[spec.type] = depth; 2512 if (spec.flags & EFX_FILTER_FLAG_TX) 2513 efx_farch_filter_push_tx_limits(efx); 2514 else 2515 efx_farch_filter_push_rx_config(efx); 2516 } 2517 2518 efx_writeo(efx, &filter, 2519 table->offset + table->step * ins_index); 2520 2521 /* If we were able to replace a filter by inserting 2522 * at a lower depth, clear the replaced filter 2523 */ 2524 if (ins_index != rep_index && rep_index >= 0) 2525 efx_farch_filter_table_clear_entry(efx, table, 2526 rep_index); 2527 } 2528 2529 netif_vdbg(efx, hw, efx->net_dev, 2530 "%s: filter type %d index %d rxq %u set", 2531 __func__, spec.type, ins_index, spec.dmaq_id); 2532 rc = efx_farch_filter_make_id(&spec, ins_index); 2533 2534 out_unlock: 2535 up_write(&state->lock); 2536 return rc; 2537 } 2538 2539 static void 2540 efx_farch_filter_table_clear_entry(struct efx_nic *efx, 2541 struct efx_farch_filter_table *table, 2542 unsigned int filter_idx) 2543 { 2544 static efx_oword_t filter; 2545 2546 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap)); 2547 BUG_ON(table->offset == 0); /* can't clear MAC default filters */ 2548 2549 __clear_bit(filter_idx, table->used_bitmap); 2550 --table->used; 2551 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0])); 2552 2553 efx_writeo(efx, &filter, table->offset + table->step * filter_idx); 2554 2555 /* If this filter required a greater search depth than 2556 * any other, the search limit for its type can now be 2557 * decreased. However, it is hard to determine that 2558 * unless the table has become completely empty - in 2559 * which case, all its search limits can be set to 0. 2560 */ 2561 if (unlikely(table->used == 0)) { 2562 memset(table->search_limit, 0, sizeof(table->search_limit)); 2563 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC) 2564 efx_farch_filter_push_tx_limits(efx); 2565 else 2566 efx_farch_filter_push_rx_config(efx); 2567 } 2568 } 2569 2570 static int efx_farch_filter_remove(struct efx_nic *efx, 2571 struct efx_farch_filter_table *table, 2572 unsigned int filter_idx, 2573 enum efx_filter_priority priority) 2574 { 2575 struct efx_farch_filter_spec *spec = &table->spec[filter_idx]; 2576 2577 if (!test_bit(filter_idx, table->used_bitmap) || 2578 spec->priority != priority) 2579 return -ENOENT; 2580 2581 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) { 2582 efx_farch_filter_init_rx_auto(efx, spec); 2583 efx_farch_filter_push_rx_config(efx); 2584 } else { 2585 efx_farch_filter_table_clear_entry(efx, table, filter_idx); 2586 } 2587 2588 return 0; 2589 } 2590 2591 int efx_farch_filter_remove_safe(struct efx_nic *efx, 2592 enum efx_filter_priority priority, 2593 u32 filter_id) 2594 { 2595 struct efx_farch_filter_state *state = efx->filter_state; 2596 enum efx_farch_filter_table_id table_id; 2597 struct efx_farch_filter_table *table; 2598 unsigned int filter_idx; 2599 int rc; 2600 2601 table_id = efx_farch_filter_id_table_id(filter_id); 2602 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) 2603 return -ENOENT; 2604 table = &state->table[table_id]; 2605 2606 filter_idx = efx_farch_filter_id_index(filter_id); 2607 if (filter_idx >= table->size) 2608 return -ENOENT; 2609 down_write(&state->lock); 2610 2611 rc = efx_farch_filter_remove(efx, table, filter_idx, priority); 2612 up_write(&state->lock); 2613 2614 return rc; 2615 } 2616 2617 int efx_farch_filter_get_safe(struct efx_nic *efx, 2618 enum efx_filter_priority priority, 2619 u32 filter_id, struct efx_filter_spec *spec_buf) 2620 { 2621 struct efx_farch_filter_state *state = efx->filter_state; 2622 enum efx_farch_filter_table_id table_id; 2623 struct efx_farch_filter_table *table; 2624 struct efx_farch_filter_spec *spec; 2625 unsigned int filter_idx; 2626 int rc = -ENOENT; 2627 2628 down_read(&state->lock); 2629 2630 table_id = efx_farch_filter_id_table_id(filter_id); 2631 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) 2632 goto out_unlock; 2633 table = &state->table[table_id]; 2634 2635 filter_idx = efx_farch_filter_id_index(filter_id); 2636 if (filter_idx >= table->size) 2637 goto out_unlock; 2638 spec = &table->spec[filter_idx]; 2639 2640 if (test_bit(filter_idx, table->used_bitmap) && 2641 spec->priority == priority) { 2642 efx_farch_filter_to_gen_spec(spec_buf, spec); 2643 rc = 0; 2644 } 2645 2646 out_unlock: 2647 up_read(&state->lock); 2648 return rc; 2649 } 2650 2651 static void 2652 efx_farch_filter_table_clear(struct efx_nic *efx, 2653 enum efx_farch_filter_table_id table_id, 2654 enum efx_filter_priority priority) 2655 { 2656 struct efx_farch_filter_state *state = efx->filter_state; 2657 struct efx_farch_filter_table *table = &state->table[table_id]; 2658 unsigned int filter_idx; 2659 2660 down_write(&state->lock); 2661 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) { 2662 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO) 2663 efx_farch_filter_remove(efx, table, 2664 filter_idx, priority); 2665 } 2666 up_write(&state->lock); 2667 } 2668 2669 int efx_farch_filter_clear_rx(struct efx_nic *efx, 2670 enum efx_filter_priority priority) 2671 { 2672 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP, 2673 priority); 2674 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC, 2675 priority); 2676 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF, 2677 priority); 2678 return 0; 2679 } 2680 2681 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx, 2682 enum efx_filter_priority priority) 2683 { 2684 struct efx_farch_filter_state *state = efx->filter_state; 2685 enum efx_farch_filter_table_id table_id; 2686 struct efx_farch_filter_table *table; 2687 unsigned int filter_idx; 2688 u32 count = 0; 2689 2690 down_read(&state->lock); 2691 2692 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; 2693 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; 2694 table_id++) { 2695 table = &state->table[table_id]; 2696 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2697 if (test_bit(filter_idx, table->used_bitmap) && 2698 table->spec[filter_idx].priority == priority) 2699 ++count; 2700 } 2701 } 2702 2703 up_read(&state->lock); 2704 2705 return count; 2706 } 2707 2708 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx, 2709 enum efx_filter_priority priority, 2710 u32 *buf, u32 size) 2711 { 2712 struct efx_farch_filter_state *state = efx->filter_state; 2713 enum efx_farch_filter_table_id table_id; 2714 struct efx_farch_filter_table *table; 2715 unsigned int filter_idx; 2716 s32 count = 0; 2717 2718 down_read(&state->lock); 2719 2720 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; 2721 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; 2722 table_id++) { 2723 table = &state->table[table_id]; 2724 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2725 if (test_bit(filter_idx, table->used_bitmap) && 2726 table->spec[filter_idx].priority == priority) { 2727 if (count == size) { 2728 count = -EMSGSIZE; 2729 goto out; 2730 } 2731 buf[count++] = efx_farch_filter_make_id( 2732 &table->spec[filter_idx], filter_idx); 2733 } 2734 } 2735 } 2736 out: 2737 up_read(&state->lock); 2738 2739 return count; 2740 } 2741 2742 /* Restore filter stater after reset */ 2743 void efx_farch_filter_table_restore(struct efx_nic *efx) 2744 { 2745 struct efx_farch_filter_state *state = efx->filter_state; 2746 enum efx_farch_filter_table_id table_id; 2747 struct efx_farch_filter_table *table; 2748 efx_oword_t filter; 2749 unsigned int filter_idx; 2750 2751 down_write(&state->lock); 2752 2753 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { 2754 table = &state->table[table_id]; 2755 2756 /* Check whether this is a regular register table */ 2757 if (table->step == 0) 2758 continue; 2759 2760 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2761 if (!test_bit(filter_idx, table->used_bitmap)) 2762 continue; 2763 efx_farch_filter_build(&filter, &table->spec[filter_idx]); 2764 efx_writeo(efx, &filter, 2765 table->offset + table->step * filter_idx); 2766 } 2767 } 2768 2769 efx_farch_filter_push_rx_config(efx); 2770 efx_farch_filter_push_tx_limits(efx); 2771 2772 up_write(&state->lock); 2773 } 2774 2775 void efx_farch_filter_table_remove(struct efx_nic *efx) 2776 { 2777 struct efx_farch_filter_state *state = efx->filter_state; 2778 enum efx_farch_filter_table_id table_id; 2779 2780 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { 2781 bitmap_free(state->table[table_id].used_bitmap); 2782 vfree(state->table[table_id].spec); 2783 } 2784 kfree(state); 2785 } 2786 2787 int efx_farch_filter_table_probe(struct efx_nic *efx) 2788 { 2789 struct efx_farch_filter_state *state; 2790 struct efx_farch_filter_table *table; 2791 unsigned table_id; 2792 2793 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL); 2794 if (!state) 2795 return -ENOMEM; 2796 efx->filter_state = state; 2797 init_rwsem(&state->lock); 2798 2799 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; 2800 table->id = EFX_FARCH_FILTER_TABLE_RX_IP; 2801 table->offset = FR_BZ_RX_FILTER_TBL0; 2802 table->size = FR_BZ_RX_FILTER_TBL0_ROWS; 2803 table->step = FR_BZ_RX_FILTER_TBL0_STEP; 2804 2805 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; 2806 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC; 2807 table->offset = FR_CZ_RX_MAC_FILTER_TBL0; 2808 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS; 2809 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP; 2810 2811 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; 2812 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF; 2813 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF; 2814 2815 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; 2816 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC; 2817 table->offset = FR_CZ_TX_MAC_FILTER_TBL0; 2818 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS; 2819 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP; 2820 2821 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { 2822 table = &state->table[table_id]; 2823 if (table->size == 0) 2824 continue; 2825 table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL); 2826 if (!table->used_bitmap) 2827 goto fail; 2828 table->spec = vzalloc(array_size(sizeof(*table->spec), 2829 table->size)); 2830 if (!table->spec) 2831 goto fail; 2832 } 2833 2834 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; 2835 if (table->size) { 2836 /* RX default filters must always exist */ 2837 struct efx_farch_filter_spec *spec; 2838 unsigned i; 2839 2840 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) { 2841 spec = &table->spec[i]; 2842 spec->type = EFX_FARCH_FILTER_UC_DEF + i; 2843 efx_farch_filter_init_rx_auto(efx, spec); 2844 __set_bit(i, table->used_bitmap); 2845 } 2846 } 2847 2848 efx_farch_filter_push_rx_config(efx); 2849 2850 return 0; 2851 2852 fail: 2853 efx_farch_filter_table_remove(efx); 2854 return -ENOMEM; 2855 } 2856 2857 /* Update scatter enable flags for filters pointing to our own RX queues */ 2858 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx) 2859 { 2860 struct efx_farch_filter_state *state = efx->filter_state; 2861 enum efx_farch_filter_table_id table_id; 2862 struct efx_farch_filter_table *table; 2863 efx_oword_t filter; 2864 unsigned int filter_idx; 2865 2866 down_write(&state->lock); 2867 2868 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; 2869 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; 2870 table_id++) { 2871 table = &state->table[table_id]; 2872 2873 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2874 if (!test_bit(filter_idx, table->used_bitmap) || 2875 table->spec[filter_idx].dmaq_id >= 2876 efx->n_rx_channels) 2877 continue; 2878 2879 if (efx->rx_scatter) 2880 table->spec[filter_idx].flags |= 2881 EFX_FILTER_FLAG_RX_SCATTER; 2882 else 2883 table->spec[filter_idx].flags &= 2884 ~EFX_FILTER_FLAG_RX_SCATTER; 2885 2886 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF) 2887 /* Pushed by efx_farch_filter_push_rx_config() */ 2888 continue; 2889 2890 efx_farch_filter_build(&filter, &table->spec[filter_idx]); 2891 efx_writeo(efx, &filter, 2892 table->offset + table->step * filter_idx); 2893 } 2894 } 2895 2896 efx_farch_filter_push_rx_config(efx); 2897 2898 up_write(&state->lock); 2899 } 2900 2901 #ifdef CONFIG_RFS_ACCEL 2902 2903 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, 2904 unsigned int index) 2905 { 2906 struct efx_farch_filter_state *state = efx->filter_state; 2907 struct efx_farch_filter_table *table; 2908 bool ret = false, force = false; 2909 u16 arfs_id; 2910 2911 down_write(&state->lock); 2912 spin_lock_bh(&efx->rps_hash_lock); 2913 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; 2914 if (test_bit(index, table->used_bitmap) && 2915 table->spec[index].priority == EFX_FILTER_PRI_HINT) { 2916 struct efx_arfs_rule *rule = NULL; 2917 struct efx_filter_spec spec; 2918 2919 efx_farch_filter_to_gen_spec(&spec, &table->spec[index]); 2920 if (!efx->rps_hash_table) { 2921 /* In the absence of the table, we always returned 0 to 2922 * ARFS, so use the same to query it. 2923 */ 2924 arfs_id = 0; 2925 } else { 2926 rule = efx_siena_rps_hash_find(efx, &spec); 2927 if (!rule) { 2928 /* ARFS table doesn't know of this filter, remove it */ 2929 force = true; 2930 } else { 2931 arfs_id = rule->arfs_id; 2932 if (!efx_siena_rps_check_rule(rule, index, 2933 &force)) 2934 goto out_unlock; 2935 } 2936 } 2937 if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id, 2938 flow_id, arfs_id)) { 2939 if (rule) 2940 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 2941 efx_siena_rps_hash_del(efx, &spec); 2942 efx_farch_filter_table_clear_entry(efx, table, index); 2943 ret = true; 2944 } 2945 } 2946 out_unlock: 2947 spin_unlock_bh(&efx->rps_hash_lock); 2948 up_write(&state->lock); 2949 return ret; 2950 } 2951 2952 #endif /* CONFIG_RFS_ACCEL */ 2953 2954 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx) 2955 { 2956 struct net_device *net_dev = efx->net_dev; 2957 struct netdev_hw_addr *ha; 2958 union efx_multicast_hash *mc_hash = &efx->multicast_hash; 2959 u32 crc; 2960 int bit; 2961 2962 if (!efx_dev_registered(efx)) 2963 return; 2964 2965 netif_addr_lock_bh(net_dev); 2966 2967 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC); 2968 2969 /* Build multicast hash table */ 2970 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { 2971 memset(mc_hash, 0xff, sizeof(*mc_hash)); 2972 } else { 2973 memset(mc_hash, 0x00, sizeof(*mc_hash)); 2974 netdev_for_each_mc_addr(ha, net_dev) { 2975 crc = ether_crc_le(ETH_ALEN, ha->addr); 2976 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); 2977 __set_bit_le(bit, mc_hash); 2978 } 2979 2980 /* Broadcast packets go through the multicast hash filter. 2981 * ether_crc_le() of the broadcast address is 0xbe2612ff 2982 * so we always add bit 0xff to the mask. 2983 */ 2984 __set_bit_le(0xff, mc_hash); 2985 } 2986 2987 netif_addr_unlock_bh(net_dev); 2988 } 2989