1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "rx_common.h"
19 #include "tx_common.h"
20 #include "nic.h"
21 #include "farch_regs.h"
22 #include "sriov.h"
23 #include "siena_sriov.h"
24 #include "io.h"
25 #include "workarounds.h"
26
27 /* Falcon-architecture (SFC9000-family) support */
28
29 /**************************************************************************
30 *
31 * Configurable values
32 *
33 **************************************************************************
34 */
35
36 /* This is set to 16 for a good reason. In summary, if larger than
37 * 16, the descriptor cache holds more than a default socket
38 * buffer's worth of packets (for UDP we can only have at most one
39 * socket buffer's worth outstanding). This combined with the fact
40 * that we only get 1 TX event per descriptor cache means the NIC
41 * goes idle.
42 */
43 #define TX_DC_ENTRIES 16
44 #define TX_DC_ENTRIES_ORDER 1
45
46 #define RX_DC_ENTRIES 64
47 #define RX_DC_ENTRIES_ORDER 3
48
49 /* If EFX_MAX_INT_ERRORS internal errors occur within
50 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
51 * disable it.
52 */
53 #define EFX_INT_ERROR_EXPIRE 3600
54 #define EFX_MAX_INT_ERRORS 5
55
56 /* Depth of RX flush request fifo */
57 #define EFX_RX_FLUSH_COUNT 4
58
59 /* Driver generated events */
60 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
61 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
62 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
63 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
64
65 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
66 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
67
68 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
69 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
70 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
71 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
72 efx_rx_queue_index(_rx_queue))
73 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
74 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
75 efx_rx_queue_index(_rx_queue))
76 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
77 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
78 (_tx_queue)->queue)
79
80 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
81
82 /**************************************************************************
83 *
84 * Hardware access
85 *
86 **************************************************************************/
87
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)88 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
89 unsigned int index)
90 {
91 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
92 value, index);
93 }
94
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)95 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
96 const efx_oword_t *mask)
97 {
98 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
99 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
100 }
101
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)102 int efx_farch_test_registers(struct efx_nic *efx,
103 const struct efx_farch_register_test *regs,
104 size_t n_regs)
105 {
106 unsigned address = 0;
107 int i, j;
108 efx_oword_t mask, imask, original, reg, buf;
109
110 for (i = 0; i < n_regs; ++i) {
111 address = regs[i].address;
112 mask = imask = regs[i].mask;
113 EFX_INVERT_OWORD(imask);
114
115 efx_reado(efx, &original, address);
116
117 /* bit sweep on and off */
118 for (j = 0; j < 128; j++) {
119 if (!EFX_EXTRACT_OWORD32(mask, j, j))
120 continue;
121
122 /* Test this testable bit can be set in isolation */
123 EFX_AND_OWORD(reg, original, mask);
124 EFX_SET_OWORD32(reg, j, j, 1);
125
126 efx_writeo(efx, ®, address);
127 efx_reado(efx, &buf, address);
128
129 if (efx_masked_compare_oword(®, &buf, &mask))
130 goto fail;
131
132 /* Test this testable bit can be cleared in isolation */
133 EFX_OR_OWORD(reg, original, mask);
134 EFX_SET_OWORD32(reg, j, j, 0);
135
136 efx_writeo(efx, ®, address);
137 efx_reado(efx, &buf, address);
138
139 if (efx_masked_compare_oword(®, &buf, &mask))
140 goto fail;
141 }
142
143 efx_writeo(efx, &original, address);
144 }
145
146 return 0;
147
148 fail:
149 netif_err(efx, hw, efx->net_dev,
150 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
151 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
152 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
153 return -EIO;
154 }
155
156 /**************************************************************************
157 *
158 * Special buffer handling
159 * Special buffers are used for event queues and the TX and RX
160 * descriptor rings.
161 *
162 *************************************************************************/
163
164 /*
165 * Initialise a special buffer
166 *
167 * This will define a buffer (previously allocated via
168 * efx_alloc_special_buffer()) in the buffer table, allowing
169 * it to be used for event queues, descriptor rings etc.
170 */
171 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)172 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173 {
174 efx_qword_t buf_desc;
175 unsigned int index;
176 dma_addr_t dma_addr;
177 int i;
178
179 EFX_WARN_ON_PARANOID(!buffer->buf.addr);
180
181 /* Write buffer descriptors to NIC */
182 for (i = 0; i < buffer->entries; i++) {
183 index = buffer->index + i;
184 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
185 netif_dbg(efx, probe, efx->net_dev,
186 "mapping special buffer %d at %llx\n",
187 index, (unsigned long long)dma_addr);
188 EFX_POPULATE_QWORD_3(buf_desc,
189 FRF_AZ_BUF_ADR_REGION, 0,
190 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
191 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
192 efx_write_buf_tbl(efx, &buf_desc, index);
193 }
194 }
195
196 /* Unmaps a buffer and clears the buffer table entries */
197 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)198 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199 {
200 efx_oword_t buf_tbl_upd;
201 unsigned int start = buffer->index;
202 unsigned int end = (buffer->index + buffer->entries - 1);
203
204 if (!buffer->entries)
205 return;
206
207 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
208 buffer->index, buffer->index + buffer->entries - 1);
209
210 EFX_POPULATE_OWORD_4(buf_tbl_upd,
211 FRF_AZ_BUF_UPD_CMD, 0,
212 FRF_AZ_BUF_CLR_CMD, 1,
213 FRF_AZ_BUF_CLR_END_ID, end,
214 FRF_AZ_BUF_CLR_START_ID, start);
215 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
216 }
217
218 /*
219 * Allocate a new special buffer
220 *
221 * This allocates memory for a new buffer, clears it and allocates a
222 * new buffer ID range. It does not write into the buffer table.
223 *
224 * This call will allocate 4KB buffers, since 8KB buffers can't be
225 * used for event queues and descriptor rings.
226 */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)227 static int efx_alloc_special_buffer(struct efx_nic *efx,
228 struct efx_special_buffer *buffer,
229 unsigned int len)
230 {
231 #ifdef CONFIG_SFC_SIENA_SRIOV
232 struct siena_nic_data *nic_data = efx->nic_data;
233 #endif
234 len = ALIGN(len, EFX_BUF_SIZE);
235
236 if (efx_siena_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
237 return -ENOMEM;
238 buffer->entries = len / EFX_BUF_SIZE;
239 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240
241 /* Select new buffer ID */
242 buffer->index = efx->next_buffer_table;
243 efx->next_buffer_table += buffer->entries;
244 #ifdef CONFIG_SFC_SIENA_SRIOV
245 BUG_ON(efx_siena_sriov_enabled(efx) &&
246 nic_data->vf_buftbl_base < efx->next_buffer_table);
247 #endif
248
249 netif_dbg(efx, probe, efx->net_dev,
250 "allocating special buffers %d-%d at %llx+%x "
251 "(virt %p phys %llx)\n", buffer->index,
252 buffer->index + buffer->entries - 1,
253 (u64)buffer->buf.dma_addr, len,
254 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255
256 return 0;
257 }
258
259 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)260 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261 {
262 if (!buffer->buf.addr)
263 return;
264
265 netif_dbg(efx, hw, efx->net_dev,
266 "deallocating special buffers %d-%d at %llx+%x "
267 "(virt %p phys %llx)\n", buffer->index,
268 buffer->index + buffer->entries - 1,
269 (u64)buffer->buf.dma_addr, buffer->buf.len,
270 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271
272 efx_siena_free_buffer(efx, &buffer->buf);
273 buffer->entries = 0;
274 }
275
276 /**************************************************************************
277 *
278 * TX path
279 *
280 **************************************************************************/
281
282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284 {
285 unsigned write_ptr;
286 efx_dword_t reg;
287
288 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
289 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
290 efx_writed_page(tx_queue->efx, ®,
291 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
292 }
293
294 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
296 const efx_qword_t *txd)
297 {
298 unsigned write_ptr;
299 efx_oword_t reg;
300
301 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
302 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303
304 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
305 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
306 FRF_AZ_TX_DESC_WPTR, write_ptr);
307 reg.qword[0] = *txd;
308 efx_writeo_page(tx_queue->efx, ®,
309 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
310 }
311
312
313 /* For each entry inserted into the software descriptor ring, create a
314 * descriptor in the hardware TX descriptor ring (in host memory), and
315 * write a doorbell.
316 */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)317 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318 {
319 struct efx_tx_buffer *buffer;
320 efx_qword_t *txd;
321 unsigned write_ptr;
322 unsigned old_write_count = tx_queue->write_count;
323
324 tx_queue->xmit_pending = false;
325 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
326 return;
327
328 do {
329 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
330 buffer = &tx_queue->buffer[write_ptr];
331 txd = efx_tx_desc(tx_queue, write_ptr);
332 ++tx_queue->write_count;
333
334 EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
335
336 /* Create TX descriptor ring entry */
337 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
338 EFX_POPULATE_QWORD_4(*txd,
339 FSF_AZ_TX_KER_CONT,
340 buffer->flags & EFX_TX_BUF_CONT,
341 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
342 FSF_AZ_TX_KER_BUF_REGION, 0,
343 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
344 } while (tx_queue->write_count != tx_queue->insert_count);
345
346 wmb(); /* Ensure descriptors are written before they are fetched */
347
348 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
349 txd = efx_tx_desc(tx_queue,
350 old_write_count & tx_queue->ptr_mask);
351 efx_farch_push_tx_desc(tx_queue, txd);
352 ++tx_queue->pushes;
353 } else {
354 efx_farch_notify_tx_desc(tx_queue);
355 }
356 }
357
efx_farch_tx_limit_len(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned int len)358 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
359 dma_addr_t dma_addr, unsigned int len)
360 {
361 /* Don't cross 4K boundaries with descriptors. */
362 unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
363
364 len = min(limit, len);
365
366 return len;
367 }
368
369
370 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)371 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
372 {
373 struct efx_nic *efx = tx_queue->efx;
374 unsigned entries;
375
376 tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OUTER_CSUM : 0) |
377 ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0);
378 entries = tx_queue->ptr_mask + 1;
379 return efx_alloc_special_buffer(efx, &tx_queue->txd,
380 entries * sizeof(efx_qword_t));
381 }
382
efx_farch_tx_init(struct efx_tx_queue * tx_queue)383 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
384 {
385 int csum = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
386 struct efx_nic *efx = tx_queue->efx;
387 efx_oword_t reg;
388
389 /* Pin TX descriptor ring */
390 efx_init_special_buffer(efx, &tx_queue->txd);
391
392 /* Push TX descriptor ring to card */
393 EFX_POPULATE_OWORD_10(reg,
394 FRF_AZ_TX_DESCQ_EN, 1,
395 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
396 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
397 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
398 FRF_AZ_TX_DESCQ_EVQ_ID,
399 tx_queue->channel->channel,
400 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
401 FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
402 FRF_AZ_TX_DESCQ_SIZE,
403 __ffs(tx_queue->txd.entries),
404 FRF_AZ_TX_DESCQ_TYPE, 0,
405 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
406
407 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
408 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
409
410 efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base,
411 tx_queue->queue);
412
413 EFX_POPULATE_OWORD_1(reg,
414 FRF_BZ_TX_PACE,
415 (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
416 FFE_BZ_TX_PACE_OFF :
417 FFE_BZ_TX_PACE_RESERVED);
418 efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, tx_queue->queue);
419
420 tx_queue->tso_version = 1;
421 }
422
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)423 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
424 {
425 struct efx_nic *efx = tx_queue->efx;
426 efx_oword_t tx_flush_descq;
427
428 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
429 atomic_set(&tx_queue->flush_outstanding, 1);
430
431 EFX_POPULATE_OWORD_2(tx_flush_descq,
432 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
433 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
434 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
435 }
436
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)437 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
438 {
439 struct efx_nic *efx = tx_queue->efx;
440 efx_oword_t tx_desc_ptr;
441
442 /* Remove TX descriptor ring from card */
443 EFX_ZERO_OWORD(tx_desc_ptr);
444 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
445 tx_queue->queue);
446
447 /* Unpin TX descriptor ring */
448 efx_fini_special_buffer(efx, &tx_queue->txd);
449 }
450
451 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)452 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
453 {
454 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
455 }
456
457 /**************************************************************************
458 *
459 * RX path
460 *
461 **************************************************************************/
462
463 /* This creates an entry in the RX descriptor queue */
464 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)465 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
466 {
467 struct efx_rx_buffer *rx_buf;
468 efx_qword_t *rxd;
469
470 rxd = efx_rx_desc(rx_queue, index);
471 rx_buf = efx_rx_buffer(rx_queue, index);
472 EFX_POPULATE_QWORD_3(*rxd,
473 FSF_AZ_RX_KER_BUF_SIZE,
474 rx_buf->len -
475 rx_queue->efx->type->rx_buffer_padding,
476 FSF_AZ_RX_KER_BUF_REGION, 0,
477 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
478 }
479
480 /* This writes to the RX_DESC_WPTR register for the specified receive
481 * descriptor ring.
482 */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)483 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
484 {
485 struct efx_nic *efx = rx_queue->efx;
486 efx_dword_t reg;
487 unsigned write_ptr;
488
489 while (rx_queue->notified_count != rx_queue->added_count) {
490 efx_farch_build_rx_desc(
491 rx_queue,
492 rx_queue->notified_count & rx_queue->ptr_mask);
493 ++rx_queue->notified_count;
494 }
495
496 wmb();
497 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
498 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
499 efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0,
500 efx_rx_queue_index(rx_queue));
501 }
502
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)503 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
504 {
505 struct efx_nic *efx = rx_queue->efx;
506 unsigned entries;
507
508 entries = rx_queue->ptr_mask + 1;
509 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
510 entries * sizeof(efx_qword_t));
511 }
512
efx_farch_rx_init(struct efx_rx_queue * rx_queue)513 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
514 {
515 efx_oword_t rx_desc_ptr;
516 struct efx_nic *efx = rx_queue->efx;
517 bool jumbo_en;
518
519 /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
520 jumbo_en = efx->rx_scatter;
521
522 netif_dbg(efx, hw, efx->net_dev,
523 "RX queue %d ring in special buffers %d-%d\n",
524 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
525 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
526
527 rx_queue->scatter_n = 0;
528
529 /* Pin RX descriptor ring */
530 efx_init_special_buffer(efx, &rx_queue->rxd);
531
532 /* Push RX descriptor ring to card */
533 EFX_POPULATE_OWORD_10(rx_desc_ptr,
534 FRF_AZ_RX_ISCSI_DDIG_EN, true,
535 FRF_AZ_RX_ISCSI_HDIG_EN, true,
536 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
537 FRF_AZ_RX_DESCQ_EVQ_ID,
538 efx_rx_queue_channel(rx_queue)->channel,
539 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
540 FRF_AZ_RX_DESCQ_LABEL,
541 efx_rx_queue_index(rx_queue),
542 FRF_AZ_RX_DESCQ_SIZE,
543 __ffs(rx_queue->rxd.entries),
544 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
545 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
546 FRF_AZ_RX_DESCQ_EN, 1);
547 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
548 efx_rx_queue_index(rx_queue));
549 }
550
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)551 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
552 {
553 struct efx_nic *efx = rx_queue->efx;
554 efx_oword_t rx_flush_descq;
555
556 EFX_POPULATE_OWORD_2(rx_flush_descq,
557 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
558 FRF_AZ_RX_FLUSH_DESCQ,
559 efx_rx_queue_index(rx_queue));
560 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
561 }
562
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)563 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
564 {
565 efx_oword_t rx_desc_ptr;
566 struct efx_nic *efx = rx_queue->efx;
567
568 /* Remove RX descriptor ring from card */
569 EFX_ZERO_OWORD(rx_desc_ptr);
570 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
571 efx_rx_queue_index(rx_queue));
572
573 /* Unpin RX descriptor ring */
574 efx_fini_special_buffer(efx, &rx_queue->rxd);
575 }
576
577 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)578 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
579 {
580 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
581 }
582
583 /**************************************************************************
584 *
585 * Flush handling
586 *
587 **************************************************************************/
588
589 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
590 * or more RX flushes can be kicked off.
591 */
efx_farch_flush_wake(struct efx_nic * efx)592 static bool efx_farch_flush_wake(struct efx_nic *efx)
593 {
594 /* Ensure that all updates are visible to efx_farch_flush_queues() */
595 smp_mb();
596
597 return (atomic_read(&efx->active_queues) == 0 ||
598 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
599 && atomic_read(&efx->rxq_flush_pending) > 0));
600 }
601
efx_check_tx_flush_complete(struct efx_nic * efx)602 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
603 {
604 bool i = true;
605 efx_oword_t txd_ptr_tbl;
606 struct efx_channel *channel;
607 struct efx_tx_queue *tx_queue;
608
609 efx_for_each_channel(channel, efx) {
610 efx_for_each_channel_tx_queue(tx_queue, channel) {
611 efx_reado_table(efx, &txd_ptr_tbl,
612 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
613 if (EFX_OWORD_FIELD(txd_ptr_tbl,
614 FRF_AZ_TX_DESCQ_FLUSH) ||
615 EFX_OWORD_FIELD(txd_ptr_tbl,
616 FRF_AZ_TX_DESCQ_EN)) {
617 netif_dbg(efx, hw, efx->net_dev,
618 "flush did not complete on TXQ %d\n",
619 tx_queue->queue);
620 i = false;
621 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
622 1, 0)) {
623 /* The flush is complete, but we didn't
624 * receive a flush completion event
625 */
626 netif_dbg(efx, hw, efx->net_dev,
627 "flush complete on TXQ %d, so drain "
628 "the queue\n", tx_queue->queue);
629 /* Don't need to increment active_queues as it
630 * has already been incremented for the queues
631 * which did not drain
632 */
633 efx_farch_magic_event(channel,
634 EFX_CHANNEL_MAGIC_TX_DRAIN(
635 tx_queue));
636 }
637 }
638 }
639
640 return i;
641 }
642
643 /* Flush all the transmit queues, and continue flushing receive queues until
644 * they're all flushed. Wait for the DRAIN events to be received so that there
645 * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)646 static int efx_farch_do_flush(struct efx_nic *efx)
647 {
648 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
649 struct efx_channel *channel;
650 struct efx_rx_queue *rx_queue;
651 struct efx_tx_queue *tx_queue;
652 int rc = 0;
653
654 efx_for_each_channel(channel, efx) {
655 efx_for_each_channel_tx_queue(tx_queue, channel) {
656 efx_farch_flush_tx_queue(tx_queue);
657 }
658 efx_for_each_channel_rx_queue(rx_queue, channel) {
659 rx_queue->flush_pending = true;
660 atomic_inc(&efx->rxq_flush_pending);
661 }
662 }
663
664 while (timeout && atomic_read(&efx->active_queues) > 0) {
665 /* If SRIOV is enabled, then offload receive queue flushing to
666 * the firmware (though we will still have to poll for
667 * completion). If that fails, fall back to the old scheme.
668 */
669 if (efx_siena_sriov_enabled(efx)) {
670 rc = efx_siena_mcdi_flush_rxqs(efx);
671 if (!rc)
672 goto wait;
673 }
674
675 /* The hardware supports four concurrent rx flushes, each of
676 * which may need to be retried if there is an outstanding
677 * descriptor fetch
678 */
679 efx_for_each_channel(channel, efx) {
680 efx_for_each_channel_rx_queue(rx_queue, channel) {
681 if (atomic_read(&efx->rxq_flush_outstanding) >=
682 EFX_RX_FLUSH_COUNT)
683 break;
684
685 if (rx_queue->flush_pending) {
686 rx_queue->flush_pending = false;
687 atomic_dec(&efx->rxq_flush_pending);
688 atomic_inc(&efx->rxq_flush_outstanding);
689 efx_farch_flush_rx_queue(rx_queue);
690 }
691 }
692 }
693
694 wait:
695 timeout = wait_event_timeout(efx->flush_wq,
696 efx_farch_flush_wake(efx),
697 timeout);
698 }
699
700 if (atomic_read(&efx->active_queues) &&
701 !efx_check_tx_flush_complete(efx)) {
702 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
703 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
704 atomic_read(&efx->rxq_flush_outstanding),
705 atomic_read(&efx->rxq_flush_pending));
706 rc = -ETIMEDOUT;
707
708 atomic_set(&efx->active_queues, 0);
709 atomic_set(&efx->rxq_flush_pending, 0);
710 atomic_set(&efx->rxq_flush_outstanding, 0);
711 }
712
713 return rc;
714 }
715
efx_farch_fini_dmaq(struct efx_nic * efx)716 int efx_farch_fini_dmaq(struct efx_nic *efx)
717 {
718 struct efx_channel *channel;
719 struct efx_tx_queue *tx_queue;
720 struct efx_rx_queue *rx_queue;
721 int rc = 0;
722
723 /* Do not attempt to write to the NIC during EEH recovery */
724 if (efx->state != STATE_RECOVERY) {
725 /* Only perform flush if DMA is enabled */
726 if (efx->pci_dev->is_busmaster) {
727 efx->type->prepare_flush(efx);
728 rc = efx_farch_do_flush(efx);
729 efx->type->finish_flush(efx);
730 }
731
732 efx_for_each_channel(channel, efx) {
733 efx_for_each_channel_rx_queue(rx_queue, channel)
734 efx_farch_rx_fini(rx_queue);
735 efx_for_each_channel_tx_queue(tx_queue, channel)
736 efx_farch_tx_fini(tx_queue);
737 }
738 }
739
740 return rc;
741 }
742
743 /* Reset queue and flush accounting after FLR
744 *
745 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
746 * mastering was disabled), in which case we don't receive (RXQ) flush
747 * completion events. This means that efx->rxq_flush_outstanding remained at 4
748 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
749 * events were received, and we didn't go through efx_check_tx_flush_complete())
750 * If we don't fix this up, on the next call to efx_siena_realloc_channels() we
751 * won't flush any RX queues because efx->rxq_flush_outstanding is at the limit
752 * of 4 for batched flush requests; and the efx->active_queues gets messed up
753 * because we keep incrementing for the newly initialised queues, but it never
754 * went to zero previously. Then we get a timeout every time we try to restart
755 * the queues, as it doesn't go back to zero when we should be flushing the
756 * queues.
757 */
efx_farch_finish_flr(struct efx_nic * efx)758 void efx_farch_finish_flr(struct efx_nic *efx)
759 {
760 atomic_set(&efx->rxq_flush_pending, 0);
761 atomic_set(&efx->rxq_flush_outstanding, 0);
762 atomic_set(&efx->active_queues, 0);
763 }
764
765
766 /**************************************************************************
767 *
768 * Event queue processing
769 * Event queues are processed by per-channel tasklets.
770 *
771 **************************************************************************/
772
773 /* Update a channel's event queue's read pointer (RPTR) register
774 *
775 * This writes the EVQ_RPTR_REG register for the specified channel's
776 * event queue.
777 */
efx_farch_ev_read_ack(struct efx_channel * channel)778 void efx_farch_ev_read_ack(struct efx_channel *channel)
779 {
780 efx_dword_t reg;
781 struct efx_nic *efx = channel->efx;
782
783 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
784 channel->eventq_read_ptr & channel->eventq_mask);
785
786 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
787 * of 4 bytes, but it is really 16 bytes just like later revisions.
788 */
789 efx_writed(efx, ®,
790 efx->type->evq_rptr_tbl_base +
791 FR_BZ_EVQ_RPTR_STEP * channel->channel);
792 }
793
794 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)795 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
796 efx_qword_t *event)
797 {
798 efx_oword_t drv_ev_reg;
799
800 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
801 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
802 drv_ev_reg.u32[0] = event->u32[0];
803 drv_ev_reg.u32[1] = event->u32[1];
804 drv_ev_reg.u32[2] = 0;
805 drv_ev_reg.u32[3] = 0;
806 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
807 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
808 }
809
efx_farch_magic_event(struct efx_channel * channel,u32 magic)810 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
811 {
812 efx_qword_t event;
813
814 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
815 FSE_AZ_EV_CODE_DRV_GEN_EV,
816 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
817 efx_farch_generate_event(channel->efx, channel->channel, &event);
818 }
819
820 /* Handle a transmit completion event
821 *
822 * The NIC batches TX completion events; the message we receive is of
823 * the form "complete all TX events up to this index".
824 */
825 static void
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)826 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
827 {
828 unsigned int tx_ev_desc_ptr;
829 unsigned int tx_ev_q_label;
830 struct efx_tx_queue *tx_queue;
831 struct efx_nic *efx = channel->efx;
832
833 if (unlikely(READ_ONCE(efx->reset_pending)))
834 return;
835
836 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
837 /* Transmit completion */
838 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
839 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
840 tx_queue = channel->tx_queue +
841 (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
842 efx_siena_xmit_done(tx_queue, tx_ev_desc_ptr);
843 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
844 /* Rewrite the FIFO write pointer */
845 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
846 tx_queue = channel->tx_queue +
847 (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
848
849 netif_tx_lock(efx->net_dev);
850 efx_farch_notify_tx_desc(tx_queue);
851 netif_tx_unlock(efx->net_dev);
852 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
853 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
854 } else {
855 netif_err(efx, tx_err, efx->net_dev,
856 "channel %d unexpected TX event "
857 EFX_QWORD_FMT"\n", channel->channel,
858 EFX_QWORD_VAL(*event));
859 }
860 }
861
862 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)863 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
864 const efx_qword_t *event)
865 {
866 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
867 struct efx_nic *efx = rx_queue->efx;
868 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
869 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
870 bool rx_ev_frm_trunc, rx_ev_tobe_disc;
871 bool rx_ev_other_err, rx_ev_pause_frm;
872
873 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
874 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
875 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
876 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
877 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
878 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
879 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
880 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
881 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
882 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
883
884 /* Every error apart from tobe_disc and pause_frm */
885 rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
886 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
887 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
888
889 /* Count errors that are not in MAC stats. Ignore expected
890 * checksum errors during self-test. */
891 if (rx_ev_frm_trunc)
892 ++channel->n_rx_frm_trunc;
893 else if (rx_ev_tobe_disc)
894 ++channel->n_rx_tobe_disc;
895 else if (!efx->loopback_selftest) {
896 if (rx_ev_ip_hdr_chksum_err)
897 ++channel->n_rx_ip_hdr_chksum_err;
898 else if (rx_ev_tcp_udp_chksum_err)
899 ++channel->n_rx_tcp_udp_chksum_err;
900 }
901
902 /* TOBE_DISC is expected on unicast mismatches; don't print out an
903 * error message. FRM_TRUNC indicates RXDP dropped the packet due
904 * to a FIFO overflow.
905 */
906 #ifdef DEBUG
907 if (rx_ev_other_err && net_ratelimit()) {
908 netif_dbg(efx, rx_err, efx->net_dev,
909 " RX queue %d unexpected RX event "
910 EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
911 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
912 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
913 rx_ev_ip_hdr_chksum_err ?
914 " [IP_HDR_CHKSUM_ERR]" : "",
915 rx_ev_tcp_udp_chksum_err ?
916 " [TCP_UDP_CHKSUM_ERR]" : "",
917 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
918 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
919 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
920 rx_ev_pause_frm ? " [PAUSE]" : "");
921 }
922 #else
923 (void) rx_ev_other_err;
924 #endif
925
926 if (efx->net_dev->features & NETIF_F_RXALL)
927 /* don't discard frame for CRC error */
928 rx_ev_eth_crc_err = false;
929
930 /* The frame must be discarded if any of these are true. */
931 return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
932 rx_ev_tobe_disc | rx_ev_pause_frm) ?
933 EFX_RX_PKT_DISCARD : 0;
934 }
935
936 /* Handle receive events that are not in-order. Return true if this
937 * can be handled as a partial packet discard, false if it's more
938 * serious.
939 */
940 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)941 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
942 {
943 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
944 struct efx_nic *efx = rx_queue->efx;
945 unsigned expected, dropped;
946
947 if (rx_queue->scatter_n &&
948 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
949 rx_queue->ptr_mask)) {
950 ++channel->n_rx_nodesc_trunc;
951 return true;
952 }
953
954 expected = rx_queue->removed_count & rx_queue->ptr_mask;
955 dropped = (index - expected) & rx_queue->ptr_mask;
956 netif_info(efx, rx_err, efx->net_dev,
957 "dropped %d events (index=%d expected=%d)\n",
958 dropped, index, expected);
959
960 efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
961 return false;
962 }
963
964 /* Handle a packet received event
965 *
966 * The NIC gives a "discard" flag if it's a unicast packet with the
967 * wrong destination address
968 * Also "is multicast" and "matches multicast filter" flags can be used to
969 * discard non-matching multicast packets.
970 */
971 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)972 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
973 {
974 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
975 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
976 unsigned expected_ptr;
977 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
978 u16 flags;
979 struct efx_rx_queue *rx_queue;
980 struct efx_nic *efx = channel->efx;
981
982 if (unlikely(READ_ONCE(efx->reset_pending)))
983 return;
984
985 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
986 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
987 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
988 channel->channel);
989
990 rx_queue = efx_channel_get_rx_queue(channel);
991
992 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
993 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
994 rx_queue->ptr_mask);
995
996 /* Check for partial drops and other errors */
997 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
998 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
999 if (rx_ev_desc_ptr != expected_ptr &&
1000 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1001 return;
1002
1003 /* Discard all pending fragments */
1004 if (rx_queue->scatter_n) {
1005 efx_siena_rx_packet(
1006 rx_queue,
1007 rx_queue->removed_count & rx_queue->ptr_mask,
1008 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1009 rx_queue->removed_count += rx_queue->scatter_n;
1010 rx_queue->scatter_n = 0;
1011 }
1012
1013 /* Return if there is no new fragment */
1014 if (rx_ev_desc_ptr != expected_ptr)
1015 return;
1016
1017 /* Discard new fragment if not SOP */
1018 if (!rx_ev_sop) {
1019 efx_siena_rx_packet(
1020 rx_queue,
1021 rx_queue->removed_count & rx_queue->ptr_mask,
1022 1, 0, EFX_RX_PKT_DISCARD);
1023 ++rx_queue->removed_count;
1024 return;
1025 }
1026 }
1027
1028 ++rx_queue->scatter_n;
1029 if (rx_ev_cont)
1030 return;
1031
1032 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1033 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1034 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1035
1036 if (likely(rx_ev_pkt_ok)) {
1037 /* If packet is marked as OK then we can rely on the
1038 * hardware checksum and classification.
1039 */
1040 flags = 0;
1041 switch (rx_ev_hdr_type) {
1042 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1043 flags |= EFX_RX_PKT_TCP;
1044 fallthrough;
1045 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1046 flags |= EFX_RX_PKT_CSUMMED;
1047 fallthrough;
1048 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1049 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1050 break;
1051 }
1052 } else {
1053 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1054 }
1055
1056 /* Detect multicast packets that didn't match the filter */
1057 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1058 if (rx_ev_mcast_pkt) {
1059 unsigned int rx_ev_mcast_hash_match =
1060 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1061
1062 if (unlikely(!rx_ev_mcast_hash_match)) {
1063 ++channel->n_rx_mcast_mismatch;
1064 flags |= EFX_RX_PKT_DISCARD;
1065 }
1066 }
1067
1068 channel->irq_mod_score += 2;
1069
1070 /* Handle received packet */
1071 efx_siena_rx_packet(rx_queue,
1072 rx_queue->removed_count & rx_queue->ptr_mask,
1073 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1074 rx_queue->removed_count += rx_queue->scatter_n;
1075 rx_queue->scatter_n = 0;
1076 }
1077
1078 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1079 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1080 * of all transmit completions.
1081 */
1082 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1083 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1084 {
1085 struct efx_tx_queue *tx_queue;
1086 struct efx_channel *channel;
1087 int qid;
1088
1089 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1090 if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1091 channel = efx_get_tx_channel(efx, qid / EFX_MAX_TXQ_PER_CHANNEL);
1092 tx_queue = channel->tx_queue + (qid % EFX_MAX_TXQ_PER_CHANNEL);
1093 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0))
1094 efx_farch_magic_event(tx_queue->channel,
1095 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1096 }
1097 }
1098
1099 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1100 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1101 * the RX queue back to the mask of RX queues in need of flushing.
1102 */
1103 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1104 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1105 {
1106 struct efx_channel *channel;
1107 struct efx_rx_queue *rx_queue;
1108 int qid;
1109 bool failed;
1110
1111 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1112 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1113 if (qid >= efx->n_channels)
1114 return;
1115 channel = efx_get_channel(efx, qid);
1116 if (!efx_channel_has_rx_queue(channel))
1117 return;
1118 rx_queue = efx_channel_get_rx_queue(channel);
1119
1120 if (failed) {
1121 netif_info(efx, hw, efx->net_dev,
1122 "RXQ %d flush retry\n", qid);
1123 rx_queue->flush_pending = true;
1124 atomic_inc(&efx->rxq_flush_pending);
1125 } else {
1126 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1127 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1128 }
1129 atomic_dec(&efx->rxq_flush_outstanding);
1130 if (efx_farch_flush_wake(efx))
1131 wake_up(&efx->flush_wq);
1132 }
1133
1134 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1135 efx_farch_handle_drain_event(struct efx_channel *channel)
1136 {
1137 struct efx_nic *efx = channel->efx;
1138
1139 WARN_ON(atomic_read(&efx->active_queues) == 0);
1140 atomic_dec(&efx->active_queues);
1141 if (efx_farch_flush_wake(efx))
1142 wake_up(&efx->flush_wq);
1143 }
1144
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1145 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1146 efx_qword_t *event)
1147 {
1148 struct efx_nic *efx = channel->efx;
1149 struct efx_rx_queue *rx_queue =
1150 efx_channel_has_rx_queue(channel) ?
1151 efx_channel_get_rx_queue(channel) : NULL;
1152 unsigned magic, code;
1153
1154 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1155 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1156
1157 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1158 channel->event_test_cpu = raw_smp_processor_id();
1159 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1160 /* The queue must be empty, so we won't receive any rx
1161 * events, so efx_process_channel() won't refill the
1162 * queue. Refill it here */
1163 efx_siena_fast_push_rx_descriptors(rx_queue, true);
1164 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1165 efx_farch_handle_drain_event(channel);
1166 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1167 efx_farch_handle_drain_event(channel);
1168 } else {
1169 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1170 "generated event "EFX_QWORD_FMT"\n",
1171 channel->channel, EFX_QWORD_VAL(*event));
1172 }
1173 }
1174
1175 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1176 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1177 {
1178 struct efx_nic *efx = channel->efx;
1179 unsigned int ev_sub_code;
1180 unsigned int ev_sub_data;
1181
1182 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1183 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1184
1185 switch (ev_sub_code) {
1186 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1187 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1188 channel->channel, ev_sub_data);
1189 efx_farch_handle_tx_flush_done(efx, event);
1190 #ifdef CONFIG_SFC_SIENA_SRIOV
1191 efx_siena_sriov_tx_flush_done(efx, event);
1192 #endif
1193 break;
1194 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1195 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1196 channel->channel, ev_sub_data);
1197 efx_farch_handle_rx_flush_done(efx, event);
1198 #ifdef CONFIG_SFC_SIENA_SRIOV
1199 efx_siena_sriov_rx_flush_done(efx, event);
1200 #endif
1201 break;
1202 case FSE_AZ_EVQ_INIT_DONE_EV:
1203 netif_dbg(efx, hw, efx->net_dev,
1204 "channel %d EVQ %d initialised\n",
1205 channel->channel, ev_sub_data);
1206 break;
1207 case FSE_AZ_SRM_UPD_DONE_EV:
1208 netif_vdbg(efx, hw, efx->net_dev,
1209 "channel %d SRAM update done\n", channel->channel);
1210 break;
1211 case FSE_AZ_WAKE_UP_EV:
1212 netif_vdbg(efx, hw, efx->net_dev,
1213 "channel %d RXQ %d wakeup event\n",
1214 channel->channel, ev_sub_data);
1215 break;
1216 case FSE_AZ_TIMER_EV:
1217 netif_vdbg(efx, hw, efx->net_dev,
1218 "channel %d RX queue %d timer expired\n",
1219 channel->channel, ev_sub_data);
1220 break;
1221 case FSE_AA_RX_RECOVER_EV:
1222 netif_err(efx, rx_err, efx->net_dev,
1223 "channel %d seen DRIVER RX_RESET event. "
1224 "Resetting.\n", channel->channel);
1225 atomic_inc(&efx->rx_reset);
1226 efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
1227 break;
1228 case FSE_BZ_RX_DSC_ERROR_EV:
1229 if (ev_sub_data < EFX_VI_BASE) {
1230 netif_err(efx, rx_err, efx->net_dev,
1231 "RX DMA Q %d reports descriptor fetch error."
1232 " RX Q %d is disabled.\n", ev_sub_data,
1233 ev_sub_data);
1234 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1235 }
1236 #ifdef CONFIG_SFC_SIENA_SRIOV
1237 else
1238 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1239 #endif
1240 break;
1241 case FSE_BZ_TX_DSC_ERROR_EV:
1242 if (ev_sub_data < EFX_VI_BASE) {
1243 netif_err(efx, tx_err, efx->net_dev,
1244 "TX DMA Q %d reports descriptor fetch error."
1245 " TX Q %d is disabled.\n", ev_sub_data,
1246 ev_sub_data);
1247 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1248 }
1249 #ifdef CONFIG_SFC_SIENA_SRIOV
1250 else
1251 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1252 #endif
1253 break;
1254 default:
1255 netif_vdbg(efx, hw, efx->net_dev,
1256 "channel %d unknown driver event code %d "
1257 "data %04x\n", channel->channel, ev_sub_code,
1258 ev_sub_data);
1259 break;
1260 }
1261 }
1262
efx_farch_ev_process(struct efx_channel * channel,int budget)1263 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1264 {
1265 struct efx_nic *efx = channel->efx;
1266 unsigned int read_ptr;
1267 efx_qword_t event, *p_event;
1268 int ev_code;
1269 int spent = 0;
1270
1271 if (budget <= 0)
1272 return spent;
1273
1274 read_ptr = channel->eventq_read_ptr;
1275
1276 for (;;) {
1277 p_event = efx_event(channel, read_ptr);
1278 event = *p_event;
1279
1280 if (!efx_event_present(&event))
1281 /* End of events */
1282 break;
1283
1284 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1285 "channel %d event is "EFX_QWORD_FMT"\n",
1286 channel->channel, EFX_QWORD_VAL(event));
1287
1288 /* Clear this event by marking it all ones */
1289 EFX_SET_QWORD(*p_event);
1290
1291 ++read_ptr;
1292
1293 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1294
1295 switch (ev_code) {
1296 case FSE_AZ_EV_CODE_RX_EV:
1297 efx_farch_handle_rx_event(channel, &event);
1298 if (++spent == budget)
1299 goto out;
1300 break;
1301 case FSE_AZ_EV_CODE_TX_EV:
1302 efx_farch_handle_tx_event(channel, &event);
1303 break;
1304 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1305 efx_farch_handle_generated_event(channel, &event);
1306 break;
1307 case FSE_AZ_EV_CODE_DRIVER_EV:
1308 efx_farch_handle_driver_event(channel, &event);
1309 break;
1310 #ifdef CONFIG_SFC_SIENA_SRIOV
1311 case FSE_CZ_EV_CODE_USER_EV:
1312 efx_siena_sriov_event(channel, &event);
1313 break;
1314 #endif
1315 case FSE_CZ_EV_CODE_MCDI_EV:
1316 efx_siena_mcdi_process_event(channel, &event);
1317 break;
1318 case FSE_AZ_EV_CODE_GLOBAL_EV:
1319 if (efx->type->handle_global_event &&
1320 efx->type->handle_global_event(channel, &event))
1321 break;
1322 fallthrough;
1323 default:
1324 netif_err(channel->efx, hw, channel->efx->net_dev,
1325 "channel %d unknown event type %d (data "
1326 EFX_QWORD_FMT ")\n", channel->channel,
1327 ev_code, EFX_QWORD_VAL(event));
1328 }
1329 }
1330
1331 out:
1332 channel->eventq_read_ptr = read_ptr;
1333 return spent;
1334 }
1335
1336 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1337 int efx_farch_ev_probe(struct efx_channel *channel)
1338 {
1339 struct efx_nic *efx = channel->efx;
1340 unsigned entries;
1341
1342 entries = channel->eventq_mask + 1;
1343 return efx_alloc_special_buffer(efx, &channel->eventq,
1344 entries * sizeof(efx_qword_t));
1345 }
1346
efx_farch_ev_init(struct efx_channel * channel)1347 int efx_farch_ev_init(struct efx_channel *channel)
1348 {
1349 efx_oword_t reg;
1350 struct efx_nic *efx = channel->efx;
1351
1352 netif_dbg(efx, hw, efx->net_dev,
1353 "channel %d event queue in special buffers %d-%d\n",
1354 channel->channel, channel->eventq.index,
1355 channel->eventq.index + channel->eventq.entries - 1);
1356
1357 EFX_POPULATE_OWORD_3(reg,
1358 FRF_CZ_TIMER_Q_EN, 1,
1359 FRF_CZ_HOST_NOTIFY_MODE, 0,
1360 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1361 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1362
1363 /* Pin event queue buffer */
1364 efx_init_special_buffer(efx, &channel->eventq);
1365
1366 /* Fill event queue with all ones (i.e. empty events) */
1367 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1368
1369 /* Push event queue to card */
1370 EFX_POPULATE_OWORD_3(reg,
1371 FRF_AZ_EVQ_EN, 1,
1372 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1373 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1374 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1375 channel->channel);
1376
1377 return 0;
1378 }
1379
efx_farch_ev_fini(struct efx_channel * channel)1380 void efx_farch_ev_fini(struct efx_channel *channel)
1381 {
1382 efx_oword_t reg;
1383 struct efx_nic *efx = channel->efx;
1384
1385 /* Remove event queue from card */
1386 EFX_ZERO_OWORD(reg);
1387 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1388 channel->channel);
1389 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1390
1391 /* Unpin event queue */
1392 efx_fini_special_buffer(efx, &channel->eventq);
1393 }
1394
1395 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1396 void efx_farch_ev_remove(struct efx_channel *channel)
1397 {
1398 efx_free_special_buffer(channel->efx, &channel->eventq);
1399 }
1400
1401
efx_farch_ev_test_generate(struct efx_channel * channel)1402 void efx_farch_ev_test_generate(struct efx_channel *channel)
1403 {
1404 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1405 }
1406
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1407 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1408 {
1409 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1410 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1411 }
1412
1413 /**************************************************************************
1414 *
1415 * Hardware interrupts
1416 * The hardware interrupt handler does very little work; all the event
1417 * queue processing is carried out by per-channel tasklets.
1418 *
1419 **************************************************************************/
1420
1421 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1422 static inline void efx_farch_interrupts(struct efx_nic *efx,
1423 bool enabled, bool force)
1424 {
1425 efx_oword_t int_en_reg_ker;
1426
1427 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1428 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1429 FRF_AZ_KER_INT_KER, force,
1430 FRF_AZ_DRV_INT_EN_KER, enabled);
1431 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1432 }
1433
efx_farch_irq_enable_master(struct efx_nic * efx)1434 void efx_farch_irq_enable_master(struct efx_nic *efx)
1435 {
1436 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1437 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1438
1439 efx_farch_interrupts(efx, true, false);
1440 }
1441
efx_farch_irq_disable_master(struct efx_nic * efx)1442 void efx_farch_irq_disable_master(struct efx_nic *efx)
1443 {
1444 /* Disable interrupts */
1445 efx_farch_interrupts(efx, false, false);
1446 }
1447
1448 /* Generate a test interrupt
1449 * Interrupt must already have been enabled, otherwise nasty things
1450 * may happen.
1451 */
efx_farch_irq_test_generate(struct efx_nic * efx)1452 int efx_farch_irq_test_generate(struct efx_nic *efx)
1453 {
1454 efx_farch_interrupts(efx, true, true);
1455 return 0;
1456 }
1457
1458 /* Process a fatal interrupt
1459 * Disable bus mastering ASAP and schedule a reset
1460 */
efx_farch_fatal_interrupt(struct efx_nic * efx)1461 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1462 {
1463 efx_oword_t *int_ker = efx->irq_status.addr;
1464 efx_oword_t fatal_intr;
1465 int error, mem_perr;
1466
1467 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1468 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1469
1470 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1471 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1472 EFX_OWORD_VAL(fatal_intr),
1473 error ? "disabling bus mastering" : "no recognised error");
1474
1475 /* If this is a memory parity error dump which blocks are offending */
1476 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1477 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1478 if (mem_perr) {
1479 efx_oword_t reg;
1480 efx_reado(efx, ®, FR_AZ_MEM_STAT);
1481 netif_err(efx, hw, efx->net_dev,
1482 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1483 EFX_OWORD_VAL(reg));
1484 }
1485
1486 /* Disable both devices */
1487 pci_clear_master(efx->pci_dev);
1488 efx_farch_irq_disable_master(efx);
1489
1490 /* Count errors and reset or disable the NIC accordingly */
1491 if (efx->int_error_count == 0 ||
1492 time_after(jiffies, efx->int_error_expire)) {
1493 efx->int_error_count = 0;
1494 efx->int_error_expire =
1495 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1496 }
1497 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1498 netif_err(efx, hw, efx->net_dev,
1499 "SYSTEM ERROR - reset scheduled\n");
1500 efx_siena_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1501 } else {
1502 netif_err(efx, hw, efx->net_dev,
1503 "SYSTEM ERROR - max number of errors seen."
1504 "NIC will be disabled\n");
1505 efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
1506 }
1507
1508 return IRQ_HANDLED;
1509 }
1510
1511 /* Handle a legacy interrupt
1512 * Acknowledges the interrupt and schedule event queue processing.
1513 */
efx_farch_legacy_interrupt(int irq,void * dev_id)1514 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1515 {
1516 struct efx_nic *efx = dev_id;
1517 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1518 efx_oword_t *int_ker = efx->irq_status.addr;
1519 irqreturn_t result = IRQ_NONE;
1520 struct efx_channel *channel;
1521 efx_dword_t reg;
1522 u32 queues;
1523 int syserr;
1524
1525 /* Read the ISR which also ACKs the interrupts */
1526 efx_readd(efx, ®, FR_BZ_INT_ISR0);
1527 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1528
1529 /* Legacy interrupts are disabled too late by the EEH kernel
1530 * code. Disable them earlier.
1531 * If an EEH error occurred, the read will have returned all ones.
1532 */
1533 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_siena_try_recovery(efx) &&
1534 !efx->eeh_disabled_legacy_irq) {
1535 disable_irq_nosync(efx->legacy_irq);
1536 efx->eeh_disabled_legacy_irq = true;
1537 }
1538
1539 /* Handle non-event-queue sources */
1540 if (queues & (1U << efx->irq_level) && soft_enabled) {
1541 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1542 if (unlikely(syserr))
1543 return efx_farch_fatal_interrupt(efx);
1544 efx->last_irq_cpu = raw_smp_processor_id();
1545 }
1546
1547 if (queues != 0) {
1548 efx->irq_zero_count = 0;
1549
1550 /* Schedule processing of any interrupting queues */
1551 if (likely(soft_enabled)) {
1552 efx_for_each_channel(channel, efx) {
1553 if (queues & 1)
1554 efx_schedule_channel_irq(channel);
1555 queues >>= 1;
1556 }
1557 }
1558 result = IRQ_HANDLED;
1559
1560 } else {
1561 efx_qword_t *event;
1562
1563 /* Legacy ISR read can return zero once (SF bug 15783) */
1564
1565 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1566 * because this might be a shared interrupt. */
1567 if (efx->irq_zero_count++ == 0)
1568 result = IRQ_HANDLED;
1569
1570 /* Ensure we schedule or rearm all event queues */
1571 if (likely(soft_enabled)) {
1572 efx_for_each_channel(channel, efx) {
1573 event = efx_event(channel,
1574 channel->eventq_read_ptr);
1575 if (efx_event_present(event))
1576 efx_schedule_channel_irq(channel);
1577 else
1578 efx_farch_ev_read_ack(channel);
1579 }
1580 }
1581 }
1582
1583 if (result == IRQ_HANDLED)
1584 netif_vdbg(efx, intr, efx->net_dev,
1585 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1586 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1587
1588 return result;
1589 }
1590
1591 /* Handle an MSI interrupt
1592 *
1593 * Handle an MSI hardware interrupt. This routine schedules event
1594 * queue processing. No interrupt acknowledgement cycle is necessary.
1595 * Also, we never need to check that the interrupt is for us, since
1596 * MSI interrupts cannot be shared.
1597 */
efx_farch_msi_interrupt(int irq,void * dev_id)1598 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1599 {
1600 struct efx_msi_context *context = dev_id;
1601 struct efx_nic *efx = context->efx;
1602 efx_oword_t *int_ker = efx->irq_status.addr;
1603 int syserr;
1604
1605 netif_vdbg(efx, intr, efx->net_dev,
1606 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1607 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1608
1609 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1610 return IRQ_HANDLED;
1611
1612 /* Handle non-event-queue sources */
1613 if (context->index == efx->irq_level) {
1614 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1615 if (unlikely(syserr))
1616 return efx_farch_fatal_interrupt(efx);
1617 efx->last_irq_cpu = raw_smp_processor_id();
1618 }
1619
1620 /* Schedule processing of the channel */
1621 efx_schedule_channel_irq(efx->channel[context->index]);
1622
1623 return IRQ_HANDLED;
1624 }
1625
1626 /* Setup RSS indirection table.
1627 * This maps from the hash value of the packet to RXQ
1628 */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1629 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1630 {
1631 size_t i = 0;
1632 efx_dword_t dword;
1633
1634 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1635 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1636
1637 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1638 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1639 efx->rss_context.rx_indir_table[i]);
1640 efx_writed(efx, &dword,
1641 FR_BZ_RX_INDIRECTION_TBL +
1642 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1643 }
1644 }
1645
efx_farch_rx_pull_indir_table(struct efx_nic * efx)1646 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1647 {
1648 size_t i = 0;
1649 efx_dword_t dword;
1650
1651 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1652 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1653
1654 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1655 efx_readd(efx, &dword,
1656 FR_BZ_RX_INDIRECTION_TBL +
1657 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1658 efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1659 }
1660 }
1661
1662 /* Looks at available SRAM resources and works out how many queues we
1663 * can support, and where things like descriptor caches should live.
1664 *
1665 * SRAM is split up as follows:
1666 * 0 buftbl entries for channels
1667 * efx->vf_buftbl_base buftbl entries for SR-IOV
1668 * efx->rx_dc_base RX descriptor caches
1669 * efx->tx_dc_base TX descriptor caches
1670 */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1671 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1672 {
1673 unsigned vi_count, total_tx_channels;
1674 #ifdef CONFIG_SFC_SIENA_SRIOV
1675 struct siena_nic_data *nic_data;
1676 unsigned buftbl_min;
1677 #endif
1678
1679 total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1680 vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL);
1681
1682 #ifdef CONFIG_SFC_SIENA_SRIOV
1683 nic_data = efx->nic_data;
1684 /* Account for the buffer table entries backing the datapath channels
1685 * and the descriptor caches for those channels.
1686 */
1687 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1688 total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE +
1689 efx->n_channels * EFX_MAX_EVQ_SIZE)
1690 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1691 if (efx->type->sriov_wanted) {
1692 if (efx->type->sriov_wanted(efx)) {
1693 unsigned vi_dc_entries, buftbl_free;
1694 unsigned entries_per_vf, vf_limit;
1695
1696 nic_data->vf_buftbl_base = buftbl_min;
1697
1698 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1699 vi_count = max(vi_count, EFX_VI_BASE);
1700 buftbl_free = (sram_lim_qw - buftbl_min -
1701 vi_count * vi_dc_entries);
1702
1703 entries_per_vf = ((vi_dc_entries +
1704 EFX_VF_BUFTBL_PER_VI) *
1705 efx_vf_size(efx));
1706 vf_limit = min(buftbl_free / entries_per_vf,
1707 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1708
1709 if (efx->vf_count > vf_limit) {
1710 netif_err(efx, probe, efx->net_dev,
1711 "Reducing VF count from from %d to %d\n",
1712 efx->vf_count, vf_limit);
1713 efx->vf_count = vf_limit;
1714 }
1715 vi_count += efx->vf_count * efx_vf_size(efx);
1716 }
1717 }
1718 #endif
1719
1720 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1721 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1722 }
1723
efx_farch_fpga_ver(struct efx_nic * efx)1724 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1725 {
1726 efx_oword_t altera_build;
1727 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1728 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1729 }
1730
efx_farch_init_common(struct efx_nic * efx)1731 void efx_farch_init_common(struct efx_nic *efx)
1732 {
1733 efx_oword_t temp;
1734
1735 /* Set positions of descriptor caches in SRAM. */
1736 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1737 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1738 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1739 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1740
1741 /* Set TX descriptor cache size. */
1742 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1743 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1744 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1745
1746 /* Set RX descriptor cache size. Set low watermark to size-8, as
1747 * this allows most efficient prefetching.
1748 */
1749 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1750 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1751 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1752 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1753 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1754
1755 /* Program INT_KER address */
1756 EFX_POPULATE_OWORD_2(temp,
1757 FRF_AZ_NORM_INT_VEC_DIS_KER,
1758 EFX_INT_MODE_USE_MSI(efx),
1759 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1760 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1761
1762 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1763 /* Use an interrupt level unused by event queues */
1764 efx->irq_level = 0x1f;
1765 else
1766 /* Use a valid MSI-X vector */
1767 efx->irq_level = 0;
1768
1769 /* Enable all the genuinely fatal interrupts. (They are still
1770 * masked by the overall interrupt mask, controlled by
1771 * falcon_interrupts()).
1772 *
1773 * Note: All other fatal interrupts are enabled
1774 */
1775 EFX_POPULATE_OWORD_3(temp,
1776 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1777 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1778 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1779 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1780 EFX_INVERT_OWORD(temp);
1781 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1782
1783 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1784 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1785 */
1786 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1787 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1788 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1789 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1790 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1791 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1792 /* Enable SW_EV to inherit in char driver - assume harmless here */
1793 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1794 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1795 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1796 /* Disable hardware watchdog which can misfire */
1797 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1798 /* Squash TX of packets of 16 bytes or less */
1799 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1800 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1801
1802 EFX_POPULATE_OWORD_4(temp,
1803 /* Default values */
1804 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1805 FRF_BZ_TX_PACE_SB_AF, 0xb,
1806 FRF_BZ_TX_PACE_FB_BASE, 0,
1807 /* Allow large pace values in the fast bin. */
1808 FRF_BZ_TX_PACE_BIN_TH,
1809 FFE_BZ_TX_PACE_RESERVED);
1810 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1811 }
1812
1813 /**************************************************************************
1814 *
1815 * Filter tables
1816 *
1817 **************************************************************************
1818 */
1819
1820 /* "Fudge factors" - difference between programmed value and actual depth.
1821 * Due to pipelined implementation we need to program H/W with a value that
1822 * is larger than the hop limit we want.
1823 */
1824 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1825 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1826
1827 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1828 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1829 * table is full.
1830 */
1831 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1832
1833 /* Don't try very hard to find space for performance hints, as this is
1834 * counter-productive. */
1835 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1836
1837 enum efx_farch_filter_type {
1838 EFX_FARCH_FILTER_TCP_FULL = 0,
1839 EFX_FARCH_FILTER_TCP_WILD,
1840 EFX_FARCH_FILTER_UDP_FULL,
1841 EFX_FARCH_FILTER_UDP_WILD,
1842 EFX_FARCH_FILTER_MAC_FULL = 4,
1843 EFX_FARCH_FILTER_MAC_WILD,
1844 EFX_FARCH_FILTER_UC_DEF = 8,
1845 EFX_FARCH_FILTER_MC_DEF,
1846 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1847 };
1848
1849 enum efx_farch_filter_table_id {
1850 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1851 EFX_FARCH_FILTER_TABLE_RX_MAC,
1852 EFX_FARCH_FILTER_TABLE_RX_DEF,
1853 EFX_FARCH_FILTER_TABLE_TX_MAC,
1854 EFX_FARCH_FILTER_TABLE_COUNT,
1855 };
1856
1857 enum efx_farch_filter_index {
1858 EFX_FARCH_FILTER_INDEX_UC_DEF,
1859 EFX_FARCH_FILTER_INDEX_MC_DEF,
1860 EFX_FARCH_FILTER_SIZE_RX_DEF,
1861 };
1862
1863 struct efx_farch_filter_spec {
1864 u8 type:4;
1865 u8 priority:4;
1866 u8 flags;
1867 u16 dmaq_id;
1868 u32 data[3];
1869 };
1870
1871 struct efx_farch_filter_table {
1872 enum efx_farch_filter_table_id id;
1873 u32 offset; /* address of table relative to BAR */
1874 unsigned size; /* number of entries */
1875 unsigned step; /* step between entries */
1876 unsigned used; /* number currently used */
1877 unsigned long *used_bitmap;
1878 struct efx_farch_filter_spec *spec;
1879 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1880 };
1881
1882 struct efx_farch_filter_state {
1883 struct rw_semaphore lock; /* Protects table contents */
1884 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1885 };
1886
1887 static void
1888 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1889 struct efx_farch_filter_table *table,
1890 unsigned int filter_idx);
1891
1892 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1893 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1894 static u16 efx_farch_filter_hash(u32 key)
1895 {
1896 u16 tmp;
1897
1898 /* First 16 rounds */
1899 tmp = 0x1fff ^ key >> 16;
1900 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1901 tmp = tmp ^ tmp >> 9;
1902 /* Last 16 rounds */
1903 tmp = tmp ^ tmp << 13 ^ key;
1904 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1905 return tmp ^ tmp >> 9;
1906 }
1907
1908 /* To allow for hash collisions, filter search continues at these
1909 * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1910 static u16 efx_farch_filter_increment(u32 key)
1911 {
1912 return key * 2 - 1;
1913 }
1914
1915 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1916 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1917 {
1918 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1920 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1922 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1924 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1925 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1926 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1928 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1929 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1930 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1931 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1932 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1933 }
1934
efx_farch_filter_push_rx_config(struct efx_nic * efx)1935 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1936 {
1937 struct efx_farch_filter_state *state = efx->filter_state;
1938 struct efx_farch_filter_table *table;
1939 efx_oword_t filter_ctl;
1940
1941 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1942
1943 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1944 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1945 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1946 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1947 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1948 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1949 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1950 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1951 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1952 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1954 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1955 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1956
1957 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1958 if (table->size) {
1959 EFX_SET_OWORD_FIELD(
1960 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1961 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1962 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1963 EFX_SET_OWORD_FIELD(
1964 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1965 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1966 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1967 }
1968
1969 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1970 if (table->size) {
1971 EFX_SET_OWORD_FIELD(
1972 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1973 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1974 EFX_SET_OWORD_FIELD(
1975 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1976 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1977 EFX_FILTER_FLAG_RX_RSS));
1978 EFX_SET_OWORD_FIELD(
1979 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1980 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1981 EFX_SET_OWORD_FIELD(
1982 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1983 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1984 EFX_FILTER_FLAG_RX_RSS));
1985
1986 /* There is a single bit to enable RX scatter for all
1987 * unmatched packets. Only set it if scatter is
1988 * enabled in both filter specs.
1989 */
1990 EFX_SET_OWORD_FIELD(
1991 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1992 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1993 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1994 EFX_FILTER_FLAG_RX_SCATTER));
1995 } else {
1996 /* We don't expose 'default' filters because unmatched
1997 * packets always go to the queue number found in the
1998 * RSS table. But we still need to set the RX scatter
1999 * bit here.
2000 */
2001 EFX_SET_OWORD_FIELD(
2002 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2003 efx->rx_scatter);
2004 }
2005
2006 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2007 }
2008
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2009 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2010 {
2011 struct efx_farch_filter_state *state = efx->filter_state;
2012 struct efx_farch_filter_table *table;
2013 efx_oword_t tx_cfg;
2014
2015 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2016
2017 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2018 if (table->size) {
2019 EFX_SET_OWORD_FIELD(
2020 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2021 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2022 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2023 EFX_SET_OWORD_FIELD(
2024 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2025 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2026 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2027 }
2028
2029 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2030 }
2031
2032 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2033 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2034 const struct efx_filter_spec *gen_spec)
2035 {
2036 bool is_full = false;
2037
2038 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2039 return -EINVAL;
2040
2041 spec->priority = gen_spec->priority;
2042 spec->flags = gen_spec->flags;
2043 spec->dmaq_id = gen_spec->dmaq_id;
2044
2045 switch (gen_spec->match_flags) {
2046 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2048 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2049 is_full = true;
2050 fallthrough;
2051 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2052 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2053 __be32 rhost, host1, host2;
2054 __be16 rport, port1, port2;
2055
2056 EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2057
2058 if (gen_spec->ether_type != htons(ETH_P_IP))
2059 return -EPROTONOSUPPORT;
2060 if (gen_spec->loc_port == 0 ||
2061 (is_full && gen_spec->rem_port == 0))
2062 return -EADDRNOTAVAIL;
2063 switch (gen_spec->ip_proto) {
2064 case IPPROTO_TCP:
2065 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2066 EFX_FARCH_FILTER_TCP_WILD);
2067 break;
2068 case IPPROTO_UDP:
2069 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2070 EFX_FARCH_FILTER_UDP_WILD);
2071 break;
2072 default:
2073 return -EPROTONOSUPPORT;
2074 }
2075
2076 /* Filter is constructed in terms of source and destination,
2077 * with the odd wrinkle that the ports are swapped in a UDP
2078 * wildcard filter. We need to convert from local and remote
2079 * (= zero for wildcard) addresses.
2080 */
2081 rhost = is_full ? gen_spec->rem_host[0] : 0;
2082 rport = is_full ? gen_spec->rem_port : 0;
2083 host1 = rhost;
2084 host2 = gen_spec->loc_host[0];
2085 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2086 port1 = gen_spec->loc_port;
2087 port2 = rport;
2088 } else {
2089 port1 = rport;
2090 port2 = gen_spec->loc_port;
2091 }
2092 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2093 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2094 spec->data[2] = ntohl(host2);
2095
2096 break;
2097 }
2098
2099 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2100 is_full = true;
2101 fallthrough;
2102 case EFX_FILTER_MATCH_LOC_MAC:
2103 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2104 EFX_FARCH_FILTER_MAC_WILD);
2105 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2106 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2107 gen_spec->loc_mac[3] << 16 |
2108 gen_spec->loc_mac[4] << 8 |
2109 gen_spec->loc_mac[5]);
2110 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2111 gen_spec->loc_mac[1]);
2112 break;
2113
2114 case EFX_FILTER_MATCH_LOC_MAC_IG:
2115 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2116 EFX_FARCH_FILTER_MC_DEF :
2117 EFX_FARCH_FILTER_UC_DEF);
2118 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2119 break;
2120
2121 default:
2122 return -EPROTONOSUPPORT;
2123 }
2124
2125 return 0;
2126 }
2127
2128 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2129 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2130 const struct efx_farch_filter_spec *spec)
2131 {
2132 bool is_full = false;
2133
2134 /* *gen_spec should be completely initialised, to be consistent
2135 * with efx_filter_init_{rx,tx}() and in case we want to copy
2136 * it back to userland.
2137 */
2138 memset(gen_spec, 0, sizeof(*gen_spec));
2139
2140 gen_spec->priority = spec->priority;
2141 gen_spec->flags = spec->flags;
2142 gen_spec->dmaq_id = spec->dmaq_id;
2143
2144 switch (spec->type) {
2145 case EFX_FARCH_FILTER_TCP_FULL:
2146 case EFX_FARCH_FILTER_UDP_FULL:
2147 is_full = true;
2148 fallthrough;
2149 case EFX_FARCH_FILTER_TCP_WILD:
2150 case EFX_FARCH_FILTER_UDP_WILD: {
2151 __be32 host1, host2;
2152 __be16 port1, port2;
2153
2154 gen_spec->match_flags =
2155 EFX_FILTER_MATCH_ETHER_TYPE |
2156 EFX_FILTER_MATCH_IP_PROTO |
2157 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2158 if (is_full)
2159 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2160 EFX_FILTER_MATCH_REM_PORT);
2161 gen_spec->ether_type = htons(ETH_P_IP);
2162 gen_spec->ip_proto =
2163 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2164 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2165 IPPROTO_TCP : IPPROTO_UDP;
2166
2167 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2168 port1 = htons(spec->data[0]);
2169 host2 = htonl(spec->data[2]);
2170 port2 = htons(spec->data[1] >> 16);
2171 if (spec->flags & EFX_FILTER_FLAG_TX) {
2172 gen_spec->loc_host[0] = host1;
2173 gen_spec->rem_host[0] = host2;
2174 } else {
2175 gen_spec->loc_host[0] = host2;
2176 gen_spec->rem_host[0] = host1;
2177 }
2178 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2179 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2180 gen_spec->loc_port = port1;
2181 gen_spec->rem_port = port2;
2182 } else {
2183 gen_spec->loc_port = port2;
2184 gen_spec->rem_port = port1;
2185 }
2186
2187 break;
2188 }
2189
2190 case EFX_FARCH_FILTER_MAC_FULL:
2191 is_full = true;
2192 fallthrough;
2193 case EFX_FARCH_FILTER_MAC_WILD:
2194 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2195 if (is_full)
2196 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2197 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2198 gen_spec->loc_mac[1] = spec->data[2];
2199 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2200 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2201 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2202 gen_spec->loc_mac[5] = spec->data[1];
2203 gen_spec->outer_vid = htons(spec->data[0]);
2204 break;
2205
2206 case EFX_FARCH_FILTER_UC_DEF:
2207 case EFX_FARCH_FILTER_MC_DEF:
2208 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2209 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2210 break;
2211
2212 default:
2213 WARN_ON(1);
2214 break;
2215 }
2216 }
2217
2218 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2219 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2220 struct efx_farch_filter_spec *spec)
2221 {
2222 /* If there's only one channel then disable RSS for non VF
2223 * traffic, thereby allowing VFs to use RSS when the PF can't.
2224 */
2225 spec->priority = EFX_FILTER_PRI_AUTO;
2226 spec->flags = (EFX_FILTER_FLAG_RX |
2227 (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2228 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2229 spec->dmaq_id = 0;
2230 }
2231
2232 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2233 static u32 efx_farch_filter_build(efx_oword_t *filter,
2234 struct efx_farch_filter_spec *spec)
2235 {
2236 u32 data3;
2237
2238 switch (efx_farch_filter_spec_table_id(spec)) {
2239 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2240 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2241 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2242 EFX_POPULATE_OWORD_7(
2243 *filter,
2244 FRF_BZ_RSS_EN,
2245 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2246 FRF_BZ_SCATTER_EN,
2247 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2248 FRF_BZ_TCP_UDP, is_udp,
2249 FRF_BZ_RXQ_ID, spec->dmaq_id,
2250 EFX_DWORD_2, spec->data[2],
2251 EFX_DWORD_1, spec->data[1],
2252 EFX_DWORD_0, spec->data[0]);
2253 data3 = is_udp;
2254 break;
2255 }
2256
2257 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2258 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2259 EFX_POPULATE_OWORD_7(
2260 *filter,
2261 FRF_CZ_RMFT_RSS_EN,
2262 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2263 FRF_CZ_RMFT_SCATTER_EN,
2264 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2265 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2266 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2267 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2268 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2269 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2270 data3 = is_wild;
2271 break;
2272 }
2273
2274 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2275 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2276 EFX_POPULATE_OWORD_5(*filter,
2277 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2278 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2279 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2280 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2281 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2282 data3 = is_wild | spec->dmaq_id << 1;
2283 break;
2284 }
2285
2286 default:
2287 BUG();
2288 }
2289
2290 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2291 }
2292
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2293 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2294 const struct efx_farch_filter_spec *right)
2295 {
2296 if (left->type != right->type ||
2297 memcmp(left->data, right->data, sizeof(left->data)))
2298 return false;
2299
2300 if (left->flags & EFX_FILTER_FLAG_TX &&
2301 left->dmaq_id != right->dmaq_id)
2302 return false;
2303
2304 return true;
2305 }
2306
2307 /*
2308 * Construct/deconstruct external filter IDs. At least the RX filter
2309 * IDs must be ordered by matching priority, for RX NFC semantics.
2310 *
2311 * Deconstruction needs to be robust against invalid IDs so that
2312 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2313 * accept user-provided IDs.
2314 */
2315
2316 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2317
2318 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2319 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2320 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2321 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2322 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2323 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2324 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2325 [EFX_FARCH_FILTER_UC_DEF] = 4,
2326 [EFX_FARCH_FILTER_MC_DEF] = 4,
2327 };
2328
2329 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2330 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2331 EFX_FARCH_FILTER_TABLE_RX_IP,
2332 EFX_FARCH_FILTER_TABLE_RX_MAC,
2333 EFX_FARCH_FILTER_TABLE_RX_MAC,
2334 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2335 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2336 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2337 };
2338
2339 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2340 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2341
2342 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2343 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2344 unsigned int index)
2345 {
2346 unsigned int range;
2347
2348 range = efx_farch_filter_type_match_pri[spec->type];
2349 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2350 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2351
2352 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2353 }
2354
2355 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2356 efx_farch_filter_id_table_id(u32 id)
2357 {
2358 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2359
2360 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2361 return efx_farch_filter_range_table[range];
2362 else
2363 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2364 }
2365
efx_farch_filter_id_index(u32 id)2366 static inline unsigned int efx_farch_filter_id_index(u32 id)
2367 {
2368 return id & EFX_FARCH_FILTER_INDEX_MASK;
2369 }
2370
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2371 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2372 {
2373 struct efx_farch_filter_state *state = efx->filter_state;
2374 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2375 enum efx_farch_filter_table_id table_id;
2376
2377 do {
2378 table_id = efx_farch_filter_range_table[range];
2379 if (state->table[table_id].size != 0)
2380 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2381 state->table[table_id].size;
2382 } while (range--);
2383
2384 return 0;
2385 }
2386
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2387 s32 efx_farch_filter_insert(struct efx_nic *efx,
2388 struct efx_filter_spec *gen_spec,
2389 bool replace_equal)
2390 {
2391 struct efx_farch_filter_state *state = efx->filter_state;
2392 struct efx_farch_filter_table *table;
2393 struct efx_farch_filter_spec spec;
2394 efx_oword_t filter;
2395 int rep_index, ins_index;
2396 unsigned int depth = 0;
2397 int rc;
2398
2399 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2400 if (rc)
2401 return rc;
2402
2403 down_write(&state->lock);
2404
2405 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2406 if (table->size == 0) {
2407 rc = -EINVAL;
2408 goto out_unlock;
2409 }
2410
2411 netif_vdbg(efx, hw, efx->net_dev,
2412 "%s: type %d search_limit=%d", __func__, spec.type,
2413 table->search_limit[spec.type]);
2414
2415 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2416 /* One filter spec per type */
2417 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2418 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2419 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2420 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2421 ins_index = rep_index;
2422 } else {
2423 /* Search concurrently for
2424 * (1) a filter to be replaced (rep_index): any filter
2425 * with the same match values, up to the current
2426 * search depth for this type, and
2427 * (2) the insertion point (ins_index): (1) or any
2428 * free slot before it or up to the maximum search
2429 * depth for this priority
2430 * We fail if we cannot find (2).
2431 *
2432 * We can stop once either
2433 * (a) we find (1), in which case we have definitely
2434 * found (2) as well; or
2435 * (b) we have searched exhaustively for (1), and have
2436 * either found (2) or searched exhaustively for it
2437 */
2438 u32 key = efx_farch_filter_build(&filter, &spec);
2439 unsigned int hash = efx_farch_filter_hash(key);
2440 unsigned int incr = efx_farch_filter_increment(key);
2441 unsigned int max_rep_depth = table->search_limit[spec.type];
2442 unsigned int max_ins_depth =
2443 spec.priority <= EFX_FILTER_PRI_HINT ?
2444 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2445 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2446 unsigned int i = hash & (table->size - 1);
2447
2448 ins_index = -1;
2449 depth = 1;
2450
2451 for (;;) {
2452 if (!test_bit(i, table->used_bitmap)) {
2453 if (ins_index < 0)
2454 ins_index = i;
2455 } else if (efx_farch_filter_equal(&spec,
2456 &table->spec[i])) {
2457 /* Case (a) */
2458 if (ins_index < 0)
2459 ins_index = i;
2460 rep_index = i;
2461 break;
2462 }
2463
2464 if (depth >= max_rep_depth &&
2465 (ins_index >= 0 || depth >= max_ins_depth)) {
2466 /* Case (b) */
2467 if (ins_index < 0) {
2468 rc = -EBUSY;
2469 goto out_unlock;
2470 }
2471 rep_index = -1;
2472 break;
2473 }
2474
2475 i = (i + incr) & (table->size - 1);
2476 ++depth;
2477 }
2478 }
2479
2480 /* If we found a filter to be replaced, check whether we
2481 * should do so
2482 */
2483 if (rep_index >= 0) {
2484 struct efx_farch_filter_spec *saved_spec =
2485 &table->spec[rep_index];
2486
2487 if (spec.priority == saved_spec->priority && !replace_equal) {
2488 rc = -EEXIST;
2489 goto out_unlock;
2490 }
2491 if (spec.priority < saved_spec->priority) {
2492 rc = -EPERM;
2493 goto out_unlock;
2494 }
2495 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2496 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2497 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2498 }
2499
2500 /* Insert the filter */
2501 if (ins_index != rep_index) {
2502 __set_bit(ins_index, table->used_bitmap);
2503 ++table->used;
2504 }
2505 table->spec[ins_index] = spec;
2506
2507 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2508 efx_farch_filter_push_rx_config(efx);
2509 } else {
2510 if (table->search_limit[spec.type] < depth) {
2511 table->search_limit[spec.type] = depth;
2512 if (spec.flags & EFX_FILTER_FLAG_TX)
2513 efx_farch_filter_push_tx_limits(efx);
2514 else
2515 efx_farch_filter_push_rx_config(efx);
2516 }
2517
2518 efx_writeo(efx, &filter,
2519 table->offset + table->step * ins_index);
2520
2521 /* If we were able to replace a filter by inserting
2522 * at a lower depth, clear the replaced filter
2523 */
2524 if (ins_index != rep_index && rep_index >= 0)
2525 efx_farch_filter_table_clear_entry(efx, table,
2526 rep_index);
2527 }
2528
2529 netif_vdbg(efx, hw, efx->net_dev,
2530 "%s: filter type %d index %d rxq %u set",
2531 __func__, spec.type, ins_index, spec.dmaq_id);
2532 rc = efx_farch_filter_make_id(&spec, ins_index);
2533
2534 out_unlock:
2535 up_write(&state->lock);
2536 return rc;
2537 }
2538
2539 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2540 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2541 struct efx_farch_filter_table *table,
2542 unsigned int filter_idx)
2543 {
2544 static efx_oword_t filter;
2545
2546 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2547 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2548
2549 __clear_bit(filter_idx, table->used_bitmap);
2550 --table->used;
2551 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2552
2553 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2554
2555 /* If this filter required a greater search depth than
2556 * any other, the search limit for its type can now be
2557 * decreased. However, it is hard to determine that
2558 * unless the table has become completely empty - in
2559 * which case, all its search limits can be set to 0.
2560 */
2561 if (unlikely(table->used == 0)) {
2562 memset(table->search_limit, 0, sizeof(table->search_limit));
2563 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2564 efx_farch_filter_push_tx_limits(efx);
2565 else
2566 efx_farch_filter_push_rx_config(efx);
2567 }
2568 }
2569
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2570 static int efx_farch_filter_remove(struct efx_nic *efx,
2571 struct efx_farch_filter_table *table,
2572 unsigned int filter_idx,
2573 enum efx_filter_priority priority)
2574 {
2575 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2576
2577 if (!test_bit(filter_idx, table->used_bitmap) ||
2578 spec->priority != priority)
2579 return -ENOENT;
2580
2581 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2582 efx_farch_filter_init_rx_auto(efx, spec);
2583 efx_farch_filter_push_rx_config(efx);
2584 } else {
2585 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2586 }
2587
2588 return 0;
2589 }
2590
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2591 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2592 enum efx_filter_priority priority,
2593 u32 filter_id)
2594 {
2595 struct efx_farch_filter_state *state = efx->filter_state;
2596 enum efx_farch_filter_table_id table_id;
2597 struct efx_farch_filter_table *table;
2598 unsigned int filter_idx;
2599 int rc;
2600
2601 table_id = efx_farch_filter_id_table_id(filter_id);
2602 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2603 return -ENOENT;
2604 table = &state->table[table_id];
2605
2606 filter_idx = efx_farch_filter_id_index(filter_id);
2607 if (filter_idx >= table->size)
2608 return -ENOENT;
2609 down_write(&state->lock);
2610
2611 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612 up_write(&state->lock);
2613
2614 return rc;
2615 }
2616
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2617 int efx_farch_filter_get_safe(struct efx_nic *efx,
2618 enum efx_filter_priority priority,
2619 u32 filter_id, struct efx_filter_spec *spec_buf)
2620 {
2621 struct efx_farch_filter_state *state = efx->filter_state;
2622 enum efx_farch_filter_table_id table_id;
2623 struct efx_farch_filter_table *table;
2624 struct efx_farch_filter_spec *spec;
2625 unsigned int filter_idx;
2626 int rc = -ENOENT;
2627
2628 down_read(&state->lock);
2629
2630 table_id = efx_farch_filter_id_table_id(filter_id);
2631 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632 goto out_unlock;
2633 table = &state->table[table_id];
2634
2635 filter_idx = efx_farch_filter_id_index(filter_id);
2636 if (filter_idx >= table->size)
2637 goto out_unlock;
2638 spec = &table->spec[filter_idx];
2639
2640 if (test_bit(filter_idx, table->used_bitmap) &&
2641 spec->priority == priority) {
2642 efx_farch_filter_to_gen_spec(spec_buf, spec);
2643 rc = 0;
2644 }
2645
2646 out_unlock:
2647 up_read(&state->lock);
2648 return rc;
2649 }
2650
2651 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2652 efx_farch_filter_table_clear(struct efx_nic *efx,
2653 enum efx_farch_filter_table_id table_id,
2654 enum efx_filter_priority priority)
2655 {
2656 struct efx_farch_filter_state *state = efx->filter_state;
2657 struct efx_farch_filter_table *table = &state->table[table_id];
2658 unsigned int filter_idx;
2659
2660 down_write(&state->lock);
2661 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2662 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2663 efx_farch_filter_remove(efx, table,
2664 filter_idx, priority);
2665 }
2666 up_write(&state->lock);
2667 }
2668
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2669 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2670 enum efx_filter_priority priority)
2671 {
2672 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2673 priority);
2674 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2675 priority);
2676 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2677 priority);
2678 return 0;
2679 }
2680
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2681 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2682 enum efx_filter_priority priority)
2683 {
2684 struct efx_farch_filter_state *state = efx->filter_state;
2685 enum efx_farch_filter_table_id table_id;
2686 struct efx_farch_filter_table *table;
2687 unsigned int filter_idx;
2688 u32 count = 0;
2689
2690 down_read(&state->lock);
2691
2692 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2693 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2694 table_id++) {
2695 table = &state->table[table_id];
2696 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2697 if (test_bit(filter_idx, table->used_bitmap) &&
2698 table->spec[filter_idx].priority == priority)
2699 ++count;
2700 }
2701 }
2702
2703 up_read(&state->lock);
2704
2705 return count;
2706 }
2707
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2708 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2709 enum efx_filter_priority priority,
2710 u32 *buf, u32 size)
2711 {
2712 struct efx_farch_filter_state *state = efx->filter_state;
2713 enum efx_farch_filter_table_id table_id;
2714 struct efx_farch_filter_table *table;
2715 unsigned int filter_idx;
2716 s32 count = 0;
2717
2718 down_read(&state->lock);
2719
2720 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2721 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2722 table_id++) {
2723 table = &state->table[table_id];
2724 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2725 if (test_bit(filter_idx, table->used_bitmap) &&
2726 table->spec[filter_idx].priority == priority) {
2727 if (count == size) {
2728 count = -EMSGSIZE;
2729 goto out;
2730 }
2731 buf[count++] = efx_farch_filter_make_id(
2732 &table->spec[filter_idx], filter_idx);
2733 }
2734 }
2735 }
2736 out:
2737 up_read(&state->lock);
2738
2739 return count;
2740 }
2741
2742 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2743 void efx_farch_filter_table_restore(struct efx_nic *efx)
2744 {
2745 struct efx_farch_filter_state *state = efx->filter_state;
2746 enum efx_farch_filter_table_id table_id;
2747 struct efx_farch_filter_table *table;
2748 efx_oword_t filter;
2749 unsigned int filter_idx;
2750
2751 down_write(&state->lock);
2752
2753 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2754 table = &state->table[table_id];
2755
2756 /* Check whether this is a regular register table */
2757 if (table->step == 0)
2758 continue;
2759
2760 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2761 if (!test_bit(filter_idx, table->used_bitmap))
2762 continue;
2763 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2764 efx_writeo(efx, &filter,
2765 table->offset + table->step * filter_idx);
2766 }
2767 }
2768
2769 efx_farch_filter_push_rx_config(efx);
2770 efx_farch_filter_push_tx_limits(efx);
2771
2772 up_write(&state->lock);
2773 }
2774
efx_farch_filter_table_remove(struct efx_nic * efx)2775 void efx_farch_filter_table_remove(struct efx_nic *efx)
2776 {
2777 struct efx_farch_filter_state *state = efx->filter_state;
2778 enum efx_farch_filter_table_id table_id;
2779
2780 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2781 bitmap_free(state->table[table_id].used_bitmap);
2782 vfree(state->table[table_id].spec);
2783 }
2784 kfree(state);
2785 }
2786
efx_farch_filter_table_probe(struct efx_nic * efx)2787 int efx_farch_filter_table_probe(struct efx_nic *efx)
2788 {
2789 struct efx_farch_filter_state *state;
2790 struct efx_farch_filter_table *table;
2791 unsigned table_id;
2792
2793 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2794 if (!state)
2795 return -ENOMEM;
2796 efx->filter_state = state;
2797 init_rwsem(&state->lock);
2798
2799 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2800 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2801 table->offset = FR_BZ_RX_FILTER_TBL0;
2802 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2803 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2804
2805 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2806 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2807 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2808 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2809 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2810
2811 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2812 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2813 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2814
2815 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2816 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2817 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2818 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2819 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2820
2821 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2822 table = &state->table[table_id];
2823 if (table->size == 0)
2824 continue;
2825 table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL);
2826 if (!table->used_bitmap)
2827 goto fail;
2828 table->spec = vzalloc(array_size(sizeof(*table->spec),
2829 table->size));
2830 if (!table->spec)
2831 goto fail;
2832 }
2833
2834 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835 if (table->size) {
2836 /* RX default filters must always exist */
2837 struct efx_farch_filter_spec *spec;
2838 unsigned i;
2839
2840 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841 spec = &table->spec[i];
2842 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843 efx_farch_filter_init_rx_auto(efx, spec);
2844 __set_bit(i, table->used_bitmap);
2845 }
2846 }
2847
2848 efx_farch_filter_push_rx_config(efx);
2849
2850 return 0;
2851
2852 fail:
2853 efx_farch_filter_table_remove(efx);
2854 return -ENOMEM;
2855 }
2856
2857 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2858 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2859 {
2860 struct efx_farch_filter_state *state = efx->filter_state;
2861 enum efx_farch_filter_table_id table_id;
2862 struct efx_farch_filter_table *table;
2863 efx_oword_t filter;
2864 unsigned int filter_idx;
2865
2866 down_write(&state->lock);
2867
2868 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870 table_id++) {
2871 table = &state->table[table_id];
2872
2873 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874 if (!test_bit(filter_idx, table->used_bitmap) ||
2875 table->spec[filter_idx].dmaq_id >=
2876 efx->n_rx_channels)
2877 continue;
2878
2879 if (efx->rx_scatter)
2880 table->spec[filter_idx].flags |=
2881 EFX_FILTER_FLAG_RX_SCATTER;
2882 else
2883 table->spec[filter_idx].flags &=
2884 ~EFX_FILTER_FLAG_RX_SCATTER;
2885
2886 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887 /* Pushed by efx_farch_filter_push_rx_config() */
2888 continue;
2889
2890 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891 efx_writeo(efx, &filter,
2892 table->offset + table->step * filter_idx);
2893 }
2894 }
2895
2896 efx_farch_filter_push_rx_config(efx);
2897
2898 up_write(&state->lock);
2899 }
2900
2901 #ifdef CONFIG_RFS_ACCEL
2902
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2903 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904 unsigned int index)
2905 {
2906 struct efx_farch_filter_state *state = efx->filter_state;
2907 struct efx_farch_filter_table *table;
2908 bool ret = false, force = false;
2909 u16 arfs_id;
2910
2911 down_write(&state->lock);
2912 spin_lock_bh(&efx->rps_hash_lock);
2913 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914 if (test_bit(index, table->used_bitmap) &&
2915 table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916 struct efx_arfs_rule *rule = NULL;
2917 struct efx_filter_spec spec;
2918
2919 efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920 if (!efx->rps_hash_table) {
2921 /* In the absence of the table, we always returned 0 to
2922 * ARFS, so use the same to query it.
2923 */
2924 arfs_id = 0;
2925 } else {
2926 rule = efx_siena_rps_hash_find(efx, &spec);
2927 if (!rule) {
2928 /* ARFS table doesn't know of this filter, remove it */
2929 force = true;
2930 } else {
2931 arfs_id = rule->arfs_id;
2932 if (!efx_siena_rps_check_rule(rule, index,
2933 &force))
2934 goto out_unlock;
2935 }
2936 }
2937 if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2938 flow_id, arfs_id)) {
2939 if (rule)
2940 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2941 efx_siena_rps_hash_del(efx, &spec);
2942 efx_farch_filter_table_clear_entry(efx, table, index);
2943 ret = true;
2944 }
2945 }
2946 out_unlock:
2947 spin_unlock_bh(&efx->rps_hash_lock);
2948 up_write(&state->lock);
2949 return ret;
2950 }
2951
2952 #endif /* CONFIG_RFS_ACCEL */
2953
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2954 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2955 {
2956 struct net_device *net_dev = efx->net_dev;
2957 struct netdev_hw_addr *ha;
2958 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2959 u32 crc;
2960 int bit;
2961
2962 if (!efx_dev_registered(efx))
2963 return;
2964
2965 netif_addr_lock_bh(net_dev);
2966
2967 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2968
2969 /* Build multicast hash table */
2970 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2971 memset(mc_hash, 0xff, sizeof(*mc_hash));
2972 } else {
2973 memset(mc_hash, 0x00, sizeof(*mc_hash));
2974 netdev_for_each_mc_addr(ha, net_dev) {
2975 crc = ether_crc_le(ETH_ALEN, ha->addr);
2976 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2977 __set_bit_le(bit, mc_hash);
2978 }
2979
2980 /* Broadcast packets go through the multicast hash filter.
2981 * ether_crc_le() of the broadcast address is 0xbe2612ff
2982 * so we always add bit 0xff to the mask.
2983 */
2984 __set_bit_le(0xff, mc_hash);
2985 }
2986
2987 netif_addr_unlock_bh(net_dev);
2988 }
2989