xref: /linux/drivers/net/ethernet/sfc/efx.c (revision e6bf1f7aea4df918e5ee848d9f6b7ce63135b4be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include <net/netdev_queues.h>
26 #include "efx.h"
27 #include "efx_common.h"
28 #include "efx_channels.h"
29 #include "ef100.h"
30 #include "rx_common.h"
31 #include "tx_common.h"
32 #include "nic.h"
33 #include "io.h"
34 #include "selftest.h"
35 #include "sriov.h"
36 #include "efx_devlink.h"
37 
38 #include "mcdi_port_common.h"
39 #include "mcdi_pcol.h"
40 #include "workarounds.h"
41 
42 /**************************************************************************
43  *
44  * Configurable values
45  *
46  *************************************************************************/
47 
48 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
49 MODULE_PARM_DESC(interrupt_mode,
50 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
51 
52 module_param(rss_cpus, uint, 0444);
53 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
54 
55 /*
56  * Use separate channels for TX and RX events
57  *
58  * Set this to 1 to use separate channels for TX and RX. It allows us
59  * to control interrupt affinity separately for TX and RX.
60  *
61  * This is only used in MSI-X interrupt mode
62  */
63 bool efx_separate_tx_channels;
64 module_param(efx_separate_tx_channels, bool, 0444);
65 MODULE_PARM_DESC(efx_separate_tx_channels,
66 		 "Use separate channels for TX and RX");
67 
68 /* Initial interrupt moderation settings.  They can be modified after
69  * module load with ethtool.
70  *
71  * The default for RX should strike a balance between increasing the
72  * round-trip latency and reducing overhead.
73  */
74 static unsigned int rx_irq_mod_usec = 60;
75 
76 /* Initial interrupt moderation settings.  They can be modified after
77  * module load with ethtool.
78  *
79  * This default is chosen to ensure that a 10G link does not go idle
80  * while a TX queue is stopped after it has become full.  A queue is
81  * restarted when it drops below half full.  The time this takes (assuming
82  * worst case 3 descriptors per packet and 1024 descriptors) is
83  *   512 / 3 * 1.2 = 205 usec.
84  */
85 static unsigned int tx_irq_mod_usec = 150;
86 
87 static bool phy_flash_cfg;
88 module_param(phy_flash_cfg, bool, 0644);
89 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
90 
91 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
92 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
93 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
94 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
95 module_param(debug, uint, 0);
96 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
97 
98 /**************************************************************************
99  *
100  * Utility functions and prototypes
101  *
102  *************************************************************************/
103 
104 static void efx_remove_port(struct efx_nic *efx);
105 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
106 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
107 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
108 			u32 flags);
109 
110 /**************************************************************************
111  *
112  * Port handling
113  *
114  **************************************************************************/
115 
116 static void efx_fini_port(struct efx_nic *efx);
117 
118 static int efx_probe_port(struct efx_nic *efx)
119 {
120 	int rc;
121 
122 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
123 
124 	if (phy_flash_cfg)
125 		efx->phy_mode = PHY_MODE_SPECIAL;
126 
127 	/* Connect up MAC/PHY operations table */
128 	rc = efx->type->probe_port(efx);
129 	if (rc)
130 		return rc;
131 
132 	/* Initialise MAC address to permanent address */
133 	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
134 
135 	return 0;
136 }
137 
138 static int efx_init_port(struct efx_nic *efx)
139 {
140 	int rc;
141 
142 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
143 
144 	mutex_lock(&efx->mac_lock);
145 
146 	efx->port_initialized = true;
147 
148 	/* Ensure the PHY advertises the correct flow control settings */
149 	rc = efx_mcdi_port_reconfigure(efx);
150 	if (rc && rc != -EPERM)
151 		goto fail;
152 
153 	mutex_unlock(&efx->mac_lock);
154 	return 0;
155 
156 fail:
157 	mutex_unlock(&efx->mac_lock);
158 	return rc;
159 }
160 
161 static void efx_fini_port(struct efx_nic *efx)
162 {
163 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
164 
165 	if (!efx->port_initialized)
166 		return;
167 
168 	efx->port_initialized = false;
169 
170 	efx->link_state.up = false;
171 	efx_link_status_changed(efx);
172 }
173 
174 static void efx_remove_port(struct efx_nic *efx)
175 {
176 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
177 
178 	efx->type->remove_port(efx);
179 }
180 
181 /**************************************************************************
182  *
183  * NIC handling
184  *
185  **************************************************************************/
186 
187 static LIST_HEAD(efx_primary_list);
188 static LIST_HEAD(efx_unassociated_list);
189 
190 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
191 {
192 	return left->type == right->type &&
193 		left->vpd_sn && right->vpd_sn &&
194 		!strcmp(left->vpd_sn, right->vpd_sn);
195 }
196 
197 static void efx_associate(struct efx_nic *efx)
198 {
199 	struct efx_nic *other, *next;
200 
201 	if (efx->primary == efx) {
202 		/* Adding primary function; look for secondaries */
203 
204 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
205 		list_add_tail(&efx->node, &efx_primary_list);
206 
207 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
208 					 node) {
209 			if (efx_same_controller(efx, other)) {
210 				list_del(&other->node);
211 				netif_dbg(other, probe, other->net_dev,
212 					  "moving to secondary list of %s %s\n",
213 					  pci_name(efx->pci_dev),
214 					  efx->net_dev->name);
215 				list_add_tail(&other->node,
216 					      &efx->secondary_list);
217 				other->primary = efx;
218 			}
219 		}
220 	} else {
221 		/* Adding secondary function; look for primary */
222 
223 		list_for_each_entry(other, &efx_primary_list, node) {
224 			if (efx_same_controller(efx, other)) {
225 				netif_dbg(efx, probe, efx->net_dev,
226 					  "adding to secondary list of %s %s\n",
227 					  pci_name(other->pci_dev),
228 					  other->net_dev->name);
229 				list_add_tail(&efx->node,
230 					      &other->secondary_list);
231 				efx->primary = other;
232 				return;
233 			}
234 		}
235 
236 		netif_dbg(efx, probe, efx->net_dev,
237 			  "adding to unassociated list\n");
238 		list_add_tail(&efx->node, &efx_unassociated_list);
239 	}
240 }
241 
242 static void efx_dissociate(struct efx_nic *efx)
243 {
244 	struct efx_nic *other, *next;
245 
246 	list_del(&efx->node);
247 	efx->primary = NULL;
248 
249 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
250 		list_del(&other->node);
251 		netif_dbg(other, probe, other->net_dev,
252 			  "moving to unassociated list\n");
253 		list_add_tail(&other->node, &efx_unassociated_list);
254 		other->primary = NULL;
255 	}
256 }
257 
258 static int efx_probe_nic(struct efx_nic *efx)
259 {
260 	int rc;
261 
262 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
263 
264 	/* Carry out hardware-type specific initialisation */
265 	rc = efx->type->probe(efx);
266 	if (rc)
267 		return rc;
268 
269 	do {
270 		if (!efx->max_channels || !efx->max_tx_channels) {
271 			netif_err(efx, drv, efx->net_dev,
272 				  "Insufficient resources to allocate"
273 				  " any channels\n");
274 			rc = -ENOSPC;
275 			goto fail1;
276 		}
277 
278 		/* Determine the number of channels and queues by trying
279 		 * to hook in MSI-X interrupts.
280 		 */
281 		rc = efx_probe_interrupts(efx);
282 		if (rc)
283 			goto fail1;
284 
285 		rc = efx_set_channels(efx);
286 		if (rc)
287 			goto fail1;
288 
289 		/* dimension_resources can fail with EAGAIN */
290 		rc = efx->type->dimension_resources(efx);
291 		if (rc != 0 && rc != -EAGAIN)
292 			goto fail2;
293 
294 		if (rc == -EAGAIN)
295 			/* try again with new max_channels */
296 			efx_remove_interrupts(efx);
297 
298 	} while (rc == -EAGAIN);
299 
300 	if (efx->n_channels > 1)
301 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
302 				    sizeof(efx->rss_context.rx_hash_key));
303 	efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table);
304 
305 	/* Initialise the interrupt moderation settings */
306 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
307 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
308 				true);
309 
310 	return 0;
311 
312 fail2:
313 	efx_remove_interrupts(efx);
314 fail1:
315 	efx->type->remove(efx);
316 	return rc;
317 }
318 
319 static void efx_remove_nic(struct efx_nic *efx)
320 {
321 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
322 
323 	efx_remove_interrupts(efx);
324 	efx->type->remove(efx);
325 }
326 
327 /**************************************************************************
328  *
329  * NIC startup/shutdown
330  *
331  *************************************************************************/
332 
333 static int efx_probe_all(struct efx_nic *efx)
334 {
335 	int rc;
336 
337 	rc = efx_probe_nic(efx);
338 	if (rc) {
339 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
340 		goto fail1;
341 	}
342 
343 	rc = efx_probe_port(efx);
344 	if (rc) {
345 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
346 		goto fail2;
347 	}
348 
349 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
350 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
351 		rc = -EINVAL;
352 		goto fail3;
353 	}
354 
355 #ifdef CONFIG_SFC_SRIOV
356 	rc = efx->type->vswitching_probe(efx);
357 	if (rc) /* not fatal; the PF will still work fine */
358 		netif_warn(efx, probe, efx->net_dev,
359 			   "failed to setup vswitching rc=%d;"
360 			   " VFs may not function\n", rc);
361 #endif
362 
363 	rc = efx_probe_filters(efx);
364 	if (rc) {
365 		netif_err(efx, probe, efx->net_dev,
366 			  "failed to create filter tables\n");
367 		goto fail4;
368 	}
369 
370 	rc = efx_probe_channels(efx);
371 	if (rc)
372 		goto fail5;
373 
374 	efx->state = STATE_NET_DOWN;
375 
376 	return 0;
377 
378  fail5:
379 	efx_remove_filters(efx);
380  fail4:
381 #ifdef CONFIG_SFC_SRIOV
382 	efx->type->vswitching_remove(efx);
383 #endif
384  fail3:
385 	efx_remove_port(efx);
386  fail2:
387 	efx_remove_nic(efx);
388  fail1:
389 	return rc;
390 }
391 
392 static void efx_remove_all(struct efx_nic *efx)
393 {
394 	rtnl_lock();
395 	efx_xdp_setup_prog(efx, NULL);
396 	rtnl_unlock();
397 
398 	efx_remove_channels(efx);
399 	efx_remove_filters(efx);
400 #ifdef CONFIG_SFC_SRIOV
401 	efx->type->vswitching_remove(efx);
402 #endif
403 	efx_remove_port(efx);
404 	efx_remove_nic(efx);
405 }
406 
407 /**************************************************************************
408  *
409  * Interrupt moderation
410  *
411  **************************************************************************/
412 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
413 {
414 	if (usecs == 0)
415 		return 0;
416 	if (usecs * 1000 < efx->timer_quantum_ns)
417 		return 1; /* never round down to 0 */
418 	return usecs * 1000 / efx->timer_quantum_ns;
419 }
420 
421 /* Set interrupt moderation parameters */
422 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
423 			    unsigned int rx_usecs, bool rx_adaptive,
424 			    bool rx_may_override_tx)
425 {
426 	struct efx_channel *channel;
427 	unsigned int timer_max_us;
428 
429 	EFX_ASSERT_RESET_SERIALISED(efx);
430 
431 	timer_max_us = efx->timer_max_ns / 1000;
432 
433 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
434 		return -EINVAL;
435 
436 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
437 	    !rx_may_override_tx) {
438 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
439 			  "RX and TX IRQ moderation must be equal\n");
440 		return -EINVAL;
441 	}
442 
443 	efx->irq_rx_adaptive = rx_adaptive;
444 	efx->irq_rx_moderation_us = rx_usecs;
445 	efx_for_each_channel(channel, efx) {
446 		if (efx_channel_has_rx_queue(channel))
447 			channel->irq_moderation_us = rx_usecs;
448 		else if (efx_channel_has_tx_queues(channel))
449 			channel->irq_moderation_us = tx_usecs;
450 		else if (efx_channel_is_xdp_tx(channel))
451 			channel->irq_moderation_us = tx_usecs;
452 	}
453 
454 	return 0;
455 }
456 
457 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
458 			    unsigned int *rx_usecs, bool *rx_adaptive)
459 {
460 	*rx_adaptive = efx->irq_rx_adaptive;
461 	*rx_usecs = efx->irq_rx_moderation_us;
462 
463 	/* If channels are shared between RX and TX, so is IRQ
464 	 * moderation.  Otherwise, IRQ moderation is the same for all
465 	 * TX channels and is not adaptive.
466 	 */
467 	if (efx->tx_channel_offset == 0) {
468 		*tx_usecs = *rx_usecs;
469 	} else {
470 		struct efx_channel *tx_channel;
471 
472 		tx_channel = efx->channel[efx->tx_channel_offset];
473 		*tx_usecs = tx_channel->irq_moderation_us;
474 	}
475 }
476 
477 /**************************************************************************
478  *
479  * ioctls
480  *
481  *************************************************************************/
482 
483 /* Net device ioctl
484  * Context: process, rtnl_lock() held.
485  */
486 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
487 {
488 	struct efx_nic *efx = efx_netdev_priv(net_dev);
489 	struct mii_ioctl_data *data = if_mii(ifr);
490 
491 	/* Convert phy_id from older PRTAD/DEVAD format */
492 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
493 	    (data->phy_id & 0xfc00) == 0x0400)
494 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
495 
496 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
497 }
498 
499 /**************************************************************************
500  *
501  * Kernel net device interface
502  *
503  *************************************************************************/
504 
505 /* Context: process, rtnl_lock() held. */
506 int efx_net_open(struct net_device *net_dev)
507 {
508 	struct efx_nic *efx = efx_netdev_priv(net_dev);
509 	int rc;
510 
511 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
512 		  raw_smp_processor_id());
513 
514 	rc = efx_check_disabled(efx);
515 	if (rc)
516 		return rc;
517 	if (efx->phy_mode & PHY_MODE_SPECIAL)
518 		return -EBUSY;
519 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
520 		return -EIO;
521 
522 	/* Notify the kernel of the link state polled during driver load,
523 	 * before the monitor starts running */
524 	efx_link_status_changed(efx);
525 
526 	efx_start_all(efx);
527 	if (efx->state == STATE_DISABLED || efx->reset_pending)
528 		netif_device_detach(efx->net_dev);
529 	else
530 		efx->state = STATE_NET_UP;
531 
532 	return 0;
533 }
534 
535 /* Context: process, rtnl_lock() held.
536  * Note that the kernel will ignore our return code; this method
537  * should really be a void.
538  */
539 int efx_net_stop(struct net_device *net_dev)
540 {
541 	struct efx_nic *efx = efx_netdev_priv(net_dev);
542 
543 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
544 		  raw_smp_processor_id());
545 
546 	/* Stop the device and flush all the channels */
547 	efx_stop_all(efx);
548 
549 	return 0;
550 }
551 
552 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
553 {
554 	struct efx_nic *efx = efx_netdev_priv(net_dev);
555 
556 	if (efx->type->vlan_rx_add_vid)
557 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
558 	else
559 		return -EOPNOTSUPP;
560 }
561 
562 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
563 {
564 	struct efx_nic *efx = efx_netdev_priv(net_dev);
565 
566 	if (efx->type->vlan_rx_kill_vid)
567 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
568 	else
569 		return -EOPNOTSUPP;
570 }
571 
572 static int efx_hwtstamp_set(struct net_device *net_dev,
573 			    struct kernel_hwtstamp_config *config,
574 			    struct netlink_ext_ack *extack)
575 {
576 	struct efx_nic *efx = efx_netdev_priv(net_dev);
577 
578 	return efx_ptp_set_ts_config(efx, config, extack);
579 }
580 
581 static int efx_hwtstamp_get(struct net_device *net_dev,
582 			    struct kernel_hwtstamp_config *config)
583 {
584 	struct efx_nic *efx = efx_netdev_priv(net_dev);
585 
586 	return efx_ptp_get_ts_config(efx, config);
587 }
588 
589 static const struct net_device_ops efx_netdev_ops = {
590 	.ndo_open		= efx_net_open,
591 	.ndo_stop		= efx_net_stop,
592 	.ndo_get_stats64	= efx_net_stats,
593 	.ndo_tx_timeout		= efx_watchdog,
594 	.ndo_start_xmit		= efx_hard_start_xmit,
595 	.ndo_validate_addr	= eth_validate_addr,
596 	.ndo_eth_ioctl		= efx_ioctl,
597 	.ndo_change_mtu		= efx_change_mtu,
598 	.ndo_set_mac_address	= efx_set_mac_address,
599 	.ndo_set_rx_mode	= efx_set_rx_mode,
600 	.ndo_set_features	= efx_set_features,
601 	.ndo_features_check	= efx_features_check,
602 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
603 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
604 	.ndo_hwtstamp_set	= efx_hwtstamp_set,
605 	.ndo_hwtstamp_get	= efx_hwtstamp_get,
606 #ifdef CONFIG_SFC_SRIOV
607 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
608 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
609 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
610 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
611 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
612 #endif
613 	.ndo_get_phys_port_id   = efx_get_phys_port_id,
614 	.ndo_get_phys_port_name	= efx_get_phys_port_name,
615 #ifdef CONFIG_RFS_ACCEL
616 	.ndo_rx_flow_steer	= efx_filter_rfs,
617 #endif
618 	.ndo_xdp_xmit		= efx_xdp_xmit,
619 	.ndo_bpf		= efx_xdp
620 };
621 
622 static void efx_get_queue_stats_rx(struct net_device *net_dev, int idx,
623 				   struct netdev_queue_stats_rx *stats)
624 {
625 	struct efx_nic *efx = efx_netdev_priv(net_dev);
626 	struct efx_rx_queue *rx_queue;
627 	struct efx_channel *channel;
628 
629 	channel = efx_get_channel(efx, idx);
630 	rx_queue = efx_channel_get_rx_queue(channel);
631 	/* Count only packets since last time datapath was started */
632 	stats->packets = rx_queue->rx_packets - rx_queue->old_rx_packets;
633 	stats->bytes = rx_queue->rx_bytes - rx_queue->old_rx_bytes;
634 	stats->hw_drops = efx_get_queue_stat_rx_hw_drops(channel) -
635 			  channel->old_n_rx_hw_drops;
636 	stats->hw_drop_overruns = channel->n_rx_nodesc_trunc -
637 				  channel->old_n_rx_hw_drop_overruns;
638 }
639 
640 static void efx_get_queue_stats_tx(struct net_device *net_dev, int idx,
641 				   struct netdev_queue_stats_tx *stats)
642 {
643 	struct efx_nic *efx = efx_netdev_priv(net_dev);
644 	struct efx_tx_queue *tx_queue;
645 	struct efx_channel *channel;
646 
647 	channel = efx_get_tx_channel(efx, idx);
648 	stats->packets = 0;
649 	stats->bytes = 0;
650 	stats->hw_gso_packets = 0;
651 	stats->hw_gso_wire_packets = 0;
652 	efx_for_each_channel_tx_queue(tx_queue, channel) {
653 		stats->packets += tx_queue->complete_packets -
654 				  tx_queue->old_complete_packets;
655 		stats->bytes += tx_queue->complete_bytes -
656 				tx_queue->old_complete_bytes;
657 		/* Note that, unlike stats->packets and stats->bytes,
658 		 * these count TXes enqueued, rather than completed,
659 		 * which may not be what users expect.
660 		 */
661 		stats->hw_gso_packets += tx_queue->tso_bursts -
662 					 tx_queue->old_tso_bursts;
663 		stats->hw_gso_wire_packets += tx_queue->tso_packets -
664 					      tx_queue->old_tso_packets;
665 	}
666 }
667 
668 static void efx_get_base_stats(struct net_device *net_dev,
669 			       struct netdev_queue_stats_rx *rx,
670 			       struct netdev_queue_stats_tx *tx)
671 {
672 	struct efx_nic *efx = efx_netdev_priv(net_dev);
673 	struct efx_tx_queue *tx_queue;
674 	struct efx_rx_queue *rx_queue;
675 	struct efx_channel *channel;
676 
677 	rx->packets = 0;
678 	rx->bytes = 0;
679 	rx->hw_drops = 0;
680 	rx->hw_drop_overruns = 0;
681 	tx->packets = 0;
682 	tx->bytes = 0;
683 	tx->hw_gso_packets = 0;
684 	tx->hw_gso_wire_packets = 0;
685 
686 	/* Count all packets on non-core queues, and packets before last
687 	 * datapath start on core queues.
688 	 */
689 	efx_for_each_channel(channel, efx) {
690 		rx_queue = efx_channel_get_rx_queue(channel);
691 		if (channel->channel >= net_dev->real_num_rx_queues) {
692 			rx->packets += rx_queue->rx_packets;
693 			rx->bytes += rx_queue->rx_bytes;
694 			rx->hw_drops += efx_get_queue_stat_rx_hw_drops(channel);
695 			rx->hw_drop_overruns += channel->n_rx_nodesc_trunc;
696 		} else {
697 			rx->packets += rx_queue->old_rx_packets;
698 			rx->bytes += rx_queue->old_rx_bytes;
699 			rx->hw_drops += channel->old_n_rx_hw_drops;
700 			rx->hw_drop_overruns += channel->old_n_rx_hw_drop_overruns;
701 		}
702 		efx_for_each_channel_tx_queue(tx_queue, channel) {
703 			if (channel->channel < efx->tx_channel_offset ||
704 			    channel->channel >= efx->tx_channel_offset +
705 						net_dev->real_num_tx_queues) {
706 				tx->packets += tx_queue->complete_packets;
707 				tx->bytes += tx_queue->complete_bytes;
708 				tx->hw_gso_packets += tx_queue->tso_bursts;
709 				tx->hw_gso_wire_packets += tx_queue->tso_packets;
710 			} else {
711 				tx->packets += tx_queue->old_complete_packets;
712 				tx->bytes += tx_queue->old_complete_bytes;
713 				tx->hw_gso_packets += tx_queue->old_tso_bursts;
714 				tx->hw_gso_wire_packets += tx_queue->old_tso_packets;
715 			}
716 			/* Include XDP TX in device-wide stats */
717 			tx->packets += tx_queue->complete_xdp_packets;
718 			tx->bytes += tx_queue->complete_xdp_bytes;
719 		}
720 	}
721 }
722 
723 static const struct netdev_stat_ops efx_stat_ops = {
724 	.get_queue_stats_rx	= efx_get_queue_stats_rx,
725 	.get_queue_stats_tx	= efx_get_queue_stats_tx,
726 	.get_base_stats		= efx_get_base_stats,
727 };
728 
729 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
730 {
731 	struct bpf_prog *old_prog;
732 
733 	if (efx->xdp_rxq_info_failed) {
734 		netif_err(efx, drv, efx->net_dev,
735 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
736 		return -EINVAL;
737 	}
738 
739 	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
740 		netif_err(efx, drv, efx->net_dev,
741 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
742 			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
743 		return -EINVAL;
744 	}
745 
746 	old_prog = rtnl_dereference(efx->xdp_prog);
747 	rcu_assign_pointer(efx->xdp_prog, prog);
748 	/* Release the reference that was originally passed by the caller. */
749 	if (old_prog)
750 		bpf_prog_put(old_prog);
751 
752 	return 0;
753 }
754 
755 /* Context: process, rtnl_lock() held. */
756 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
757 {
758 	struct efx_nic *efx = efx_netdev_priv(dev);
759 
760 	switch (xdp->command) {
761 	case XDP_SETUP_PROG:
762 		return efx_xdp_setup_prog(efx, xdp->prog);
763 	default:
764 		return -EINVAL;
765 	}
766 }
767 
768 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
769 			u32 flags)
770 {
771 	struct efx_nic *efx = efx_netdev_priv(dev);
772 
773 	if (!netif_running(dev))
774 		return -EINVAL;
775 
776 	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
777 }
778 
779 static void efx_update_name(struct efx_nic *efx)
780 {
781 	strcpy(efx->name, efx->net_dev->name);
782 	efx_mtd_rename(efx);
783 	efx_set_channel_names(efx);
784 }
785 
786 static int efx_netdev_event(struct notifier_block *this,
787 			    unsigned long event, void *ptr)
788 {
789 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
790 
791 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
792 	    event == NETDEV_CHANGENAME)
793 		efx_update_name(efx_netdev_priv(net_dev));
794 
795 	return NOTIFY_DONE;
796 }
797 
798 static struct notifier_block efx_netdev_notifier = {
799 	.notifier_call = efx_netdev_event,
800 };
801 
802 static ssize_t phy_type_show(struct device *dev,
803 			     struct device_attribute *attr, char *buf)
804 {
805 	struct efx_nic *efx = dev_get_drvdata(dev);
806 	return sprintf(buf, "%d\n", efx->phy_type);
807 }
808 static DEVICE_ATTR_RO(phy_type);
809 
810 static int efx_register_netdev(struct efx_nic *efx)
811 {
812 	struct net_device *net_dev = efx->net_dev;
813 	struct efx_channel *channel;
814 	int rc;
815 
816 	net_dev->watchdog_timeo = 5 * HZ;
817 	net_dev->irq = efx->pci_dev->irq;
818 	net_dev->netdev_ops = &efx_netdev_ops;
819 	net_dev->stat_ops = &efx_stat_ops;
820 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
821 		net_dev->priv_flags |= IFF_UNICAST_FLT;
822 	net_dev->ethtool_ops = &efx_ethtool_ops;
823 	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
824 	net_dev->min_mtu = EFX_MIN_MTU;
825 	net_dev->max_mtu = EFX_MAX_MTU;
826 
827 	rtnl_lock();
828 
829 	/* Enable resets to be scheduled and check whether any were
830 	 * already requested.  If so, the NIC is probably hosed so we
831 	 * abort.
832 	 */
833 	if (efx->reset_pending) {
834 		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
835 		rc = -EIO;
836 		goto fail_locked;
837 	}
838 
839 	rc = dev_alloc_name(net_dev, net_dev->name);
840 	if (rc < 0)
841 		goto fail_locked;
842 	efx_update_name(efx);
843 
844 	/* Always start with carrier off; PHY events will detect the link */
845 	netif_carrier_off(net_dev);
846 
847 	rc = register_netdevice(net_dev);
848 	if (rc)
849 		goto fail_locked;
850 
851 	efx_for_each_channel(channel, efx) {
852 		struct efx_tx_queue *tx_queue;
853 		efx_for_each_channel_tx_queue(tx_queue, channel)
854 			efx_init_tx_queue_core_txq(tx_queue);
855 	}
856 
857 	efx_associate(efx);
858 
859 	efx->state = STATE_NET_DOWN;
860 
861 	rtnl_unlock();
862 
863 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
864 	if (rc) {
865 		netif_err(efx, drv, efx->net_dev,
866 			  "failed to init net dev attributes\n");
867 		goto fail_registered;
868 	}
869 
870 	efx_init_mcdi_logging(efx);
871 
872 	return 0;
873 
874 fail_registered:
875 	rtnl_lock();
876 	efx_dissociate(efx);
877 	unregister_netdevice(net_dev);
878 fail_locked:
879 	efx->state = STATE_UNINIT;
880 	rtnl_unlock();
881 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
882 	return rc;
883 }
884 
885 static void efx_unregister_netdev(struct efx_nic *efx)
886 {
887 	if (!efx->net_dev)
888 		return;
889 
890 	if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
891 		return;
892 
893 	if (efx_dev_registered(efx)) {
894 		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
895 		efx_fini_mcdi_logging(efx);
896 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
897 		unregister_netdev(efx->net_dev);
898 	}
899 }
900 
901 /**************************************************************************
902  *
903  * List of NICs we support
904  *
905  **************************************************************************/
906 
907 /* PCI device ID table */
908 static const struct pci_device_id efx_pci_table[] = {
909 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
910 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
911 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
912 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
913 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
914 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
915 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
916 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
917 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
918 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
919 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
920 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
921 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
922 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
923 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
924 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
925 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0c03),  /* X4 PF (FF/LL) */
926 	 .driver_data = (unsigned long)&efx_x4_nic_type},
927 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x2c03),  /* X4 PF (FF only) */
928 	 .driver_data = (unsigned long)&efx_x4_nic_type},
929 	{0}			/* end of list */
930 };
931 
932 /**************************************************************************
933  *
934  * Data housekeeping
935  *
936  **************************************************************************/
937 
938 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
939 {
940 	u64 n_rx_nodesc_trunc = 0;
941 	struct efx_channel *channel;
942 
943 	efx_for_each_channel(channel, efx)
944 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
945 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
946 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
947 }
948 
949 /**************************************************************************
950  *
951  * PCI interface
952  *
953  **************************************************************************/
954 
955 /* Main body of final NIC shutdown code
956  * This is called only at module unload (or hotplug removal).
957  */
958 static void efx_pci_remove_main(struct efx_nic *efx)
959 {
960 	/* Flush reset_work. It can no longer be scheduled since we
961 	 * are not READY.
962 	 */
963 	WARN_ON(efx_net_active(efx->state));
964 	efx_flush_reset_workqueue(efx);
965 
966 	efx_disable_interrupts(efx);
967 	efx_clear_interrupt_affinity(efx);
968 	efx_nic_fini_interrupt(efx);
969 	efx_fini_port(efx);
970 	efx->type->fini(efx);
971 	efx_fini_napi(efx);
972 	efx_remove_all(efx);
973 }
974 
975 /* Final NIC shutdown
976  * This is called only at module unload (or hotplug removal).  A PF can call
977  * this on its VFs to ensure they are unbound first.
978  */
979 static void efx_pci_remove(struct pci_dev *pci_dev)
980 {
981 	struct efx_probe_data *probe_data;
982 	struct efx_nic *efx;
983 
984 	efx = pci_get_drvdata(pci_dev);
985 	if (!efx)
986 		return;
987 
988 	/* Mark the NIC as fini, then stop the interface */
989 	rtnl_lock();
990 	efx_dissociate(efx);
991 	dev_close(efx->net_dev);
992 	efx_disable_interrupts(efx);
993 	efx->state = STATE_UNINIT;
994 	rtnl_unlock();
995 
996 	if (efx->type->sriov_fini)
997 		efx->type->sriov_fini(efx);
998 
999 	efx_fini_devlink_lock(efx);
1000 	efx_unregister_netdev(efx);
1001 
1002 	efx_mtd_remove(efx);
1003 
1004 	efx_pci_remove_main(efx);
1005 
1006 	efx_fini_io(efx);
1007 	pci_dbg(efx->pci_dev, "shutdown successful\n");
1008 
1009 	efx_fini_devlink_and_unlock(efx);
1010 	efx_fini_struct(efx);
1011 	free_netdev(efx->net_dev);
1012 	probe_data = container_of(efx, struct efx_probe_data, efx);
1013 	kfree(probe_data);
1014 };
1015 
1016 /* NIC VPD information
1017  * Called during probe to display the part number of the
1018  * installed NIC.
1019  */
1020 static void efx_probe_vpd_strings(struct efx_nic *efx)
1021 {
1022 	struct pci_dev *dev = efx->pci_dev;
1023 	unsigned int vpd_size, kw_len;
1024 	u8 *vpd_data;
1025 	int start;
1026 
1027 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
1028 	if (IS_ERR(vpd_data)) {
1029 		pci_warn(dev, "Unable to read VPD\n");
1030 		return;
1031 	}
1032 
1033 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1034 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
1035 	if (start < 0)
1036 		pci_err(dev, "Part number not found or incomplete\n");
1037 	else
1038 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
1039 
1040 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1041 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
1042 	if (start < 0)
1043 		pci_err(dev, "Serial number not found or incomplete\n");
1044 	else
1045 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
1046 
1047 	kfree(vpd_data);
1048 }
1049 
1050 
1051 /* Main body of NIC initialisation
1052  * This is called at module load (or hotplug insertion, theoretically).
1053  */
1054 static int efx_pci_probe_main(struct efx_nic *efx)
1055 {
1056 	int rc;
1057 
1058 	/* Do start-of-day initialisation */
1059 	rc = efx_probe_all(efx);
1060 	if (rc)
1061 		goto fail1;
1062 
1063 	efx_init_napi(efx);
1064 
1065 	down_write(&efx->filter_sem);
1066 	rc = efx->type->init(efx);
1067 	up_write(&efx->filter_sem);
1068 	if (rc) {
1069 		pci_err(efx->pci_dev, "failed to initialise NIC\n");
1070 		goto fail3;
1071 	}
1072 
1073 	rc = efx_init_port(efx);
1074 	if (rc) {
1075 		netif_err(efx, probe, efx->net_dev,
1076 			  "failed to initialise port\n");
1077 		goto fail4;
1078 	}
1079 
1080 	rc = efx_nic_init_interrupt(efx);
1081 	if (rc)
1082 		goto fail5;
1083 
1084 	efx_set_interrupt_affinity(efx);
1085 	rc = efx_enable_interrupts(efx);
1086 	if (rc)
1087 		goto fail6;
1088 
1089 	return 0;
1090 
1091  fail6:
1092 	efx_clear_interrupt_affinity(efx);
1093 	efx_nic_fini_interrupt(efx);
1094  fail5:
1095 	efx_fini_port(efx);
1096  fail4:
1097 	efx->type->fini(efx);
1098  fail3:
1099 	efx_fini_napi(efx);
1100 	efx_remove_all(efx);
1101  fail1:
1102 	return rc;
1103 }
1104 
1105 static int efx_pci_probe_post_io(struct efx_nic *efx)
1106 {
1107 	struct net_device *net_dev = efx->net_dev;
1108 	int rc = efx_pci_probe_main(efx);
1109 
1110 	if (rc)
1111 		return rc;
1112 
1113 	if (efx->type->sriov_init) {
1114 		rc = efx->type->sriov_init(efx);
1115 		if (rc)
1116 			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1117 				rc);
1118 	}
1119 
1120 	/* Determine netdevice features */
1121 	net_dev->features |= efx->type->offload_features;
1122 
1123 	/* Add TSO features */
1124 	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1125 		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1126 
1127 	/* Mask for features that also apply to VLAN devices */
1128 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1129 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1130 				   NETIF_F_RXCSUM);
1131 
1132 	/* Determine user configurable features */
1133 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1134 
1135 	/* Disable receiving frames with bad FCS, by default. */
1136 	net_dev->features &= ~NETIF_F_RXALL;
1137 
1138 	/* Disable VLAN filtering by default.  It may be enforced if
1139 	 * the feature is fixed (i.e. VLAN filters are required to
1140 	 * receive VLAN tagged packets due to vPort restrictions).
1141 	 */
1142 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1143 	net_dev->features |= efx->fixed_features;
1144 
1145 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1146 				NETDEV_XDP_ACT_REDIRECT |
1147 				NETDEV_XDP_ACT_NDO_XMIT;
1148 
1149 	/* devlink creation, registration and lock */
1150 	rc = efx_probe_devlink_and_lock(efx);
1151 	if (rc)
1152 		pci_err(efx->pci_dev, "devlink registration failed");
1153 
1154 	rc = efx_register_netdev(efx);
1155 	efx_probe_devlink_unlock(efx);
1156 	if (!rc)
1157 		return 0;
1158 
1159 	efx_pci_remove_main(efx);
1160 	return rc;
1161 }
1162 
1163 /* NIC initialisation
1164  *
1165  * This is called at module load (or hotplug insertion,
1166  * theoretically).  It sets up PCI mappings, resets the NIC,
1167  * sets up and registers the network devices with the kernel and hooks
1168  * the interrupt service routine.  It does not prepare the device for
1169  * transmission; this is left to the first time one of the network
1170  * interfaces is brought up (i.e. efx_net_open).
1171  */
1172 static int efx_pci_probe(struct pci_dev *pci_dev,
1173 			 const struct pci_device_id *entry)
1174 {
1175 	struct efx_probe_data *probe_data, **probe_ptr;
1176 	struct net_device *net_dev;
1177 	struct efx_nic *efx;
1178 	int rc;
1179 
1180 	/* Allocate probe data and struct efx_nic */
1181 	probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1182 	if (!probe_data)
1183 		return -ENOMEM;
1184 	probe_data->pci_dev = pci_dev;
1185 	efx = &probe_data->efx;
1186 
1187 	/* Allocate and initialise a struct net_device */
1188 	net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1189 	if (!net_dev) {
1190 		rc = -ENOMEM;
1191 		goto fail0;
1192 	}
1193 	probe_ptr = netdev_priv(net_dev);
1194 	*probe_ptr = probe_data;
1195 	efx->net_dev = net_dev;
1196 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1197 	efx->fixed_features |= NETIF_F_HIGHDMA;
1198 
1199 	pci_set_drvdata(pci_dev, efx);
1200 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1201 	rc = efx_init_struct(efx, pci_dev);
1202 	if (rc)
1203 		goto fail1;
1204 	efx->mdio.dev = net_dev;
1205 
1206 	pci_info(pci_dev, "Solarflare NIC detected\n");
1207 
1208 	if (!efx->type->is_vf)
1209 		efx_probe_vpd_strings(efx);
1210 
1211 	/* Set up basic I/O (BAR mappings etc) */
1212 	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1213 			 efx->type->mem_map_size(efx));
1214 	if (rc)
1215 		goto fail2;
1216 
1217 	rc = efx_pci_probe_post_io(efx);
1218 	if (rc) {
1219 		/* On failure, retry once immediately.
1220 		 * If we aborted probe due to a scheduled reset, dismiss it.
1221 		 */
1222 		efx->reset_pending = 0;
1223 		rc = efx_pci_probe_post_io(efx);
1224 		if (rc) {
1225 			/* On another failure, retry once more
1226 			 * after a 50-305ms delay.
1227 			 */
1228 			unsigned char r;
1229 
1230 			get_random_bytes(&r, 1);
1231 			msleep((unsigned int)r + 50);
1232 			efx->reset_pending = 0;
1233 			rc = efx_pci_probe_post_io(efx);
1234 		}
1235 	}
1236 	if (rc)
1237 		goto fail3;
1238 
1239 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1240 
1241 	/* Try to create MTDs, but allow this to fail */
1242 	rtnl_lock();
1243 	rc = efx_mtd_probe(efx);
1244 	rtnl_unlock();
1245 	if (rc && rc != -EPERM)
1246 		netif_warn(efx, probe, efx->net_dev,
1247 			   "failed to create MTDs (%d)\n", rc);
1248 
1249 	if (efx->type->udp_tnl_push_ports)
1250 		efx->type->udp_tnl_push_ports(efx);
1251 
1252 	return 0;
1253 
1254  fail3:
1255 	efx_fini_io(efx);
1256  fail2:
1257 	efx_fini_struct(efx);
1258  fail1:
1259 	WARN_ON(rc > 0);
1260 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1261 	free_netdev(net_dev);
1262  fail0:
1263 	kfree(probe_data);
1264 	return rc;
1265 }
1266 
1267 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1268  * enabled on success
1269  */
1270 #ifdef CONFIG_SFC_SRIOV
1271 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1272 {
1273 	int rc;
1274 	struct efx_nic *efx = pci_get_drvdata(dev);
1275 
1276 	if (efx->type->sriov_configure) {
1277 		rc = efx->type->sriov_configure(efx, num_vfs);
1278 		if (rc)
1279 			return rc;
1280 		else
1281 			return num_vfs;
1282 	} else
1283 		return -EOPNOTSUPP;
1284 }
1285 #endif
1286 
1287 static int efx_pm_freeze(struct device *dev)
1288 {
1289 	struct efx_nic *efx = dev_get_drvdata(dev);
1290 
1291 	rtnl_lock();
1292 
1293 	if (efx_net_active(efx->state)) {
1294 		efx_device_detach_sync(efx);
1295 
1296 		efx_stop_all(efx);
1297 		efx_disable_interrupts(efx);
1298 
1299 		efx->state = efx_freeze(efx->state);
1300 	}
1301 
1302 	rtnl_unlock();
1303 
1304 	return 0;
1305 }
1306 
1307 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1308 {
1309 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1310 
1311 	if (!efx)
1312 		return;
1313 
1314 	efx_pm_freeze(&pci_dev->dev);
1315 	pci_disable_device(pci_dev);
1316 }
1317 
1318 static int efx_pm_thaw(struct device *dev)
1319 {
1320 	int rc;
1321 	struct efx_nic *efx = dev_get_drvdata(dev);
1322 
1323 	rtnl_lock();
1324 
1325 	if (efx_frozen(efx->state)) {
1326 		rc = efx_enable_interrupts(efx);
1327 		if (rc)
1328 			goto fail;
1329 
1330 		mutex_lock(&efx->mac_lock);
1331 		efx_mcdi_port_reconfigure(efx);
1332 		mutex_unlock(&efx->mac_lock);
1333 
1334 		efx_start_all(efx);
1335 
1336 		efx_device_attach_if_not_resetting(efx);
1337 
1338 		efx->state = efx_thaw(efx->state);
1339 
1340 		efx->type->resume_wol(efx);
1341 	}
1342 
1343 	rtnl_unlock();
1344 
1345 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1346 	efx_queue_reset_work(efx);
1347 
1348 	return 0;
1349 
1350 fail:
1351 	rtnl_unlock();
1352 
1353 	return rc;
1354 }
1355 
1356 static int efx_pm_poweroff(struct device *dev)
1357 {
1358 	struct pci_dev *pci_dev = to_pci_dev(dev);
1359 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1360 
1361 	efx->type->fini(efx);
1362 
1363 	efx->reset_pending = 0;
1364 
1365 	pci_save_state(pci_dev);
1366 	return pci_set_power_state(pci_dev, PCI_D3hot);
1367 }
1368 
1369 /* Used for both resume and restore */
1370 static int efx_pm_resume(struct device *dev)
1371 {
1372 	struct pci_dev *pci_dev = to_pci_dev(dev);
1373 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1374 	int rc;
1375 
1376 	rc = pci_set_power_state(pci_dev, PCI_D0);
1377 	if (rc)
1378 		return rc;
1379 	pci_restore_state(pci_dev);
1380 	rc = pci_enable_device(pci_dev);
1381 	if (rc)
1382 		return rc;
1383 	pci_set_master(efx->pci_dev);
1384 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1385 	if (rc)
1386 		return rc;
1387 	down_write(&efx->filter_sem);
1388 	rc = efx->type->init(efx);
1389 	up_write(&efx->filter_sem);
1390 	if (rc)
1391 		return rc;
1392 	rc = efx_pm_thaw(dev);
1393 	return rc;
1394 }
1395 
1396 static int efx_pm_suspend(struct device *dev)
1397 {
1398 	int rc;
1399 
1400 	efx_pm_freeze(dev);
1401 	rc = efx_pm_poweroff(dev);
1402 	if (rc)
1403 		efx_pm_resume(dev);
1404 	return rc;
1405 }
1406 
1407 static const struct dev_pm_ops efx_pm_ops = {
1408 	.suspend	= efx_pm_suspend,
1409 	.resume		= efx_pm_resume,
1410 	.freeze		= efx_pm_freeze,
1411 	.thaw		= efx_pm_thaw,
1412 	.poweroff	= efx_pm_poweroff,
1413 	.restore	= efx_pm_resume,
1414 };
1415 
1416 static struct pci_driver efx_pci_driver = {
1417 	.name		= KBUILD_MODNAME,
1418 	.id_table	= efx_pci_table,
1419 	.probe		= efx_pci_probe,
1420 	.remove		= efx_pci_remove,
1421 	.driver.pm	= &efx_pm_ops,
1422 	.shutdown	= efx_pci_shutdown,
1423 	.err_handler	= &efx_err_handlers,
1424 #ifdef CONFIG_SFC_SRIOV
1425 	.sriov_configure = efx_pci_sriov_configure,
1426 #endif
1427 };
1428 
1429 /**************************************************************************
1430  *
1431  * Kernel module interface
1432  *
1433  *************************************************************************/
1434 
1435 static int __init efx_init_module(void)
1436 {
1437 	int rc;
1438 
1439 	printk(KERN_INFO "Solarflare NET driver\n");
1440 
1441 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1442 	if (rc)
1443 		goto err_notifier;
1444 
1445 	rc = efx_create_reset_workqueue();
1446 	if (rc)
1447 		goto err_reset;
1448 
1449 	rc = pci_register_driver(&efx_pci_driver);
1450 	if (rc < 0)
1451 		goto err_pci;
1452 
1453 	rc = pci_register_driver(&ef100_pci_driver);
1454 	if (rc < 0)
1455 		goto err_pci_ef100;
1456 
1457 	return 0;
1458 
1459  err_pci_ef100:
1460 	pci_unregister_driver(&efx_pci_driver);
1461  err_pci:
1462 	efx_destroy_reset_workqueue();
1463  err_reset:
1464 	unregister_netdevice_notifier(&efx_netdev_notifier);
1465  err_notifier:
1466 	return rc;
1467 }
1468 
1469 static void __exit efx_exit_module(void)
1470 {
1471 	printk(KERN_INFO "Solarflare NET driver unloading\n");
1472 
1473 	pci_unregister_driver(&ef100_pci_driver);
1474 	pci_unregister_driver(&efx_pci_driver);
1475 	efx_destroy_reset_workqueue();
1476 	unregister_netdevice_notifier(&efx_netdev_notifier);
1477 
1478 }
1479 
1480 module_init(efx_init_module);
1481 module_exit(efx_exit_module);
1482 
1483 MODULE_AUTHOR("Solarflare Communications and "
1484 	      "Michael Brown <mbrown@fensystems.co.uk>");
1485 MODULE_DESCRIPTION("Solarflare network driver");
1486 MODULE_LICENSE("GPL");
1487 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1488