1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35 #include "efx_devlink.h"
36
37 #include "mcdi_port_common.h"
38 #include "mcdi_pcol.h"
39 #include "workarounds.h"
40
41 /**************************************************************************
42 *
43 * Configurable values
44 *
45 *************************************************************************/
46
47 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
48 MODULE_PARM_DESC(interrupt_mode,
49 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
50
51 module_param(rss_cpus, uint, 0444);
52 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
53
54 /*
55 * Use separate channels for TX and RX events
56 *
57 * Set this to 1 to use separate channels for TX and RX. It allows us
58 * to control interrupt affinity separately for TX and RX.
59 *
60 * This is only used in MSI-X interrupt mode
61 */
62 bool efx_separate_tx_channels;
63 module_param(efx_separate_tx_channels, bool, 0444);
64 MODULE_PARM_DESC(efx_separate_tx_channels,
65 "Use separate channels for TX and RX");
66
67 /* Initial interrupt moderation settings. They can be modified after
68 * module load with ethtool.
69 *
70 * The default for RX should strike a balance between increasing the
71 * round-trip latency and reducing overhead.
72 */
73 static unsigned int rx_irq_mod_usec = 60;
74
75 /* Initial interrupt moderation settings. They can be modified after
76 * module load with ethtool.
77 *
78 * This default is chosen to ensure that a 10G link does not go idle
79 * while a TX queue is stopped after it has become full. A queue is
80 * restarted when it drops below half full. The time this takes (assuming
81 * worst case 3 descriptors per packet and 1024 descriptors) is
82 * 512 / 3 * 1.2 = 205 usec.
83 */
84 static unsigned int tx_irq_mod_usec = 150;
85
86 static bool phy_flash_cfg;
87 module_param(phy_flash_cfg, bool, 0644);
88 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
89
90 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
91 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
92 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
93 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
94 module_param(debug, uint, 0);
95 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
96
97 /**************************************************************************
98 *
99 * Utility functions and prototypes
100 *
101 *************************************************************************/
102
103 static void efx_remove_port(struct efx_nic *efx);
104 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
105 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
106 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
107 u32 flags);
108
109 /**************************************************************************
110 *
111 * Port handling
112 *
113 **************************************************************************/
114
115 static void efx_fini_port(struct efx_nic *efx);
116
efx_probe_port(struct efx_nic * efx)117 static int efx_probe_port(struct efx_nic *efx)
118 {
119 int rc;
120
121 netif_dbg(efx, probe, efx->net_dev, "create port\n");
122
123 if (phy_flash_cfg)
124 efx->phy_mode = PHY_MODE_SPECIAL;
125
126 /* Connect up MAC/PHY operations table */
127 rc = efx->type->probe_port(efx);
128 if (rc)
129 return rc;
130
131 /* Initialise MAC address to permanent address */
132 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
133
134 return 0;
135 }
136
efx_init_port(struct efx_nic * efx)137 static int efx_init_port(struct efx_nic *efx)
138 {
139 int rc;
140
141 netif_dbg(efx, drv, efx->net_dev, "init port\n");
142
143 mutex_lock(&efx->mac_lock);
144
145 efx->port_initialized = true;
146
147 /* Ensure the PHY advertises the correct flow control settings */
148 rc = efx_mcdi_port_reconfigure(efx);
149 if (rc && rc != -EPERM)
150 goto fail;
151
152 mutex_unlock(&efx->mac_lock);
153 return 0;
154
155 fail:
156 mutex_unlock(&efx->mac_lock);
157 return rc;
158 }
159
efx_fini_port(struct efx_nic * efx)160 static void efx_fini_port(struct efx_nic *efx)
161 {
162 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
163
164 if (!efx->port_initialized)
165 return;
166
167 efx->port_initialized = false;
168
169 efx->link_state.up = false;
170 efx_link_status_changed(efx);
171 }
172
efx_remove_port(struct efx_nic * efx)173 static void efx_remove_port(struct efx_nic *efx)
174 {
175 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
176
177 efx->type->remove_port(efx);
178 }
179
180 /**************************************************************************
181 *
182 * NIC handling
183 *
184 **************************************************************************/
185
186 static LIST_HEAD(efx_primary_list);
187 static LIST_HEAD(efx_unassociated_list);
188
efx_same_controller(struct efx_nic * left,struct efx_nic * right)189 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
190 {
191 return left->type == right->type &&
192 left->vpd_sn && right->vpd_sn &&
193 !strcmp(left->vpd_sn, right->vpd_sn);
194 }
195
efx_associate(struct efx_nic * efx)196 static void efx_associate(struct efx_nic *efx)
197 {
198 struct efx_nic *other, *next;
199
200 if (efx->primary == efx) {
201 /* Adding primary function; look for secondaries */
202
203 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
204 list_add_tail(&efx->node, &efx_primary_list);
205
206 list_for_each_entry_safe(other, next, &efx_unassociated_list,
207 node) {
208 if (efx_same_controller(efx, other)) {
209 list_del(&other->node);
210 netif_dbg(other, probe, other->net_dev,
211 "moving to secondary list of %s %s\n",
212 pci_name(efx->pci_dev),
213 efx->net_dev->name);
214 list_add_tail(&other->node,
215 &efx->secondary_list);
216 other->primary = efx;
217 }
218 }
219 } else {
220 /* Adding secondary function; look for primary */
221
222 list_for_each_entry(other, &efx_primary_list, node) {
223 if (efx_same_controller(efx, other)) {
224 netif_dbg(efx, probe, efx->net_dev,
225 "adding to secondary list of %s %s\n",
226 pci_name(other->pci_dev),
227 other->net_dev->name);
228 list_add_tail(&efx->node,
229 &other->secondary_list);
230 efx->primary = other;
231 return;
232 }
233 }
234
235 netif_dbg(efx, probe, efx->net_dev,
236 "adding to unassociated list\n");
237 list_add_tail(&efx->node, &efx_unassociated_list);
238 }
239 }
240
efx_dissociate(struct efx_nic * efx)241 static void efx_dissociate(struct efx_nic *efx)
242 {
243 struct efx_nic *other, *next;
244
245 list_del(&efx->node);
246 efx->primary = NULL;
247
248 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
249 list_del(&other->node);
250 netif_dbg(other, probe, other->net_dev,
251 "moving to unassociated list\n");
252 list_add_tail(&other->node, &efx_unassociated_list);
253 other->primary = NULL;
254 }
255 }
256
efx_probe_nic(struct efx_nic * efx)257 static int efx_probe_nic(struct efx_nic *efx)
258 {
259 int rc;
260
261 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
262
263 /* Carry out hardware-type specific initialisation */
264 rc = efx->type->probe(efx);
265 if (rc)
266 return rc;
267
268 do {
269 if (!efx->max_channels || !efx->max_tx_channels) {
270 netif_err(efx, drv, efx->net_dev,
271 "Insufficient resources to allocate"
272 " any channels\n");
273 rc = -ENOSPC;
274 goto fail1;
275 }
276
277 /* Determine the number of channels and queues by trying
278 * to hook in MSI-X interrupts.
279 */
280 rc = efx_probe_interrupts(efx);
281 if (rc)
282 goto fail1;
283
284 rc = efx_set_channels(efx);
285 if (rc)
286 goto fail1;
287
288 /* dimension_resources can fail with EAGAIN */
289 rc = efx->type->dimension_resources(efx);
290 if (rc != 0 && rc != -EAGAIN)
291 goto fail2;
292
293 if (rc == -EAGAIN)
294 /* try again with new max_channels */
295 efx_remove_interrupts(efx);
296
297 } while (rc == -EAGAIN);
298
299 if (efx->n_channels > 1)
300 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
301 sizeof(efx->rss_context.rx_hash_key));
302 efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table);
303
304 /* Initialise the interrupt moderation settings */
305 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
306 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
307 true);
308
309 return 0;
310
311 fail2:
312 efx_remove_interrupts(efx);
313 fail1:
314 efx->type->remove(efx);
315 return rc;
316 }
317
efx_remove_nic(struct efx_nic * efx)318 static void efx_remove_nic(struct efx_nic *efx)
319 {
320 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
321
322 efx_remove_interrupts(efx);
323 efx->type->remove(efx);
324 }
325
326 /**************************************************************************
327 *
328 * NIC startup/shutdown
329 *
330 *************************************************************************/
331
efx_probe_all(struct efx_nic * efx)332 static int efx_probe_all(struct efx_nic *efx)
333 {
334 int rc;
335
336 rc = efx_probe_nic(efx);
337 if (rc) {
338 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
339 goto fail1;
340 }
341
342 rc = efx_probe_port(efx);
343 if (rc) {
344 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
345 goto fail2;
346 }
347
348 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
349 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
350 rc = -EINVAL;
351 goto fail3;
352 }
353
354 #ifdef CONFIG_SFC_SRIOV
355 rc = efx->type->vswitching_probe(efx);
356 if (rc) /* not fatal; the PF will still work fine */
357 netif_warn(efx, probe, efx->net_dev,
358 "failed to setup vswitching rc=%d;"
359 " VFs may not function\n", rc);
360 #endif
361
362 rc = efx_probe_filters(efx);
363 if (rc) {
364 netif_err(efx, probe, efx->net_dev,
365 "failed to create filter tables\n");
366 goto fail4;
367 }
368
369 rc = efx_probe_channels(efx);
370 if (rc)
371 goto fail5;
372
373 efx->state = STATE_NET_DOWN;
374
375 return 0;
376
377 fail5:
378 efx_remove_filters(efx);
379 fail4:
380 #ifdef CONFIG_SFC_SRIOV
381 efx->type->vswitching_remove(efx);
382 #endif
383 fail3:
384 efx_remove_port(efx);
385 fail2:
386 efx_remove_nic(efx);
387 fail1:
388 return rc;
389 }
390
efx_remove_all(struct efx_nic * efx)391 static void efx_remove_all(struct efx_nic *efx)
392 {
393 rtnl_lock();
394 efx_xdp_setup_prog(efx, NULL);
395 rtnl_unlock();
396
397 efx_remove_channels(efx);
398 efx_remove_filters(efx);
399 #ifdef CONFIG_SFC_SRIOV
400 efx->type->vswitching_remove(efx);
401 #endif
402 efx_remove_port(efx);
403 efx_remove_nic(efx);
404 }
405
406 /**************************************************************************
407 *
408 * Interrupt moderation
409 *
410 **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)411 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
412 {
413 if (usecs == 0)
414 return 0;
415 if (usecs * 1000 < efx->timer_quantum_ns)
416 return 1; /* never round down to 0 */
417 return usecs * 1000 / efx->timer_quantum_ns;
418 }
419
efx_ticks_to_usecs(struct efx_nic * efx,unsigned int ticks)420 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
421 {
422 /* We must round up when converting ticks to microseconds
423 * because we round down when converting the other way.
424 */
425 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
426 }
427
428 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)429 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
430 unsigned int rx_usecs, bool rx_adaptive,
431 bool rx_may_override_tx)
432 {
433 struct efx_channel *channel;
434 unsigned int timer_max_us;
435
436 EFX_ASSERT_RESET_SERIALISED(efx);
437
438 timer_max_us = efx->timer_max_ns / 1000;
439
440 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
441 return -EINVAL;
442
443 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
444 !rx_may_override_tx) {
445 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
446 "RX and TX IRQ moderation must be equal\n");
447 return -EINVAL;
448 }
449
450 efx->irq_rx_adaptive = rx_adaptive;
451 efx->irq_rx_moderation_us = rx_usecs;
452 efx_for_each_channel(channel, efx) {
453 if (efx_channel_has_rx_queue(channel))
454 channel->irq_moderation_us = rx_usecs;
455 else if (efx_channel_has_tx_queues(channel))
456 channel->irq_moderation_us = tx_usecs;
457 else if (efx_channel_is_xdp_tx(channel))
458 channel->irq_moderation_us = tx_usecs;
459 }
460
461 return 0;
462 }
463
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)464 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
465 unsigned int *rx_usecs, bool *rx_adaptive)
466 {
467 *rx_adaptive = efx->irq_rx_adaptive;
468 *rx_usecs = efx->irq_rx_moderation_us;
469
470 /* If channels are shared between RX and TX, so is IRQ
471 * moderation. Otherwise, IRQ moderation is the same for all
472 * TX channels and is not adaptive.
473 */
474 if (efx->tx_channel_offset == 0) {
475 *tx_usecs = *rx_usecs;
476 } else {
477 struct efx_channel *tx_channel;
478
479 tx_channel = efx->channel[efx->tx_channel_offset];
480 *tx_usecs = tx_channel->irq_moderation_us;
481 }
482 }
483
484 /**************************************************************************
485 *
486 * ioctls
487 *
488 *************************************************************************/
489
490 /* Net device ioctl
491 * Context: process, rtnl_lock() held.
492 */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)493 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
494 {
495 struct efx_nic *efx = efx_netdev_priv(net_dev);
496 struct mii_ioctl_data *data = if_mii(ifr);
497
498 /* Convert phy_id from older PRTAD/DEVAD format */
499 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
500 (data->phy_id & 0xfc00) == 0x0400)
501 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
502
503 return mdio_mii_ioctl(&efx->mdio, data, cmd);
504 }
505
506 /**************************************************************************
507 *
508 * Kernel net device interface
509 *
510 *************************************************************************/
511
512 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)513 int efx_net_open(struct net_device *net_dev)
514 {
515 struct efx_nic *efx = efx_netdev_priv(net_dev);
516 int rc;
517
518 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
519 raw_smp_processor_id());
520
521 rc = efx_check_disabled(efx);
522 if (rc)
523 return rc;
524 if (efx->phy_mode & PHY_MODE_SPECIAL)
525 return -EBUSY;
526 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
527 return -EIO;
528
529 /* Notify the kernel of the link state polled during driver load,
530 * before the monitor starts running */
531 efx_link_status_changed(efx);
532
533 efx_start_all(efx);
534 if (efx->state == STATE_DISABLED || efx->reset_pending)
535 netif_device_detach(efx->net_dev);
536 else
537 efx->state = STATE_NET_UP;
538
539 return 0;
540 }
541
542 /* Context: process, rtnl_lock() held.
543 * Note that the kernel will ignore our return code; this method
544 * should really be a void.
545 */
efx_net_stop(struct net_device * net_dev)546 int efx_net_stop(struct net_device *net_dev)
547 {
548 struct efx_nic *efx = efx_netdev_priv(net_dev);
549
550 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
551 raw_smp_processor_id());
552
553 /* Stop the device and flush all the channels */
554 efx_stop_all(efx);
555
556 return 0;
557 }
558
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)559 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
560 {
561 struct efx_nic *efx = efx_netdev_priv(net_dev);
562
563 if (efx->type->vlan_rx_add_vid)
564 return efx->type->vlan_rx_add_vid(efx, proto, vid);
565 else
566 return -EOPNOTSUPP;
567 }
568
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)569 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
570 {
571 struct efx_nic *efx = efx_netdev_priv(net_dev);
572
573 if (efx->type->vlan_rx_kill_vid)
574 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
575 else
576 return -EOPNOTSUPP;
577 }
578
efx_hwtstamp_set(struct net_device * net_dev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)579 static int efx_hwtstamp_set(struct net_device *net_dev,
580 struct kernel_hwtstamp_config *config,
581 struct netlink_ext_ack *extack)
582 {
583 struct efx_nic *efx = efx_netdev_priv(net_dev);
584
585 return efx_ptp_set_ts_config(efx, config, extack);
586 }
587
efx_hwtstamp_get(struct net_device * net_dev,struct kernel_hwtstamp_config * config)588 static int efx_hwtstamp_get(struct net_device *net_dev,
589 struct kernel_hwtstamp_config *config)
590 {
591 struct efx_nic *efx = efx_netdev_priv(net_dev);
592
593 return efx_ptp_get_ts_config(efx, config);
594 }
595
596 static const struct net_device_ops efx_netdev_ops = {
597 .ndo_open = efx_net_open,
598 .ndo_stop = efx_net_stop,
599 .ndo_get_stats64 = efx_net_stats,
600 .ndo_tx_timeout = efx_watchdog,
601 .ndo_start_xmit = efx_hard_start_xmit,
602 .ndo_validate_addr = eth_validate_addr,
603 .ndo_eth_ioctl = efx_ioctl,
604 .ndo_change_mtu = efx_change_mtu,
605 .ndo_set_mac_address = efx_set_mac_address,
606 .ndo_set_rx_mode = efx_set_rx_mode,
607 .ndo_set_features = efx_set_features,
608 .ndo_features_check = efx_features_check,
609 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
610 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
611 .ndo_hwtstamp_set = efx_hwtstamp_set,
612 .ndo_hwtstamp_get = efx_hwtstamp_get,
613 #ifdef CONFIG_SFC_SRIOV
614 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
615 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
616 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
617 .ndo_get_vf_config = efx_sriov_get_vf_config,
618 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
619 #endif
620 .ndo_get_phys_port_id = efx_get_phys_port_id,
621 .ndo_get_phys_port_name = efx_get_phys_port_name,
622 #ifdef CONFIG_RFS_ACCEL
623 .ndo_rx_flow_steer = efx_filter_rfs,
624 #endif
625 .ndo_xdp_xmit = efx_xdp_xmit,
626 .ndo_bpf = efx_xdp
627 };
628
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)629 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
630 {
631 struct bpf_prog *old_prog;
632
633 if (efx->xdp_rxq_info_failed) {
634 netif_err(efx, drv, efx->net_dev,
635 "Unable to bind XDP program due to previous failure of rxq_info\n");
636 return -EINVAL;
637 }
638
639 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
640 netif_err(efx, drv, efx->net_dev,
641 "Unable to configure XDP with MTU of %d (max: %d)\n",
642 efx->net_dev->mtu, efx_xdp_max_mtu(efx));
643 return -EINVAL;
644 }
645
646 old_prog = rtnl_dereference(efx->xdp_prog);
647 rcu_assign_pointer(efx->xdp_prog, prog);
648 /* Release the reference that was originally passed by the caller. */
649 if (old_prog)
650 bpf_prog_put(old_prog);
651
652 return 0;
653 }
654
655 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)656 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
657 {
658 struct efx_nic *efx = efx_netdev_priv(dev);
659
660 switch (xdp->command) {
661 case XDP_SETUP_PROG:
662 return efx_xdp_setup_prog(efx, xdp->prog);
663 default:
664 return -EINVAL;
665 }
666 }
667
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)668 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
669 u32 flags)
670 {
671 struct efx_nic *efx = efx_netdev_priv(dev);
672
673 if (!netif_running(dev))
674 return -EINVAL;
675
676 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
677 }
678
efx_update_name(struct efx_nic * efx)679 static void efx_update_name(struct efx_nic *efx)
680 {
681 strcpy(efx->name, efx->net_dev->name);
682 efx_mtd_rename(efx);
683 efx_set_channel_names(efx);
684 }
685
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)686 static int efx_netdev_event(struct notifier_block *this,
687 unsigned long event, void *ptr)
688 {
689 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
690
691 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
692 event == NETDEV_CHANGENAME)
693 efx_update_name(efx_netdev_priv(net_dev));
694
695 return NOTIFY_DONE;
696 }
697
698 static struct notifier_block efx_netdev_notifier = {
699 .notifier_call = efx_netdev_event,
700 };
701
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)702 static ssize_t phy_type_show(struct device *dev,
703 struct device_attribute *attr, char *buf)
704 {
705 struct efx_nic *efx = dev_get_drvdata(dev);
706 return sprintf(buf, "%d\n", efx->phy_type);
707 }
708 static DEVICE_ATTR_RO(phy_type);
709
efx_register_netdev(struct efx_nic * efx)710 static int efx_register_netdev(struct efx_nic *efx)
711 {
712 struct net_device *net_dev = efx->net_dev;
713 struct efx_channel *channel;
714 int rc;
715
716 net_dev->watchdog_timeo = 5 * HZ;
717 net_dev->irq = efx->pci_dev->irq;
718 net_dev->netdev_ops = &efx_netdev_ops;
719 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
720 net_dev->priv_flags |= IFF_UNICAST_FLT;
721 net_dev->ethtool_ops = &efx_ethtool_ops;
722 netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
723 net_dev->min_mtu = EFX_MIN_MTU;
724 net_dev->max_mtu = EFX_MAX_MTU;
725
726 rtnl_lock();
727
728 /* Enable resets to be scheduled and check whether any were
729 * already requested. If so, the NIC is probably hosed so we
730 * abort.
731 */
732 if (efx->reset_pending) {
733 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
734 rc = -EIO;
735 goto fail_locked;
736 }
737
738 rc = dev_alloc_name(net_dev, net_dev->name);
739 if (rc < 0)
740 goto fail_locked;
741 efx_update_name(efx);
742
743 /* Always start with carrier off; PHY events will detect the link */
744 netif_carrier_off(net_dev);
745
746 rc = register_netdevice(net_dev);
747 if (rc)
748 goto fail_locked;
749
750 efx_for_each_channel(channel, efx) {
751 struct efx_tx_queue *tx_queue;
752 efx_for_each_channel_tx_queue(tx_queue, channel)
753 efx_init_tx_queue_core_txq(tx_queue);
754 }
755
756 efx_associate(efx);
757
758 efx->state = STATE_NET_DOWN;
759
760 rtnl_unlock();
761
762 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
763 if (rc) {
764 netif_err(efx, drv, efx->net_dev,
765 "failed to init net dev attributes\n");
766 goto fail_registered;
767 }
768
769 efx_init_mcdi_logging(efx);
770
771 return 0;
772
773 fail_registered:
774 rtnl_lock();
775 efx_dissociate(efx);
776 unregister_netdevice(net_dev);
777 fail_locked:
778 efx->state = STATE_UNINIT;
779 rtnl_unlock();
780 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
781 return rc;
782 }
783
efx_unregister_netdev(struct efx_nic * efx)784 static void efx_unregister_netdev(struct efx_nic *efx)
785 {
786 if (!efx->net_dev)
787 return;
788
789 if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
790 return;
791
792 if (efx_dev_registered(efx)) {
793 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
794 efx_fini_mcdi_logging(efx);
795 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
796 unregister_netdev(efx->net_dev);
797 }
798 }
799
800 /**************************************************************************
801 *
802 * List of NICs we support
803 *
804 **************************************************************************/
805
806 /* PCI device ID table */
807 static const struct pci_device_id efx_pci_table[] = {
808 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
809 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
810 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
811 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
812 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
813 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
814 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
815 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
816 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
817 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
818 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
819 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
820 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
821 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
822 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
823 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
824 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0c03), /* X4 PF (FF/LL) */
825 .driver_data = (unsigned long)&efx_x4_nic_type},
826 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x2c03), /* X4 PF (FF only) */
827 .driver_data = (unsigned long)&efx_x4_nic_type},
828 {0} /* end of list */
829 };
830
831 /**************************************************************************
832 *
833 * Data housekeeping
834 *
835 **************************************************************************/
836
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)837 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
838 {
839 u64 n_rx_nodesc_trunc = 0;
840 struct efx_channel *channel;
841
842 efx_for_each_channel(channel, efx)
843 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
844 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
845 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
846 }
847
848 /**************************************************************************
849 *
850 * PCI interface
851 *
852 **************************************************************************/
853
854 /* Main body of final NIC shutdown code
855 * This is called only at module unload (or hotplug removal).
856 */
efx_pci_remove_main(struct efx_nic * efx)857 static void efx_pci_remove_main(struct efx_nic *efx)
858 {
859 /* Flush reset_work. It can no longer be scheduled since we
860 * are not READY.
861 */
862 WARN_ON(efx_net_active(efx->state));
863 efx_flush_reset_workqueue(efx);
864
865 efx_disable_interrupts(efx);
866 efx_clear_interrupt_affinity(efx);
867 efx_nic_fini_interrupt(efx);
868 efx_fini_port(efx);
869 efx->type->fini(efx);
870 efx_fini_napi(efx);
871 efx_remove_all(efx);
872 }
873
874 /* Final NIC shutdown
875 * This is called only at module unload (or hotplug removal). A PF can call
876 * this on its VFs to ensure they are unbound first.
877 */
efx_pci_remove(struct pci_dev * pci_dev)878 static void efx_pci_remove(struct pci_dev *pci_dev)
879 {
880 struct efx_probe_data *probe_data;
881 struct efx_nic *efx;
882
883 efx = pci_get_drvdata(pci_dev);
884 if (!efx)
885 return;
886
887 /* Mark the NIC as fini, then stop the interface */
888 rtnl_lock();
889 efx_dissociate(efx);
890 dev_close(efx->net_dev);
891 efx_disable_interrupts(efx);
892 efx->state = STATE_UNINIT;
893 rtnl_unlock();
894
895 if (efx->type->sriov_fini)
896 efx->type->sriov_fini(efx);
897
898 efx_fini_devlink_lock(efx);
899 efx_unregister_netdev(efx);
900
901 efx_mtd_remove(efx);
902
903 efx_pci_remove_main(efx);
904
905 efx_fini_io(efx);
906 pci_dbg(efx->pci_dev, "shutdown successful\n");
907
908 efx_fini_devlink_and_unlock(efx);
909 efx_fini_struct(efx);
910 free_netdev(efx->net_dev);
911 probe_data = container_of(efx, struct efx_probe_data, efx);
912 kfree(probe_data);
913 };
914
915 /* NIC VPD information
916 * Called during probe to display the part number of the
917 * installed NIC.
918 */
efx_probe_vpd_strings(struct efx_nic * efx)919 static void efx_probe_vpd_strings(struct efx_nic *efx)
920 {
921 struct pci_dev *dev = efx->pci_dev;
922 unsigned int vpd_size, kw_len;
923 u8 *vpd_data;
924 int start;
925
926 vpd_data = pci_vpd_alloc(dev, &vpd_size);
927 if (IS_ERR(vpd_data)) {
928 pci_warn(dev, "Unable to read VPD\n");
929 return;
930 }
931
932 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
933 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
934 if (start < 0)
935 pci_err(dev, "Part number not found or incomplete\n");
936 else
937 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
938
939 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
940 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
941 if (start < 0)
942 pci_err(dev, "Serial number not found or incomplete\n");
943 else
944 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
945
946 kfree(vpd_data);
947 }
948
949
950 /* Main body of NIC initialisation
951 * This is called at module load (or hotplug insertion, theoretically).
952 */
efx_pci_probe_main(struct efx_nic * efx)953 static int efx_pci_probe_main(struct efx_nic *efx)
954 {
955 int rc;
956
957 /* Do start-of-day initialisation */
958 rc = efx_probe_all(efx);
959 if (rc)
960 goto fail1;
961
962 efx_init_napi(efx);
963
964 down_write(&efx->filter_sem);
965 rc = efx->type->init(efx);
966 up_write(&efx->filter_sem);
967 if (rc) {
968 pci_err(efx->pci_dev, "failed to initialise NIC\n");
969 goto fail3;
970 }
971
972 rc = efx_init_port(efx);
973 if (rc) {
974 netif_err(efx, probe, efx->net_dev,
975 "failed to initialise port\n");
976 goto fail4;
977 }
978
979 rc = efx_nic_init_interrupt(efx);
980 if (rc)
981 goto fail5;
982
983 efx_set_interrupt_affinity(efx);
984 rc = efx_enable_interrupts(efx);
985 if (rc)
986 goto fail6;
987
988 return 0;
989
990 fail6:
991 efx_clear_interrupt_affinity(efx);
992 efx_nic_fini_interrupt(efx);
993 fail5:
994 efx_fini_port(efx);
995 fail4:
996 efx->type->fini(efx);
997 fail3:
998 efx_fini_napi(efx);
999 efx_remove_all(efx);
1000 fail1:
1001 return rc;
1002 }
1003
efx_pci_probe_post_io(struct efx_nic * efx)1004 static int efx_pci_probe_post_io(struct efx_nic *efx)
1005 {
1006 struct net_device *net_dev = efx->net_dev;
1007 int rc = efx_pci_probe_main(efx);
1008
1009 if (rc)
1010 return rc;
1011
1012 if (efx->type->sriov_init) {
1013 rc = efx->type->sriov_init(efx);
1014 if (rc)
1015 pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1016 rc);
1017 }
1018
1019 /* Determine netdevice features */
1020 net_dev->features |= efx->type->offload_features;
1021
1022 /* Add TSO features */
1023 if (efx->type->tso_versions && efx->type->tso_versions(efx))
1024 net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1025
1026 /* Mask for features that also apply to VLAN devices */
1027 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1028 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1029 NETIF_F_RXCSUM);
1030
1031 /* Determine user configurable features */
1032 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1033
1034 /* Disable receiving frames with bad FCS, by default. */
1035 net_dev->features &= ~NETIF_F_RXALL;
1036
1037 /* Disable VLAN filtering by default. It may be enforced if
1038 * the feature is fixed (i.e. VLAN filters are required to
1039 * receive VLAN tagged packets due to vPort restrictions).
1040 */
1041 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1042 net_dev->features |= efx->fixed_features;
1043
1044 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1045 NETDEV_XDP_ACT_REDIRECT |
1046 NETDEV_XDP_ACT_NDO_XMIT;
1047
1048 /* devlink creation, registration and lock */
1049 rc = efx_probe_devlink_and_lock(efx);
1050 if (rc)
1051 pci_err(efx->pci_dev, "devlink registration failed");
1052
1053 rc = efx_register_netdev(efx);
1054 efx_probe_devlink_unlock(efx);
1055 if (!rc)
1056 return 0;
1057
1058 efx_pci_remove_main(efx);
1059 return rc;
1060 }
1061
1062 /* NIC initialisation
1063 *
1064 * This is called at module load (or hotplug insertion,
1065 * theoretically). It sets up PCI mappings, resets the NIC,
1066 * sets up and registers the network devices with the kernel and hooks
1067 * the interrupt service routine. It does not prepare the device for
1068 * transmission; this is left to the first time one of the network
1069 * interfaces is brought up (i.e. efx_net_open).
1070 */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1071 static int efx_pci_probe(struct pci_dev *pci_dev,
1072 const struct pci_device_id *entry)
1073 {
1074 struct efx_probe_data *probe_data, **probe_ptr;
1075 struct net_device *net_dev;
1076 struct efx_nic *efx;
1077 int rc;
1078
1079 /* Allocate probe data and struct efx_nic */
1080 probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1081 if (!probe_data)
1082 return -ENOMEM;
1083 probe_data->pci_dev = pci_dev;
1084 efx = &probe_data->efx;
1085
1086 /* Allocate and initialise a struct net_device */
1087 net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1088 if (!net_dev) {
1089 rc = -ENOMEM;
1090 goto fail0;
1091 }
1092 probe_ptr = netdev_priv(net_dev);
1093 *probe_ptr = probe_data;
1094 efx->net_dev = net_dev;
1095 efx->type = (const struct efx_nic_type *) entry->driver_data;
1096 efx->fixed_features |= NETIF_F_HIGHDMA;
1097
1098 pci_set_drvdata(pci_dev, efx);
1099 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1100 rc = efx_init_struct(efx, pci_dev);
1101 if (rc)
1102 goto fail1;
1103 efx->mdio.dev = net_dev;
1104
1105 pci_info(pci_dev, "Solarflare NIC detected\n");
1106
1107 if (!efx->type->is_vf)
1108 efx_probe_vpd_strings(efx);
1109
1110 /* Set up basic I/O (BAR mappings etc) */
1111 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1112 efx->type->mem_map_size(efx));
1113 if (rc)
1114 goto fail2;
1115
1116 rc = efx_pci_probe_post_io(efx);
1117 if (rc) {
1118 /* On failure, retry once immediately.
1119 * If we aborted probe due to a scheduled reset, dismiss it.
1120 */
1121 efx->reset_pending = 0;
1122 rc = efx_pci_probe_post_io(efx);
1123 if (rc) {
1124 /* On another failure, retry once more
1125 * after a 50-305ms delay.
1126 */
1127 unsigned char r;
1128
1129 get_random_bytes(&r, 1);
1130 msleep((unsigned int)r + 50);
1131 efx->reset_pending = 0;
1132 rc = efx_pci_probe_post_io(efx);
1133 }
1134 }
1135 if (rc)
1136 goto fail3;
1137
1138 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1139
1140 /* Try to create MTDs, but allow this to fail */
1141 rtnl_lock();
1142 rc = efx_mtd_probe(efx);
1143 rtnl_unlock();
1144 if (rc && rc != -EPERM)
1145 netif_warn(efx, probe, efx->net_dev,
1146 "failed to create MTDs (%d)\n", rc);
1147
1148 if (efx->type->udp_tnl_push_ports)
1149 efx->type->udp_tnl_push_ports(efx);
1150
1151 return 0;
1152
1153 fail3:
1154 efx_fini_io(efx);
1155 fail2:
1156 efx_fini_struct(efx);
1157 fail1:
1158 WARN_ON(rc > 0);
1159 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1160 free_netdev(net_dev);
1161 fail0:
1162 kfree(probe_data);
1163 return rc;
1164 }
1165
1166 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1167 * enabled on success
1168 */
1169 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1170 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1171 {
1172 int rc;
1173 struct efx_nic *efx = pci_get_drvdata(dev);
1174
1175 if (efx->type->sriov_configure) {
1176 rc = efx->type->sriov_configure(efx, num_vfs);
1177 if (rc)
1178 return rc;
1179 else
1180 return num_vfs;
1181 } else
1182 return -EOPNOTSUPP;
1183 }
1184 #endif
1185
efx_pm_freeze(struct device * dev)1186 static int efx_pm_freeze(struct device *dev)
1187 {
1188 struct efx_nic *efx = dev_get_drvdata(dev);
1189
1190 rtnl_lock();
1191
1192 if (efx_net_active(efx->state)) {
1193 efx_device_detach_sync(efx);
1194
1195 efx_stop_all(efx);
1196 efx_disable_interrupts(efx);
1197
1198 efx->state = efx_freeze(efx->state);
1199 }
1200
1201 rtnl_unlock();
1202
1203 return 0;
1204 }
1205
efx_pci_shutdown(struct pci_dev * pci_dev)1206 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1207 {
1208 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1209
1210 if (!efx)
1211 return;
1212
1213 efx_pm_freeze(&pci_dev->dev);
1214 pci_disable_device(pci_dev);
1215 }
1216
efx_pm_thaw(struct device * dev)1217 static int efx_pm_thaw(struct device *dev)
1218 {
1219 int rc;
1220 struct efx_nic *efx = dev_get_drvdata(dev);
1221
1222 rtnl_lock();
1223
1224 if (efx_frozen(efx->state)) {
1225 rc = efx_enable_interrupts(efx);
1226 if (rc)
1227 goto fail;
1228
1229 mutex_lock(&efx->mac_lock);
1230 efx_mcdi_port_reconfigure(efx);
1231 mutex_unlock(&efx->mac_lock);
1232
1233 efx_start_all(efx);
1234
1235 efx_device_attach_if_not_resetting(efx);
1236
1237 efx->state = efx_thaw(efx->state);
1238
1239 efx->type->resume_wol(efx);
1240 }
1241
1242 rtnl_unlock();
1243
1244 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1245 efx_queue_reset_work(efx);
1246
1247 return 0;
1248
1249 fail:
1250 rtnl_unlock();
1251
1252 return rc;
1253 }
1254
efx_pm_poweroff(struct device * dev)1255 static int efx_pm_poweroff(struct device *dev)
1256 {
1257 struct pci_dev *pci_dev = to_pci_dev(dev);
1258 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1259
1260 efx->type->fini(efx);
1261
1262 efx->reset_pending = 0;
1263
1264 pci_save_state(pci_dev);
1265 return pci_set_power_state(pci_dev, PCI_D3hot);
1266 }
1267
1268 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1269 static int efx_pm_resume(struct device *dev)
1270 {
1271 struct pci_dev *pci_dev = to_pci_dev(dev);
1272 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1273 int rc;
1274
1275 rc = pci_set_power_state(pci_dev, PCI_D0);
1276 if (rc)
1277 return rc;
1278 pci_restore_state(pci_dev);
1279 rc = pci_enable_device(pci_dev);
1280 if (rc)
1281 return rc;
1282 pci_set_master(efx->pci_dev);
1283 rc = efx->type->reset(efx, RESET_TYPE_ALL);
1284 if (rc)
1285 return rc;
1286 down_write(&efx->filter_sem);
1287 rc = efx->type->init(efx);
1288 up_write(&efx->filter_sem);
1289 if (rc)
1290 return rc;
1291 rc = efx_pm_thaw(dev);
1292 return rc;
1293 }
1294
efx_pm_suspend(struct device * dev)1295 static int efx_pm_suspend(struct device *dev)
1296 {
1297 int rc;
1298
1299 efx_pm_freeze(dev);
1300 rc = efx_pm_poweroff(dev);
1301 if (rc)
1302 efx_pm_resume(dev);
1303 return rc;
1304 }
1305
1306 static const struct dev_pm_ops efx_pm_ops = {
1307 .suspend = efx_pm_suspend,
1308 .resume = efx_pm_resume,
1309 .freeze = efx_pm_freeze,
1310 .thaw = efx_pm_thaw,
1311 .poweroff = efx_pm_poweroff,
1312 .restore = efx_pm_resume,
1313 };
1314
1315 static struct pci_driver efx_pci_driver = {
1316 .name = KBUILD_MODNAME,
1317 .id_table = efx_pci_table,
1318 .probe = efx_pci_probe,
1319 .remove = efx_pci_remove,
1320 .driver.pm = &efx_pm_ops,
1321 .shutdown = efx_pci_shutdown,
1322 .err_handler = &efx_err_handlers,
1323 #ifdef CONFIG_SFC_SRIOV
1324 .sriov_configure = efx_pci_sriov_configure,
1325 #endif
1326 };
1327
1328 /**************************************************************************
1329 *
1330 * Kernel module interface
1331 *
1332 *************************************************************************/
1333
efx_init_module(void)1334 static int __init efx_init_module(void)
1335 {
1336 int rc;
1337
1338 printk(KERN_INFO "Solarflare NET driver\n");
1339
1340 rc = register_netdevice_notifier(&efx_netdev_notifier);
1341 if (rc)
1342 goto err_notifier;
1343
1344 rc = efx_create_reset_workqueue();
1345 if (rc)
1346 goto err_reset;
1347
1348 rc = pci_register_driver(&efx_pci_driver);
1349 if (rc < 0)
1350 goto err_pci;
1351
1352 rc = pci_register_driver(&ef100_pci_driver);
1353 if (rc < 0)
1354 goto err_pci_ef100;
1355
1356 return 0;
1357
1358 err_pci_ef100:
1359 pci_unregister_driver(&efx_pci_driver);
1360 err_pci:
1361 efx_destroy_reset_workqueue();
1362 err_reset:
1363 unregister_netdevice_notifier(&efx_netdev_notifier);
1364 err_notifier:
1365 return rc;
1366 }
1367
efx_exit_module(void)1368 static void __exit efx_exit_module(void)
1369 {
1370 printk(KERN_INFO "Solarflare NET driver unloading\n");
1371
1372 pci_unregister_driver(&ef100_pci_driver);
1373 pci_unregister_driver(&efx_pci_driver);
1374 efx_destroy_reset_workqueue();
1375 unregister_netdevice_notifier(&efx_netdev_notifier);
1376
1377 }
1378
1379 module_init(efx_init_module);
1380 module_exit(efx_exit_module);
1381
1382 MODULE_AUTHOR("Solarflare Communications and "
1383 "Michael Brown <mbrown@fensystems.co.uk>");
1384 MODULE_DESCRIPTION("Solarflare network driver");
1385 MODULE_LICENSE("GPL");
1386 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1387