xref: /linux/drivers/net/ethernet/sfc/efx.c (revision c8faf11cd192214e231626c3ee973a35d8fc33f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35 #include "efx_devlink.h"
36 
37 #include "mcdi_port_common.h"
38 #include "mcdi_pcol.h"
39 #include "workarounds.h"
40 
41 /**************************************************************************
42  *
43  * Configurable values
44  *
45  *************************************************************************/
46 
47 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
48 MODULE_PARM_DESC(interrupt_mode,
49 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
50 
51 module_param(rss_cpus, uint, 0444);
52 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
53 
54 /*
55  * Use separate channels for TX and RX events
56  *
57  * Set this to 1 to use separate channels for TX and RX. It allows us
58  * to control interrupt affinity separately for TX and RX.
59  *
60  * This is only used in MSI-X interrupt mode
61  */
62 bool efx_separate_tx_channels;
63 module_param(efx_separate_tx_channels, bool, 0444);
64 MODULE_PARM_DESC(efx_separate_tx_channels,
65 		 "Use separate channels for TX and RX");
66 
67 /* Initial interrupt moderation settings.  They can be modified after
68  * module load with ethtool.
69  *
70  * The default for RX should strike a balance between increasing the
71  * round-trip latency and reducing overhead.
72  */
73 static unsigned int rx_irq_mod_usec = 60;
74 
75 /* Initial interrupt moderation settings.  They can be modified after
76  * module load with ethtool.
77  *
78  * This default is chosen to ensure that a 10G link does not go idle
79  * while a TX queue is stopped after it has become full.  A queue is
80  * restarted when it drops below half full.  The time this takes (assuming
81  * worst case 3 descriptors per packet and 1024 descriptors) is
82  *   512 / 3 * 1.2 = 205 usec.
83  */
84 static unsigned int tx_irq_mod_usec = 150;
85 
86 static bool phy_flash_cfg;
87 module_param(phy_flash_cfg, bool, 0644);
88 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
89 
90 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
91 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
92 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
93 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
94 module_param(debug, uint, 0);
95 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
96 
97 /**************************************************************************
98  *
99  * Utility functions and prototypes
100  *
101  *************************************************************************/
102 
103 static void efx_remove_port(struct efx_nic *efx);
104 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
105 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
106 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
107 			u32 flags);
108 
109 /**************************************************************************
110  *
111  * Port handling
112  *
113  **************************************************************************/
114 
115 static void efx_fini_port(struct efx_nic *efx);
116 
117 static int efx_probe_port(struct efx_nic *efx)
118 {
119 	int rc;
120 
121 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
122 
123 	if (phy_flash_cfg)
124 		efx->phy_mode = PHY_MODE_SPECIAL;
125 
126 	/* Connect up MAC/PHY operations table */
127 	rc = efx->type->probe_port(efx);
128 	if (rc)
129 		return rc;
130 
131 	/* Initialise MAC address to permanent address */
132 	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
133 
134 	return 0;
135 }
136 
137 static int efx_init_port(struct efx_nic *efx)
138 {
139 	int rc;
140 
141 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
142 
143 	mutex_lock(&efx->mac_lock);
144 
145 	efx->port_initialized = true;
146 
147 	/* Ensure the PHY advertises the correct flow control settings */
148 	rc = efx_mcdi_port_reconfigure(efx);
149 	if (rc && rc != -EPERM)
150 		goto fail;
151 
152 	mutex_unlock(&efx->mac_lock);
153 	return 0;
154 
155 fail:
156 	mutex_unlock(&efx->mac_lock);
157 	return rc;
158 }
159 
160 static void efx_fini_port(struct efx_nic *efx)
161 {
162 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
163 
164 	if (!efx->port_initialized)
165 		return;
166 
167 	efx->port_initialized = false;
168 
169 	efx->link_state.up = false;
170 	efx_link_status_changed(efx);
171 }
172 
173 static void efx_remove_port(struct efx_nic *efx)
174 {
175 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
176 
177 	efx->type->remove_port(efx);
178 }
179 
180 /**************************************************************************
181  *
182  * NIC handling
183  *
184  **************************************************************************/
185 
186 static LIST_HEAD(efx_primary_list);
187 static LIST_HEAD(efx_unassociated_list);
188 
189 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
190 {
191 	return left->type == right->type &&
192 		left->vpd_sn && right->vpd_sn &&
193 		!strcmp(left->vpd_sn, right->vpd_sn);
194 }
195 
196 static void efx_associate(struct efx_nic *efx)
197 {
198 	struct efx_nic *other, *next;
199 
200 	if (efx->primary == efx) {
201 		/* Adding primary function; look for secondaries */
202 
203 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
204 		list_add_tail(&efx->node, &efx_primary_list);
205 
206 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
207 					 node) {
208 			if (efx_same_controller(efx, other)) {
209 				list_del(&other->node);
210 				netif_dbg(other, probe, other->net_dev,
211 					  "moving to secondary list of %s %s\n",
212 					  pci_name(efx->pci_dev),
213 					  efx->net_dev->name);
214 				list_add_tail(&other->node,
215 					      &efx->secondary_list);
216 				other->primary = efx;
217 			}
218 		}
219 	} else {
220 		/* Adding secondary function; look for primary */
221 
222 		list_for_each_entry(other, &efx_primary_list, node) {
223 			if (efx_same_controller(efx, other)) {
224 				netif_dbg(efx, probe, efx->net_dev,
225 					  "adding to secondary list of %s %s\n",
226 					  pci_name(other->pci_dev),
227 					  other->net_dev->name);
228 				list_add_tail(&efx->node,
229 					      &other->secondary_list);
230 				efx->primary = other;
231 				return;
232 			}
233 		}
234 
235 		netif_dbg(efx, probe, efx->net_dev,
236 			  "adding to unassociated list\n");
237 		list_add_tail(&efx->node, &efx_unassociated_list);
238 	}
239 }
240 
241 static void efx_dissociate(struct efx_nic *efx)
242 {
243 	struct efx_nic *other, *next;
244 
245 	list_del(&efx->node);
246 	efx->primary = NULL;
247 
248 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
249 		list_del(&other->node);
250 		netif_dbg(other, probe, other->net_dev,
251 			  "moving to unassociated list\n");
252 		list_add_tail(&other->node, &efx_unassociated_list);
253 		other->primary = NULL;
254 	}
255 }
256 
257 static int efx_probe_nic(struct efx_nic *efx)
258 {
259 	int rc;
260 
261 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
262 
263 	/* Carry out hardware-type specific initialisation */
264 	rc = efx->type->probe(efx);
265 	if (rc)
266 		return rc;
267 
268 	do {
269 		if (!efx->max_channels || !efx->max_tx_channels) {
270 			netif_err(efx, drv, efx->net_dev,
271 				  "Insufficient resources to allocate"
272 				  " any channels\n");
273 			rc = -ENOSPC;
274 			goto fail1;
275 		}
276 
277 		/* Determine the number of channels and queues by trying
278 		 * to hook in MSI-X interrupts.
279 		 */
280 		rc = efx_probe_interrupts(efx);
281 		if (rc)
282 			goto fail1;
283 
284 		rc = efx_set_channels(efx);
285 		if (rc)
286 			goto fail1;
287 
288 		/* dimension_resources can fail with EAGAIN */
289 		rc = efx->type->dimension_resources(efx);
290 		if (rc != 0 && rc != -EAGAIN)
291 			goto fail2;
292 
293 		if (rc == -EAGAIN)
294 			/* try again with new max_channels */
295 			efx_remove_interrupts(efx);
296 
297 	} while (rc == -EAGAIN);
298 
299 	if (efx->n_channels > 1)
300 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
301 				    sizeof(efx->rss_context.rx_hash_key));
302 	efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table);
303 
304 	/* Initialise the interrupt moderation settings */
305 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
306 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
307 				true);
308 
309 	return 0;
310 
311 fail2:
312 	efx_remove_interrupts(efx);
313 fail1:
314 	efx->type->remove(efx);
315 	return rc;
316 }
317 
318 static void efx_remove_nic(struct efx_nic *efx)
319 {
320 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
321 
322 	efx_remove_interrupts(efx);
323 	efx->type->remove(efx);
324 }
325 
326 /**************************************************************************
327  *
328  * NIC startup/shutdown
329  *
330  *************************************************************************/
331 
332 static int efx_probe_all(struct efx_nic *efx)
333 {
334 	int rc;
335 
336 	rc = efx_probe_nic(efx);
337 	if (rc) {
338 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
339 		goto fail1;
340 	}
341 
342 	rc = efx_probe_port(efx);
343 	if (rc) {
344 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
345 		goto fail2;
346 	}
347 
348 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
349 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
350 		rc = -EINVAL;
351 		goto fail3;
352 	}
353 
354 #ifdef CONFIG_SFC_SRIOV
355 	rc = efx->type->vswitching_probe(efx);
356 	if (rc) /* not fatal; the PF will still work fine */
357 		netif_warn(efx, probe, efx->net_dev,
358 			   "failed to setup vswitching rc=%d;"
359 			   " VFs may not function\n", rc);
360 #endif
361 
362 	rc = efx_probe_filters(efx);
363 	if (rc) {
364 		netif_err(efx, probe, efx->net_dev,
365 			  "failed to create filter tables\n");
366 		goto fail4;
367 	}
368 
369 	rc = efx_probe_channels(efx);
370 	if (rc)
371 		goto fail5;
372 
373 	efx->state = STATE_NET_DOWN;
374 
375 	return 0;
376 
377  fail5:
378 	efx_remove_filters(efx);
379  fail4:
380 #ifdef CONFIG_SFC_SRIOV
381 	efx->type->vswitching_remove(efx);
382 #endif
383  fail3:
384 	efx_remove_port(efx);
385  fail2:
386 	efx_remove_nic(efx);
387  fail1:
388 	return rc;
389 }
390 
391 static void efx_remove_all(struct efx_nic *efx)
392 {
393 	rtnl_lock();
394 	efx_xdp_setup_prog(efx, NULL);
395 	rtnl_unlock();
396 
397 	efx_remove_channels(efx);
398 	efx_remove_filters(efx);
399 #ifdef CONFIG_SFC_SRIOV
400 	efx->type->vswitching_remove(efx);
401 #endif
402 	efx_remove_port(efx);
403 	efx_remove_nic(efx);
404 }
405 
406 /**************************************************************************
407  *
408  * Interrupt moderation
409  *
410  **************************************************************************/
411 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
412 {
413 	if (usecs == 0)
414 		return 0;
415 	if (usecs * 1000 < efx->timer_quantum_ns)
416 		return 1; /* never round down to 0 */
417 	return usecs * 1000 / efx->timer_quantum_ns;
418 }
419 
420 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
421 {
422 	/* We must round up when converting ticks to microseconds
423 	 * because we round down when converting the other way.
424 	 */
425 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
426 }
427 
428 /* Set interrupt moderation parameters */
429 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
430 			    unsigned int rx_usecs, bool rx_adaptive,
431 			    bool rx_may_override_tx)
432 {
433 	struct efx_channel *channel;
434 	unsigned int timer_max_us;
435 
436 	EFX_ASSERT_RESET_SERIALISED(efx);
437 
438 	timer_max_us = efx->timer_max_ns / 1000;
439 
440 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
441 		return -EINVAL;
442 
443 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
444 	    !rx_may_override_tx) {
445 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
446 			  "RX and TX IRQ moderation must be equal\n");
447 		return -EINVAL;
448 	}
449 
450 	efx->irq_rx_adaptive = rx_adaptive;
451 	efx->irq_rx_moderation_us = rx_usecs;
452 	efx_for_each_channel(channel, efx) {
453 		if (efx_channel_has_rx_queue(channel))
454 			channel->irq_moderation_us = rx_usecs;
455 		else if (efx_channel_has_tx_queues(channel))
456 			channel->irq_moderation_us = tx_usecs;
457 		else if (efx_channel_is_xdp_tx(channel))
458 			channel->irq_moderation_us = tx_usecs;
459 	}
460 
461 	return 0;
462 }
463 
464 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
465 			    unsigned int *rx_usecs, bool *rx_adaptive)
466 {
467 	*rx_adaptive = efx->irq_rx_adaptive;
468 	*rx_usecs = efx->irq_rx_moderation_us;
469 
470 	/* If channels are shared between RX and TX, so is IRQ
471 	 * moderation.  Otherwise, IRQ moderation is the same for all
472 	 * TX channels and is not adaptive.
473 	 */
474 	if (efx->tx_channel_offset == 0) {
475 		*tx_usecs = *rx_usecs;
476 	} else {
477 		struct efx_channel *tx_channel;
478 
479 		tx_channel = efx->channel[efx->tx_channel_offset];
480 		*tx_usecs = tx_channel->irq_moderation_us;
481 	}
482 }
483 
484 /**************************************************************************
485  *
486  * ioctls
487  *
488  *************************************************************************/
489 
490 /* Net device ioctl
491  * Context: process, rtnl_lock() held.
492  */
493 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
494 {
495 	struct efx_nic *efx = efx_netdev_priv(net_dev);
496 	struct mii_ioctl_data *data = if_mii(ifr);
497 
498 	/* Convert phy_id from older PRTAD/DEVAD format */
499 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
500 	    (data->phy_id & 0xfc00) == 0x0400)
501 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
502 
503 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
504 }
505 
506 /**************************************************************************
507  *
508  * Kernel net device interface
509  *
510  *************************************************************************/
511 
512 /* Context: process, rtnl_lock() held. */
513 int efx_net_open(struct net_device *net_dev)
514 {
515 	struct efx_nic *efx = efx_netdev_priv(net_dev);
516 	int rc;
517 
518 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
519 		  raw_smp_processor_id());
520 
521 	rc = efx_check_disabled(efx);
522 	if (rc)
523 		return rc;
524 	if (efx->phy_mode & PHY_MODE_SPECIAL)
525 		return -EBUSY;
526 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
527 		return -EIO;
528 
529 	/* Notify the kernel of the link state polled during driver load,
530 	 * before the monitor starts running */
531 	efx_link_status_changed(efx);
532 
533 	efx_start_all(efx);
534 	if (efx->state == STATE_DISABLED || efx->reset_pending)
535 		netif_device_detach(efx->net_dev);
536 	else
537 		efx->state = STATE_NET_UP;
538 
539 	return 0;
540 }
541 
542 /* Context: process, rtnl_lock() held.
543  * Note that the kernel will ignore our return code; this method
544  * should really be a void.
545  */
546 int efx_net_stop(struct net_device *net_dev)
547 {
548 	struct efx_nic *efx = efx_netdev_priv(net_dev);
549 
550 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
551 		  raw_smp_processor_id());
552 
553 	/* Stop the device and flush all the channels */
554 	efx_stop_all(efx);
555 
556 	return 0;
557 }
558 
559 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
560 {
561 	struct efx_nic *efx = efx_netdev_priv(net_dev);
562 
563 	if (efx->type->vlan_rx_add_vid)
564 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
565 	else
566 		return -EOPNOTSUPP;
567 }
568 
569 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
570 {
571 	struct efx_nic *efx = efx_netdev_priv(net_dev);
572 
573 	if (efx->type->vlan_rx_kill_vid)
574 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
575 	else
576 		return -EOPNOTSUPP;
577 }
578 
579 static int efx_hwtstamp_set(struct net_device *net_dev,
580 			    struct kernel_hwtstamp_config *config,
581 			    struct netlink_ext_ack *extack)
582 {
583 	struct efx_nic *efx = efx_netdev_priv(net_dev);
584 
585 	return efx_ptp_set_ts_config(efx, config, extack);
586 }
587 
588 static int efx_hwtstamp_get(struct net_device *net_dev,
589 			    struct kernel_hwtstamp_config *config)
590 {
591 	struct efx_nic *efx = efx_netdev_priv(net_dev);
592 
593 	return efx_ptp_get_ts_config(efx, config);
594 }
595 
596 static const struct net_device_ops efx_netdev_ops = {
597 	.ndo_open		= efx_net_open,
598 	.ndo_stop		= efx_net_stop,
599 	.ndo_get_stats64	= efx_net_stats,
600 	.ndo_tx_timeout		= efx_watchdog,
601 	.ndo_start_xmit		= efx_hard_start_xmit,
602 	.ndo_validate_addr	= eth_validate_addr,
603 	.ndo_eth_ioctl		= efx_ioctl,
604 	.ndo_change_mtu		= efx_change_mtu,
605 	.ndo_set_mac_address	= efx_set_mac_address,
606 	.ndo_set_rx_mode	= efx_set_rx_mode,
607 	.ndo_set_features	= efx_set_features,
608 	.ndo_features_check	= efx_features_check,
609 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
610 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
611 	.ndo_hwtstamp_set	= efx_hwtstamp_set,
612 	.ndo_hwtstamp_get	= efx_hwtstamp_get,
613 #ifdef CONFIG_SFC_SRIOV
614 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
615 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
616 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
617 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
618 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
619 #endif
620 	.ndo_get_phys_port_id   = efx_get_phys_port_id,
621 	.ndo_get_phys_port_name	= efx_get_phys_port_name,
622 #ifdef CONFIG_RFS_ACCEL
623 	.ndo_rx_flow_steer	= efx_filter_rfs,
624 #endif
625 	.ndo_xdp_xmit		= efx_xdp_xmit,
626 	.ndo_bpf		= efx_xdp
627 };
628 
629 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
630 {
631 	struct bpf_prog *old_prog;
632 
633 	if (efx->xdp_rxq_info_failed) {
634 		netif_err(efx, drv, efx->net_dev,
635 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
636 		return -EINVAL;
637 	}
638 
639 	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
640 		netif_err(efx, drv, efx->net_dev,
641 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
642 			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
643 		return -EINVAL;
644 	}
645 
646 	old_prog = rtnl_dereference(efx->xdp_prog);
647 	rcu_assign_pointer(efx->xdp_prog, prog);
648 	/* Release the reference that was originally passed by the caller. */
649 	if (old_prog)
650 		bpf_prog_put(old_prog);
651 
652 	return 0;
653 }
654 
655 /* Context: process, rtnl_lock() held. */
656 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
657 {
658 	struct efx_nic *efx = efx_netdev_priv(dev);
659 
660 	switch (xdp->command) {
661 	case XDP_SETUP_PROG:
662 		return efx_xdp_setup_prog(efx, xdp->prog);
663 	default:
664 		return -EINVAL;
665 	}
666 }
667 
668 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
669 			u32 flags)
670 {
671 	struct efx_nic *efx = efx_netdev_priv(dev);
672 
673 	if (!netif_running(dev))
674 		return -EINVAL;
675 
676 	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
677 }
678 
679 static void efx_update_name(struct efx_nic *efx)
680 {
681 	strcpy(efx->name, efx->net_dev->name);
682 	efx_mtd_rename(efx);
683 	efx_set_channel_names(efx);
684 }
685 
686 static int efx_netdev_event(struct notifier_block *this,
687 			    unsigned long event, void *ptr)
688 {
689 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
690 
691 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
692 	    event == NETDEV_CHANGENAME)
693 		efx_update_name(efx_netdev_priv(net_dev));
694 
695 	return NOTIFY_DONE;
696 }
697 
698 static struct notifier_block efx_netdev_notifier = {
699 	.notifier_call = efx_netdev_event,
700 };
701 
702 static ssize_t phy_type_show(struct device *dev,
703 			     struct device_attribute *attr, char *buf)
704 {
705 	struct efx_nic *efx = dev_get_drvdata(dev);
706 	return sprintf(buf, "%d\n", efx->phy_type);
707 }
708 static DEVICE_ATTR_RO(phy_type);
709 
710 static int efx_register_netdev(struct efx_nic *efx)
711 {
712 	struct net_device *net_dev = efx->net_dev;
713 	struct efx_channel *channel;
714 	int rc;
715 
716 	net_dev->watchdog_timeo = 5 * HZ;
717 	net_dev->irq = efx->pci_dev->irq;
718 	net_dev->netdev_ops = &efx_netdev_ops;
719 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
720 		net_dev->priv_flags |= IFF_UNICAST_FLT;
721 	net_dev->ethtool_ops = &efx_ethtool_ops;
722 	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
723 	net_dev->min_mtu = EFX_MIN_MTU;
724 	net_dev->max_mtu = EFX_MAX_MTU;
725 
726 	rtnl_lock();
727 
728 	/* Enable resets to be scheduled and check whether any were
729 	 * already requested.  If so, the NIC is probably hosed so we
730 	 * abort.
731 	 */
732 	if (efx->reset_pending) {
733 		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
734 		rc = -EIO;
735 		goto fail_locked;
736 	}
737 
738 	rc = dev_alloc_name(net_dev, net_dev->name);
739 	if (rc < 0)
740 		goto fail_locked;
741 	efx_update_name(efx);
742 
743 	/* Always start with carrier off; PHY events will detect the link */
744 	netif_carrier_off(net_dev);
745 
746 	rc = register_netdevice(net_dev);
747 	if (rc)
748 		goto fail_locked;
749 
750 	efx_for_each_channel(channel, efx) {
751 		struct efx_tx_queue *tx_queue;
752 		efx_for_each_channel_tx_queue(tx_queue, channel)
753 			efx_init_tx_queue_core_txq(tx_queue);
754 	}
755 
756 	efx_associate(efx);
757 
758 	efx->state = STATE_NET_DOWN;
759 
760 	rtnl_unlock();
761 
762 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
763 	if (rc) {
764 		netif_err(efx, drv, efx->net_dev,
765 			  "failed to init net dev attributes\n");
766 		goto fail_registered;
767 	}
768 
769 	efx_init_mcdi_logging(efx);
770 
771 	return 0;
772 
773 fail_registered:
774 	rtnl_lock();
775 	efx_dissociate(efx);
776 	unregister_netdevice(net_dev);
777 fail_locked:
778 	efx->state = STATE_UNINIT;
779 	rtnl_unlock();
780 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
781 	return rc;
782 }
783 
784 static void efx_unregister_netdev(struct efx_nic *efx)
785 {
786 	if (!efx->net_dev)
787 		return;
788 
789 	if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
790 		return;
791 
792 	if (efx_dev_registered(efx)) {
793 		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
794 		efx_fini_mcdi_logging(efx);
795 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
796 		unregister_netdev(efx->net_dev);
797 	}
798 }
799 
800 /**************************************************************************
801  *
802  * List of NICs we support
803  *
804  **************************************************************************/
805 
806 /* PCI device ID table */
807 static const struct pci_device_id efx_pci_table[] = {
808 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
809 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
810 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
811 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
812 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
813 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
814 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
815 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
816 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
817 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
818 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
819 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
820 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
821 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
822 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
823 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
824 	{0}			/* end of list */
825 };
826 
827 /**************************************************************************
828  *
829  * Data housekeeping
830  *
831  **************************************************************************/
832 
833 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
834 {
835 	u64 n_rx_nodesc_trunc = 0;
836 	struct efx_channel *channel;
837 
838 	efx_for_each_channel(channel, efx)
839 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
840 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
841 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
842 }
843 
844 /**************************************************************************
845  *
846  * PCI interface
847  *
848  **************************************************************************/
849 
850 /* Main body of final NIC shutdown code
851  * This is called only at module unload (or hotplug removal).
852  */
853 static void efx_pci_remove_main(struct efx_nic *efx)
854 {
855 	/* Flush reset_work. It can no longer be scheduled since we
856 	 * are not READY.
857 	 */
858 	WARN_ON(efx_net_active(efx->state));
859 	efx_flush_reset_workqueue(efx);
860 
861 	efx_disable_interrupts(efx);
862 	efx_clear_interrupt_affinity(efx);
863 	efx_nic_fini_interrupt(efx);
864 	efx_fini_port(efx);
865 	efx->type->fini(efx);
866 	efx_fini_napi(efx);
867 	efx_remove_all(efx);
868 }
869 
870 /* Final NIC shutdown
871  * This is called only at module unload (or hotplug removal).  A PF can call
872  * this on its VFs to ensure they are unbound first.
873  */
874 static void efx_pci_remove(struct pci_dev *pci_dev)
875 {
876 	struct efx_probe_data *probe_data;
877 	struct efx_nic *efx;
878 
879 	efx = pci_get_drvdata(pci_dev);
880 	if (!efx)
881 		return;
882 
883 	/* Mark the NIC as fini, then stop the interface */
884 	rtnl_lock();
885 	efx_dissociate(efx);
886 	dev_close(efx->net_dev);
887 	efx_disable_interrupts(efx);
888 	efx->state = STATE_UNINIT;
889 	rtnl_unlock();
890 
891 	if (efx->type->sriov_fini)
892 		efx->type->sriov_fini(efx);
893 
894 	efx_fini_devlink_lock(efx);
895 	efx_unregister_netdev(efx);
896 
897 	efx_mtd_remove(efx);
898 
899 	efx_pci_remove_main(efx);
900 
901 	efx_fini_io(efx);
902 	pci_dbg(efx->pci_dev, "shutdown successful\n");
903 
904 	efx_fini_devlink_and_unlock(efx);
905 	efx_fini_struct(efx);
906 	free_netdev(efx->net_dev);
907 	probe_data = container_of(efx, struct efx_probe_data, efx);
908 	kfree(probe_data);
909 };
910 
911 /* NIC VPD information
912  * Called during probe to display the part number of the
913  * installed NIC.
914  */
915 static void efx_probe_vpd_strings(struct efx_nic *efx)
916 {
917 	struct pci_dev *dev = efx->pci_dev;
918 	unsigned int vpd_size, kw_len;
919 	u8 *vpd_data;
920 	int start;
921 
922 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
923 	if (IS_ERR(vpd_data)) {
924 		pci_warn(dev, "Unable to read VPD\n");
925 		return;
926 	}
927 
928 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
929 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
930 	if (start < 0)
931 		pci_err(dev, "Part number not found or incomplete\n");
932 	else
933 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
934 
935 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
936 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
937 	if (start < 0)
938 		pci_err(dev, "Serial number not found or incomplete\n");
939 	else
940 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
941 
942 	kfree(vpd_data);
943 }
944 
945 
946 /* Main body of NIC initialisation
947  * This is called at module load (or hotplug insertion, theoretically).
948  */
949 static int efx_pci_probe_main(struct efx_nic *efx)
950 {
951 	int rc;
952 
953 	/* Do start-of-day initialisation */
954 	rc = efx_probe_all(efx);
955 	if (rc)
956 		goto fail1;
957 
958 	efx_init_napi(efx);
959 
960 	down_write(&efx->filter_sem);
961 	rc = efx->type->init(efx);
962 	up_write(&efx->filter_sem);
963 	if (rc) {
964 		pci_err(efx->pci_dev, "failed to initialise NIC\n");
965 		goto fail3;
966 	}
967 
968 	rc = efx_init_port(efx);
969 	if (rc) {
970 		netif_err(efx, probe, efx->net_dev,
971 			  "failed to initialise port\n");
972 		goto fail4;
973 	}
974 
975 	rc = efx_nic_init_interrupt(efx);
976 	if (rc)
977 		goto fail5;
978 
979 	efx_set_interrupt_affinity(efx);
980 	rc = efx_enable_interrupts(efx);
981 	if (rc)
982 		goto fail6;
983 
984 	return 0;
985 
986  fail6:
987 	efx_clear_interrupt_affinity(efx);
988 	efx_nic_fini_interrupt(efx);
989  fail5:
990 	efx_fini_port(efx);
991  fail4:
992 	efx->type->fini(efx);
993  fail3:
994 	efx_fini_napi(efx);
995 	efx_remove_all(efx);
996  fail1:
997 	return rc;
998 }
999 
1000 static int efx_pci_probe_post_io(struct efx_nic *efx)
1001 {
1002 	struct net_device *net_dev = efx->net_dev;
1003 	int rc = efx_pci_probe_main(efx);
1004 
1005 	if (rc)
1006 		return rc;
1007 
1008 	if (efx->type->sriov_init) {
1009 		rc = efx->type->sriov_init(efx);
1010 		if (rc)
1011 			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1012 				rc);
1013 	}
1014 
1015 	/* Determine netdevice features */
1016 	net_dev->features |= efx->type->offload_features;
1017 
1018 	/* Add TSO features */
1019 	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1020 		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1021 
1022 	/* Mask for features that also apply to VLAN devices */
1023 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1024 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1025 				   NETIF_F_RXCSUM);
1026 
1027 	/* Determine user configurable features */
1028 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1029 
1030 	/* Disable receiving frames with bad FCS, by default. */
1031 	net_dev->features &= ~NETIF_F_RXALL;
1032 
1033 	/* Disable VLAN filtering by default.  It may be enforced if
1034 	 * the feature is fixed (i.e. VLAN filters are required to
1035 	 * receive VLAN tagged packets due to vPort restrictions).
1036 	 */
1037 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1038 	net_dev->features |= efx->fixed_features;
1039 
1040 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1041 				NETDEV_XDP_ACT_REDIRECT |
1042 				NETDEV_XDP_ACT_NDO_XMIT;
1043 
1044 	/* devlink creation, registration and lock */
1045 	rc = efx_probe_devlink_and_lock(efx);
1046 	if (rc)
1047 		pci_err(efx->pci_dev, "devlink registration failed");
1048 
1049 	rc = efx_register_netdev(efx);
1050 	efx_probe_devlink_unlock(efx);
1051 	if (!rc)
1052 		return 0;
1053 
1054 	efx_pci_remove_main(efx);
1055 	return rc;
1056 }
1057 
1058 /* NIC initialisation
1059  *
1060  * This is called at module load (or hotplug insertion,
1061  * theoretically).  It sets up PCI mappings, resets the NIC,
1062  * sets up and registers the network devices with the kernel and hooks
1063  * the interrupt service routine.  It does not prepare the device for
1064  * transmission; this is left to the first time one of the network
1065  * interfaces is brought up (i.e. efx_net_open).
1066  */
1067 static int efx_pci_probe(struct pci_dev *pci_dev,
1068 			 const struct pci_device_id *entry)
1069 {
1070 	struct efx_probe_data *probe_data, **probe_ptr;
1071 	struct net_device *net_dev;
1072 	struct efx_nic *efx;
1073 	int rc;
1074 
1075 	/* Allocate probe data and struct efx_nic */
1076 	probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1077 	if (!probe_data)
1078 		return -ENOMEM;
1079 	probe_data->pci_dev = pci_dev;
1080 	efx = &probe_data->efx;
1081 
1082 	/* Allocate and initialise a struct net_device */
1083 	net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1084 	if (!net_dev) {
1085 		rc = -ENOMEM;
1086 		goto fail0;
1087 	}
1088 	probe_ptr = netdev_priv(net_dev);
1089 	*probe_ptr = probe_data;
1090 	efx->net_dev = net_dev;
1091 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1092 	efx->fixed_features |= NETIF_F_HIGHDMA;
1093 
1094 	pci_set_drvdata(pci_dev, efx);
1095 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1096 	rc = efx_init_struct(efx, pci_dev);
1097 	if (rc)
1098 		goto fail1;
1099 	efx->mdio.dev = net_dev;
1100 
1101 	pci_info(pci_dev, "Solarflare NIC detected\n");
1102 
1103 	if (!efx->type->is_vf)
1104 		efx_probe_vpd_strings(efx);
1105 
1106 	/* Set up basic I/O (BAR mappings etc) */
1107 	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1108 			 efx->type->mem_map_size(efx));
1109 	if (rc)
1110 		goto fail2;
1111 
1112 	rc = efx_pci_probe_post_io(efx);
1113 	if (rc) {
1114 		/* On failure, retry once immediately.
1115 		 * If we aborted probe due to a scheduled reset, dismiss it.
1116 		 */
1117 		efx->reset_pending = 0;
1118 		rc = efx_pci_probe_post_io(efx);
1119 		if (rc) {
1120 			/* On another failure, retry once more
1121 			 * after a 50-305ms delay.
1122 			 */
1123 			unsigned char r;
1124 
1125 			get_random_bytes(&r, 1);
1126 			msleep((unsigned int)r + 50);
1127 			efx->reset_pending = 0;
1128 			rc = efx_pci_probe_post_io(efx);
1129 		}
1130 	}
1131 	if (rc)
1132 		goto fail3;
1133 
1134 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1135 
1136 	/* Try to create MTDs, but allow this to fail */
1137 	rtnl_lock();
1138 	rc = efx_mtd_probe(efx);
1139 	rtnl_unlock();
1140 	if (rc && rc != -EPERM)
1141 		netif_warn(efx, probe, efx->net_dev,
1142 			   "failed to create MTDs (%d)\n", rc);
1143 
1144 	if (efx->type->udp_tnl_push_ports)
1145 		efx->type->udp_tnl_push_ports(efx);
1146 
1147 	return 0;
1148 
1149  fail3:
1150 	efx_fini_io(efx);
1151  fail2:
1152 	efx_fini_struct(efx);
1153  fail1:
1154 	WARN_ON(rc > 0);
1155 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1156 	free_netdev(net_dev);
1157  fail0:
1158 	kfree(probe_data);
1159 	return rc;
1160 }
1161 
1162 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1163  * enabled on success
1164  */
1165 #ifdef CONFIG_SFC_SRIOV
1166 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1167 {
1168 	int rc;
1169 	struct efx_nic *efx = pci_get_drvdata(dev);
1170 
1171 	if (efx->type->sriov_configure) {
1172 		rc = efx->type->sriov_configure(efx, num_vfs);
1173 		if (rc)
1174 			return rc;
1175 		else
1176 			return num_vfs;
1177 	} else
1178 		return -EOPNOTSUPP;
1179 }
1180 #endif
1181 
1182 static int efx_pm_freeze(struct device *dev)
1183 {
1184 	struct efx_nic *efx = dev_get_drvdata(dev);
1185 
1186 	rtnl_lock();
1187 
1188 	if (efx_net_active(efx->state)) {
1189 		efx_device_detach_sync(efx);
1190 
1191 		efx_stop_all(efx);
1192 		efx_disable_interrupts(efx);
1193 
1194 		efx->state = efx_freeze(efx->state);
1195 	}
1196 
1197 	rtnl_unlock();
1198 
1199 	return 0;
1200 }
1201 
1202 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1203 {
1204 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1205 
1206 	if (!efx)
1207 		return;
1208 
1209 	efx_pm_freeze(&pci_dev->dev);
1210 	pci_disable_device(pci_dev);
1211 }
1212 
1213 static int efx_pm_thaw(struct device *dev)
1214 {
1215 	int rc;
1216 	struct efx_nic *efx = dev_get_drvdata(dev);
1217 
1218 	rtnl_lock();
1219 
1220 	if (efx_frozen(efx->state)) {
1221 		rc = efx_enable_interrupts(efx);
1222 		if (rc)
1223 			goto fail;
1224 
1225 		mutex_lock(&efx->mac_lock);
1226 		efx_mcdi_port_reconfigure(efx);
1227 		mutex_unlock(&efx->mac_lock);
1228 
1229 		efx_start_all(efx);
1230 
1231 		efx_device_attach_if_not_resetting(efx);
1232 
1233 		efx->state = efx_thaw(efx->state);
1234 
1235 		efx->type->resume_wol(efx);
1236 	}
1237 
1238 	rtnl_unlock();
1239 
1240 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1241 	efx_queue_reset_work(efx);
1242 
1243 	return 0;
1244 
1245 fail:
1246 	rtnl_unlock();
1247 
1248 	return rc;
1249 }
1250 
1251 static int efx_pm_poweroff(struct device *dev)
1252 {
1253 	struct pci_dev *pci_dev = to_pci_dev(dev);
1254 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1255 
1256 	efx->type->fini(efx);
1257 
1258 	efx->reset_pending = 0;
1259 
1260 	pci_save_state(pci_dev);
1261 	return pci_set_power_state(pci_dev, PCI_D3hot);
1262 }
1263 
1264 /* Used for both resume and restore */
1265 static int efx_pm_resume(struct device *dev)
1266 {
1267 	struct pci_dev *pci_dev = to_pci_dev(dev);
1268 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1269 	int rc;
1270 
1271 	rc = pci_set_power_state(pci_dev, PCI_D0);
1272 	if (rc)
1273 		return rc;
1274 	pci_restore_state(pci_dev);
1275 	rc = pci_enable_device(pci_dev);
1276 	if (rc)
1277 		return rc;
1278 	pci_set_master(efx->pci_dev);
1279 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1280 	if (rc)
1281 		return rc;
1282 	down_write(&efx->filter_sem);
1283 	rc = efx->type->init(efx);
1284 	up_write(&efx->filter_sem);
1285 	if (rc)
1286 		return rc;
1287 	rc = efx_pm_thaw(dev);
1288 	return rc;
1289 }
1290 
1291 static int efx_pm_suspend(struct device *dev)
1292 {
1293 	int rc;
1294 
1295 	efx_pm_freeze(dev);
1296 	rc = efx_pm_poweroff(dev);
1297 	if (rc)
1298 		efx_pm_resume(dev);
1299 	return rc;
1300 }
1301 
1302 static const struct dev_pm_ops efx_pm_ops = {
1303 	.suspend	= efx_pm_suspend,
1304 	.resume		= efx_pm_resume,
1305 	.freeze		= efx_pm_freeze,
1306 	.thaw		= efx_pm_thaw,
1307 	.poweroff	= efx_pm_poweroff,
1308 	.restore	= efx_pm_resume,
1309 };
1310 
1311 static struct pci_driver efx_pci_driver = {
1312 	.name		= KBUILD_MODNAME,
1313 	.id_table	= efx_pci_table,
1314 	.probe		= efx_pci_probe,
1315 	.remove		= efx_pci_remove,
1316 	.driver.pm	= &efx_pm_ops,
1317 	.shutdown	= efx_pci_shutdown,
1318 	.err_handler	= &efx_err_handlers,
1319 #ifdef CONFIG_SFC_SRIOV
1320 	.sriov_configure = efx_pci_sriov_configure,
1321 #endif
1322 };
1323 
1324 /**************************************************************************
1325  *
1326  * Kernel module interface
1327  *
1328  *************************************************************************/
1329 
1330 static int __init efx_init_module(void)
1331 {
1332 	int rc;
1333 
1334 	printk(KERN_INFO "Solarflare NET driver\n");
1335 
1336 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1337 	if (rc)
1338 		goto err_notifier;
1339 
1340 	rc = efx_create_reset_workqueue();
1341 	if (rc)
1342 		goto err_reset;
1343 
1344 	rc = pci_register_driver(&efx_pci_driver);
1345 	if (rc < 0)
1346 		goto err_pci;
1347 
1348 	rc = pci_register_driver(&ef100_pci_driver);
1349 	if (rc < 0)
1350 		goto err_pci_ef100;
1351 
1352 	return 0;
1353 
1354  err_pci_ef100:
1355 	pci_unregister_driver(&efx_pci_driver);
1356  err_pci:
1357 	efx_destroy_reset_workqueue();
1358  err_reset:
1359 	unregister_netdevice_notifier(&efx_netdev_notifier);
1360  err_notifier:
1361 	return rc;
1362 }
1363 
1364 static void __exit efx_exit_module(void)
1365 {
1366 	printk(KERN_INFO "Solarflare NET driver unloading\n");
1367 
1368 	pci_unregister_driver(&ef100_pci_driver);
1369 	pci_unregister_driver(&efx_pci_driver);
1370 	efx_destroy_reset_workqueue();
1371 	unregister_netdevice_notifier(&efx_netdev_notifier);
1372 
1373 }
1374 
1375 module_init(efx_init_module);
1376 module_exit(efx_exit_module);
1377 
1378 MODULE_AUTHOR("Solarflare Communications and "
1379 	      "Michael Brown <mbrown@fensystems.co.uk>");
1380 MODULE_DESCRIPTION("Solarflare network driver");
1381 MODULE_LICENSE("GPL");
1382 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1383