xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision f7308991bfeea3f6a4c6281c64fc1ba9dc6e56b3)
1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sys_soc.h>
35 
36 #include <asm/div64.h>
37 
38 #include "ravb.h"
39 
40 #define RAVB_DEF_MSG_ENABLE \
41 		(NETIF_MSG_LINK	  | \
42 		 NETIF_MSG_TIMER  | \
43 		 NETIF_MSG_RX_ERR | \
44 		 NETIF_MSG_TX_ERR)
45 
46 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
47 	"ch0", /* RAVB_BE */
48 	"ch1", /* RAVB_NC */
49 };
50 
51 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
52 	"ch18", /* RAVB_BE */
53 	"ch19", /* RAVB_NC */
54 };
55 
56 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
57 		 u32 set)
58 {
59 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
60 }
61 
62 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
63 {
64 	int i;
65 
66 	for (i = 0; i < 10000; i++) {
67 		if ((ravb_read(ndev, reg) & mask) == value)
68 			return 0;
69 		udelay(10);
70 	}
71 	return -ETIMEDOUT;
72 }
73 
74 static int ravb_config(struct net_device *ndev)
75 {
76 	int error;
77 
78 	/* Set config mode */
79 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
80 	/* Check if the operating mode is changed to the config mode */
81 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
82 	if (error)
83 		netdev_err(ndev, "failed to switch device to config mode\n");
84 
85 	return error;
86 }
87 
88 static void ravb_set_duplex(struct net_device *ndev)
89 {
90 	struct ravb_private *priv = netdev_priv(ndev);
91 
92 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
93 }
94 
95 static void ravb_set_rate(struct net_device *ndev)
96 {
97 	struct ravb_private *priv = netdev_priv(ndev);
98 
99 	switch (priv->speed) {
100 	case 100:		/* 100BASE */
101 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
102 		break;
103 	case 1000:		/* 1000BASE */
104 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
105 		break;
106 	}
107 }
108 
109 static void ravb_set_buffer_align(struct sk_buff *skb)
110 {
111 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
112 
113 	if (reserve)
114 		skb_reserve(skb, RAVB_ALIGN - reserve);
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
122 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
123 {
124 	if (mac) {
125 		ether_addr_copy(ndev->dev_addr, mac);
126 	} else {
127 		u32 mahr = ravb_read(ndev, MAHR);
128 		u32 malr = ravb_read(ndev, MALR);
129 
130 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
131 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
132 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
133 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
134 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
135 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
136 	}
137 }
138 
139 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
140 {
141 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
142 						 mdiobb);
143 
144 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
145 }
146 
147 /* MDC pin control */
148 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
149 {
150 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
151 }
152 
153 /* Data I/O pin control */
154 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
155 {
156 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
157 }
158 
159 /* Set data bit */
160 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
161 {
162 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
163 }
164 
165 /* Get data bit */
166 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
167 {
168 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
169 						 mdiobb);
170 
171 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
172 }
173 
174 /* MDIO bus control struct */
175 static struct mdiobb_ops bb_ops = {
176 	.owner = THIS_MODULE,
177 	.set_mdc = ravb_set_mdc,
178 	.set_mdio_dir = ravb_set_mdio_dir,
179 	.set_mdio_data = ravb_set_mdio_data,
180 	.get_mdio_data = ravb_get_mdio_data,
181 };
182 
183 /* Free TX skb function for AVB-IP */
184 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
185 {
186 	struct ravb_private *priv = netdev_priv(ndev);
187 	struct net_device_stats *stats = &priv->stats[q];
188 	struct ravb_tx_desc *desc;
189 	int free_num = 0;
190 	int entry;
191 	u32 size;
192 
193 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
194 		bool txed;
195 
196 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
197 					     NUM_TX_DESC);
198 		desc = &priv->tx_ring[q][entry];
199 		txed = desc->die_dt == DT_FEMPTY;
200 		if (free_txed_only && !txed)
201 			break;
202 		/* Descriptor type must be checked before all other reads */
203 		dma_rmb();
204 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
205 		/* Free the original skb. */
206 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
207 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
208 					 size, DMA_TO_DEVICE);
209 			/* Last packet descriptor? */
210 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
211 				entry /= NUM_TX_DESC;
212 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
213 				priv->tx_skb[q][entry] = NULL;
214 				if (txed)
215 					stats->tx_packets++;
216 			}
217 			free_num++;
218 		}
219 		if (txed)
220 			stats->tx_bytes += size;
221 		desc->die_dt = DT_EEMPTY;
222 	}
223 	return free_num;
224 }
225 
226 /* Free skb's and DMA buffers for Ethernet AVB */
227 static void ravb_ring_free(struct net_device *ndev, int q)
228 {
229 	struct ravb_private *priv = netdev_priv(ndev);
230 	int ring_size;
231 	int i;
232 
233 	if (priv->rx_ring[q]) {
234 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
235 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
236 
237 			if (!dma_mapping_error(ndev->dev.parent,
238 					       le32_to_cpu(desc->dptr)))
239 				dma_unmap_single(ndev->dev.parent,
240 						 le32_to_cpu(desc->dptr),
241 						 priv->rx_buf_sz,
242 						 DMA_FROM_DEVICE);
243 		}
244 		ring_size = sizeof(struct ravb_ex_rx_desc) *
245 			    (priv->num_rx_ring[q] + 1);
246 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
247 				  priv->rx_desc_dma[q]);
248 		priv->rx_ring[q] = NULL;
249 	}
250 
251 	if (priv->tx_ring[q]) {
252 		ravb_tx_free(ndev, q, false);
253 
254 		ring_size = sizeof(struct ravb_tx_desc) *
255 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
256 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
257 				  priv->tx_desc_dma[q]);
258 		priv->tx_ring[q] = NULL;
259 	}
260 
261 	/* Free RX skb ringbuffer */
262 	if (priv->rx_skb[q]) {
263 		for (i = 0; i < priv->num_rx_ring[q]; i++)
264 			dev_kfree_skb(priv->rx_skb[q][i]);
265 	}
266 	kfree(priv->rx_skb[q]);
267 	priv->rx_skb[q] = NULL;
268 
269 	/* Free aligned TX buffers */
270 	kfree(priv->tx_align[q]);
271 	priv->tx_align[q] = NULL;
272 
273 	/* Free TX skb ringbuffer.
274 	 * SKBs are freed by ravb_tx_free() call above.
275 	 */
276 	kfree(priv->tx_skb[q]);
277 	priv->tx_skb[q] = NULL;
278 }
279 
280 /* Format skb and descriptor buffer for Ethernet AVB */
281 static void ravb_ring_format(struct net_device *ndev, int q)
282 {
283 	struct ravb_private *priv = netdev_priv(ndev);
284 	struct ravb_ex_rx_desc *rx_desc;
285 	struct ravb_tx_desc *tx_desc;
286 	struct ravb_desc *desc;
287 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
288 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
289 			   NUM_TX_DESC;
290 	dma_addr_t dma_addr;
291 	int i;
292 
293 	priv->cur_rx[q] = 0;
294 	priv->cur_tx[q] = 0;
295 	priv->dirty_rx[q] = 0;
296 	priv->dirty_tx[q] = 0;
297 
298 	memset(priv->rx_ring[q], 0, rx_ring_size);
299 	/* Build RX ring buffer */
300 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
301 		/* RX descriptor */
302 		rx_desc = &priv->rx_ring[q][i];
303 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
304 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
305 					  priv->rx_buf_sz,
306 					  DMA_FROM_DEVICE);
307 		/* We just set the data size to 0 for a failed mapping which
308 		 * should prevent DMA from happening...
309 		 */
310 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
311 			rx_desc->ds_cc = cpu_to_le16(0);
312 		rx_desc->dptr = cpu_to_le32(dma_addr);
313 		rx_desc->die_dt = DT_FEMPTY;
314 	}
315 	rx_desc = &priv->rx_ring[q][i];
316 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
317 	rx_desc->die_dt = DT_LINKFIX; /* type */
318 
319 	memset(priv->tx_ring[q], 0, tx_ring_size);
320 	/* Build TX ring buffer */
321 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
322 	     i++, tx_desc++) {
323 		tx_desc->die_dt = DT_EEMPTY;
324 		tx_desc++;
325 		tx_desc->die_dt = DT_EEMPTY;
326 	}
327 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
328 	tx_desc->die_dt = DT_LINKFIX; /* type */
329 
330 	/* RX descriptor base address for best effort */
331 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
334 
335 	/* TX descriptor base address for best effort */
336 	desc = &priv->desc_bat[q];
337 	desc->die_dt = DT_LINKFIX; /* type */
338 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
339 }
340 
341 /* Init skb and descriptor buffer for Ethernet AVB */
342 static int ravb_ring_init(struct net_device *ndev, int q)
343 {
344 	struct ravb_private *priv = netdev_priv(ndev);
345 	struct sk_buff *skb;
346 	int ring_size;
347 	int i;
348 
349 	/* +16 gets room from the status from the card. */
350 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
351 		ETH_HLEN + VLAN_HLEN;
352 
353 	/* Allocate RX and TX skb rings */
354 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
355 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
356 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
357 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
358 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
359 		goto error;
360 
361 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
362 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
363 		if (!skb)
364 			goto error;
365 		ravb_set_buffer_align(skb);
366 		priv->rx_skb[q][i] = skb;
367 	}
368 
369 	/* Allocate rings for the aligned buffers */
370 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
371 				    DPTR_ALIGN - 1, GFP_KERNEL);
372 	if (!priv->tx_align[q])
373 		goto error;
374 
375 	/* Allocate all RX descriptors. */
376 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
377 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
378 					      &priv->rx_desc_dma[q],
379 					      GFP_KERNEL);
380 	if (!priv->rx_ring[q])
381 		goto error;
382 
383 	priv->dirty_rx[q] = 0;
384 
385 	/* Allocate all TX descriptors. */
386 	ring_size = sizeof(struct ravb_tx_desc) *
387 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
388 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
389 					      &priv->tx_desc_dma[q],
390 					      GFP_KERNEL);
391 	if (!priv->tx_ring[q])
392 		goto error;
393 
394 	return 0;
395 
396 error:
397 	ravb_ring_free(ndev, q);
398 
399 	return -ENOMEM;
400 }
401 
402 /* E-MAC init function */
403 static void ravb_emac_init(struct net_device *ndev)
404 {
405 	struct ravb_private *priv = netdev_priv(ndev);
406 
407 	/* Receive frame limit set register */
408 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
409 
410 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
411 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
412 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
413 		   ECMR_TE | ECMR_RE, ECMR);
414 
415 	ravb_set_rate(ndev);
416 
417 	/* Set MAC address */
418 	ravb_write(ndev,
419 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
420 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
421 	ravb_write(ndev,
422 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
423 
424 	/* E-MAC status register clear */
425 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
426 
427 	/* E-MAC interrupt enable register */
428 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
429 }
430 
431 /* Device init function for Ethernet AVB */
432 static int ravb_dmac_init(struct net_device *ndev)
433 {
434 	struct ravb_private *priv = netdev_priv(ndev);
435 	int error;
436 
437 	/* Set CONFIG mode */
438 	error = ravb_config(ndev);
439 	if (error)
440 		return error;
441 
442 	error = ravb_ring_init(ndev, RAVB_BE);
443 	if (error)
444 		return error;
445 	error = ravb_ring_init(ndev, RAVB_NC);
446 	if (error) {
447 		ravb_ring_free(ndev, RAVB_BE);
448 		return error;
449 	}
450 
451 	/* Descriptor format */
452 	ravb_ring_format(ndev, RAVB_BE);
453 	ravb_ring_format(ndev, RAVB_NC);
454 
455 #if defined(__LITTLE_ENDIAN)
456 	ravb_modify(ndev, CCC, CCC_BOC, 0);
457 #else
458 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
459 #endif
460 
461 	/* Set AVB RX */
462 	ravb_write(ndev,
463 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
464 
465 	/* Set FIFO size */
466 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
467 
468 	/* Timestamp enable */
469 	ravb_write(ndev, TCCR_TFEN, TCCR);
470 
471 	/* Interrupt init: */
472 	if (priv->chip_id == RCAR_GEN3) {
473 		/* Clear DIL.DPLx */
474 		ravb_write(ndev, 0, DIL);
475 		/* Set queue specific interrupt */
476 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
477 	}
478 	/* Frame receive */
479 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
480 	/* Disable FIFO full warning */
481 	ravb_write(ndev, 0, RIC1);
482 	/* Receive FIFO full error, descriptor empty */
483 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
484 	/* Frame transmitted, timestamp FIFO updated */
485 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
486 
487 	/* Setting the control will start the AVB-DMAC process. */
488 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
489 
490 	return 0;
491 }
492 
493 static void ravb_get_tx_tstamp(struct net_device *ndev)
494 {
495 	struct ravb_private *priv = netdev_priv(ndev);
496 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
497 	struct skb_shared_hwtstamps shhwtstamps;
498 	struct sk_buff *skb;
499 	struct timespec64 ts;
500 	u16 tag, tfa_tag;
501 	int count;
502 	u32 tfa2;
503 
504 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
505 	while (count--) {
506 		tfa2 = ravb_read(ndev, TFA2);
507 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
508 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
509 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
510 			    ravb_read(ndev, TFA1);
511 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
512 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
513 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
514 					 list) {
515 			skb = ts_skb->skb;
516 			tag = ts_skb->tag;
517 			list_del(&ts_skb->list);
518 			kfree(ts_skb);
519 			if (tag == tfa_tag) {
520 				skb_tstamp_tx(skb, &shhwtstamps);
521 				break;
522 			}
523 		}
524 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
525 	}
526 }
527 
528 static void ravb_rx_csum(struct sk_buff *skb)
529 {
530 	u8 *hw_csum;
531 
532 	/* The hardware checksum is 2 bytes appended to packet data */
533 	if (unlikely(skb->len < 2))
534 		return;
535 	hw_csum = skb_tail_pointer(skb) - 2;
536 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
537 	skb->ip_summed = CHECKSUM_COMPLETE;
538 	skb_trim(skb, skb->len - 2);
539 }
540 
541 /* Packet receive function for Ethernet AVB */
542 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
543 {
544 	struct ravb_private *priv = netdev_priv(ndev);
545 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
546 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
547 			priv->cur_rx[q];
548 	struct net_device_stats *stats = &priv->stats[q];
549 	struct ravb_ex_rx_desc *desc;
550 	struct sk_buff *skb;
551 	dma_addr_t dma_addr;
552 	struct timespec64 ts;
553 	u8  desc_status;
554 	u16 pkt_len;
555 	int limit;
556 
557 	boguscnt = min(boguscnt, *quota);
558 	limit = boguscnt;
559 	desc = &priv->rx_ring[q][entry];
560 	while (desc->die_dt != DT_FEMPTY) {
561 		/* Descriptor type must be checked before all other reads */
562 		dma_rmb();
563 		desc_status = desc->msc;
564 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
565 
566 		if (--boguscnt < 0)
567 			break;
568 
569 		/* We use 0-byte descriptors to mark the DMA mapping errors */
570 		if (!pkt_len)
571 			continue;
572 
573 		if (desc_status & MSC_MC)
574 			stats->multicast++;
575 
576 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
577 				   MSC_CEEF)) {
578 			stats->rx_errors++;
579 			if (desc_status & MSC_CRC)
580 				stats->rx_crc_errors++;
581 			if (desc_status & MSC_RFE)
582 				stats->rx_frame_errors++;
583 			if (desc_status & (MSC_RTLF | MSC_RTSF))
584 				stats->rx_length_errors++;
585 			if (desc_status & MSC_CEEF)
586 				stats->rx_missed_errors++;
587 		} else {
588 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
589 
590 			skb = priv->rx_skb[q][entry];
591 			priv->rx_skb[q][entry] = NULL;
592 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
593 					 priv->rx_buf_sz,
594 					 DMA_FROM_DEVICE);
595 			get_ts &= (q == RAVB_NC) ?
596 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
597 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
598 			if (get_ts) {
599 				struct skb_shared_hwtstamps *shhwtstamps;
600 
601 				shhwtstamps = skb_hwtstamps(skb);
602 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
603 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
604 					     32) | le32_to_cpu(desc->ts_sl);
605 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
606 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
607 			}
608 
609 			skb_put(skb, pkt_len);
610 			skb->protocol = eth_type_trans(skb, ndev);
611 			if (ndev->features & NETIF_F_RXCSUM)
612 				ravb_rx_csum(skb);
613 			napi_gro_receive(&priv->napi[q], skb);
614 			stats->rx_packets++;
615 			stats->rx_bytes += pkt_len;
616 		}
617 
618 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
619 		desc = &priv->rx_ring[q][entry];
620 	}
621 
622 	/* Refill the RX ring buffers. */
623 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
624 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
625 		desc = &priv->rx_ring[q][entry];
626 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
627 
628 		if (!priv->rx_skb[q][entry]) {
629 			skb = netdev_alloc_skb(ndev,
630 					       priv->rx_buf_sz +
631 					       RAVB_ALIGN - 1);
632 			if (!skb)
633 				break;	/* Better luck next round. */
634 			ravb_set_buffer_align(skb);
635 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
636 						  le16_to_cpu(desc->ds_cc),
637 						  DMA_FROM_DEVICE);
638 			skb_checksum_none_assert(skb);
639 			/* We just set the data size to 0 for a failed mapping
640 			 * which should prevent DMA  from happening...
641 			 */
642 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
643 				desc->ds_cc = cpu_to_le16(0);
644 			desc->dptr = cpu_to_le32(dma_addr);
645 			priv->rx_skb[q][entry] = skb;
646 		}
647 		/* Descriptor type must be set after all the above writes */
648 		dma_wmb();
649 		desc->die_dt = DT_FEMPTY;
650 	}
651 
652 	*quota -= limit - (++boguscnt);
653 
654 	return boguscnt <= 0;
655 }
656 
657 static void ravb_rcv_snd_disable(struct net_device *ndev)
658 {
659 	/* Disable TX and RX */
660 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
661 }
662 
663 static void ravb_rcv_snd_enable(struct net_device *ndev)
664 {
665 	/* Enable TX and RX */
666 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
667 }
668 
669 /* function for waiting dma process finished */
670 static int ravb_stop_dma(struct net_device *ndev)
671 {
672 	int error;
673 
674 	/* Wait for stopping the hardware TX process */
675 	error = ravb_wait(ndev, TCCR,
676 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
677 	if (error)
678 		return error;
679 
680 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
681 			  0);
682 	if (error)
683 		return error;
684 
685 	/* Stop the E-MAC's RX/TX processes. */
686 	ravb_rcv_snd_disable(ndev);
687 
688 	/* Wait for stopping the RX DMA process */
689 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
690 	if (error)
691 		return error;
692 
693 	/* Stop AVB-DMAC process */
694 	return ravb_config(ndev);
695 }
696 
697 /* E-MAC interrupt handler */
698 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
699 {
700 	struct ravb_private *priv = netdev_priv(ndev);
701 	u32 ecsr, psr;
702 
703 	ecsr = ravb_read(ndev, ECSR);
704 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
705 
706 	if (ecsr & ECSR_MPD)
707 		pm_wakeup_event(&priv->pdev->dev, 0);
708 	if (ecsr & ECSR_ICD)
709 		ndev->stats.tx_carrier_errors++;
710 	if (ecsr & ECSR_LCHNG) {
711 		/* Link changed */
712 		if (priv->no_avb_link)
713 			return;
714 		psr = ravb_read(ndev, PSR);
715 		if (priv->avb_link_active_low)
716 			psr ^= PSR_LMON;
717 		if (!(psr & PSR_LMON)) {
718 			/* DIsable RX and TX */
719 			ravb_rcv_snd_disable(ndev);
720 		} else {
721 			/* Enable RX and TX */
722 			ravb_rcv_snd_enable(ndev);
723 		}
724 	}
725 }
726 
727 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
728 {
729 	struct net_device *ndev = dev_id;
730 	struct ravb_private *priv = netdev_priv(ndev);
731 
732 	spin_lock(&priv->lock);
733 	ravb_emac_interrupt_unlocked(ndev);
734 	mmiowb();
735 	spin_unlock(&priv->lock);
736 	return IRQ_HANDLED;
737 }
738 
739 /* Error interrupt handler */
740 static void ravb_error_interrupt(struct net_device *ndev)
741 {
742 	struct ravb_private *priv = netdev_priv(ndev);
743 	u32 eis, ris2;
744 
745 	eis = ravb_read(ndev, EIS);
746 	ravb_write(ndev, ~EIS_QFS, EIS);
747 	if (eis & EIS_QFS) {
748 		ris2 = ravb_read(ndev, RIS2);
749 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
750 
751 		/* Receive Descriptor Empty int */
752 		if (ris2 & RIS2_QFF0)
753 			priv->stats[RAVB_BE].rx_over_errors++;
754 
755 		    /* Receive Descriptor Empty int */
756 		if (ris2 & RIS2_QFF1)
757 			priv->stats[RAVB_NC].rx_over_errors++;
758 
759 		/* Receive FIFO Overflow int */
760 		if (ris2 & RIS2_RFFF)
761 			priv->rx_fifo_errors++;
762 	}
763 }
764 
765 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
766 {
767 	struct ravb_private *priv = netdev_priv(ndev);
768 	u32 ris0 = ravb_read(ndev, RIS0);
769 	u32 ric0 = ravb_read(ndev, RIC0);
770 	u32 tis  = ravb_read(ndev, TIS);
771 	u32 tic  = ravb_read(ndev, TIC);
772 
773 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
774 		if (napi_schedule_prep(&priv->napi[q])) {
775 			/* Mask RX and TX interrupts */
776 			if (priv->chip_id == RCAR_GEN2) {
777 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
778 				ravb_write(ndev, tic & ~BIT(q), TIC);
779 			} else {
780 				ravb_write(ndev, BIT(q), RID0);
781 				ravb_write(ndev, BIT(q), TID);
782 			}
783 			__napi_schedule(&priv->napi[q]);
784 		} else {
785 			netdev_warn(ndev,
786 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
787 				    ris0, ric0);
788 			netdev_warn(ndev,
789 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
790 				    tis, tic);
791 		}
792 		return true;
793 	}
794 	return false;
795 }
796 
797 static bool ravb_timestamp_interrupt(struct net_device *ndev)
798 {
799 	u32 tis = ravb_read(ndev, TIS);
800 
801 	if (tis & TIS_TFUF) {
802 		ravb_write(ndev, ~TIS_TFUF, TIS);
803 		ravb_get_tx_tstamp(ndev);
804 		return true;
805 	}
806 	return false;
807 }
808 
809 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
810 {
811 	struct net_device *ndev = dev_id;
812 	struct ravb_private *priv = netdev_priv(ndev);
813 	irqreturn_t result = IRQ_NONE;
814 	u32 iss;
815 
816 	spin_lock(&priv->lock);
817 	/* Get interrupt status */
818 	iss = ravb_read(ndev, ISS);
819 
820 	/* Received and transmitted interrupts */
821 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
822 		int q;
823 
824 		/* Timestamp updated */
825 		if (ravb_timestamp_interrupt(ndev))
826 			result = IRQ_HANDLED;
827 
828 		/* Network control and best effort queue RX/TX */
829 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
830 			if (ravb_queue_interrupt(ndev, q))
831 				result = IRQ_HANDLED;
832 		}
833 	}
834 
835 	/* E-MAC status summary */
836 	if (iss & ISS_MS) {
837 		ravb_emac_interrupt_unlocked(ndev);
838 		result = IRQ_HANDLED;
839 	}
840 
841 	/* Error status summary */
842 	if (iss & ISS_ES) {
843 		ravb_error_interrupt(ndev);
844 		result = IRQ_HANDLED;
845 	}
846 
847 	/* gPTP interrupt status summary */
848 	if (iss & ISS_CGIS) {
849 		ravb_ptp_interrupt(ndev);
850 		result = IRQ_HANDLED;
851 	}
852 
853 	mmiowb();
854 	spin_unlock(&priv->lock);
855 	return result;
856 }
857 
858 /* Timestamp/Error/gPTP interrupt handler */
859 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
860 {
861 	struct net_device *ndev = dev_id;
862 	struct ravb_private *priv = netdev_priv(ndev);
863 	irqreturn_t result = IRQ_NONE;
864 	u32 iss;
865 
866 	spin_lock(&priv->lock);
867 	/* Get interrupt status */
868 	iss = ravb_read(ndev, ISS);
869 
870 	/* Timestamp updated */
871 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
872 		result = IRQ_HANDLED;
873 
874 	/* Error status summary */
875 	if (iss & ISS_ES) {
876 		ravb_error_interrupt(ndev);
877 		result = IRQ_HANDLED;
878 	}
879 
880 	/* gPTP interrupt status summary */
881 	if (iss & ISS_CGIS) {
882 		ravb_ptp_interrupt(ndev);
883 		result = IRQ_HANDLED;
884 	}
885 
886 	mmiowb();
887 	spin_unlock(&priv->lock);
888 	return result;
889 }
890 
891 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
892 {
893 	struct net_device *ndev = dev_id;
894 	struct ravb_private *priv = netdev_priv(ndev);
895 	irqreturn_t result = IRQ_NONE;
896 
897 	spin_lock(&priv->lock);
898 
899 	/* Network control/Best effort queue RX/TX */
900 	if (ravb_queue_interrupt(ndev, q))
901 		result = IRQ_HANDLED;
902 
903 	mmiowb();
904 	spin_unlock(&priv->lock);
905 	return result;
906 }
907 
908 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
909 {
910 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
911 }
912 
913 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
914 {
915 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
916 }
917 
918 static int ravb_poll(struct napi_struct *napi, int budget)
919 {
920 	struct net_device *ndev = napi->dev;
921 	struct ravb_private *priv = netdev_priv(ndev);
922 	unsigned long flags;
923 	int q = napi - priv->napi;
924 	int mask = BIT(q);
925 	int quota = budget;
926 	u32 ris0, tis;
927 
928 	for (;;) {
929 		tis = ravb_read(ndev, TIS);
930 		ris0 = ravb_read(ndev, RIS0);
931 		if (!((ris0 & mask) || (tis & mask)))
932 			break;
933 
934 		/* Processing RX Descriptor Ring */
935 		if (ris0 & mask) {
936 			/* Clear RX interrupt */
937 			ravb_write(ndev, ~mask, RIS0);
938 			if (ravb_rx(ndev, &quota, q))
939 				goto out;
940 		}
941 		/* Processing TX Descriptor Ring */
942 		if (tis & mask) {
943 			spin_lock_irqsave(&priv->lock, flags);
944 			/* Clear TX interrupt */
945 			ravb_write(ndev, ~mask, TIS);
946 			ravb_tx_free(ndev, q, true);
947 			netif_wake_subqueue(ndev, q);
948 			mmiowb();
949 			spin_unlock_irqrestore(&priv->lock, flags);
950 		}
951 	}
952 
953 	napi_complete(napi);
954 
955 	/* Re-enable RX/TX interrupts */
956 	spin_lock_irqsave(&priv->lock, flags);
957 	if (priv->chip_id == RCAR_GEN2) {
958 		ravb_modify(ndev, RIC0, mask, mask);
959 		ravb_modify(ndev, TIC,  mask, mask);
960 	} else {
961 		ravb_write(ndev, mask, RIE0);
962 		ravb_write(ndev, mask, TIE);
963 	}
964 	mmiowb();
965 	spin_unlock_irqrestore(&priv->lock, flags);
966 
967 	/* Receive error message handling */
968 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
969 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
970 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
971 		ndev->stats.rx_over_errors = priv->rx_over_errors;
972 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
973 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
974 out:
975 	return budget - quota;
976 }
977 
978 /* PHY state control function */
979 static void ravb_adjust_link(struct net_device *ndev)
980 {
981 	struct ravb_private *priv = netdev_priv(ndev);
982 	struct phy_device *phydev = ndev->phydev;
983 	bool new_state = false;
984 
985 	if (phydev->link) {
986 		if (phydev->duplex != priv->duplex) {
987 			new_state = true;
988 			priv->duplex = phydev->duplex;
989 			ravb_set_duplex(ndev);
990 		}
991 
992 		if (phydev->speed != priv->speed) {
993 			new_state = true;
994 			priv->speed = phydev->speed;
995 			ravb_set_rate(ndev);
996 		}
997 		if (!priv->link) {
998 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
999 			new_state = true;
1000 			priv->link = phydev->link;
1001 			if (priv->no_avb_link)
1002 				ravb_rcv_snd_enable(ndev);
1003 		}
1004 	} else if (priv->link) {
1005 		new_state = true;
1006 		priv->link = 0;
1007 		priv->speed = 0;
1008 		priv->duplex = -1;
1009 		if (priv->no_avb_link)
1010 			ravb_rcv_snd_disable(ndev);
1011 	}
1012 
1013 	if (new_state && netif_msg_link(priv))
1014 		phy_print_status(phydev);
1015 }
1016 
1017 static const struct soc_device_attribute r8a7795es10[] = {
1018 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1019 	{ /* sentinel */ }
1020 };
1021 
1022 /* PHY init function */
1023 static int ravb_phy_init(struct net_device *ndev)
1024 {
1025 	struct device_node *np = ndev->dev.parent->of_node;
1026 	struct ravb_private *priv = netdev_priv(ndev);
1027 	struct phy_device *phydev;
1028 	struct device_node *pn;
1029 	int err;
1030 
1031 	priv->link = 0;
1032 	priv->speed = 0;
1033 	priv->duplex = -1;
1034 
1035 	/* Try connecting to PHY */
1036 	pn = of_parse_phandle(np, "phy-handle", 0);
1037 	if (!pn) {
1038 		/* In the case of a fixed PHY, the DT node associated
1039 		 * to the PHY is the Ethernet MAC DT node.
1040 		 */
1041 		if (of_phy_is_fixed_link(np)) {
1042 			err = of_phy_register_fixed_link(np);
1043 			if (err)
1044 				return err;
1045 		}
1046 		pn = of_node_get(np);
1047 	}
1048 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1049 				priv->phy_interface);
1050 	of_node_put(pn);
1051 	if (!phydev) {
1052 		netdev_err(ndev, "failed to connect PHY\n");
1053 		err = -ENOENT;
1054 		goto err_deregister_fixed_link;
1055 	}
1056 
1057 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1058 	 * at this time.
1059 	 */
1060 	if (soc_device_match(r8a7795es10)) {
1061 		err = phy_set_max_speed(phydev, SPEED_100);
1062 		if (err) {
1063 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1064 			goto err_phy_disconnect;
1065 		}
1066 
1067 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1068 	}
1069 
1070 	/* 10BASE is not supported */
1071 	phydev->supported &= ~PHY_10BT_FEATURES;
1072 
1073 	phy_attached_info(phydev);
1074 
1075 	return 0;
1076 
1077 err_phy_disconnect:
1078 	phy_disconnect(phydev);
1079 err_deregister_fixed_link:
1080 	if (of_phy_is_fixed_link(np))
1081 		of_phy_deregister_fixed_link(np);
1082 
1083 	return err;
1084 }
1085 
1086 /* PHY control start function */
1087 static int ravb_phy_start(struct net_device *ndev)
1088 {
1089 	int error;
1090 
1091 	error = ravb_phy_init(ndev);
1092 	if (error)
1093 		return error;
1094 
1095 	phy_start(ndev->phydev);
1096 
1097 	return 0;
1098 }
1099 
1100 static int ravb_get_link_ksettings(struct net_device *ndev,
1101 				   struct ethtool_link_ksettings *cmd)
1102 {
1103 	struct ravb_private *priv = netdev_priv(ndev);
1104 	unsigned long flags;
1105 
1106 	if (!ndev->phydev)
1107 		return -ENODEV;
1108 
1109 	spin_lock_irqsave(&priv->lock, flags);
1110 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1111 	spin_unlock_irqrestore(&priv->lock, flags);
1112 
1113 	return 0;
1114 }
1115 
1116 static int ravb_set_link_ksettings(struct net_device *ndev,
1117 				   const struct ethtool_link_ksettings *cmd)
1118 {
1119 	struct ravb_private *priv = netdev_priv(ndev);
1120 	unsigned long flags;
1121 	int error;
1122 
1123 	if (!ndev->phydev)
1124 		return -ENODEV;
1125 
1126 	spin_lock_irqsave(&priv->lock, flags);
1127 
1128 	/* Disable TX and RX */
1129 	ravb_rcv_snd_disable(ndev);
1130 
1131 	error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1132 	if (error)
1133 		goto error_exit;
1134 
1135 	if (cmd->base.duplex == DUPLEX_FULL)
1136 		priv->duplex = 1;
1137 	else
1138 		priv->duplex = 0;
1139 
1140 	ravb_set_duplex(ndev);
1141 
1142 error_exit:
1143 	mdelay(1);
1144 
1145 	/* Enable TX and RX */
1146 	ravb_rcv_snd_enable(ndev);
1147 
1148 	mmiowb();
1149 	spin_unlock_irqrestore(&priv->lock, flags);
1150 
1151 	return error;
1152 }
1153 
1154 static int ravb_nway_reset(struct net_device *ndev)
1155 {
1156 	struct ravb_private *priv = netdev_priv(ndev);
1157 	int error = -ENODEV;
1158 	unsigned long flags;
1159 
1160 	if (ndev->phydev) {
1161 		spin_lock_irqsave(&priv->lock, flags);
1162 		error = phy_start_aneg(ndev->phydev);
1163 		spin_unlock_irqrestore(&priv->lock, flags);
1164 	}
1165 
1166 	return error;
1167 }
1168 
1169 static u32 ravb_get_msglevel(struct net_device *ndev)
1170 {
1171 	struct ravb_private *priv = netdev_priv(ndev);
1172 
1173 	return priv->msg_enable;
1174 }
1175 
1176 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1177 {
1178 	struct ravb_private *priv = netdev_priv(ndev);
1179 
1180 	priv->msg_enable = value;
1181 }
1182 
1183 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1184 	"rx_queue_0_current",
1185 	"tx_queue_0_current",
1186 	"rx_queue_0_dirty",
1187 	"tx_queue_0_dirty",
1188 	"rx_queue_0_packets",
1189 	"tx_queue_0_packets",
1190 	"rx_queue_0_bytes",
1191 	"tx_queue_0_bytes",
1192 	"rx_queue_0_mcast_packets",
1193 	"rx_queue_0_errors",
1194 	"rx_queue_0_crc_errors",
1195 	"rx_queue_0_frame_errors",
1196 	"rx_queue_0_length_errors",
1197 	"rx_queue_0_missed_errors",
1198 	"rx_queue_0_over_errors",
1199 
1200 	"rx_queue_1_current",
1201 	"tx_queue_1_current",
1202 	"rx_queue_1_dirty",
1203 	"tx_queue_1_dirty",
1204 	"rx_queue_1_packets",
1205 	"tx_queue_1_packets",
1206 	"rx_queue_1_bytes",
1207 	"tx_queue_1_bytes",
1208 	"rx_queue_1_mcast_packets",
1209 	"rx_queue_1_errors",
1210 	"rx_queue_1_crc_errors",
1211 	"rx_queue_1_frame_errors",
1212 	"rx_queue_1_length_errors",
1213 	"rx_queue_1_missed_errors",
1214 	"rx_queue_1_over_errors",
1215 };
1216 
1217 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1218 
1219 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1220 {
1221 	switch (sset) {
1222 	case ETH_SS_STATS:
1223 		return RAVB_STATS_LEN;
1224 	default:
1225 		return -EOPNOTSUPP;
1226 	}
1227 }
1228 
1229 static void ravb_get_ethtool_stats(struct net_device *ndev,
1230 				   struct ethtool_stats *stats, u64 *data)
1231 {
1232 	struct ravb_private *priv = netdev_priv(ndev);
1233 	int i = 0;
1234 	int q;
1235 
1236 	/* Device-specific stats */
1237 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1238 		struct net_device_stats *stats = &priv->stats[q];
1239 
1240 		data[i++] = priv->cur_rx[q];
1241 		data[i++] = priv->cur_tx[q];
1242 		data[i++] = priv->dirty_rx[q];
1243 		data[i++] = priv->dirty_tx[q];
1244 		data[i++] = stats->rx_packets;
1245 		data[i++] = stats->tx_packets;
1246 		data[i++] = stats->rx_bytes;
1247 		data[i++] = stats->tx_bytes;
1248 		data[i++] = stats->multicast;
1249 		data[i++] = stats->rx_errors;
1250 		data[i++] = stats->rx_crc_errors;
1251 		data[i++] = stats->rx_frame_errors;
1252 		data[i++] = stats->rx_length_errors;
1253 		data[i++] = stats->rx_missed_errors;
1254 		data[i++] = stats->rx_over_errors;
1255 	}
1256 }
1257 
1258 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1259 {
1260 	switch (stringset) {
1261 	case ETH_SS_STATS:
1262 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1263 		break;
1264 	}
1265 }
1266 
1267 static void ravb_get_ringparam(struct net_device *ndev,
1268 			       struct ethtool_ringparam *ring)
1269 {
1270 	struct ravb_private *priv = netdev_priv(ndev);
1271 
1272 	ring->rx_max_pending = BE_RX_RING_MAX;
1273 	ring->tx_max_pending = BE_TX_RING_MAX;
1274 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1275 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1276 }
1277 
1278 static int ravb_set_ringparam(struct net_device *ndev,
1279 			      struct ethtool_ringparam *ring)
1280 {
1281 	struct ravb_private *priv = netdev_priv(ndev);
1282 	int error;
1283 
1284 	if (ring->tx_pending > BE_TX_RING_MAX ||
1285 	    ring->rx_pending > BE_RX_RING_MAX ||
1286 	    ring->tx_pending < BE_TX_RING_MIN ||
1287 	    ring->rx_pending < BE_RX_RING_MIN)
1288 		return -EINVAL;
1289 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1290 		return -EINVAL;
1291 
1292 	if (netif_running(ndev)) {
1293 		netif_device_detach(ndev);
1294 		/* Stop PTP Clock driver */
1295 		if (priv->chip_id == RCAR_GEN2)
1296 			ravb_ptp_stop(ndev);
1297 		/* Wait for DMA stopping */
1298 		error = ravb_stop_dma(ndev);
1299 		if (error) {
1300 			netdev_err(ndev,
1301 				   "cannot set ringparam! Any AVB processes are still running?\n");
1302 			return error;
1303 		}
1304 		synchronize_irq(ndev->irq);
1305 
1306 		/* Free all the skb's in the RX queue and the DMA buffers. */
1307 		ravb_ring_free(ndev, RAVB_BE);
1308 		ravb_ring_free(ndev, RAVB_NC);
1309 	}
1310 
1311 	/* Set new parameters */
1312 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1313 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1314 
1315 	if (netif_running(ndev)) {
1316 		error = ravb_dmac_init(ndev);
1317 		if (error) {
1318 			netdev_err(ndev,
1319 				   "%s: ravb_dmac_init() failed, error %d\n",
1320 				   __func__, error);
1321 			return error;
1322 		}
1323 
1324 		ravb_emac_init(ndev);
1325 
1326 		/* Initialise PTP Clock driver */
1327 		if (priv->chip_id == RCAR_GEN2)
1328 			ravb_ptp_init(ndev, priv->pdev);
1329 
1330 		netif_device_attach(ndev);
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static int ravb_get_ts_info(struct net_device *ndev,
1337 			    struct ethtool_ts_info *info)
1338 {
1339 	struct ravb_private *priv = netdev_priv(ndev);
1340 
1341 	info->so_timestamping =
1342 		SOF_TIMESTAMPING_TX_SOFTWARE |
1343 		SOF_TIMESTAMPING_RX_SOFTWARE |
1344 		SOF_TIMESTAMPING_SOFTWARE |
1345 		SOF_TIMESTAMPING_TX_HARDWARE |
1346 		SOF_TIMESTAMPING_RX_HARDWARE |
1347 		SOF_TIMESTAMPING_RAW_HARDWARE;
1348 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1349 	info->rx_filters =
1350 		(1 << HWTSTAMP_FILTER_NONE) |
1351 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1352 		(1 << HWTSTAMP_FILTER_ALL);
1353 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1354 
1355 	return 0;
1356 }
1357 
1358 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1359 {
1360 	struct ravb_private *priv = netdev_priv(ndev);
1361 
1362 	wol->supported = WAKE_MAGIC;
1363 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1364 }
1365 
1366 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1367 {
1368 	struct ravb_private *priv = netdev_priv(ndev);
1369 
1370 	if (wol->wolopts & ~WAKE_MAGIC)
1371 		return -EOPNOTSUPP;
1372 
1373 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1374 
1375 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1376 
1377 	return 0;
1378 }
1379 
1380 static const struct ethtool_ops ravb_ethtool_ops = {
1381 	.nway_reset		= ravb_nway_reset,
1382 	.get_msglevel		= ravb_get_msglevel,
1383 	.set_msglevel		= ravb_set_msglevel,
1384 	.get_link		= ethtool_op_get_link,
1385 	.get_strings		= ravb_get_strings,
1386 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1387 	.get_sset_count		= ravb_get_sset_count,
1388 	.get_ringparam		= ravb_get_ringparam,
1389 	.set_ringparam		= ravb_set_ringparam,
1390 	.get_ts_info		= ravb_get_ts_info,
1391 	.get_link_ksettings	= ravb_get_link_ksettings,
1392 	.set_link_ksettings	= ravb_set_link_ksettings,
1393 	.get_wol		= ravb_get_wol,
1394 	.set_wol		= ravb_set_wol,
1395 };
1396 
1397 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1398 				struct net_device *ndev, struct device *dev,
1399 				const char *ch)
1400 {
1401 	char *name;
1402 	int error;
1403 
1404 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1405 	if (!name)
1406 		return -ENOMEM;
1407 	error = request_irq(irq, handler, 0, name, ndev);
1408 	if (error)
1409 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1410 
1411 	return error;
1412 }
1413 
1414 /* Network device open function for Ethernet AVB */
1415 static int ravb_open(struct net_device *ndev)
1416 {
1417 	struct ravb_private *priv = netdev_priv(ndev);
1418 	struct platform_device *pdev = priv->pdev;
1419 	struct device *dev = &pdev->dev;
1420 	int error;
1421 
1422 	napi_enable(&priv->napi[RAVB_BE]);
1423 	napi_enable(&priv->napi[RAVB_NC]);
1424 
1425 	if (priv->chip_id == RCAR_GEN2) {
1426 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1427 				    ndev->name, ndev);
1428 		if (error) {
1429 			netdev_err(ndev, "cannot request IRQ\n");
1430 			goto out_napi_off;
1431 		}
1432 	} else {
1433 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1434 				      dev, "ch22:multi");
1435 		if (error)
1436 			goto out_napi_off;
1437 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1438 				      dev, "ch24:emac");
1439 		if (error)
1440 			goto out_free_irq;
1441 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1442 				      ndev, dev, "ch0:rx_be");
1443 		if (error)
1444 			goto out_free_irq_emac;
1445 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1446 				      ndev, dev, "ch18:tx_be");
1447 		if (error)
1448 			goto out_free_irq_be_rx;
1449 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1450 				      ndev, dev, "ch1:rx_nc");
1451 		if (error)
1452 			goto out_free_irq_be_tx;
1453 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1454 				      ndev, dev, "ch19:tx_nc");
1455 		if (error)
1456 			goto out_free_irq_nc_rx;
1457 	}
1458 
1459 	/* Device init */
1460 	error = ravb_dmac_init(ndev);
1461 	if (error)
1462 		goto out_free_irq_nc_tx;
1463 	ravb_emac_init(ndev);
1464 
1465 	/* Initialise PTP Clock driver */
1466 	if (priv->chip_id == RCAR_GEN2)
1467 		ravb_ptp_init(ndev, priv->pdev);
1468 
1469 	netif_tx_start_all_queues(ndev);
1470 
1471 	/* PHY control start */
1472 	error = ravb_phy_start(ndev);
1473 	if (error)
1474 		goto out_ptp_stop;
1475 
1476 	return 0;
1477 
1478 out_ptp_stop:
1479 	/* Stop PTP Clock driver */
1480 	if (priv->chip_id == RCAR_GEN2)
1481 		ravb_ptp_stop(ndev);
1482 out_free_irq_nc_tx:
1483 	if (priv->chip_id == RCAR_GEN2)
1484 		goto out_free_irq;
1485 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1486 out_free_irq_nc_rx:
1487 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1488 out_free_irq_be_tx:
1489 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1490 out_free_irq_be_rx:
1491 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1492 out_free_irq_emac:
1493 	free_irq(priv->emac_irq, ndev);
1494 out_free_irq:
1495 	free_irq(ndev->irq, ndev);
1496 out_napi_off:
1497 	napi_disable(&priv->napi[RAVB_NC]);
1498 	napi_disable(&priv->napi[RAVB_BE]);
1499 	return error;
1500 }
1501 
1502 /* Timeout function for Ethernet AVB */
1503 static void ravb_tx_timeout(struct net_device *ndev)
1504 {
1505 	struct ravb_private *priv = netdev_priv(ndev);
1506 
1507 	netif_err(priv, tx_err, ndev,
1508 		  "transmit timed out, status %08x, resetting...\n",
1509 		  ravb_read(ndev, ISS));
1510 
1511 	/* tx_errors count up */
1512 	ndev->stats.tx_errors++;
1513 
1514 	schedule_work(&priv->work);
1515 }
1516 
1517 static void ravb_tx_timeout_work(struct work_struct *work)
1518 {
1519 	struct ravb_private *priv = container_of(work, struct ravb_private,
1520 						 work);
1521 	struct net_device *ndev = priv->ndev;
1522 
1523 	netif_tx_stop_all_queues(ndev);
1524 
1525 	/* Stop PTP Clock driver */
1526 	if (priv->chip_id == RCAR_GEN2)
1527 		ravb_ptp_stop(ndev);
1528 
1529 	/* Wait for DMA stopping */
1530 	ravb_stop_dma(ndev);
1531 
1532 	ravb_ring_free(ndev, RAVB_BE);
1533 	ravb_ring_free(ndev, RAVB_NC);
1534 
1535 	/* Device init */
1536 	ravb_dmac_init(ndev);
1537 	ravb_emac_init(ndev);
1538 
1539 	/* Initialise PTP Clock driver */
1540 	if (priv->chip_id == RCAR_GEN2)
1541 		ravb_ptp_init(ndev, priv->pdev);
1542 
1543 	netif_tx_start_all_queues(ndev);
1544 }
1545 
1546 /* Packet transmit function for Ethernet AVB */
1547 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1548 {
1549 	struct ravb_private *priv = netdev_priv(ndev);
1550 	u16 q = skb_get_queue_mapping(skb);
1551 	struct ravb_tstamp_skb *ts_skb;
1552 	struct ravb_tx_desc *desc;
1553 	unsigned long flags;
1554 	u32 dma_addr;
1555 	void *buffer;
1556 	u32 entry;
1557 	u32 len;
1558 
1559 	spin_lock_irqsave(&priv->lock, flags);
1560 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1561 	    NUM_TX_DESC) {
1562 		netif_err(priv, tx_queued, ndev,
1563 			  "still transmitting with the full ring!\n");
1564 		netif_stop_subqueue(ndev, q);
1565 		spin_unlock_irqrestore(&priv->lock, flags);
1566 		return NETDEV_TX_BUSY;
1567 	}
1568 
1569 	if (skb_put_padto(skb, ETH_ZLEN))
1570 		goto exit;
1571 
1572 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1573 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1574 
1575 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1576 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1577 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1578 	/* Zero length DMA descriptors are problematic as they seem to
1579 	 * terminate DMA transfers. Avoid them by simply using a length of
1580 	 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1581 	 *
1582 	 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1583 	 * data by the call to skb_put_padto() above this is safe with
1584 	 * respect to both the length of the first DMA descriptor (len)
1585 	 * overflowing the available data and the length of the second DMA
1586 	 * descriptor (skb->len - len) being negative.
1587 	 */
1588 	if (len == 0)
1589 		len = DPTR_ALIGN;
1590 
1591 	memcpy(buffer, skb->data, len);
1592 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1593 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1594 		goto drop;
1595 
1596 	desc = &priv->tx_ring[q][entry];
1597 	desc->ds_tagl = cpu_to_le16(len);
1598 	desc->dptr = cpu_to_le32(dma_addr);
1599 
1600 	buffer = skb->data + len;
1601 	len = skb->len - len;
1602 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1603 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1604 		goto unmap;
1605 
1606 	desc++;
1607 	desc->ds_tagl = cpu_to_le16(len);
1608 	desc->dptr = cpu_to_le32(dma_addr);
1609 
1610 	/* TX timestamp required */
1611 	if (q == RAVB_NC) {
1612 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1613 		if (!ts_skb) {
1614 			desc--;
1615 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1616 					 DMA_TO_DEVICE);
1617 			goto unmap;
1618 		}
1619 		ts_skb->skb = skb;
1620 		ts_skb->tag = priv->ts_skb_tag++;
1621 		priv->ts_skb_tag &= 0x3ff;
1622 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1623 
1624 		/* TAG and timestamp required flag */
1625 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1626 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1627 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1628 	}
1629 
1630 	skb_tx_timestamp(skb);
1631 	/* Descriptor type must be set after all the above writes */
1632 	dma_wmb();
1633 	desc->die_dt = DT_FEND;
1634 	desc--;
1635 	desc->die_dt = DT_FSTART;
1636 
1637 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1638 
1639 	priv->cur_tx[q] += NUM_TX_DESC;
1640 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1641 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
1642 	    !ravb_tx_free(ndev, q, true))
1643 		netif_stop_subqueue(ndev, q);
1644 
1645 exit:
1646 	mmiowb();
1647 	spin_unlock_irqrestore(&priv->lock, flags);
1648 	return NETDEV_TX_OK;
1649 
1650 unmap:
1651 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1652 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1653 drop:
1654 	dev_kfree_skb_any(skb);
1655 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1656 	goto exit;
1657 }
1658 
1659 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1660 			     void *accel_priv, select_queue_fallback_t fallback)
1661 {
1662 	/* If skb needs TX timestamp, it is handled in network control queue */
1663 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1664 							       RAVB_BE;
1665 
1666 }
1667 
1668 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1669 {
1670 	struct ravb_private *priv = netdev_priv(ndev);
1671 	struct net_device_stats *nstats, *stats0, *stats1;
1672 
1673 	nstats = &ndev->stats;
1674 	stats0 = &priv->stats[RAVB_BE];
1675 	stats1 = &priv->stats[RAVB_NC];
1676 
1677 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1678 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1679 	nstats->collisions += ravb_read(ndev, CDCR);
1680 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1681 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1682 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1683 
1684 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1685 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1686 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1687 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1688 
1689 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1690 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1691 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1692 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1693 	nstats->multicast = stats0->multicast + stats1->multicast;
1694 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1695 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1696 	nstats->rx_frame_errors =
1697 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1698 	nstats->rx_length_errors =
1699 		stats0->rx_length_errors + stats1->rx_length_errors;
1700 	nstats->rx_missed_errors =
1701 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1702 	nstats->rx_over_errors =
1703 		stats0->rx_over_errors + stats1->rx_over_errors;
1704 
1705 	return nstats;
1706 }
1707 
1708 /* Update promiscuous bit */
1709 static void ravb_set_rx_mode(struct net_device *ndev)
1710 {
1711 	struct ravb_private *priv = netdev_priv(ndev);
1712 	unsigned long flags;
1713 
1714 	spin_lock_irqsave(&priv->lock, flags);
1715 	ravb_modify(ndev, ECMR, ECMR_PRM,
1716 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1717 	mmiowb();
1718 	spin_unlock_irqrestore(&priv->lock, flags);
1719 }
1720 
1721 /* Device close function for Ethernet AVB */
1722 static int ravb_close(struct net_device *ndev)
1723 {
1724 	struct device_node *np = ndev->dev.parent->of_node;
1725 	struct ravb_private *priv = netdev_priv(ndev);
1726 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1727 
1728 	netif_tx_stop_all_queues(ndev);
1729 
1730 	/* Disable interrupts by clearing the interrupt masks. */
1731 	ravb_write(ndev, 0, RIC0);
1732 	ravb_write(ndev, 0, RIC2);
1733 	ravb_write(ndev, 0, TIC);
1734 
1735 	/* Stop PTP Clock driver */
1736 	if (priv->chip_id == RCAR_GEN2)
1737 		ravb_ptp_stop(ndev);
1738 
1739 	/* Set the config mode to stop the AVB-DMAC's processes */
1740 	if (ravb_stop_dma(ndev) < 0)
1741 		netdev_err(ndev,
1742 			   "device will be stopped after h/w processes are done.\n");
1743 
1744 	/* Clear the timestamp list */
1745 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1746 		list_del(&ts_skb->list);
1747 		kfree(ts_skb);
1748 	}
1749 
1750 	/* PHY disconnect */
1751 	if (ndev->phydev) {
1752 		phy_stop(ndev->phydev);
1753 		phy_disconnect(ndev->phydev);
1754 		if (of_phy_is_fixed_link(np))
1755 			of_phy_deregister_fixed_link(np);
1756 	}
1757 
1758 	if (priv->chip_id != RCAR_GEN2) {
1759 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1760 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1761 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1762 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1763 		free_irq(priv->emac_irq, ndev);
1764 	}
1765 	free_irq(ndev->irq, ndev);
1766 
1767 	napi_disable(&priv->napi[RAVB_NC]);
1768 	napi_disable(&priv->napi[RAVB_BE]);
1769 
1770 	/* Free all the skb's in the RX queue and the DMA buffers. */
1771 	ravb_ring_free(ndev, RAVB_BE);
1772 	ravb_ring_free(ndev, RAVB_NC);
1773 
1774 	return 0;
1775 }
1776 
1777 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1778 {
1779 	struct ravb_private *priv = netdev_priv(ndev);
1780 	struct hwtstamp_config config;
1781 
1782 	config.flags = 0;
1783 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1784 						HWTSTAMP_TX_OFF;
1785 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1786 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1787 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1788 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1789 	else
1790 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1791 
1792 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1793 		-EFAULT : 0;
1794 }
1795 
1796 /* Control hardware time stamping */
1797 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1798 {
1799 	struct ravb_private *priv = netdev_priv(ndev);
1800 	struct hwtstamp_config config;
1801 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1802 	u32 tstamp_tx_ctrl;
1803 
1804 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1805 		return -EFAULT;
1806 
1807 	/* Reserved for future extensions */
1808 	if (config.flags)
1809 		return -EINVAL;
1810 
1811 	switch (config.tx_type) {
1812 	case HWTSTAMP_TX_OFF:
1813 		tstamp_tx_ctrl = 0;
1814 		break;
1815 	case HWTSTAMP_TX_ON:
1816 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1817 		break;
1818 	default:
1819 		return -ERANGE;
1820 	}
1821 
1822 	switch (config.rx_filter) {
1823 	case HWTSTAMP_FILTER_NONE:
1824 		tstamp_rx_ctrl = 0;
1825 		break;
1826 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1827 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1828 		break;
1829 	default:
1830 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1831 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1832 	}
1833 
1834 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1835 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1836 
1837 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1838 		-EFAULT : 0;
1839 }
1840 
1841 /* ioctl to device function */
1842 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1843 {
1844 	struct phy_device *phydev = ndev->phydev;
1845 
1846 	if (!netif_running(ndev))
1847 		return -EINVAL;
1848 
1849 	if (!phydev)
1850 		return -ENODEV;
1851 
1852 	switch (cmd) {
1853 	case SIOCGHWTSTAMP:
1854 		return ravb_hwtstamp_get(ndev, req);
1855 	case SIOCSHWTSTAMP:
1856 		return ravb_hwtstamp_set(ndev, req);
1857 	}
1858 
1859 	return phy_mii_ioctl(phydev, req, cmd);
1860 }
1861 
1862 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1863 {
1864 	if (netif_running(ndev))
1865 		return -EBUSY;
1866 
1867 	ndev->mtu = new_mtu;
1868 	netdev_update_features(ndev);
1869 
1870 	return 0;
1871 }
1872 
1873 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1874 {
1875 	struct ravb_private *priv = netdev_priv(ndev);
1876 	unsigned long flags;
1877 
1878 	spin_lock_irqsave(&priv->lock, flags);
1879 
1880 	/* Disable TX and RX */
1881 	ravb_rcv_snd_disable(ndev);
1882 
1883 	/* Modify RX Checksum setting */
1884 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1885 
1886 	/* Enable TX and RX */
1887 	ravb_rcv_snd_enable(ndev);
1888 
1889 	spin_unlock_irqrestore(&priv->lock, flags);
1890 }
1891 
1892 static int ravb_set_features(struct net_device *ndev,
1893 			     netdev_features_t features)
1894 {
1895 	netdev_features_t changed = ndev->features ^ features;
1896 
1897 	if (changed & NETIF_F_RXCSUM)
1898 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1899 
1900 	ndev->features = features;
1901 
1902 	return 0;
1903 }
1904 
1905 static const struct net_device_ops ravb_netdev_ops = {
1906 	.ndo_open		= ravb_open,
1907 	.ndo_stop		= ravb_close,
1908 	.ndo_start_xmit		= ravb_start_xmit,
1909 	.ndo_select_queue	= ravb_select_queue,
1910 	.ndo_get_stats		= ravb_get_stats,
1911 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1912 	.ndo_tx_timeout		= ravb_tx_timeout,
1913 	.ndo_do_ioctl		= ravb_do_ioctl,
1914 	.ndo_change_mtu		= ravb_change_mtu,
1915 	.ndo_validate_addr	= eth_validate_addr,
1916 	.ndo_set_mac_address	= eth_mac_addr,
1917 	.ndo_set_features	= ravb_set_features,
1918 };
1919 
1920 /* MDIO bus init function */
1921 static int ravb_mdio_init(struct ravb_private *priv)
1922 {
1923 	struct platform_device *pdev = priv->pdev;
1924 	struct device *dev = &pdev->dev;
1925 	int error;
1926 
1927 	/* Bitbang init */
1928 	priv->mdiobb.ops = &bb_ops;
1929 
1930 	/* MII controller setting */
1931 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1932 	if (!priv->mii_bus)
1933 		return -ENOMEM;
1934 
1935 	/* Hook up MII support for ethtool */
1936 	priv->mii_bus->name = "ravb_mii";
1937 	priv->mii_bus->parent = dev;
1938 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1939 		 pdev->name, pdev->id);
1940 
1941 	/* Register MDIO bus */
1942 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1943 	if (error)
1944 		goto out_free_bus;
1945 
1946 	return 0;
1947 
1948 out_free_bus:
1949 	free_mdio_bitbang(priv->mii_bus);
1950 	return error;
1951 }
1952 
1953 /* MDIO bus release function */
1954 static int ravb_mdio_release(struct ravb_private *priv)
1955 {
1956 	/* Unregister mdio bus */
1957 	mdiobus_unregister(priv->mii_bus);
1958 
1959 	/* Free bitbang info */
1960 	free_mdio_bitbang(priv->mii_bus);
1961 
1962 	return 0;
1963 }
1964 
1965 static const struct of_device_id ravb_match_table[] = {
1966 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1967 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1968 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1969 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1970 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1971 	{ }
1972 };
1973 MODULE_DEVICE_TABLE(of, ravb_match_table);
1974 
1975 static int ravb_set_gti(struct net_device *ndev)
1976 {
1977 	struct ravb_private *priv = netdev_priv(ndev);
1978 	struct device *dev = ndev->dev.parent;
1979 	unsigned long rate;
1980 	uint64_t inc;
1981 
1982 	rate = clk_get_rate(priv->clk);
1983 	if (!rate)
1984 		return -EINVAL;
1985 
1986 	inc = 1000000000ULL << 20;
1987 	do_div(inc, rate);
1988 
1989 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1990 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1991 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1992 		return -EINVAL;
1993 	}
1994 
1995 	ravb_write(ndev, inc, GTI);
1996 
1997 	return 0;
1998 }
1999 
2000 static void ravb_set_config_mode(struct net_device *ndev)
2001 {
2002 	struct ravb_private *priv = netdev_priv(ndev);
2003 
2004 	if (priv->chip_id == RCAR_GEN2) {
2005 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2006 		/* Set CSEL value */
2007 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2008 	} else {
2009 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
2010 			    CCC_GAC | CCC_CSEL_HPB);
2011 	}
2012 }
2013 
2014 /* Set tx and rx clock internal delay modes */
2015 static void ravb_set_delay_mode(struct net_device *ndev)
2016 {
2017 	struct ravb_private *priv = netdev_priv(ndev);
2018 	int set = 0;
2019 
2020 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2021 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
2022 		set |= APSR_DM_RDM;
2023 
2024 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2025 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
2026 		set |= APSR_DM_TDM;
2027 
2028 	ravb_modify(ndev, APSR, APSR_DM, set);
2029 }
2030 
2031 static int ravb_probe(struct platform_device *pdev)
2032 {
2033 	struct device_node *np = pdev->dev.of_node;
2034 	struct ravb_private *priv;
2035 	enum ravb_chip_id chip_id;
2036 	struct net_device *ndev;
2037 	int error, irq, q;
2038 	struct resource *res;
2039 	int i;
2040 
2041 	if (!np) {
2042 		dev_err(&pdev->dev,
2043 			"this driver is required to be instantiated from device tree\n");
2044 		return -EINVAL;
2045 	}
2046 
2047 	/* Get base address */
2048 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2049 	if (!res) {
2050 		dev_err(&pdev->dev, "invalid resource\n");
2051 		return -EINVAL;
2052 	}
2053 
2054 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2055 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2056 	if (!ndev)
2057 		return -ENOMEM;
2058 
2059 	ndev->features = NETIF_F_RXCSUM;
2060 	ndev->hw_features = NETIF_F_RXCSUM;
2061 
2062 	pm_runtime_enable(&pdev->dev);
2063 	pm_runtime_get_sync(&pdev->dev);
2064 
2065 	/* The Ether-specific entries in the device structure. */
2066 	ndev->base_addr = res->start;
2067 
2068 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2069 
2070 	if (chip_id == RCAR_GEN3)
2071 		irq = platform_get_irq_byname(pdev, "ch22");
2072 	else
2073 		irq = platform_get_irq(pdev, 0);
2074 	if (irq < 0) {
2075 		error = irq;
2076 		goto out_release;
2077 	}
2078 	ndev->irq = irq;
2079 
2080 	SET_NETDEV_DEV(ndev, &pdev->dev);
2081 
2082 	priv = netdev_priv(ndev);
2083 	priv->ndev = ndev;
2084 	priv->pdev = pdev;
2085 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2086 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2087 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2088 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2089 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2090 	if (IS_ERR(priv->addr)) {
2091 		error = PTR_ERR(priv->addr);
2092 		goto out_release;
2093 	}
2094 
2095 	spin_lock_init(&priv->lock);
2096 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2097 
2098 	priv->phy_interface = of_get_phy_mode(np);
2099 
2100 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2101 	priv->avb_link_active_low =
2102 		of_property_read_bool(np, "renesas,ether-link-active-low");
2103 
2104 	if (chip_id == RCAR_GEN3) {
2105 		irq = platform_get_irq_byname(pdev, "ch24");
2106 		if (irq < 0) {
2107 			error = irq;
2108 			goto out_release;
2109 		}
2110 		priv->emac_irq = irq;
2111 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2112 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2113 			if (irq < 0) {
2114 				error = irq;
2115 				goto out_release;
2116 			}
2117 			priv->rx_irqs[i] = irq;
2118 		}
2119 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2120 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2121 			if (irq < 0) {
2122 				error = irq;
2123 				goto out_release;
2124 			}
2125 			priv->tx_irqs[i] = irq;
2126 		}
2127 	}
2128 
2129 	priv->chip_id = chip_id;
2130 
2131 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2132 	if (IS_ERR(priv->clk)) {
2133 		error = PTR_ERR(priv->clk);
2134 		goto out_release;
2135 	}
2136 
2137 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2138 	ndev->min_mtu = ETH_MIN_MTU;
2139 
2140 	/* Set function */
2141 	ndev->netdev_ops = &ravb_netdev_ops;
2142 	ndev->ethtool_ops = &ravb_ethtool_ops;
2143 
2144 	/* Set AVB config mode */
2145 	ravb_set_config_mode(ndev);
2146 
2147 	/* Set GTI value */
2148 	error = ravb_set_gti(ndev);
2149 	if (error)
2150 		goto out_release;
2151 
2152 	/* Request GTI loading */
2153 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2154 
2155 	if (priv->chip_id != RCAR_GEN2)
2156 		ravb_set_delay_mode(ndev);
2157 
2158 	/* Allocate descriptor base address table */
2159 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2160 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2161 					    &priv->desc_bat_dma, GFP_KERNEL);
2162 	if (!priv->desc_bat) {
2163 		dev_err(&pdev->dev,
2164 			"Cannot allocate desc base address table (size %d bytes)\n",
2165 			priv->desc_bat_size);
2166 		error = -ENOMEM;
2167 		goto out_release;
2168 	}
2169 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2170 		priv->desc_bat[q].die_dt = DT_EOS;
2171 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2172 
2173 	/* Initialise HW timestamp list */
2174 	INIT_LIST_HEAD(&priv->ts_skb_list);
2175 
2176 	/* Initialise PTP Clock driver */
2177 	if (chip_id != RCAR_GEN2)
2178 		ravb_ptp_init(ndev, pdev);
2179 
2180 	/* Debug message level */
2181 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2182 
2183 	/* Read and set MAC address */
2184 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2185 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2186 		dev_warn(&pdev->dev,
2187 			 "no valid MAC address supplied, using a random one\n");
2188 		eth_hw_addr_random(ndev);
2189 	}
2190 
2191 	/* MDIO bus init */
2192 	error = ravb_mdio_init(priv);
2193 	if (error) {
2194 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2195 		goto out_dma_free;
2196 	}
2197 
2198 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2199 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2200 
2201 	/* Network device register */
2202 	error = register_netdev(ndev);
2203 	if (error)
2204 		goto out_napi_del;
2205 
2206 	device_set_wakeup_capable(&pdev->dev, 1);
2207 
2208 	/* Print device information */
2209 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2210 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2211 
2212 	platform_set_drvdata(pdev, ndev);
2213 
2214 	return 0;
2215 
2216 out_napi_del:
2217 	netif_napi_del(&priv->napi[RAVB_NC]);
2218 	netif_napi_del(&priv->napi[RAVB_BE]);
2219 	ravb_mdio_release(priv);
2220 out_dma_free:
2221 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2222 			  priv->desc_bat_dma);
2223 
2224 	/* Stop PTP Clock driver */
2225 	if (chip_id != RCAR_GEN2)
2226 		ravb_ptp_stop(ndev);
2227 out_release:
2228 	free_netdev(ndev);
2229 
2230 	pm_runtime_put(&pdev->dev);
2231 	pm_runtime_disable(&pdev->dev);
2232 	return error;
2233 }
2234 
2235 static int ravb_remove(struct platform_device *pdev)
2236 {
2237 	struct net_device *ndev = platform_get_drvdata(pdev);
2238 	struct ravb_private *priv = netdev_priv(ndev);
2239 
2240 	/* Stop PTP Clock driver */
2241 	if (priv->chip_id != RCAR_GEN2)
2242 		ravb_ptp_stop(ndev);
2243 
2244 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2245 			  priv->desc_bat_dma);
2246 	/* Set reset mode */
2247 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2248 	pm_runtime_put_sync(&pdev->dev);
2249 	unregister_netdev(ndev);
2250 	netif_napi_del(&priv->napi[RAVB_NC]);
2251 	netif_napi_del(&priv->napi[RAVB_BE]);
2252 	ravb_mdio_release(priv);
2253 	pm_runtime_disable(&pdev->dev);
2254 	free_netdev(ndev);
2255 	platform_set_drvdata(pdev, NULL);
2256 
2257 	return 0;
2258 }
2259 
2260 static int ravb_wol_setup(struct net_device *ndev)
2261 {
2262 	struct ravb_private *priv = netdev_priv(ndev);
2263 
2264 	/* Disable interrupts by clearing the interrupt masks. */
2265 	ravb_write(ndev, 0, RIC0);
2266 	ravb_write(ndev, 0, RIC2);
2267 	ravb_write(ndev, 0, TIC);
2268 
2269 	/* Only allow ECI interrupts */
2270 	synchronize_irq(priv->emac_irq);
2271 	napi_disable(&priv->napi[RAVB_NC]);
2272 	napi_disable(&priv->napi[RAVB_BE]);
2273 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2274 
2275 	/* Enable MagicPacket */
2276 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2277 
2278 	return enable_irq_wake(priv->emac_irq);
2279 }
2280 
2281 static int ravb_wol_restore(struct net_device *ndev)
2282 {
2283 	struct ravb_private *priv = netdev_priv(ndev);
2284 	int ret;
2285 
2286 	napi_enable(&priv->napi[RAVB_NC]);
2287 	napi_enable(&priv->napi[RAVB_BE]);
2288 
2289 	/* Disable MagicPacket */
2290 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2291 
2292 	ret = ravb_close(ndev);
2293 	if (ret < 0)
2294 		return ret;
2295 
2296 	return disable_irq_wake(priv->emac_irq);
2297 }
2298 
2299 static int __maybe_unused ravb_suspend(struct device *dev)
2300 {
2301 	struct net_device *ndev = dev_get_drvdata(dev);
2302 	struct ravb_private *priv = netdev_priv(ndev);
2303 	int ret;
2304 
2305 	if (!netif_running(ndev))
2306 		return 0;
2307 
2308 	netif_device_detach(ndev);
2309 
2310 	if (priv->wol_enabled)
2311 		ret = ravb_wol_setup(ndev);
2312 	else
2313 		ret = ravb_close(ndev);
2314 
2315 	return ret;
2316 }
2317 
2318 static int __maybe_unused ravb_resume(struct device *dev)
2319 {
2320 	struct net_device *ndev = dev_get_drvdata(dev);
2321 	struct ravb_private *priv = netdev_priv(ndev);
2322 	int ret = 0;
2323 
2324 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2325 	if (priv->wol_enabled)
2326 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2327 
2328 	/* All register have been reset to default values.
2329 	 * Restore all registers which where setup at probe time and
2330 	 * reopen device if it was running before system suspended.
2331 	 */
2332 
2333 	/* Set AVB config mode */
2334 	ravb_set_config_mode(ndev);
2335 
2336 	/* Set GTI value */
2337 	ret = ravb_set_gti(ndev);
2338 	if (ret)
2339 		return ret;
2340 
2341 	/* Request GTI loading */
2342 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2343 
2344 	if (priv->chip_id != RCAR_GEN2)
2345 		ravb_set_delay_mode(ndev);
2346 
2347 	/* Restore descriptor base address table */
2348 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2349 
2350 	if (netif_running(ndev)) {
2351 		if (priv->wol_enabled) {
2352 			ret = ravb_wol_restore(ndev);
2353 			if (ret)
2354 				return ret;
2355 		}
2356 		ret = ravb_open(ndev);
2357 		if (ret < 0)
2358 			return ret;
2359 		netif_device_attach(ndev);
2360 	}
2361 
2362 	return ret;
2363 }
2364 
2365 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2366 {
2367 	/* Runtime PM callback shared between ->runtime_suspend()
2368 	 * and ->runtime_resume(). Simply returns success.
2369 	 *
2370 	 * This driver re-initializes all registers after
2371 	 * pm_runtime_get_sync() anyway so there is no need
2372 	 * to save and restore registers here.
2373 	 */
2374 	return 0;
2375 }
2376 
2377 static const struct dev_pm_ops ravb_dev_pm_ops = {
2378 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2379 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2380 };
2381 
2382 static struct platform_driver ravb_driver = {
2383 	.probe		= ravb_probe,
2384 	.remove		= ravb_remove,
2385 	.driver = {
2386 		.name	= "ravb",
2387 		.pm	= &ravb_dev_pm_ops,
2388 		.of_match_table = ravb_match_table,
2389 	},
2390 };
2391 
2392 module_platform_driver(ravb_driver);
2393 
2394 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2395 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2396 MODULE_LICENSE("GPL v2");
2397