1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34
35 #include "ravb.h"
36
37 #define RAVB_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR | \
41 NETIF_MSG_TX_ERR)
42
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 u32 set)
45 {
46 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 int i;
52
53 for (i = 0; i < 10000; i++) {
54 if ((ravb_read(ndev, reg) & mask) == value)
55 return 0;
56 udelay(10);
57 }
58 return -ETIMEDOUT;
59 }
60
ravb_set_opmode(struct net_device * ndev,u32 opmode)61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 u32 csr_ops = 1U << (opmode & CCC_OPC);
64 u32 ccc_mask = CCC_OPC;
65 int error;
66
67 /* If gPTP active in config mode is supported it needs to be configured
68 * along with CSEL and operating mode in the same access. This is a
69 * hardware limitation.
70 */
71 if (opmode & CCC_GAC)
72 ccc_mask |= CCC_GAC | CCC_CSEL;
73
74 /* Set operating mode */
75 ravb_modify(ndev, CCC, ccc_mask, opmode);
76 /* Check if the operating mode is changed to the requested one */
77 error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 if (error) {
79 netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 opmode & CCC_OPC);
81 }
82
83 return error;
84 }
85
ravb_set_rate_gbeth(struct net_device * ndev)86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 struct ravb_private *priv = netdev_priv(ndev);
89
90 switch (priv->speed) {
91 case 10: /* 10BASE */
92 ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 break;
94 case 100: /* 100BASE */
95 ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 break;
97 case 1000: /* 1000BASE */
98 ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 break;
100 }
101 }
102
ravb_set_rate_rcar(struct net_device * ndev)103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 struct ravb_private *priv = netdev_priv(ndev);
106
107 switch (priv->speed) {
108 case 100: /* 100BASE */
109 ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 break;
111 case 1000: /* 1000BASE */
112 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 break;
114 }
115 }
116
117 /* Get MAC address from the MAC address registers
118 *
119 * Ethernet AVB device doesn't have ROM for MAC address.
120 * This function gets the MAC address that was used by a bootloader.
121 */
ravb_read_mac_address(struct device_node * np,struct net_device * ndev)122 static void ravb_read_mac_address(struct device_node *np,
123 struct net_device *ndev)
124 {
125 int ret;
126
127 ret = of_get_ethdev_address(np, ndev);
128 if (ret) {
129 u32 mahr = ravb_read(ndev, MAHR);
130 u32 malr = ravb_read(ndev, MALR);
131 u8 addr[ETH_ALEN];
132
133 addr[0] = (mahr >> 24) & 0xFF;
134 addr[1] = (mahr >> 16) & 0xFF;
135 addr[2] = (mahr >> 8) & 0xFF;
136 addr[3] = (mahr >> 0) & 0xFF;
137 addr[4] = (malr >> 8) & 0xFF;
138 addr[5] = (malr >> 0) & 0xFF;
139 eth_hw_addr_set(ndev, addr);
140 }
141 }
142
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 mdiobb);
147
148 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150
151 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156
157 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162
163 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168
169 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 mdiobb);
174
175 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 .owner = THIS_MODULE,
181 .set_mdc = ravb_set_mdc,
182 .set_mdio_dir = ravb_set_mdio_dir,
183 .set_mdio_data = ravb_set_mdio_data,
184 .get_mdio_data = ravb_get_mdio_data,
185 };
186
187 static struct ravb_rx_desc *
ravb_rx_get_desc(struct ravb_private * priv,unsigned int q,unsigned int i)188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 unsigned int i)
190 {
191 return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193
194 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 struct ravb_private *priv = netdev_priv(ndev);
198 struct net_device_stats *stats = &priv->stats[q];
199 unsigned int num_tx_desc = priv->num_tx_desc;
200 struct ravb_tx_desc *desc;
201 unsigned int entry;
202 int free_num = 0;
203 u32 size;
204
205 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 bool txed;
207
208 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 num_tx_desc);
210 desc = &priv->tx_ring[q][entry];
211 txed = desc->die_dt == DT_FEMPTY;
212 if (free_txed_only && !txed)
213 break;
214 /* Descriptor type must be checked before all other reads */
215 dma_rmb();
216 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 /* Free the original skb. */
218 if (priv->tx_skb[q][entry / num_tx_desc]) {
219 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 size, DMA_TO_DEVICE);
221 /* Last packet descriptor? */
222 if (entry % num_tx_desc == num_tx_desc - 1) {
223 entry /= num_tx_desc;
224 dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 priv->tx_skb[q][entry] = NULL;
226 if (txed)
227 stats->tx_packets++;
228 }
229 free_num++;
230 }
231 if (txed)
232 stats->tx_bytes += size;
233 desc->die_dt = DT_EEMPTY;
234 }
235 return free_num;
236 }
237
ravb_rx_ring_free(struct net_device * ndev,int q)238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 struct ravb_private *priv = netdev_priv(ndev);
241 unsigned int ring_size;
242
243 if (!priv->rx_ring[q].raw)
244 return;
245
246 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 priv->rx_desc_dma[q]);
249 priv->rx_ring[q].raw = NULL;
250 }
251
252 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 struct ravb_private *priv = netdev_priv(ndev);
256 unsigned int num_tx_desc = priv->num_tx_desc;
257 unsigned int ring_size;
258 unsigned int i;
259
260 ravb_rx_ring_free(ndev, q);
261
262 if (priv->tx_ring[q]) {
263 ravb_tx_free(ndev, q, false);
264
265 ring_size = sizeof(struct ravb_tx_desc) *
266 (priv->num_tx_ring[q] * num_tx_desc + 1);
267 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 priv->tx_desc_dma[q]);
269 priv->tx_ring[q] = NULL;
270 }
271
272 /* Free RX buffers */
273 for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 if (priv->rx_buffers[q][i].page)
275 page_pool_put_page(priv->rx_pool[q],
276 priv->rx_buffers[q][i].page,
277 0, true);
278 }
279 kfree(priv->rx_buffers[q]);
280 priv->rx_buffers[q] = NULL;
281 page_pool_destroy(priv->rx_pool[q]);
282
283 /* Free aligned TX buffers */
284 kfree(priv->tx_align[q]);
285 priv->tx_align[q] = NULL;
286
287 /* Free TX skb ringbuffer.
288 * SKBs are freed by ravb_tx_free() call above.
289 */
290 kfree(priv->tx_skb[q]);
291 priv->tx_skb[q] = NULL;
292 }
293
294 static int
ravb_alloc_rx_buffer(struct net_device * ndev,int q,u32 entry,gfp_t gfp_mask,struct ravb_rx_desc * rx_desc)295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 struct ravb_rx_desc *rx_desc)
297 {
298 struct ravb_private *priv = netdev_priv(ndev);
299 const struct ravb_hw_info *info = priv->info;
300 struct ravb_rx_buffer *rx_buff;
301 dma_addr_t dma_addr;
302 unsigned int size;
303
304 rx_buff = &priv->rx_buffers[q][entry];
305 size = info->rx_buffer_size;
306 rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 &size, gfp_mask);
308 if (unlikely(!rx_buff->page)) {
309 /* We just set the data size to 0 for a failed mapping which
310 * should prevent DMA from happening...
311 */
312 rx_desc->ds_cc = cpu_to_le16(0);
313 return -ENOMEM;
314 }
315
316 dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 info->rx_buffer_size, DMA_FROM_DEVICE);
319 rx_desc->dptr = cpu_to_le32(dma_addr);
320
321 /* The end of the RX buffer is used to store skb shared data, so we need
322 * to ensure that the hardware leaves enough space for this.
323 */
324 rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 ETH_FCS_LEN + sizeof(__sum16));
327 return 0;
328 }
329
330 static u32
ravb_rx_ring_refill(struct net_device * ndev,int q,u32 count,gfp_t gfp_mask)331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 struct ravb_private *priv = netdev_priv(ndev);
334 struct ravb_rx_desc *rx_desc;
335 u32 i, entry;
336
337 for (i = 0; i < count; i++) {
338 entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 rx_desc = ravb_rx_get_desc(priv, q, entry);
340
341 if (!priv->rx_buffers[q][entry].page) {
342 if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 gfp_mask, rx_desc)))
344 break;
345 }
346 /* Descriptor type must be set after all the above writes */
347 dma_wmb();
348 rx_desc->die_dt = DT_FEMPTY;
349 }
350
351 return i;
352 }
353
354 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 struct ravb_private *priv = netdev_priv(ndev);
358 unsigned int num_tx_desc = priv->num_tx_desc;
359 struct ravb_rx_desc *rx_desc;
360 struct ravb_tx_desc *tx_desc;
361 struct ravb_desc *desc;
362 unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 num_tx_desc;
364 unsigned int i;
365
366 priv->cur_rx[q] = 0;
367 priv->cur_tx[q] = 0;
368 priv->dirty_rx[q] = 0;
369 priv->dirty_tx[q] = 0;
370
371 /* Regular RX descriptors have already been initialized by
372 * ravb_rx_ring_refill(), we just need to initialize the final link
373 * descriptor.
374 */
375 rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 rx_desc->die_dt = DT_LINKFIX; /* type */
378
379 memset(priv->tx_ring[q], 0, tx_ring_size);
380 /* Build TX ring buffer */
381 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 i++, tx_desc++) {
383 tx_desc->die_dt = DT_EEMPTY;
384 if (num_tx_desc > 1) {
385 tx_desc++;
386 tx_desc->die_dt = DT_EEMPTY;
387 }
388 }
389 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 tx_desc->die_dt = DT_LINKFIX; /* type */
391
392 /* RX descriptor base address for best effort */
393 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 desc->die_dt = DT_LINKFIX; /* type */
395 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396
397 /* TX descriptor base address for best effort */
398 desc = &priv->desc_bat[q];
399 desc->die_dt = DT_LINKFIX; /* type */
400 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402
ravb_alloc_rx_desc(struct net_device * ndev,int q)403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 struct ravb_private *priv = netdev_priv(ndev);
406 unsigned int ring_size;
407
408 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409
410 priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 &priv->rx_desc_dma[q],
412 GFP_KERNEL);
413
414 return priv->rx_ring[q].raw;
415 }
416
417 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 struct ravb_private *priv = netdev_priv(ndev);
421 unsigned int num_tx_desc = priv->num_tx_desc;
422 struct page_pool_params params = {
423 .order = 0,
424 .flags = PP_FLAG_DMA_MAP,
425 .pool_size = priv->num_rx_ring[q],
426 .nid = NUMA_NO_NODE,
427 .dev = ndev->dev.parent,
428 .dma_dir = DMA_FROM_DEVICE,
429 };
430 unsigned int ring_size;
431 u32 num_filled;
432
433 /* Allocate RX page pool and buffers */
434 priv->rx_pool[q] = page_pool_create(¶ms);
435 if (IS_ERR(priv->rx_pool[q]))
436 goto error;
437
438 /* Allocate RX buffers */
439 priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 if (!priv->rx_buffers[q])
442 goto error;
443
444 /* Allocate TX skb rings */
445 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 if (!priv->tx_skb[q])
448 goto error;
449
450 /* Allocate all RX descriptors. */
451 if (!ravb_alloc_rx_desc(ndev, q))
452 goto error;
453
454 /* Populate RX ring buffer. */
455 priv->dirty_rx[q] = 0;
456 ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 memset(priv->rx_ring[q].raw, 0, ring_size);
458 num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 GFP_KERNEL);
460 if (num_filled != priv->num_rx_ring[q])
461 goto error;
462
463 if (num_tx_desc > 1) {
464 /* Allocate rings for the aligned buffers */
465 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 DPTR_ALIGN - 1, GFP_KERNEL);
467 if (!priv->tx_align[q])
468 goto error;
469 }
470
471 /* Allocate all TX descriptors. */
472 ring_size = sizeof(struct ravb_tx_desc) *
473 (priv->num_tx_ring[q] * num_tx_desc + 1);
474 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 &priv->tx_desc_dma[q],
476 GFP_KERNEL);
477 if (!priv->tx_ring[q])
478 goto error;
479
480 return 0;
481
482 error:
483 ravb_ring_free(ndev, q);
484
485 return -ENOMEM;
486 }
487
ravb_csum_init_gbeth(struct net_device * ndev)488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492
493 if (!(tx_enable || rx_enable))
494 goto done;
495
496 ravb_write(ndev, 0, CSR0);
497 if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 netdev_err(ndev, "Timeout enabling hardware checksum\n");
499
500 if (tx_enable)
501 ndev->features &= ~NETIF_F_HW_CSUM;
502
503 if (rx_enable)
504 ndev->features &= ~NETIF_F_RXCSUM;
505 } else {
506 if (tx_enable)
507 ravb_write(ndev, CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, CSR1);
508
509 if (rx_enable)
510 ravb_write(ndev, CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
511 CSR2);
512 }
513
514 done:
515 ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
516 }
517
ravb_emac_init_gbeth(struct net_device * ndev)518 static void ravb_emac_init_gbeth(struct net_device *ndev)
519 {
520 struct ravb_private *priv = netdev_priv(ndev);
521
522 if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
523 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
524 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
525 } else {
526 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
527 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
528 CXR31_SEL_LINK0);
529 }
530
531 /* Receive frame limit set register */
532 ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
533
534 /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
535 ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
536 ECMR_TE | ECMR_RE | ECMR_RCPT |
537 ECMR_TXF | ECMR_RXF, ECMR);
538
539 ravb_set_rate_gbeth(ndev);
540
541 /* Set MAC address */
542 ravb_write(ndev,
543 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
544 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
545 ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
546
547 /* E-MAC status register clear */
548 ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
549
550 ravb_csum_init_gbeth(ndev);
551
552 /* E-MAC interrupt enable register */
553 ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
554 }
555
ravb_emac_init_rcar(struct net_device * ndev)556 static void ravb_emac_init_rcar(struct net_device *ndev)
557 {
558 struct ravb_private *priv = netdev_priv(ndev);
559
560 /* Set receive frame length
561 *
562 * The length set here describes the frame from the destination address
563 * up to and including the CRC data. However only the frame data,
564 * excluding the CRC, are transferred to memory. To allow for the
565 * largest frames add the CRC length to the maximum Rx descriptor size.
566 */
567 ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
568
569 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
570 ravb_write(ndev, ECMR_ZPF | ECMR_DM |
571 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
572 ECMR_TE | ECMR_RE, ECMR);
573
574 ravb_set_rate_rcar(ndev);
575
576 /* Set MAC address */
577 ravb_write(ndev,
578 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
579 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
580 ravb_write(ndev,
581 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
582
583 /* E-MAC status register clear */
584 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
585
586 /* E-MAC interrupt enable register */
587 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
588 }
589
ravb_emac_init_rcar_gen4(struct net_device * ndev)590 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
591 {
592 struct ravb_private *priv = netdev_priv(ndev);
593 bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
594
595 ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
596
597 ravb_emac_init_rcar(ndev);
598 }
599
600 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)601 static void ravb_emac_init(struct net_device *ndev)
602 {
603 struct ravb_private *priv = netdev_priv(ndev);
604 const struct ravb_hw_info *info = priv->info;
605
606 info->emac_init(ndev);
607 }
608
ravb_dmac_init_gbeth(struct net_device * ndev)609 static int ravb_dmac_init_gbeth(struct net_device *ndev)
610 {
611 struct ravb_private *priv = netdev_priv(ndev);
612 int error;
613
614 error = ravb_ring_init(ndev, RAVB_BE);
615 if (error)
616 return error;
617
618 /* Descriptor format */
619 ravb_ring_format(ndev, RAVB_BE);
620
621 /* Set DMAC RX */
622 ravb_write(ndev, 0x60000000, RCR);
623
624 /* Set Max Frame Length (RTC) */
625 ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
626
627 /* Set FIFO size */
628 ravb_write(ndev, 0x00222200, TGC);
629
630 ravb_write(ndev, 0, TCCR);
631
632 /* Frame receive */
633 ravb_write(ndev, RIC0_FRE0, RIC0);
634 /* Disable FIFO full warning */
635 ravb_write(ndev, 0x0, RIC1);
636 /* Receive FIFO full error, descriptor empty */
637 ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
638
639 ravb_write(ndev, TIC_FTE0, TIC);
640
641 return 0;
642 }
643
ravb_dmac_init_rcar(struct net_device * ndev)644 static int ravb_dmac_init_rcar(struct net_device *ndev)
645 {
646 struct ravb_private *priv = netdev_priv(ndev);
647 const struct ravb_hw_info *info = priv->info;
648 int error;
649
650 error = ravb_ring_init(ndev, RAVB_BE);
651 if (error)
652 return error;
653 error = ravb_ring_init(ndev, RAVB_NC);
654 if (error) {
655 ravb_ring_free(ndev, RAVB_BE);
656 return error;
657 }
658
659 /* Descriptor format */
660 ravb_ring_format(ndev, RAVB_BE);
661 ravb_ring_format(ndev, RAVB_NC);
662
663 /* Set AVB RX */
664 ravb_write(ndev,
665 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
666
667 /* Set FIFO size */
668 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
669
670 /* Timestamp enable */
671 ravb_write(ndev, TCCR_TFEN, TCCR);
672
673 /* Interrupt init: */
674 if (info->multi_irqs) {
675 /* Clear DIL.DPLx */
676 ravb_write(ndev, 0, DIL);
677 /* Set queue specific interrupt */
678 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
679 }
680 /* Frame receive */
681 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
682 /* Disable FIFO full warning */
683 ravb_write(ndev, 0, RIC1);
684 /* Receive FIFO full error, descriptor empty */
685 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
686 /* Frame transmitted, timestamp FIFO updated */
687 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
688
689 return 0;
690 }
691
692 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)693 static int ravb_dmac_init(struct net_device *ndev)
694 {
695 struct ravb_private *priv = netdev_priv(ndev);
696 const struct ravb_hw_info *info = priv->info;
697 int error;
698
699 /* Set CONFIG mode */
700 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
701 if (error)
702 return error;
703
704 error = info->dmac_init(ndev);
705 if (error)
706 return error;
707
708 /* Setting the control will start the AVB-DMAC process. */
709 return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
710 }
711
ravb_get_tx_tstamp(struct net_device * ndev)712 static void ravb_get_tx_tstamp(struct net_device *ndev)
713 {
714 struct ravb_private *priv = netdev_priv(ndev);
715 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
716 struct skb_shared_hwtstamps shhwtstamps;
717 struct sk_buff *skb;
718 struct timespec64 ts;
719 u16 tag, tfa_tag;
720 int count;
721 u32 tfa2;
722
723 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
724 while (count--) {
725 tfa2 = ravb_read(ndev, TFA2);
726 tfa_tag = (tfa2 & TFA2_TST) >> 16;
727 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
728 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
729 ravb_read(ndev, TFA1);
730 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
731 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
732 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
733 list) {
734 skb = ts_skb->skb;
735 tag = ts_skb->tag;
736 list_del(&ts_skb->list);
737 kfree(ts_skb);
738 if (tag == tfa_tag) {
739 skb_tstamp_tx(skb, &shhwtstamps);
740 dev_consume_skb_any(skb);
741 break;
742 } else {
743 dev_kfree_skb_any(skb);
744 }
745 }
746 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
747 }
748 }
749
ravb_rx_csum_gbeth(struct sk_buff * skb)750 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
751 {
752 struct skb_shared_info *shinfo = skb_shinfo(skb);
753 __wsum csum_ip_hdr, csum_proto;
754 skb_frag_t *last_frag;
755 u8 *hw_csum;
756
757 /* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
758 * bytes appended to packet data. First 2 bytes is ip header checksum
759 * and last 2 bytes is protocol checksum.
760 */
761 if (unlikely(skb->len < sizeof(__sum16) * 2))
762 return;
763
764 if (skb_is_nonlinear(skb)) {
765 last_frag = &shinfo->frags[shinfo->nr_frags - 1];
766 hw_csum = skb_frag_address(last_frag) +
767 skb_frag_size(last_frag);
768 } else {
769 hw_csum = skb_tail_pointer(skb);
770 }
771
772 hw_csum -= sizeof(__sum16);
773 csum_proto = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
774
775 hw_csum -= sizeof(__sum16);
776 csum_ip_hdr = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
777
778 if (skb_is_nonlinear(skb))
779 skb_frag_size_sub(last_frag, 2 * sizeof(__sum16));
780 else
781 skb_trim(skb, skb->len - 2 * sizeof(__sum16));
782
783 /* TODO: IPV6 Rx checksum */
784 if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
785 skb->ip_summed = CHECKSUM_UNNECESSARY;
786 }
787
ravb_rx_csum(struct sk_buff * skb)788 static void ravb_rx_csum(struct sk_buff *skb)
789 {
790 u8 *hw_csum;
791
792 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
793 * appended to packet data
794 */
795 if (unlikely(skb->len < sizeof(__sum16)))
796 return;
797 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
798 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
799 skb->ip_summed = CHECKSUM_COMPLETE;
800 skb_trim(skb, skb->len - sizeof(__sum16));
801 }
802
803 /* Packet receive function for Gigabit Ethernet */
ravb_rx_gbeth(struct net_device * ndev,int budget,int q)804 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
805 {
806 struct ravb_private *priv = netdev_priv(ndev);
807 const struct ravb_hw_info *info = priv->info;
808 struct net_device_stats *stats;
809 struct ravb_rx_desc *desc;
810 struct sk_buff *skb;
811 int rx_packets = 0;
812 u8 desc_status;
813 u16 desc_len;
814 u8 die_dt;
815 int entry;
816 int limit;
817 int i;
818
819 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
820 stats = &priv->stats[q];
821
822 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
823 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
824 desc = &priv->rx_ring[q].desc[entry];
825 if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
826 break;
827
828 /* Descriptor type must be checked before all other reads */
829 dma_rmb();
830 desc_status = desc->msc;
831 desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
832
833 /* We use 0-byte descriptors to mark the DMA mapping errors */
834 if (!desc_len)
835 continue;
836
837 if (desc_status & MSC_MC)
838 stats->multicast++;
839
840 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
841 stats->rx_errors++;
842 if (desc_status & MSC_CRC)
843 stats->rx_crc_errors++;
844 if (desc_status & MSC_RFE)
845 stats->rx_frame_errors++;
846 if (desc_status & (MSC_RTLF | MSC_RTSF))
847 stats->rx_length_errors++;
848 if (desc_status & MSC_CEEF)
849 stats->rx_missed_errors++;
850 } else {
851 struct ravb_rx_buffer *rx_buff;
852 void *rx_addr;
853
854 rx_buff = &priv->rx_buffers[q][entry];
855 rx_addr = page_address(rx_buff->page) + rx_buff->offset;
856 die_dt = desc->die_dt & 0xF0;
857 dma_sync_single_for_cpu(ndev->dev.parent,
858 le32_to_cpu(desc->dptr),
859 desc_len, DMA_FROM_DEVICE);
860
861 switch (die_dt) {
862 case DT_FSINGLE:
863 case DT_FSTART:
864 /* Start of packet: Set initial data length. */
865 skb = napi_build_skb(rx_addr,
866 info->rx_buffer_size);
867 if (unlikely(!skb)) {
868 stats->rx_errors++;
869 page_pool_put_page(priv->rx_pool[q],
870 rx_buff->page, 0,
871 true);
872 goto refill;
873 }
874 skb_mark_for_recycle(skb);
875 skb_put(skb, desc_len);
876
877 /* Save this skb if the packet spans multiple
878 * descriptors.
879 */
880 if (die_dt == DT_FSTART)
881 priv->rx_1st_skb = skb;
882 break;
883
884 case DT_FMID:
885 case DT_FEND:
886 /* Continuing a packet: Add this buffer as an RX
887 * frag.
888 */
889
890 /* rx_1st_skb will be NULL if napi_build_skb()
891 * failed for the first descriptor of a
892 * multi-descriptor packet.
893 */
894 if (unlikely(!priv->rx_1st_skb)) {
895 stats->rx_errors++;
896 page_pool_put_page(priv->rx_pool[q],
897 rx_buff->page, 0,
898 true);
899
900 /* We may find a DT_FSINGLE or DT_FSTART
901 * descriptor in the queue which we can
902 * process, so don't give up yet.
903 */
904 continue;
905 }
906 skb_add_rx_frag(priv->rx_1st_skb,
907 skb_shinfo(priv->rx_1st_skb)->nr_frags,
908 rx_buff->page, rx_buff->offset,
909 desc_len, info->rx_buffer_size);
910
911 /* Set skb to point at the whole packet so that
912 * we only need one code path for finishing a
913 * packet.
914 */
915 skb = priv->rx_1st_skb;
916 }
917
918 switch (die_dt) {
919 case DT_FSINGLE:
920 case DT_FEND:
921 /* Finishing a packet: Determine protocol &
922 * checksum, hand off to NAPI and update our
923 * stats.
924 */
925 skb->protocol = eth_type_trans(skb, ndev);
926 if (ndev->features & NETIF_F_RXCSUM)
927 ravb_rx_csum_gbeth(skb);
928 stats->rx_bytes += skb->len;
929 napi_gro_receive(&priv->napi[q], skb);
930 rx_packets++;
931
932 /* Clear rx_1st_skb so that it will only be
933 * non-NULL when valid.
934 */
935 priv->rx_1st_skb = NULL;
936 }
937
938 /* Mark this RX buffer as consumed. */
939 rx_buff->page = NULL;
940 }
941 }
942
943 refill:
944 /* Refill the RX ring buffers. */
945 priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
946 priv->cur_rx[q] - priv->dirty_rx[q],
947 GFP_ATOMIC);
948
949 stats->rx_packets += rx_packets;
950 return rx_packets;
951 }
952
953 /* Packet receive function for Ethernet AVB */
ravb_rx_rcar(struct net_device * ndev,int budget,int q)954 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
955 {
956 struct ravb_private *priv = netdev_priv(ndev);
957 const struct ravb_hw_info *info = priv->info;
958 struct net_device_stats *stats = &priv->stats[q];
959 struct ravb_ex_rx_desc *desc;
960 unsigned int limit, i;
961 struct sk_buff *skb;
962 struct timespec64 ts;
963 int rx_packets = 0;
964 u8 desc_status;
965 u16 pkt_len;
966 int entry;
967
968 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
969 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
970 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
971 desc = &priv->rx_ring[q].ex_desc[entry];
972 if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
973 break;
974
975 /* Descriptor type must be checked before all other reads */
976 dma_rmb();
977 desc_status = desc->msc;
978 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
979
980 /* We use 0-byte descriptors to mark the DMA mapping errors */
981 if (!pkt_len)
982 continue;
983
984 if (desc_status & MSC_MC)
985 stats->multicast++;
986
987 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
988 MSC_CEEF)) {
989 stats->rx_errors++;
990 if (desc_status & MSC_CRC)
991 stats->rx_crc_errors++;
992 if (desc_status & MSC_RFE)
993 stats->rx_frame_errors++;
994 if (desc_status & (MSC_RTLF | MSC_RTSF))
995 stats->rx_length_errors++;
996 if (desc_status & MSC_CEEF)
997 stats->rx_missed_errors++;
998 } else {
999 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
1000 struct ravb_rx_buffer *rx_buff;
1001 void *rx_addr;
1002
1003 rx_buff = &priv->rx_buffers[q][entry];
1004 rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1005 dma_sync_single_for_cpu(ndev->dev.parent,
1006 le32_to_cpu(desc->dptr),
1007 pkt_len, DMA_FROM_DEVICE);
1008
1009 skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1010 if (unlikely(!skb)) {
1011 stats->rx_errors++;
1012 page_pool_put_page(priv->rx_pool[q],
1013 rx_buff->page, 0, true);
1014 break;
1015 }
1016 skb_mark_for_recycle(skb);
1017 get_ts &= (q == RAVB_NC) ?
1018 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1019 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1020 if (get_ts) {
1021 struct skb_shared_hwtstamps *shhwtstamps;
1022
1023 shhwtstamps = skb_hwtstamps(skb);
1024 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1025 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1026 32) | le32_to_cpu(desc->ts_sl);
1027 ts.tv_nsec = le32_to_cpu(desc->ts_n);
1028 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1029 }
1030
1031 skb_put(skb, pkt_len);
1032 skb->protocol = eth_type_trans(skb, ndev);
1033 if (ndev->features & NETIF_F_RXCSUM)
1034 ravb_rx_csum(skb);
1035 napi_gro_receive(&priv->napi[q], skb);
1036 rx_packets++;
1037 stats->rx_bytes += pkt_len;
1038
1039 /* Mark this RX buffer as consumed. */
1040 rx_buff->page = NULL;
1041 }
1042 }
1043
1044 /* Refill the RX ring buffers. */
1045 priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1046 priv->cur_rx[q] - priv->dirty_rx[q],
1047 GFP_ATOMIC);
1048
1049 stats->rx_packets += rx_packets;
1050 return rx_packets;
1051 }
1052
1053 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int budget,int q)1054 static int ravb_rx(struct net_device *ndev, int budget, int q)
1055 {
1056 struct ravb_private *priv = netdev_priv(ndev);
1057 const struct ravb_hw_info *info = priv->info;
1058
1059 return info->receive(ndev, budget, q);
1060 }
1061
ravb_rcv_snd_disable(struct net_device * ndev)1062 static void ravb_rcv_snd_disable(struct net_device *ndev)
1063 {
1064 /* Disable TX and RX */
1065 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1066 }
1067
ravb_rcv_snd_enable(struct net_device * ndev)1068 static void ravb_rcv_snd_enable(struct net_device *ndev)
1069 {
1070 /* Enable TX and RX */
1071 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1072 }
1073
1074 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)1075 static int ravb_stop_dma(struct net_device *ndev)
1076 {
1077 struct ravb_private *priv = netdev_priv(ndev);
1078 const struct ravb_hw_info *info = priv->info;
1079 int error;
1080
1081 /* Wait for stopping the hardware TX process */
1082 error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1083
1084 if (error)
1085 return error;
1086
1087 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1088 0);
1089 if (error)
1090 return error;
1091
1092 /* Stop the E-MAC's RX/TX processes. */
1093 ravb_rcv_snd_disable(ndev);
1094
1095 /* Wait for stopping the RX DMA process */
1096 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1097 if (error)
1098 return error;
1099
1100 /* Stop AVB-DMAC process */
1101 return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1102 }
1103
1104 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)1105 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1106 {
1107 struct ravb_private *priv = netdev_priv(ndev);
1108 u32 ecsr, psr;
1109
1110 ecsr = ravb_read(ndev, ECSR);
1111 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
1112
1113 if (ecsr & ECSR_MPD)
1114 pm_wakeup_event(&priv->pdev->dev, 0);
1115 if (ecsr & ECSR_ICD)
1116 ndev->stats.tx_carrier_errors++;
1117 if (ecsr & ECSR_LCHNG) {
1118 /* Link changed */
1119 if (priv->no_avb_link)
1120 return;
1121 psr = ravb_read(ndev, PSR);
1122 if (priv->avb_link_active_low)
1123 psr ^= PSR_LMON;
1124 if (!(psr & PSR_LMON)) {
1125 /* DIsable RX and TX */
1126 ravb_rcv_snd_disable(ndev);
1127 } else {
1128 /* Enable RX and TX */
1129 ravb_rcv_snd_enable(ndev);
1130 }
1131 }
1132 }
1133
ravb_emac_interrupt(int irq,void * dev_id)1134 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1135 {
1136 struct net_device *ndev = dev_id;
1137 struct ravb_private *priv = netdev_priv(ndev);
1138 struct device *dev = &priv->pdev->dev;
1139 irqreturn_t result = IRQ_HANDLED;
1140
1141 pm_runtime_get_noresume(dev);
1142
1143 if (unlikely(!pm_runtime_active(dev))) {
1144 result = IRQ_NONE;
1145 goto out_rpm_put;
1146 }
1147
1148 spin_lock(&priv->lock);
1149 ravb_emac_interrupt_unlocked(ndev);
1150 spin_unlock(&priv->lock);
1151
1152 out_rpm_put:
1153 pm_runtime_put_noidle(dev);
1154 return result;
1155 }
1156
1157 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)1158 static void ravb_error_interrupt(struct net_device *ndev)
1159 {
1160 struct ravb_private *priv = netdev_priv(ndev);
1161 u32 eis, ris2;
1162
1163 eis = ravb_read(ndev, EIS);
1164 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1165 if (eis & EIS_QFS) {
1166 ris2 = ravb_read(ndev, RIS2);
1167 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1168 RIS2);
1169
1170 /* Receive Descriptor Empty int */
1171 if (ris2 & RIS2_QFF0)
1172 priv->stats[RAVB_BE].rx_over_errors++;
1173
1174 /* Receive Descriptor Empty int */
1175 if (ris2 & RIS2_QFF1)
1176 priv->stats[RAVB_NC].rx_over_errors++;
1177
1178 /* Receive FIFO Overflow int */
1179 if (ris2 & RIS2_RFFF)
1180 priv->rx_fifo_errors++;
1181 }
1182 }
1183
ravb_queue_interrupt(struct net_device * ndev,int q)1184 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1185 {
1186 struct ravb_private *priv = netdev_priv(ndev);
1187 const struct ravb_hw_info *info = priv->info;
1188 u32 ris0 = ravb_read(ndev, RIS0);
1189 u32 ric0 = ravb_read(ndev, RIC0);
1190 u32 tis = ravb_read(ndev, TIS);
1191 u32 tic = ravb_read(ndev, TIC);
1192
1193 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
1194 if (napi_schedule_prep(&priv->napi[q])) {
1195 /* Mask RX and TX interrupts */
1196 if (!info->irq_en_dis) {
1197 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1198 ravb_write(ndev, tic & ~BIT(q), TIC);
1199 } else {
1200 ravb_write(ndev, BIT(q), RID0);
1201 ravb_write(ndev, BIT(q), TID);
1202 }
1203 __napi_schedule(&priv->napi[q]);
1204 } else {
1205 netdev_warn(ndev,
1206 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1207 ris0, ric0);
1208 netdev_warn(ndev,
1209 " tx status 0x%08x, tx mask 0x%08x.\n",
1210 tis, tic);
1211 }
1212 return true;
1213 }
1214 return false;
1215 }
1216
ravb_timestamp_interrupt(struct net_device * ndev)1217 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1218 {
1219 u32 tis = ravb_read(ndev, TIS);
1220
1221 if (tis & TIS_TFUF) {
1222 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1223 ravb_get_tx_tstamp(ndev);
1224 return true;
1225 }
1226 return false;
1227 }
1228
ravb_interrupt(int irq,void * dev_id)1229 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1230 {
1231 struct net_device *ndev = dev_id;
1232 struct ravb_private *priv = netdev_priv(ndev);
1233 const struct ravb_hw_info *info = priv->info;
1234 struct device *dev = &priv->pdev->dev;
1235 irqreturn_t result = IRQ_NONE;
1236 u32 iss;
1237
1238 pm_runtime_get_noresume(dev);
1239
1240 if (unlikely(!pm_runtime_active(dev)))
1241 goto out_rpm_put;
1242
1243 spin_lock(&priv->lock);
1244 /* Get interrupt status */
1245 iss = ravb_read(ndev, ISS);
1246
1247 /* Received and transmitted interrupts */
1248 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1249 int q;
1250
1251 /* Timestamp updated */
1252 if (ravb_timestamp_interrupt(ndev))
1253 result = IRQ_HANDLED;
1254
1255 /* Network control and best effort queue RX/TX */
1256 if (info->nc_queues) {
1257 for (q = RAVB_NC; q >= RAVB_BE; q--) {
1258 if (ravb_queue_interrupt(ndev, q))
1259 result = IRQ_HANDLED;
1260 }
1261 } else {
1262 if (ravb_queue_interrupt(ndev, RAVB_BE))
1263 result = IRQ_HANDLED;
1264 }
1265 }
1266
1267 /* E-MAC status summary */
1268 if (iss & ISS_MS) {
1269 ravb_emac_interrupt_unlocked(ndev);
1270 result = IRQ_HANDLED;
1271 }
1272
1273 /* Error status summary */
1274 if (iss & ISS_ES) {
1275 ravb_error_interrupt(ndev);
1276 result = IRQ_HANDLED;
1277 }
1278
1279 /* gPTP interrupt status summary */
1280 if (iss & ISS_CGIS) {
1281 ravb_ptp_interrupt(ndev);
1282 result = IRQ_HANDLED;
1283 }
1284
1285 spin_unlock(&priv->lock);
1286
1287 out_rpm_put:
1288 pm_runtime_put_noidle(dev);
1289 return result;
1290 }
1291
1292 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)1293 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1294 {
1295 struct net_device *ndev = dev_id;
1296 struct ravb_private *priv = netdev_priv(ndev);
1297 struct device *dev = &priv->pdev->dev;
1298 irqreturn_t result = IRQ_NONE;
1299 u32 iss;
1300
1301 pm_runtime_get_noresume(dev);
1302
1303 if (unlikely(!pm_runtime_active(dev)))
1304 goto out_rpm_put;
1305
1306 spin_lock(&priv->lock);
1307 /* Get interrupt status */
1308 iss = ravb_read(ndev, ISS);
1309
1310 /* Timestamp updated */
1311 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1312 result = IRQ_HANDLED;
1313
1314 /* Error status summary */
1315 if (iss & ISS_ES) {
1316 ravb_error_interrupt(ndev);
1317 result = IRQ_HANDLED;
1318 }
1319
1320 /* gPTP interrupt status summary */
1321 if (iss & ISS_CGIS) {
1322 ravb_ptp_interrupt(ndev);
1323 result = IRQ_HANDLED;
1324 }
1325
1326 spin_unlock(&priv->lock);
1327
1328 out_rpm_put:
1329 pm_runtime_put_noidle(dev);
1330 return result;
1331 }
1332
ravb_dma_interrupt(int irq,void * dev_id,int q)1333 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1334 {
1335 struct net_device *ndev = dev_id;
1336 struct ravb_private *priv = netdev_priv(ndev);
1337 struct device *dev = &priv->pdev->dev;
1338 irqreturn_t result = IRQ_NONE;
1339
1340 pm_runtime_get_noresume(dev);
1341
1342 if (unlikely(!pm_runtime_active(dev)))
1343 goto out_rpm_put;
1344
1345 spin_lock(&priv->lock);
1346
1347 /* Network control/Best effort queue RX/TX */
1348 if (ravb_queue_interrupt(ndev, q))
1349 result = IRQ_HANDLED;
1350
1351 spin_unlock(&priv->lock);
1352
1353 out_rpm_put:
1354 pm_runtime_put_noidle(dev);
1355 return result;
1356 }
1357
ravb_be_interrupt(int irq,void * dev_id)1358 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1359 {
1360 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1361 }
1362
ravb_nc_interrupt(int irq,void * dev_id)1363 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1364 {
1365 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1366 }
1367
ravb_poll(struct napi_struct * napi,int budget)1368 static int ravb_poll(struct napi_struct *napi, int budget)
1369 {
1370 struct net_device *ndev = napi->dev;
1371 struct ravb_private *priv = netdev_priv(ndev);
1372 const struct ravb_hw_info *info = priv->info;
1373 unsigned long flags;
1374 int q = napi - priv->napi;
1375 int mask = BIT(q);
1376 int work_done;
1377
1378 /* Processing RX Descriptor Ring */
1379 /* Clear RX interrupt */
1380 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1381 work_done = ravb_rx(ndev, budget, q);
1382
1383 /* Processing TX Descriptor Ring */
1384 spin_lock_irqsave(&priv->lock, flags);
1385 /* Clear TX interrupt */
1386 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1387 ravb_tx_free(ndev, q, true);
1388 netif_wake_subqueue(ndev, q);
1389 spin_unlock_irqrestore(&priv->lock, flags);
1390
1391 /* Receive error message handling */
1392 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1393 if (info->nc_queues)
1394 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1395 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1396 ndev->stats.rx_over_errors = priv->rx_over_errors;
1397 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1398 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1399
1400 if (work_done < budget && napi_complete_done(napi, work_done)) {
1401 /* Re-enable RX/TX interrupts */
1402 spin_lock_irqsave(&priv->lock, flags);
1403 if (!info->irq_en_dis) {
1404 ravb_modify(ndev, RIC0, mask, mask);
1405 ravb_modify(ndev, TIC, mask, mask);
1406 } else {
1407 ravb_write(ndev, mask, RIE0);
1408 ravb_write(ndev, mask, TIE);
1409 }
1410 spin_unlock_irqrestore(&priv->lock, flags);
1411 }
1412
1413 return work_done;
1414 }
1415
ravb_set_duplex_gbeth(struct net_device * ndev)1416 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1417 {
1418 struct ravb_private *priv = netdev_priv(ndev);
1419
1420 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1421 }
1422
1423 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)1424 static void ravb_adjust_link(struct net_device *ndev)
1425 {
1426 struct ravb_private *priv = netdev_priv(ndev);
1427 const struct ravb_hw_info *info = priv->info;
1428 struct phy_device *phydev = ndev->phydev;
1429 bool new_state = false;
1430 unsigned long flags;
1431
1432 spin_lock_irqsave(&priv->lock, flags);
1433
1434 /* Disable TX and RX right over here, if E-MAC change is ignored */
1435 if (priv->no_avb_link)
1436 ravb_rcv_snd_disable(ndev);
1437
1438 if (phydev->link) {
1439 if (info->half_duplex && phydev->duplex != priv->duplex) {
1440 new_state = true;
1441 priv->duplex = phydev->duplex;
1442 ravb_set_duplex_gbeth(ndev);
1443 }
1444
1445 if (phydev->speed != priv->speed) {
1446 new_state = true;
1447 priv->speed = phydev->speed;
1448 info->set_rate(ndev);
1449 }
1450 if (!priv->link) {
1451 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1452 new_state = true;
1453 priv->link = phydev->link;
1454 }
1455 } else if (priv->link) {
1456 new_state = true;
1457 priv->link = 0;
1458 priv->speed = 0;
1459 if (info->half_duplex)
1460 priv->duplex = -1;
1461 }
1462
1463 /* Enable TX and RX right over here, if E-MAC change is ignored */
1464 if (priv->no_avb_link && phydev->link)
1465 ravb_rcv_snd_enable(ndev);
1466
1467 spin_unlock_irqrestore(&priv->lock, flags);
1468
1469 if (new_state && netif_msg_link(priv))
1470 phy_print_status(phydev);
1471 }
1472
1473 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1474 static int ravb_phy_init(struct net_device *ndev)
1475 {
1476 struct device_node *np = ndev->dev.parent->of_node;
1477 struct ravb_private *priv = netdev_priv(ndev);
1478 const struct ravb_hw_info *info = priv->info;
1479 struct phy_device *phydev;
1480 struct device_node *pn;
1481 phy_interface_t iface;
1482 int err;
1483
1484 priv->link = 0;
1485 priv->speed = 0;
1486 priv->duplex = -1;
1487
1488 /* Try connecting to PHY */
1489 pn = of_parse_phandle(np, "phy-handle", 0);
1490 if (!pn) {
1491 /* In the case of a fixed PHY, the DT node associated
1492 * to the PHY is the Ethernet MAC DT node.
1493 */
1494 if (of_phy_is_fixed_link(np)) {
1495 err = of_phy_register_fixed_link(np);
1496 if (err)
1497 return err;
1498 }
1499 pn = of_node_get(np);
1500 }
1501
1502 iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1503 : priv->phy_interface;
1504 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1505 of_node_put(pn);
1506 if (!phydev) {
1507 netdev_err(ndev, "failed to connect PHY\n");
1508 err = -ENOENT;
1509 goto err_deregister_fixed_link;
1510 }
1511
1512 if (!info->half_duplex) {
1513 /* 10BASE, Pause and Asym Pause is not supported */
1514 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1515 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1516 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1517 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1518
1519 /* Half Duplex is not supported */
1520 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1521 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1522 }
1523
1524 phy_attached_info(phydev);
1525
1526 return 0;
1527
1528 err_deregister_fixed_link:
1529 if (of_phy_is_fixed_link(np))
1530 of_phy_deregister_fixed_link(np);
1531
1532 return err;
1533 }
1534
1535 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1536 static int ravb_phy_start(struct net_device *ndev)
1537 {
1538 int error;
1539
1540 error = ravb_phy_init(ndev);
1541 if (error)
1542 return error;
1543
1544 phy_start(ndev->phydev);
1545
1546 return 0;
1547 }
1548
ravb_get_msglevel(struct net_device * ndev)1549 static u32 ravb_get_msglevel(struct net_device *ndev)
1550 {
1551 struct ravb_private *priv = netdev_priv(ndev);
1552
1553 return priv->msg_enable;
1554 }
1555
ravb_set_msglevel(struct net_device * ndev,u32 value)1556 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1557 {
1558 struct ravb_private *priv = netdev_priv(ndev);
1559
1560 priv->msg_enable = value;
1561 }
1562
1563 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1564 "rx_queue_0_current",
1565 "tx_queue_0_current",
1566 "rx_queue_0_dirty",
1567 "tx_queue_0_dirty",
1568 "rx_queue_0_packets",
1569 "tx_queue_0_packets",
1570 "rx_queue_0_bytes",
1571 "tx_queue_0_bytes",
1572 "rx_queue_0_mcast_packets",
1573 "rx_queue_0_errors",
1574 "rx_queue_0_crc_errors",
1575 "rx_queue_0_frame_errors",
1576 "rx_queue_0_length_errors",
1577 "rx_queue_0_csum_offload_errors",
1578 "rx_queue_0_over_errors",
1579 };
1580
1581 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1582 "rx_queue_0_current",
1583 "tx_queue_0_current",
1584 "rx_queue_0_dirty",
1585 "tx_queue_0_dirty",
1586 "rx_queue_0_packets",
1587 "tx_queue_0_packets",
1588 "rx_queue_0_bytes",
1589 "tx_queue_0_bytes",
1590 "rx_queue_0_mcast_packets",
1591 "rx_queue_0_errors",
1592 "rx_queue_0_crc_errors",
1593 "rx_queue_0_frame_errors",
1594 "rx_queue_0_length_errors",
1595 "rx_queue_0_missed_errors",
1596 "rx_queue_0_over_errors",
1597
1598 "rx_queue_1_current",
1599 "tx_queue_1_current",
1600 "rx_queue_1_dirty",
1601 "tx_queue_1_dirty",
1602 "rx_queue_1_packets",
1603 "tx_queue_1_packets",
1604 "rx_queue_1_bytes",
1605 "tx_queue_1_bytes",
1606 "rx_queue_1_mcast_packets",
1607 "rx_queue_1_errors",
1608 "rx_queue_1_crc_errors",
1609 "rx_queue_1_frame_errors",
1610 "rx_queue_1_length_errors",
1611 "rx_queue_1_missed_errors",
1612 "rx_queue_1_over_errors",
1613 };
1614
ravb_get_sset_count(struct net_device * netdev,int sset)1615 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1616 {
1617 struct ravb_private *priv = netdev_priv(netdev);
1618 const struct ravb_hw_info *info = priv->info;
1619
1620 switch (sset) {
1621 case ETH_SS_STATS:
1622 return info->stats_len;
1623 default:
1624 return -EOPNOTSUPP;
1625 }
1626 }
1627
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1628 static void ravb_get_ethtool_stats(struct net_device *ndev,
1629 struct ethtool_stats *estats, u64 *data)
1630 {
1631 struct ravb_private *priv = netdev_priv(ndev);
1632 const struct ravb_hw_info *info = priv->info;
1633 int num_rx_q;
1634 int i = 0;
1635 int q;
1636
1637 num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1638 /* Device-specific stats */
1639 for (q = RAVB_BE; q < num_rx_q; q++) {
1640 struct net_device_stats *stats = &priv->stats[q];
1641
1642 data[i++] = priv->cur_rx[q];
1643 data[i++] = priv->cur_tx[q];
1644 data[i++] = priv->dirty_rx[q];
1645 data[i++] = priv->dirty_tx[q];
1646 data[i++] = stats->rx_packets;
1647 data[i++] = stats->tx_packets;
1648 data[i++] = stats->rx_bytes;
1649 data[i++] = stats->tx_bytes;
1650 data[i++] = stats->multicast;
1651 data[i++] = stats->rx_errors;
1652 data[i++] = stats->rx_crc_errors;
1653 data[i++] = stats->rx_frame_errors;
1654 data[i++] = stats->rx_length_errors;
1655 data[i++] = stats->rx_missed_errors;
1656 data[i++] = stats->rx_over_errors;
1657 }
1658 }
1659
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1660 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1661 {
1662 struct ravb_private *priv = netdev_priv(ndev);
1663 const struct ravb_hw_info *info = priv->info;
1664
1665 switch (stringset) {
1666 case ETH_SS_STATS:
1667 memcpy(data, info->gstrings_stats, info->gstrings_size);
1668 break;
1669 }
1670 }
1671
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1672 static void ravb_get_ringparam(struct net_device *ndev,
1673 struct ethtool_ringparam *ring,
1674 struct kernel_ethtool_ringparam *kernel_ring,
1675 struct netlink_ext_ack *extack)
1676 {
1677 struct ravb_private *priv = netdev_priv(ndev);
1678
1679 ring->rx_max_pending = BE_RX_RING_MAX;
1680 ring->tx_max_pending = BE_TX_RING_MAX;
1681 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1682 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1683 }
1684
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1685 static int ravb_set_ringparam(struct net_device *ndev,
1686 struct ethtool_ringparam *ring,
1687 struct kernel_ethtool_ringparam *kernel_ring,
1688 struct netlink_ext_ack *extack)
1689 {
1690 struct ravb_private *priv = netdev_priv(ndev);
1691 const struct ravb_hw_info *info = priv->info;
1692 int error;
1693
1694 if (ring->tx_pending > BE_TX_RING_MAX ||
1695 ring->rx_pending > BE_RX_RING_MAX ||
1696 ring->tx_pending < BE_TX_RING_MIN ||
1697 ring->rx_pending < BE_RX_RING_MIN)
1698 return -EINVAL;
1699 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1700 return -EINVAL;
1701
1702 if (netif_running(ndev)) {
1703 netif_device_detach(ndev);
1704 /* Stop PTP Clock driver */
1705 if (info->gptp)
1706 ravb_ptp_stop(ndev);
1707 /* Wait for DMA stopping */
1708 error = ravb_stop_dma(ndev);
1709 if (error) {
1710 netdev_err(ndev,
1711 "cannot set ringparam! Any AVB processes are still running?\n");
1712 return error;
1713 }
1714 synchronize_irq(ndev->irq);
1715
1716 /* Free all the skb's in the RX queue and the DMA buffers. */
1717 ravb_ring_free(ndev, RAVB_BE);
1718 if (info->nc_queues)
1719 ravb_ring_free(ndev, RAVB_NC);
1720 }
1721
1722 /* Set new parameters */
1723 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1724 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1725
1726 if (netif_running(ndev)) {
1727 error = ravb_dmac_init(ndev);
1728 if (error) {
1729 netdev_err(ndev,
1730 "%s: ravb_dmac_init() failed, error %d\n",
1731 __func__, error);
1732 return error;
1733 }
1734
1735 ravb_emac_init(ndev);
1736
1737 /* Initialise PTP Clock driver */
1738 if (info->gptp)
1739 ravb_ptp_init(ndev, priv->pdev);
1740
1741 netif_device_attach(ndev);
1742 }
1743
1744 return 0;
1745 }
1746
ravb_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)1747 static int ravb_get_ts_info(struct net_device *ndev,
1748 struct kernel_ethtool_ts_info *info)
1749 {
1750 struct ravb_private *priv = netdev_priv(ndev);
1751 const struct ravb_hw_info *hw_info = priv->info;
1752
1753 if (hw_info->gptp || hw_info->ccc_gac) {
1754 info->so_timestamping =
1755 SOF_TIMESTAMPING_TX_SOFTWARE |
1756 SOF_TIMESTAMPING_TX_HARDWARE |
1757 SOF_TIMESTAMPING_RX_HARDWARE |
1758 SOF_TIMESTAMPING_RAW_HARDWARE;
1759 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1760 info->rx_filters =
1761 (1 << HWTSTAMP_FILTER_NONE) |
1762 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1763 (1 << HWTSTAMP_FILTER_ALL);
1764 info->phc_index = ptp_clock_index(priv->ptp.clock);
1765 }
1766
1767 return 0;
1768 }
1769
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1770 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1771 {
1772 struct ravb_private *priv = netdev_priv(ndev);
1773
1774 wol->supported = WAKE_MAGIC;
1775 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1776 }
1777
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1778 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1779 {
1780 struct ravb_private *priv = netdev_priv(ndev);
1781 const struct ravb_hw_info *info = priv->info;
1782
1783 if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1784 return -EOPNOTSUPP;
1785
1786 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1787
1788 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1789
1790 return 0;
1791 }
1792
1793 static const struct ethtool_ops ravb_ethtool_ops = {
1794 .nway_reset = phy_ethtool_nway_reset,
1795 .get_msglevel = ravb_get_msglevel,
1796 .set_msglevel = ravb_set_msglevel,
1797 .get_link = ethtool_op_get_link,
1798 .get_strings = ravb_get_strings,
1799 .get_ethtool_stats = ravb_get_ethtool_stats,
1800 .get_sset_count = ravb_get_sset_count,
1801 .get_ringparam = ravb_get_ringparam,
1802 .set_ringparam = ravb_set_ringparam,
1803 .get_ts_info = ravb_get_ts_info,
1804 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1805 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1806 .get_wol = ravb_get_wol,
1807 .set_wol = ravb_set_wol,
1808 };
1809
ravb_set_config_mode(struct net_device * ndev)1810 static int ravb_set_config_mode(struct net_device *ndev)
1811 {
1812 struct ravb_private *priv = netdev_priv(ndev);
1813 const struct ravb_hw_info *info = priv->info;
1814 int error;
1815
1816 if (info->gptp) {
1817 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1818 if (error)
1819 return error;
1820 /* Set CSEL value */
1821 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1822 } else if (info->ccc_gac) {
1823 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1824 } else {
1825 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1826 }
1827
1828 return error;
1829 }
1830
ravb_set_gti(struct net_device * ndev)1831 static void ravb_set_gti(struct net_device *ndev)
1832 {
1833 struct ravb_private *priv = netdev_priv(ndev);
1834 const struct ravb_hw_info *info = priv->info;
1835
1836 if (!(info->gptp || info->ccc_gac))
1837 return;
1838
1839 ravb_write(ndev, priv->gti_tiv, GTI);
1840
1841 /* Request GTI loading */
1842 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1843 }
1844
ravb_compute_gti(struct net_device * ndev)1845 static int ravb_compute_gti(struct net_device *ndev)
1846 {
1847 struct ravb_private *priv = netdev_priv(ndev);
1848 const struct ravb_hw_info *info = priv->info;
1849 struct device *dev = ndev->dev.parent;
1850 unsigned long rate;
1851 u64 inc;
1852
1853 if (!(info->gptp || info->ccc_gac))
1854 return 0;
1855
1856 if (info->gptp_ref_clk)
1857 rate = clk_get_rate(priv->gptp_clk);
1858 else
1859 rate = clk_get_rate(priv->clk);
1860 if (!rate)
1861 return -EINVAL;
1862
1863 inc = div64_ul(1000000000ULL << 20, rate);
1864
1865 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1866 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1867 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1868 return -EINVAL;
1869 }
1870 priv->gti_tiv = inc;
1871
1872 return 0;
1873 }
1874
1875 /* Set tx and rx clock internal delay modes */
ravb_parse_delay_mode(struct device_node * np,struct net_device * ndev)1876 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1877 {
1878 struct ravb_private *priv = netdev_priv(ndev);
1879 bool explicit_delay = false;
1880 u32 delay;
1881
1882 if (!priv->info->internal_delay)
1883 return;
1884
1885 if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1886 /* Valid values are 0 and 1800, according to DT bindings */
1887 priv->rxcidm = !!delay;
1888 explicit_delay = true;
1889 }
1890 if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1891 /* Valid values are 0 and 2000, according to DT bindings */
1892 priv->txcidm = !!delay;
1893 explicit_delay = true;
1894 }
1895
1896 if (explicit_delay)
1897 return;
1898
1899 /* Fall back to legacy rgmii-*id behavior */
1900 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1901 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1902 priv->rxcidm = 1;
1903 priv->rgmii_override = 1;
1904 }
1905
1906 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1907 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1908 priv->txcidm = 1;
1909 priv->rgmii_override = 1;
1910 }
1911 }
1912
ravb_set_delay_mode(struct net_device * ndev)1913 static void ravb_set_delay_mode(struct net_device *ndev)
1914 {
1915 struct ravb_private *priv = netdev_priv(ndev);
1916 u32 set = 0;
1917
1918 if (!priv->info->internal_delay)
1919 return;
1920
1921 if (priv->rxcidm)
1922 set |= APSR_RDM;
1923 if (priv->txcidm)
1924 set |= APSR_TDM;
1925 ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1926 }
1927
1928 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1929 static int ravb_open(struct net_device *ndev)
1930 {
1931 struct ravb_private *priv = netdev_priv(ndev);
1932 const struct ravb_hw_info *info = priv->info;
1933 struct device *dev = &priv->pdev->dev;
1934 int error;
1935
1936 napi_enable(&priv->napi[RAVB_BE]);
1937 if (info->nc_queues)
1938 napi_enable(&priv->napi[RAVB_NC]);
1939
1940 error = pm_runtime_resume_and_get(dev);
1941 if (error < 0)
1942 goto out_napi_off;
1943
1944 /* Set AVB config mode */
1945 error = ravb_set_config_mode(ndev);
1946 if (error)
1947 goto out_rpm_put;
1948
1949 ravb_set_delay_mode(ndev);
1950 ravb_write(ndev, priv->desc_bat_dma, DBAT);
1951
1952 /* Device init */
1953 error = ravb_dmac_init(ndev);
1954 if (error)
1955 goto out_set_reset;
1956
1957 ravb_emac_init(ndev);
1958
1959 ravb_set_gti(ndev);
1960
1961 /* Initialise PTP Clock driver */
1962 if (info->gptp || info->ccc_gac)
1963 ravb_ptp_init(ndev, priv->pdev);
1964
1965 /* PHY control start */
1966 error = ravb_phy_start(ndev);
1967 if (error)
1968 goto out_ptp_stop;
1969
1970 netif_tx_start_all_queues(ndev);
1971
1972 return 0;
1973
1974 out_ptp_stop:
1975 /* Stop PTP Clock driver */
1976 if (info->gptp || info->ccc_gac)
1977 ravb_ptp_stop(ndev);
1978 ravb_stop_dma(ndev);
1979 out_set_reset:
1980 ravb_set_opmode(ndev, CCC_OPC_RESET);
1981 out_rpm_put:
1982 pm_runtime_mark_last_busy(dev);
1983 pm_runtime_put_autosuspend(dev);
1984 out_napi_off:
1985 if (info->nc_queues)
1986 napi_disable(&priv->napi[RAVB_NC]);
1987 napi_disable(&priv->napi[RAVB_BE]);
1988 return error;
1989 }
1990
1991 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev,unsigned int txqueue)1992 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1993 {
1994 struct ravb_private *priv = netdev_priv(ndev);
1995
1996 netif_err(priv, tx_err, ndev,
1997 "transmit timed out, status %08x, resetting...\n",
1998 ravb_read(ndev, ISS));
1999
2000 /* tx_errors count up */
2001 ndev->stats.tx_errors++;
2002
2003 schedule_work(&priv->work);
2004 }
2005
ravb_tx_timeout_work(struct work_struct * work)2006 static void ravb_tx_timeout_work(struct work_struct *work)
2007 {
2008 struct ravb_private *priv = container_of(work, struct ravb_private,
2009 work);
2010 const struct ravb_hw_info *info = priv->info;
2011 struct net_device *ndev = priv->ndev;
2012 int error;
2013
2014 if (!rtnl_trylock()) {
2015 usleep_range(1000, 2000);
2016 schedule_work(&priv->work);
2017 return;
2018 }
2019
2020 netif_tx_stop_all_queues(ndev);
2021
2022 /* Stop PTP Clock driver */
2023 if (info->gptp)
2024 ravb_ptp_stop(ndev);
2025
2026 /* Wait for DMA stopping */
2027 if (ravb_stop_dma(ndev)) {
2028 /* If ravb_stop_dma() fails, the hardware is still operating
2029 * for TX and/or RX. So, this should not call the following
2030 * functions because ravb_dmac_init() is possible to fail too.
2031 * Also, this should not retry ravb_stop_dma() again and again
2032 * here because it's possible to wait forever. So, this just
2033 * re-enables the TX and RX and skip the following
2034 * re-initialization procedure.
2035 */
2036 ravb_rcv_snd_enable(ndev);
2037 goto out;
2038 }
2039
2040 ravb_ring_free(ndev, RAVB_BE);
2041 if (info->nc_queues)
2042 ravb_ring_free(ndev, RAVB_NC);
2043
2044 /* Device init */
2045 error = ravb_dmac_init(ndev);
2046 if (error) {
2047 /* If ravb_dmac_init() fails, descriptors are freed. So, this
2048 * should return here to avoid re-enabling the TX and RX in
2049 * ravb_emac_init().
2050 */
2051 netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2052 __func__, error);
2053 goto out_unlock;
2054 }
2055 ravb_emac_init(ndev);
2056
2057 out:
2058 /* Initialise PTP Clock driver */
2059 if (info->gptp)
2060 ravb_ptp_init(ndev, priv->pdev);
2061
2062 netif_tx_start_all_queues(ndev);
2063
2064 out_unlock:
2065 rtnl_unlock();
2066 }
2067
ravb_can_tx_csum_gbeth(struct sk_buff * skb)2068 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2069 {
2070 struct iphdr *ip = ip_hdr(skb);
2071
2072 /* TODO: Need to add support for VLAN tag 802.1Q */
2073 if (skb_vlan_tag_present(skb))
2074 return false;
2075
2076 /* TODO: Need to add hardware checksum for IPv6 */
2077 if (skb->protocol != htons(ETH_P_IP))
2078 return false;
2079
2080 switch (ip->protocol) {
2081 case IPPROTO_TCP:
2082 break;
2083 case IPPROTO_UDP:
2084 /* If the checksum value in the UDP header field is 0, TOE does
2085 * not calculate checksum for UDP part of this frame as it is
2086 * optional function as per standards.
2087 */
2088 if (udp_hdr(skb)->check == 0)
2089 return false;
2090 break;
2091 default:
2092 return false;
2093 }
2094
2095 return true;
2096 }
2097
2098 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)2099 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2100 {
2101 struct ravb_private *priv = netdev_priv(ndev);
2102 const struct ravb_hw_info *info = priv->info;
2103 unsigned int num_tx_desc = priv->num_tx_desc;
2104 u16 q = skb_get_queue_mapping(skb);
2105 struct ravb_tstamp_skb *ts_skb;
2106 struct ravb_tx_desc *desc;
2107 unsigned long flags;
2108 dma_addr_t dma_addr;
2109 void *buffer;
2110 u32 entry;
2111 u32 len;
2112
2113 if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2114 skb_checksum_help(skb);
2115
2116 spin_lock_irqsave(&priv->lock, flags);
2117 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2118 num_tx_desc) {
2119 netif_err(priv, tx_queued, ndev,
2120 "still transmitting with the full ring!\n");
2121 netif_stop_subqueue(ndev, q);
2122 spin_unlock_irqrestore(&priv->lock, flags);
2123 return NETDEV_TX_BUSY;
2124 }
2125
2126 if (skb_put_padto(skb, ETH_ZLEN))
2127 goto exit;
2128
2129 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2130 priv->tx_skb[q][entry / num_tx_desc] = skb;
2131
2132 if (num_tx_desc > 1) {
2133 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2134 entry / num_tx_desc * DPTR_ALIGN;
2135 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2136
2137 /* Zero length DMA descriptors are problematic as they seem
2138 * to terminate DMA transfers. Avoid them by simply using a
2139 * length of DPTR_ALIGN (4) when skb data is aligned to
2140 * DPTR_ALIGN.
2141 *
2142 * As skb is guaranteed to have at least ETH_ZLEN (60)
2143 * bytes of data by the call to skb_put_padto() above this
2144 * is safe with respect to both the length of the first DMA
2145 * descriptor (len) overflowing the available data and the
2146 * length of the second DMA descriptor (skb->len - len)
2147 * being negative.
2148 */
2149 if (len == 0)
2150 len = DPTR_ALIGN;
2151
2152 memcpy(buffer, skb->data, len);
2153 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2154 DMA_TO_DEVICE);
2155 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2156 goto drop;
2157
2158 desc = &priv->tx_ring[q][entry];
2159 desc->ds_tagl = cpu_to_le16(len);
2160 desc->dptr = cpu_to_le32(dma_addr);
2161
2162 buffer = skb->data + len;
2163 len = skb->len - len;
2164 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2165 DMA_TO_DEVICE);
2166 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2167 goto unmap;
2168
2169 desc++;
2170 } else {
2171 desc = &priv->tx_ring[q][entry];
2172 len = skb->len;
2173 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2174 DMA_TO_DEVICE);
2175 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2176 goto drop;
2177 }
2178 desc->ds_tagl = cpu_to_le16(len);
2179 desc->dptr = cpu_to_le32(dma_addr);
2180
2181 /* TX timestamp required */
2182 if (info->gptp || info->ccc_gac) {
2183 if (q == RAVB_NC) {
2184 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2185 if (!ts_skb) {
2186 if (num_tx_desc > 1) {
2187 desc--;
2188 dma_unmap_single(ndev->dev.parent, dma_addr,
2189 len, DMA_TO_DEVICE);
2190 }
2191 goto unmap;
2192 }
2193 ts_skb->skb = skb_get(skb);
2194 ts_skb->tag = priv->ts_skb_tag++;
2195 priv->ts_skb_tag &= 0x3ff;
2196 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2197
2198 /* TAG and timestamp required flag */
2199 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2200 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2201 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2202 }
2203
2204 skb_tx_timestamp(skb);
2205 }
2206 /* Descriptor type must be set after all the above writes */
2207 dma_wmb();
2208 if (num_tx_desc > 1) {
2209 desc->die_dt = DT_FEND;
2210 desc--;
2211 desc->die_dt = DT_FSTART;
2212 } else {
2213 desc->die_dt = DT_FSINGLE;
2214 }
2215 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2216
2217 priv->cur_tx[q] += num_tx_desc;
2218 if (priv->cur_tx[q] - priv->dirty_tx[q] >
2219 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2220 !ravb_tx_free(ndev, q, true))
2221 netif_stop_subqueue(ndev, q);
2222
2223 exit:
2224 spin_unlock_irqrestore(&priv->lock, flags);
2225 return NETDEV_TX_OK;
2226
2227 unmap:
2228 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2229 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2230 drop:
2231 dev_kfree_skb_any(skb);
2232 priv->tx_skb[q][entry / num_tx_desc] = NULL;
2233 goto exit;
2234 }
2235
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)2236 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2237 struct net_device *sb_dev)
2238 {
2239 /* If skb needs TX timestamp, it is handled in network control queue */
2240 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2241 RAVB_BE;
2242
2243 }
2244
ravb_get_stats(struct net_device * ndev)2245 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2246 {
2247 struct ravb_private *priv = netdev_priv(ndev);
2248 const struct ravb_hw_info *info = priv->info;
2249 struct net_device_stats *nstats, *stats0, *stats1;
2250 struct device *dev = &priv->pdev->dev;
2251
2252 nstats = &ndev->stats;
2253
2254 pm_runtime_get_noresume(dev);
2255
2256 if (!pm_runtime_active(dev))
2257 goto out_rpm_put;
2258
2259 stats0 = &priv->stats[RAVB_BE];
2260
2261 if (info->tx_counters) {
2262 nstats->tx_dropped += ravb_read(ndev, TROCR);
2263 ravb_write(ndev, 0, TROCR); /* (write clear) */
2264 }
2265
2266 if (info->carrier_counters) {
2267 nstats->collisions += ravb_read(ndev, CXR41);
2268 ravb_write(ndev, 0, CXR41); /* (write clear) */
2269 nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2270 ravb_write(ndev, 0, CXR42); /* (write clear) */
2271 }
2272
2273 nstats->rx_packets = stats0->rx_packets;
2274 nstats->tx_packets = stats0->tx_packets;
2275 nstats->rx_bytes = stats0->rx_bytes;
2276 nstats->tx_bytes = stats0->tx_bytes;
2277 nstats->multicast = stats0->multicast;
2278 nstats->rx_errors = stats0->rx_errors;
2279 nstats->rx_crc_errors = stats0->rx_crc_errors;
2280 nstats->rx_frame_errors = stats0->rx_frame_errors;
2281 nstats->rx_length_errors = stats0->rx_length_errors;
2282 nstats->rx_missed_errors = stats0->rx_missed_errors;
2283 nstats->rx_over_errors = stats0->rx_over_errors;
2284 if (info->nc_queues) {
2285 stats1 = &priv->stats[RAVB_NC];
2286
2287 nstats->rx_packets += stats1->rx_packets;
2288 nstats->tx_packets += stats1->tx_packets;
2289 nstats->rx_bytes += stats1->rx_bytes;
2290 nstats->tx_bytes += stats1->tx_bytes;
2291 nstats->multicast += stats1->multicast;
2292 nstats->rx_errors += stats1->rx_errors;
2293 nstats->rx_crc_errors += stats1->rx_crc_errors;
2294 nstats->rx_frame_errors += stats1->rx_frame_errors;
2295 nstats->rx_length_errors += stats1->rx_length_errors;
2296 nstats->rx_missed_errors += stats1->rx_missed_errors;
2297 nstats->rx_over_errors += stats1->rx_over_errors;
2298 }
2299
2300 out_rpm_put:
2301 pm_runtime_put_noidle(dev);
2302 return nstats;
2303 }
2304
2305 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)2306 static void ravb_set_rx_mode(struct net_device *ndev)
2307 {
2308 struct ravb_private *priv = netdev_priv(ndev);
2309 unsigned long flags;
2310
2311 spin_lock_irqsave(&priv->lock, flags);
2312 ravb_modify(ndev, ECMR, ECMR_PRM,
2313 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2314 spin_unlock_irqrestore(&priv->lock, flags);
2315 }
2316
2317 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)2318 static int ravb_close(struct net_device *ndev)
2319 {
2320 struct device_node *np = ndev->dev.parent->of_node;
2321 struct ravb_private *priv = netdev_priv(ndev);
2322 const struct ravb_hw_info *info = priv->info;
2323 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2324 struct device *dev = &priv->pdev->dev;
2325 int error;
2326
2327 netif_tx_stop_all_queues(ndev);
2328
2329 /* Disable interrupts by clearing the interrupt masks. */
2330 ravb_write(ndev, 0, RIC0);
2331 ravb_write(ndev, 0, RIC2);
2332 ravb_write(ndev, 0, TIC);
2333
2334 /* PHY disconnect */
2335 if (ndev->phydev) {
2336 phy_stop(ndev->phydev);
2337 phy_disconnect(ndev->phydev);
2338 if (of_phy_is_fixed_link(np))
2339 of_phy_deregister_fixed_link(np);
2340 }
2341
2342 /* Stop PTP Clock driver */
2343 if (info->gptp || info->ccc_gac)
2344 ravb_ptp_stop(ndev);
2345
2346 /* Set the config mode to stop the AVB-DMAC's processes */
2347 if (ravb_stop_dma(ndev) < 0)
2348 netdev_err(ndev,
2349 "device will be stopped after h/w processes are done.\n");
2350
2351 /* Clear the timestamp list */
2352 if (info->gptp || info->ccc_gac) {
2353 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2354 list_del(&ts_skb->list);
2355 kfree_skb(ts_skb->skb);
2356 kfree(ts_skb);
2357 }
2358 }
2359
2360 cancel_work_sync(&priv->work);
2361
2362 if (info->nc_queues)
2363 napi_disable(&priv->napi[RAVB_NC]);
2364 napi_disable(&priv->napi[RAVB_BE]);
2365
2366 /* Free all the skb's in the RX queue and the DMA buffers. */
2367 ravb_ring_free(ndev, RAVB_BE);
2368 if (info->nc_queues)
2369 ravb_ring_free(ndev, RAVB_NC);
2370
2371 /* Update statistics. */
2372 ravb_get_stats(ndev);
2373
2374 /* Set reset mode. */
2375 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2376 if (error)
2377 return error;
2378
2379 pm_runtime_mark_last_busy(dev);
2380 pm_runtime_put_autosuspend(dev);
2381
2382 return 0;
2383 }
2384
ravb_hwtstamp_get(struct net_device * ndev,struct ifreq * req)2385 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2386 {
2387 struct ravb_private *priv = netdev_priv(ndev);
2388 struct hwtstamp_config config;
2389
2390 config.flags = 0;
2391 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2392 HWTSTAMP_TX_OFF;
2393 switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2394 case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2395 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2396 break;
2397 case RAVB_RXTSTAMP_TYPE_ALL:
2398 config.rx_filter = HWTSTAMP_FILTER_ALL;
2399 break;
2400 default:
2401 config.rx_filter = HWTSTAMP_FILTER_NONE;
2402 }
2403
2404 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2405 -EFAULT : 0;
2406 }
2407
2408 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct ifreq * req)2409 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2410 {
2411 struct ravb_private *priv = netdev_priv(ndev);
2412 struct hwtstamp_config config;
2413 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2414 u32 tstamp_tx_ctrl;
2415
2416 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2417 return -EFAULT;
2418
2419 switch (config.tx_type) {
2420 case HWTSTAMP_TX_OFF:
2421 tstamp_tx_ctrl = 0;
2422 break;
2423 case HWTSTAMP_TX_ON:
2424 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2425 break;
2426 default:
2427 return -ERANGE;
2428 }
2429
2430 switch (config.rx_filter) {
2431 case HWTSTAMP_FILTER_NONE:
2432 tstamp_rx_ctrl = 0;
2433 break;
2434 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2435 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2436 break;
2437 default:
2438 config.rx_filter = HWTSTAMP_FILTER_ALL;
2439 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2440 }
2441
2442 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2443 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2444
2445 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2446 -EFAULT : 0;
2447 }
2448
2449 /* ioctl to device function */
ravb_do_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)2450 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2451 {
2452 struct phy_device *phydev = ndev->phydev;
2453
2454 if (!netif_running(ndev))
2455 return -EINVAL;
2456
2457 if (!phydev)
2458 return -ENODEV;
2459
2460 switch (cmd) {
2461 case SIOCGHWTSTAMP:
2462 return ravb_hwtstamp_get(ndev, req);
2463 case SIOCSHWTSTAMP:
2464 return ravb_hwtstamp_set(ndev, req);
2465 }
2466
2467 return phy_mii_ioctl(phydev, req, cmd);
2468 }
2469
ravb_change_mtu(struct net_device * ndev,int new_mtu)2470 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2471 {
2472 struct ravb_private *priv = netdev_priv(ndev);
2473
2474 WRITE_ONCE(ndev->mtu, new_mtu);
2475
2476 if (netif_running(ndev)) {
2477 synchronize_irq(priv->emac_irq);
2478 ravb_emac_init(ndev);
2479 }
2480
2481 netdev_update_features(ndev);
2482
2483 return 0;
2484 }
2485
ravb_set_rx_csum(struct net_device * ndev,bool enable)2486 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2487 {
2488 struct ravb_private *priv = netdev_priv(ndev);
2489 unsigned long flags;
2490
2491 spin_lock_irqsave(&priv->lock, flags);
2492
2493 /* Disable TX and RX */
2494 ravb_rcv_snd_disable(ndev);
2495
2496 /* Modify RX Checksum setting */
2497 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2498
2499 /* Enable TX and RX */
2500 ravb_rcv_snd_enable(ndev);
2501
2502 spin_unlock_irqrestore(&priv->lock, flags);
2503 }
2504
ravb_endisable_csum_gbeth(struct net_device * ndev,enum ravb_reg reg,u32 val,u32 mask)2505 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2506 u32 val, u32 mask)
2507 {
2508 u32 csr0 = CSR0_TPE | CSR0_RPE;
2509 int ret;
2510
2511 ravb_write(ndev, csr0 & ~mask, CSR0);
2512 ret = ravb_wait(ndev, CSR0, mask, 0);
2513 if (!ret)
2514 ravb_write(ndev, val, reg);
2515
2516 ravb_write(ndev, csr0, CSR0);
2517
2518 return ret;
2519 }
2520
ravb_set_features_gbeth(struct net_device * ndev,netdev_features_t features)2521 static int ravb_set_features_gbeth(struct net_device *ndev,
2522 netdev_features_t features)
2523 {
2524 netdev_features_t changed = ndev->features ^ features;
2525 struct ravb_private *priv = netdev_priv(ndev);
2526 unsigned long flags;
2527 int ret = 0;
2528 u32 val;
2529
2530 spin_lock_irqsave(&priv->lock, flags);
2531 if (changed & NETIF_F_RXCSUM) {
2532 if (features & NETIF_F_RXCSUM)
2533 val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2534 else
2535 val = 0;
2536
2537 ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2538 if (ret)
2539 goto done;
2540 }
2541
2542 if (changed & NETIF_F_HW_CSUM) {
2543 if (features & NETIF_F_HW_CSUM)
2544 val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2545 else
2546 val = 0;
2547
2548 ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2549 if (ret)
2550 goto done;
2551 }
2552
2553 done:
2554 spin_unlock_irqrestore(&priv->lock, flags);
2555
2556 return ret;
2557 }
2558
ravb_set_features_rcar(struct net_device * ndev,netdev_features_t features)2559 static int ravb_set_features_rcar(struct net_device *ndev,
2560 netdev_features_t features)
2561 {
2562 netdev_features_t changed = ndev->features ^ features;
2563
2564 if (changed & NETIF_F_RXCSUM)
2565 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2566
2567 return 0;
2568 }
2569
ravb_set_features(struct net_device * ndev,netdev_features_t features)2570 static int ravb_set_features(struct net_device *ndev,
2571 netdev_features_t features)
2572 {
2573 struct ravb_private *priv = netdev_priv(ndev);
2574 const struct ravb_hw_info *info = priv->info;
2575 struct device *dev = &priv->pdev->dev;
2576 int ret;
2577
2578 pm_runtime_get_noresume(dev);
2579
2580 if (pm_runtime_active(dev))
2581 ret = info->set_feature(ndev, features);
2582 else
2583 ret = 0;
2584
2585 pm_runtime_put_noidle(dev);
2586
2587 if (ret)
2588 return ret;
2589
2590 ndev->features = features;
2591
2592 return 0;
2593 }
2594
2595 static const struct net_device_ops ravb_netdev_ops = {
2596 .ndo_open = ravb_open,
2597 .ndo_stop = ravb_close,
2598 .ndo_start_xmit = ravb_start_xmit,
2599 .ndo_select_queue = ravb_select_queue,
2600 .ndo_get_stats = ravb_get_stats,
2601 .ndo_set_rx_mode = ravb_set_rx_mode,
2602 .ndo_tx_timeout = ravb_tx_timeout,
2603 .ndo_eth_ioctl = ravb_do_ioctl,
2604 .ndo_change_mtu = ravb_change_mtu,
2605 .ndo_validate_addr = eth_validate_addr,
2606 .ndo_set_mac_address = eth_mac_addr,
2607 .ndo_set_features = ravb_set_features,
2608 };
2609
2610 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)2611 static int ravb_mdio_init(struct ravb_private *priv)
2612 {
2613 struct platform_device *pdev = priv->pdev;
2614 struct device *dev = &pdev->dev;
2615 struct device_node *mdio_node;
2616 struct phy_device *phydev;
2617 struct device_node *pn;
2618 int error;
2619
2620 /* Bitbang init */
2621 priv->mdiobb.ops = &bb_ops;
2622
2623 /* MII controller setting */
2624 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2625 if (!priv->mii_bus)
2626 return -ENOMEM;
2627
2628 /* Hook up MII support for ethtool */
2629 priv->mii_bus->name = "ravb_mii";
2630 priv->mii_bus->parent = dev;
2631 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2632 pdev->name, pdev->id);
2633
2634 /* Register MDIO bus */
2635 mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2636 if (!mdio_node) {
2637 /* backwards compatibility for DT lacking mdio subnode */
2638 mdio_node = of_node_get(dev->of_node);
2639 }
2640 error = of_mdiobus_register(priv->mii_bus, mdio_node);
2641 of_node_put(mdio_node);
2642 if (error)
2643 goto out_free_bus;
2644
2645 pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2646 phydev = of_phy_find_device(pn);
2647 if (phydev) {
2648 phydev->mac_managed_pm = true;
2649 put_device(&phydev->mdio.dev);
2650 }
2651 of_node_put(pn);
2652
2653 return 0;
2654
2655 out_free_bus:
2656 free_mdio_bitbang(priv->mii_bus);
2657 return error;
2658 }
2659
2660 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)2661 static int ravb_mdio_release(struct ravb_private *priv)
2662 {
2663 /* Unregister mdio bus */
2664 mdiobus_unregister(priv->mii_bus);
2665
2666 /* Free bitbang info */
2667 free_mdio_bitbang(priv->mii_bus);
2668
2669 return 0;
2670 }
2671
2672 static const struct ravb_hw_info ravb_gen2_hw_info = {
2673 .receive = ravb_rx_rcar,
2674 .set_rate = ravb_set_rate_rcar,
2675 .set_feature = ravb_set_features_rcar,
2676 .dmac_init = ravb_dmac_init_rcar,
2677 .emac_init = ravb_emac_init_rcar,
2678 .gstrings_stats = ravb_gstrings_stats,
2679 .gstrings_size = sizeof(ravb_gstrings_stats),
2680 .net_hw_features = NETIF_F_RXCSUM,
2681 .net_features = NETIF_F_RXCSUM,
2682 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2683 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2684 .tx_max_frame_size = SZ_2K,
2685 .rx_max_frame_size = SZ_2K,
2686 .rx_buffer_size = SZ_2K +
2687 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2688 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2689 .aligned_tx = 1,
2690 .gptp = 1,
2691 .nc_queues = 1,
2692 .magic_pkt = 1,
2693 };
2694
2695 static const struct ravb_hw_info ravb_gen3_hw_info = {
2696 .receive = ravb_rx_rcar,
2697 .set_rate = ravb_set_rate_rcar,
2698 .set_feature = ravb_set_features_rcar,
2699 .dmac_init = ravb_dmac_init_rcar,
2700 .emac_init = ravb_emac_init_rcar,
2701 .gstrings_stats = ravb_gstrings_stats,
2702 .gstrings_size = sizeof(ravb_gstrings_stats),
2703 .net_hw_features = NETIF_F_RXCSUM,
2704 .net_features = NETIF_F_RXCSUM,
2705 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2706 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2707 .tx_max_frame_size = SZ_2K,
2708 .rx_max_frame_size = SZ_2K,
2709 .rx_buffer_size = SZ_2K +
2710 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2711 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2712 .internal_delay = 1,
2713 .tx_counters = 1,
2714 .multi_irqs = 1,
2715 .irq_en_dis = 1,
2716 .ccc_gac = 1,
2717 .nc_queues = 1,
2718 .magic_pkt = 1,
2719 };
2720
2721 static const struct ravb_hw_info ravb_gen4_hw_info = {
2722 .receive = ravb_rx_rcar,
2723 .set_rate = ravb_set_rate_rcar,
2724 .set_feature = ravb_set_features_rcar,
2725 .dmac_init = ravb_dmac_init_rcar,
2726 .emac_init = ravb_emac_init_rcar_gen4,
2727 .gstrings_stats = ravb_gstrings_stats,
2728 .gstrings_size = sizeof(ravb_gstrings_stats),
2729 .net_hw_features = NETIF_F_RXCSUM,
2730 .net_features = NETIF_F_RXCSUM,
2731 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2732 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2733 .tx_max_frame_size = SZ_2K,
2734 .rx_max_frame_size = SZ_2K,
2735 .rx_buffer_size = SZ_2K +
2736 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2737 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2738 .internal_delay = 1,
2739 .tx_counters = 1,
2740 .multi_irqs = 1,
2741 .irq_en_dis = 1,
2742 .ccc_gac = 1,
2743 .nc_queues = 1,
2744 .magic_pkt = 1,
2745 };
2746
2747 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2748 .receive = ravb_rx_rcar,
2749 .set_rate = ravb_set_rate_rcar,
2750 .set_feature = ravb_set_features_rcar,
2751 .dmac_init = ravb_dmac_init_rcar,
2752 .emac_init = ravb_emac_init_rcar,
2753 .gstrings_stats = ravb_gstrings_stats,
2754 .gstrings_size = sizeof(ravb_gstrings_stats),
2755 .net_hw_features = NETIF_F_RXCSUM,
2756 .net_features = NETIF_F_RXCSUM,
2757 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2758 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2759 .rx_max_frame_size = SZ_2K,
2760 .rx_buffer_size = SZ_2K +
2761 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2762 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2763 .multi_irqs = 1,
2764 .err_mgmt_irqs = 1,
2765 .gptp = 1,
2766 .gptp_ref_clk = 1,
2767 .nc_queues = 1,
2768 .magic_pkt = 1,
2769 };
2770
2771 static const struct ravb_hw_info gbeth_hw_info = {
2772 .receive = ravb_rx_gbeth,
2773 .set_rate = ravb_set_rate_gbeth,
2774 .set_feature = ravb_set_features_gbeth,
2775 .dmac_init = ravb_dmac_init_gbeth,
2776 .emac_init = ravb_emac_init_gbeth,
2777 .gstrings_stats = ravb_gstrings_stats_gbeth,
2778 .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2779 .net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2780 .net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2781 .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2782 .tccr_mask = TCCR_TSRQ0,
2783 .tx_max_frame_size = 1522,
2784 .rx_max_frame_size = SZ_8K,
2785 .rx_buffer_size = SZ_2K,
2786 .rx_desc_size = sizeof(struct ravb_rx_desc),
2787 .aligned_tx = 1,
2788 .coalesce_irqs = 1,
2789 .tx_counters = 1,
2790 .carrier_counters = 1,
2791 .half_duplex = 1,
2792 };
2793
2794 static const struct of_device_id ravb_match_table[] = {
2795 { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2796 { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2797 { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2798 { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2799 { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2800 { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2801 { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2802 { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2803 { }
2804 };
2805 MODULE_DEVICE_TABLE(of, ravb_match_table);
2806
ravb_setup_irq(struct ravb_private * priv,const char * irq_name,const char * ch,int * irq,irq_handler_t handler)2807 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2808 const char *ch, int *irq, irq_handler_t handler)
2809 {
2810 struct platform_device *pdev = priv->pdev;
2811 struct net_device *ndev = priv->ndev;
2812 struct device *dev = &pdev->dev;
2813 const char *devname = dev_name(dev);
2814 unsigned long flags;
2815 int error, irq_num;
2816
2817 if (irq_name) {
2818 devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2819 if (!devname)
2820 return -ENOMEM;
2821
2822 irq_num = platform_get_irq_byname(pdev, irq_name);
2823 flags = 0;
2824 } else {
2825 irq_num = platform_get_irq(pdev, 0);
2826 flags = IRQF_SHARED;
2827 }
2828 if (irq_num < 0)
2829 return irq_num;
2830
2831 if (irq)
2832 *irq = irq_num;
2833
2834 error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2835 if (error)
2836 netdev_err(ndev, "cannot request IRQ %s\n", devname);
2837
2838 return error;
2839 }
2840
ravb_setup_irqs(struct ravb_private * priv)2841 static int ravb_setup_irqs(struct ravb_private *priv)
2842 {
2843 const struct ravb_hw_info *info = priv->info;
2844 struct net_device *ndev = priv->ndev;
2845 const char *irq_name, *emac_irq_name;
2846 int error;
2847
2848 if (!info->multi_irqs)
2849 return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2850
2851 if (info->err_mgmt_irqs) {
2852 irq_name = "dia";
2853 emac_irq_name = "line3";
2854 } else {
2855 irq_name = "ch22";
2856 emac_irq_name = "ch24";
2857 }
2858
2859 error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2860 if (error)
2861 return error;
2862
2863 error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2864 ravb_emac_interrupt);
2865 if (error)
2866 return error;
2867
2868 if (info->err_mgmt_irqs) {
2869 error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2870 if (error)
2871 return error;
2872
2873 error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2874 if (error)
2875 return error;
2876 }
2877
2878 error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2879 if (error)
2880 return error;
2881
2882 error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2883 if (error)
2884 return error;
2885
2886 error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2887 if (error)
2888 return error;
2889
2890 return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2891 }
2892
ravb_probe(struct platform_device * pdev)2893 static int ravb_probe(struct platform_device *pdev)
2894 {
2895 struct device_node *np = pdev->dev.of_node;
2896 const struct ravb_hw_info *info;
2897 struct reset_control *rstc;
2898 struct ravb_private *priv;
2899 struct net_device *ndev;
2900 struct resource *res;
2901 int error, q;
2902
2903 if (!np) {
2904 dev_err(&pdev->dev,
2905 "this driver is required to be instantiated from device tree\n");
2906 return -EINVAL;
2907 }
2908
2909 rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2910 if (IS_ERR(rstc))
2911 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2912 "failed to get cpg reset\n");
2913
2914 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2915 NUM_TX_QUEUE, NUM_RX_QUEUE);
2916 if (!ndev)
2917 return -ENOMEM;
2918
2919 info = of_device_get_match_data(&pdev->dev);
2920
2921 ndev->features = info->net_features;
2922 ndev->hw_features = info->net_hw_features;
2923
2924 error = reset_control_deassert(rstc);
2925 if (error)
2926 goto out_free_netdev;
2927
2928 SET_NETDEV_DEV(ndev, &pdev->dev);
2929
2930 priv = netdev_priv(ndev);
2931 priv->info = info;
2932 priv->rstc = rstc;
2933 priv->ndev = ndev;
2934 priv->pdev = pdev;
2935 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2936 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2937 if (info->nc_queues) {
2938 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2939 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2940 }
2941
2942 error = ravb_setup_irqs(priv);
2943 if (error)
2944 goto out_reset_assert;
2945
2946 priv->clk = devm_clk_get(&pdev->dev, NULL);
2947 if (IS_ERR(priv->clk)) {
2948 error = PTR_ERR(priv->clk);
2949 goto out_reset_assert;
2950 }
2951
2952 if (info->gptp_ref_clk) {
2953 priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2954 if (IS_ERR(priv->gptp_clk)) {
2955 error = PTR_ERR(priv->gptp_clk);
2956 goto out_reset_assert;
2957 }
2958 }
2959
2960 priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2961 if (IS_ERR(priv->refclk)) {
2962 error = PTR_ERR(priv->refclk);
2963 goto out_reset_assert;
2964 }
2965 clk_prepare(priv->refclk);
2966
2967 platform_set_drvdata(pdev, ndev);
2968 pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2969 pm_runtime_use_autosuspend(&pdev->dev);
2970 pm_runtime_enable(&pdev->dev);
2971 error = pm_runtime_resume_and_get(&pdev->dev);
2972 if (error < 0)
2973 goto out_rpm_disable;
2974
2975 priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2976 if (IS_ERR(priv->addr)) {
2977 error = PTR_ERR(priv->addr);
2978 goto out_rpm_put;
2979 }
2980
2981 /* The Ether-specific entries in the device structure. */
2982 ndev->base_addr = res->start;
2983
2984 spin_lock_init(&priv->lock);
2985 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2986
2987 error = of_get_phy_mode(np, &priv->phy_interface);
2988 if (error && error != -ENODEV)
2989 goto out_rpm_put;
2990
2991 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2992 priv->avb_link_active_low =
2993 of_property_read_bool(np, "renesas,ether-link-active-low");
2994
2995 ndev->max_mtu = info->tx_max_frame_size -
2996 (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2997 ndev->min_mtu = ETH_MIN_MTU;
2998
2999 /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3000 * Use two descriptor to handle such situation. First descriptor to
3001 * handle aligned data buffer and second descriptor to handle the
3002 * overflow data because of alignment.
3003 */
3004 priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3005
3006 /* Set function */
3007 ndev->netdev_ops = &ravb_netdev_ops;
3008 ndev->ethtool_ops = &ravb_ethtool_ops;
3009
3010 error = ravb_compute_gti(ndev);
3011 if (error)
3012 goto out_rpm_put;
3013
3014 ravb_parse_delay_mode(np, ndev);
3015
3016 /* Allocate descriptor base address table */
3017 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
3018 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3019 &priv->desc_bat_dma, GFP_KERNEL);
3020 if (!priv->desc_bat) {
3021 dev_err(&pdev->dev,
3022 "Cannot allocate desc base address table (size %d bytes)\n",
3023 priv->desc_bat_size);
3024 error = -ENOMEM;
3025 goto out_rpm_put;
3026 }
3027 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
3028 priv->desc_bat[q].die_dt = DT_EOS;
3029
3030 /* Initialise HW timestamp list */
3031 INIT_LIST_HEAD(&priv->ts_skb_list);
3032
3033 /* Debug message level */
3034 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3035
3036 /* Set config mode as this is needed for PHY initialization. */
3037 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3038 if (error)
3039 goto out_rpm_put;
3040
3041 /* Read and set MAC address */
3042 ravb_read_mac_address(np, ndev);
3043 if (!is_valid_ether_addr(ndev->dev_addr)) {
3044 dev_warn(&pdev->dev,
3045 "no valid MAC address supplied, using a random one\n");
3046 eth_hw_addr_random(ndev);
3047 }
3048
3049 /* MDIO bus init */
3050 error = ravb_mdio_init(priv);
3051 if (error) {
3052 dev_err(&pdev->dev, "failed to initialize MDIO\n");
3053 goto out_reset_mode;
3054 }
3055
3056 /* Undo previous switch to config opmode. */
3057 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3058 if (error)
3059 goto out_mdio_release;
3060
3061 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3062 if (info->nc_queues)
3063 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3064
3065 if (info->coalesce_irqs) {
3066 netdev_sw_irq_coalesce_default_on(ndev);
3067 if (num_present_cpus() == 1)
3068 dev_set_threaded(ndev, true);
3069 }
3070
3071 /* Network device register */
3072 error = register_netdev(ndev);
3073 if (error)
3074 goto out_napi_del;
3075
3076 device_set_wakeup_capable(&pdev->dev, 1);
3077
3078 /* Print device information */
3079 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3080 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3081
3082 pm_runtime_mark_last_busy(&pdev->dev);
3083 pm_runtime_put_autosuspend(&pdev->dev);
3084
3085 return 0;
3086
3087 out_napi_del:
3088 if (info->nc_queues)
3089 netif_napi_del(&priv->napi[RAVB_NC]);
3090
3091 netif_napi_del(&priv->napi[RAVB_BE]);
3092 out_mdio_release:
3093 ravb_mdio_release(priv);
3094 out_reset_mode:
3095 ravb_set_opmode(ndev, CCC_OPC_RESET);
3096 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3097 priv->desc_bat_dma);
3098 out_rpm_put:
3099 pm_runtime_put(&pdev->dev);
3100 out_rpm_disable:
3101 pm_runtime_disable(&pdev->dev);
3102 pm_runtime_dont_use_autosuspend(&pdev->dev);
3103 clk_unprepare(priv->refclk);
3104 out_reset_assert:
3105 reset_control_assert(rstc);
3106 out_free_netdev:
3107 free_netdev(ndev);
3108 return error;
3109 }
3110
ravb_remove(struct platform_device * pdev)3111 static void ravb_remove(struct platform_device *pdev)
3112 {
3113 struct net_device *ndev = platform_get_drvdata(pdev);
3114 struct ravb_private *priv = netdev_priv(ndev);
3115 const struct ravb_hw_info *info = priv->info;
3116 struct device *dev = &priv->pdev->dev;
3117 int error;
3118
3119 error = pm_runtime_resume_and_get(dev);
3120 if (error < 0)
3121 return;
3122
3123 unregister_netdev(ndev);
3124 if (info->nc_queues)
3125 netif_napi_del(&priv->napi[RAVB_NC]);
3126 netif_napi_del(&priv->napi[RAVB_BE]);
3127
3128 ravb_mdio_release(priv);
3129
3130 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3131 priv->desc_bat_dma);
3132
3133 pm_runtime_put_sync_suspend(&pdev->dev);
3134 pm_runtime_disable(&pdev->dev);
3135 pm_runtime_dont_use_autosuspend(dev);
3136 clk_unprepare(priv->refclk);
3137 reset_control_assert(priv->rstc);
3138 free_netdev(ndev);
3139 platform_set_drvdata(pdev, NULL);
3140 }
3141
ravb_wol_setup(struct net_device * ndev)3142 static int ravb_wol_setup(struct net_device *ndev)
3143 {
3144 struct ravb_private *priv = netdev_priv(ndev);
3145 const struct ravb_hw_info *info = priv->info;
3146
3147 /* Disable interrupts by clearing the interrupt masks. */
3148 ravb_write(ndev, 0, RIC0);
3149 ravb_write(ndev, 0, RIC2);
3150 ravb_write(ndev, 0, TIC);
3151
3152 /* Only allow ECI interrupts */
3153 synchronize_irq(priv->emac_irq);
3154 if (info->nc_queues)
3155 napi_disable(&priv->napi[RAVB_NC]);
3156 napi_disable(&priv->napi[RAVB_BE]);
3157 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3158
3159 /* Enable MagicPacket */
3160 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3161
3162 if (priv->info->ccc_gac)
3163 ravb_ptp_stop(ndev);
3164
3165 return enable_irq_wake(priv->emac_irq);
3166 }
3167
ravb_wol_restore(struct net_device * ndev)3168 static int ravb_wol_restore(struct net_device *ndev)
3169 {
3170 struct ravb_private *priv = netdev_priv(ndev);
3171 const struct ravb_hw_info *info = priv->info;
3172 int error;
3173
3174 /* Set reset mode to rearm the WoL logic. */
3175 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3176 if (error)
3177 return error;
3178
3179 /* Set AVB config mode. */
3180 error = ravb_set_config_mode(ndev);
3181 if (error)
3182 return error;
3183
3184 if (priv->info->ccc_gac)
3185 ravb_ptp_init(ndev, priv->pdev);
3186
3187 if (info->nc_queues)
3188 napi_enable(&priv->napi[RAVB_NC]);
3189 napi_enable(&priv->napi[RAVB_BE]);
3190
3191 /* Disable MagicPacket */
3192 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3193
3194 ravb_close(ndev);
3195
3196 return disable_irq_wake(priv->emac_irq);
3197 }
3198
ravb_suspend(struct device * dev)3199 static int ravb_suspend(struct device *dev)
3200 {
3201 struct net_device *ndev = dev_get_drvdata(dev);
3202 struct ravb_private *priv = netdev_priv(ndev);
3203 int ret;
3204
3205 if (!netif_running(ndev))
3206 goto reset_assert;
3207
3208 netif_device_detach(ndev);
3209
3210 if (priv->wol_enabled)
3211 return ravb_wol_setup(ndev);
3212
3213 ret = ravb_close(ndev);
3214 if (ret)
3215 return ret;
3216
3217 ret = pm_runtime_force_suspend(&priv->pdev->dev);
3218 if (ret)
3219 return ret;
3220
3221 reset_assert:
3222 return reset_control_assert(priv->rstc);
3223 }
3224
ravb_resume(struct device * dev)3225 static int ravb_resume(struct device *dev)
3226 {
3227 struct net_device *ndev = dev_get_drvdata(dev);
3228 struct ravb_private *priv = netdev_priv(ndev);
3229 int ret;
3230
3231 ret = reset_control_deassert(priv->rstc);
3232 if (ret)
3233 return ret;
3234
3235 if (!netif_running(ndev))
3236 return 0;
3237
3238 /* If WoL is enabled restore the interface. */
3239 if (priv->wol_enabled) {
3240 ret = ravb_wol_restore(ndev);
3241 if (ret)
3242 return ret;
3243 } else {
3244 ret = pm_runtime_force_resume(dev);
3245 if (ret)
3246 return ret;
3247 }
3248
3249 /* Reopening the interface will restore the device to the working state. */
3250 ret = ravb_open(ndev);
3251 if (ret < 0)
3252 goto out_rpm_put;
3253
3254 ravb_set_rx_mode(ndev);
3255 netif_device_attach(ndev);
3256
3257 return 0;
3258
3259 out_rpm_put:
3260 if (!priv->wol_enabled) {
3261 pm_runtime_mark_last_busy(dev);
3262 pm_runtime_put_autosuspend(dev);
3263 }
3264
3265 return ret;
3266 }
3267
ravb_runtime_suspend(struct device * dev)3268 static int ravb_runtime_suspend(struct device *dev)
3269 {
3270 struct net_device *ndev = dev_get_drvdata(dev);
3271 struct ravb_private *priv = netdev_priv(ndev);
3272
3273 clk_disable(priv->refclk);
3274
3275 return 0;
3276 }
3277
ravb_runtime_resume(struct device * dev)3278 static int ravb_runtime_resume(struct device *dev)
3279 {
3280 struct net_device *ndev = dev_get_drvdata(dev);
3281 struct ravb_private *priv = netdev_priv(ndev);
3282
3283 return clk_enable(priv->refclk);
3284 }
3285
3286 static const struct dev_pm_ops ravb_dev_pm_ops = {
3287 SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3288 RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3289 };
3290
3291 static struct platform_driver ravb_driver = {
3292 .probe = ravb_probe,
3293 .remove_new = ravb_remove,
3294 .driver = {
3295 .name = "ravb",
3296 .pm = pm_ptr(&ravb_dev_pm_ops),
3297 .of_match_table = ravb_match_table,
3298 },
3299 };
3300
3301 module_platform_driver(ravb_driver);
3302
3303 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3304 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3305 MODULE_LICENSE("GPL v2");
3306