xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision ea89a742daf4317038fbab6776d36726dd7a1e2a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 
34 #include "ravb.h"
35 
36 #define RAVB_DEF_MSG_ENABLE \
37 		(NETIF_MSG_LINK	  | \
38 		 NETIF_MSG_TIMER  | \
39 		 NETIF_MSG_RX_ERR | \
40 		 NETIF_MSG_TX_ERR)
41 
42 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
43 		 u32 set)
44 {
45 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
46 }
47 
48 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
49 {
50 	int i;
51 
52 	for (i = 0; i < 10000; i++) {
53 		if ((ravb_read(ndev, reg) & mask) == value)
54 			return 0;
55 		udelay(10);
56 	}
57 	return -ETIMEDOUT;
58 }
59 
60 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
61 {
62 	u32 csr_ops = 1U << (opmode & CCC_OPC);
63 	u32 ccc_mask = CCC_OPC;
64 	int error;
65 
66 	/* If gPTP active in config mode is supported it needs to be configured
67 	 * along with CSEL and operating mode in the same access. This is a
68 	 * hardware limitation.
69 	 */
70 	if (opmode & CCC_GAC)
71 		ccc_mask |= CCC_GAC | CCC_CSEL;
72 
73 	/* Set operating mode */
74 	ravb_modify(ndev, CCC, ccc_mask, opmode);
75 	/* Check if the operating mode is changed to the requested one */
76 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
77 	if (error) {
78 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
79 			   opmode & CCC_OPC);
80 	}
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate_gbeth(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 10:		/* 10BASE */
91 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
92 		break;
93 	case 100:		/* 100BASE */
94 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
95 		break;
96 	case 1000:		/* 1000BASE */
97 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
98 		break;
99 	}
100 }
101 
102 static void ravb_set_rate_rcar(struct net_device *ndev)
103 {
104 	struct ravb_private *priv = netdev_priv(ndev);
105 
106 	switch (priv->speed) {
107 	case 100:		/* 100BASE */
108 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
109 		break;
110 	case 1000:		/* 1000BASE */
111 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
112 		break;
113 	}
114 }
115 
116 static struct sk_buff *
117 ravb_alloc_skb(struct net_device *ndev, const struct ravb_hw_info *info,
118 	       gfp_t gfp_mask)
119 {
120 	struct sk_buff *skb;
121 	u32 reserve;
122 
123 	skb = __netdev_alloc_skb(ndev, info->rx_max_frame_size + RAVB_ALIGN - 1,
124 				 gfp_mask);
125 	if (!skb)
126 		return NULL;
127 
128 	reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
129 	if (reserve)
130 		skb_reserve(skb, RAVB_ALIGN - reserve);
131 
132 	return skb;
133 }
134 
135 /* Get MAC address from the MAC address registers
136  *
137  * Ethernet AVB device doesn't have ROM for MAC address.
138  * This function gets the MAC address that was used by a bootloader.
139  */
140 static void ravb_read_mac_address(struct device_node *np,
141 				  struct net_device *ndev)
142 {
143 	int ret;
144 
145 	ret = of_get_ethdev_address(np, ndev);
146 	if (ret) {
147 		u32 mahr = ravb_read(ndev, MAHR);
148 		u32 malr = ravb_read(ndev, MALR);
149 		u8 addr[ETH_ALEN];
150 
151 		addr[0] = (mahr >> 24) & 0xFF;
152 		addr[1] = (mahr >> 16) & 0xFF;
153 		addr[2] = (mahr >>  8) & 0xFF;
154 		addr[3] = (mahr >>  0) & 0xFF;
155 		addr[4] = (malr >>  8) & 0xFF;
156 		addr[5] = (malr >>  0) & 0xFF;
157 		eth_hw_addr_set(ndev, addr);
158 	}
159 }
160 
161 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
162 {
163 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
164 						 mdiobb);
165 
166 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
167 }
168 
169 /* MDC pin control */
170 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
171 {
172 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
173 }
174 
175 /* Data I/O pin control */
176 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
177 {
178 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
179 }
180 
181 /* Set data bit */
182 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
183 {
184 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
185 }
186 
187 /* Get data bit */
188 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
189 {
190 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
191 						 mdiobb);
192 
193 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
194 }
195 
196 /* MDIO bus control struct */
197 static const struct mdiobb_ops bb_ops = {
198 	.owner = THIS_MODULE,
199 	.set_mdc = ravb_set_mdc,
200 	.set_mdio_dir = ravb_set_mdio_dir,
201 	.set_mdio_data = ravb_set_mdio_data,
202 	.get_mdio_data = ravb_get_mdio_data,
203 };
204 
205 static struct ravb_rx_desc *
206 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
207 		 unsigned int i)
208 {
209 	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
210 }
211 
212 /* Free TX skb function for AVB-IP */
213 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
214 {
215 	struct ravb_private *priv = netdev_priv(ndev);
216 	struct net_device_stats *stats = &priv->stats[q];
217 	unsigned int num_tx_desc = priv->num_tx_desc;
218 	struct ravb_tx_desc *desc;
219 	unsigned int entry;
220 	int free_num = 0;
221 	u32 size;
222 
223 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
224 		bool txed;
225 
226 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
227 					     num_tx_desc);
228 		desc = &priv->tx_ring[q][entry];
229 		txed = desc->die_dt == DT_FEMPTY;
230 		if (free_txed_only && !txed)
231 			break;
232 		/* Descriptor type must be checked before all other reads */
233 		dma_rmb();
234 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
235 		/* Free the original skb. */
236 		if (priv->tx_skb[q][entry / num_tx_desc]) {
237 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
238 					 size, DMA_TO_DEVICE);
239 			/* Last packet descriptor? */
240 			if (entry % num_tx_desc == num_tx_desc - 1) {
241 				entry /= num_tx_desc;
242 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
243 				priv->tx_skb[q][entry] = NULL;
244 				if (txed)
245 					stats->tx_packets++;
246 			}
247 			free_num++;
248 		}
249 		if (txed)
250 			stats->tx_bytes += size;
251 		desc->die_dt = DT_EEMPTY;
252 	}
253 	return free_num;
254 }
255 
256 static void ravb_rx_ring_free(struct net_device *ndev, int q)
257 {
258 	struct ravb_private *priv = netdev_priv(ndev);
259 	unsigned int ring_size;
260 	unsigned int i;
261 
262 	if (!priv->rx_ring[q].raw)
263 		return;
264 
265 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
266 		struct ravb_rx_desc *desc = ravb_rx_get_desc(priv, q, i);
267 
268 		if (!dma_mapping_error(ndev->dev.parent,
269 				       le32_to_cpu(desc->dptr)))
270 			dma_unmap_single(ndev->dev.parent,
271 					 le32_to_cpu(desc->dptr),
272 					 priv->info->rx_max_frame_size,
273 					 DMA_FROM_DEVICE);
274 	}
275 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
276 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
277 			  priv->rx_desc_dma[q]);
278 	priv->rx_ring[q].raw = NULL;
279 }
280 
281 /* Free skb's and DMA buffers for Ethernet AVB */
282 static void ravb_ring_free(struct net_device *ndev, int q)
283 {
284 	struct ravb_private *priv = netdev_priv(ndev);
285 	unsigned int num_tx_desc = priv->num_tx_desc;
286 	unsigned int ring_size;
287 	unsigned int i;
288 
289 	ravb_rx_ring_free(ndev, q);
290 
291 	if (priv->tx_ring[q]) {
292 		ravb_tx_free(ndev, q, false);
293 
294 		ring_size = sizeof(struct ravb_tx_desc) *
295 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
296 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
297 				  priv->tx_desc_dma[q]);
298 		priv->tx_ring[q] = NULL;
299 	}
300 
301 	/* Free RX skb ringbuffer */
302 	if (priv->rx_skb[q]) {
303 		for (i = 0; i < priv->num_rx_ring[q]; i++)
304 			dev_kfree_skb(priv->rx_skb[q][i]);
305 	}
306 	kfree(priv->rx_skb[q]);
307 	priv->rx_skb[q] = NULL;
308 
309 	/* Free aligned TX buffers */
310 	kfree(priv->tx_align[q]);
311 	priv->tx_align[q] = NULL;
312 
313 	/* Free TX skb ringbuffer.
314 	 * SKBs are freed by ravb_tx_free() call above.
315 	 */
316 	kfree(priv->tx_skb[q]);
317 	priv->tx_skb[q] = NULL;
318 }
319 
320 static void ravb_rx_ring_format(struct net_device *ndev, int q)
321 {
322 	struct ravb_private *priv = netdev_priv(ndev);
323 	struct ravb_rx_desc *rx_desc;
324 	unsigned int rx_ring_size;
325 	dma_addr_t dma_addr;
326 	unsigned int i;
327 
328 	rx_ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
329 	memset(priv->rx_ring[q].raw, 0, rx_ring_size);
330 	/* Build RX ring buffer */
331 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
332 		/* RX descriptor */
333 		rx_desc = ravb_rx_get_desc(priv, q, i);
334 		rx_desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
335 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
336 					  priv->info->rx_max_frame_size,
337 					  DMA_FROM_DEVICE);
338 		/* We just set the data size to 0 for a failed mapping which
339 		 * should prevent DMA from happening...
340 		 */
341 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
342 			rx_desc->ds_cc = cpu_to_le16(0);
343 		rx_desc->dptr = cpu_to_le32(dma_addr);
344 		rx_desc->die_dt = DT_FEMPTY;
345 	}
346 	rx_desc = ravb_rx_get_desc(priv, q, i);
347 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
348 	rx_desc->die_dt = DT_LINKFIX; /* type */
349 }
350 
351 /* Format skb and descriptor buffer for Ethernet AVB */
352 static void ravb_ring_format(struct net_device *ndev, int q)
353 {
354 	struct ravb_private *priv = netdev_priv(ndev);
355 	unsigned int num_tx_desc = priv->num_tx_desc;
356 	struct ravb_tx_desc *tx_desc;
357 	struct ravb_desc *desc;
358 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
359 				    num_tx_desc;
360 	unsigned int i;
361 
362 	priv->cur_rx[q] = 0;
363 	priv->cur_tx[q] = 0;
364 	priv->dirty_rx[q] = 0;
365 	priv->dirty_tx[q] = 0;
366 
367 	ravb_rx_ring_format(ndev, q);
368 
369 	memset(priv->tx_ring[q], 0, tx_ring_size);
370 	/* Build TX ring buffer */
371 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
372 	     i++, tx_desc++) {
373 		tx_desc->die_dt = DT_EEMPTY;
374 		if (num_tx_desc > 1) {
375 			tx_desc++;
376 			tx_desc->die_dt = DT_EEMPTY;
377 		}
378 	}
379 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
380 	tx_desc->die_dt = DT_LINKFIX; /* type */
381 
382 	/* RX descriptor base address for best effort */
383 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
384 	desc->die_dt = DT_LINKFIX; /* type */
385 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
386 
387 	/* TX descriptor base address for best effort */
388 	desc = &priv->desc_bat[q];
389 	desc->die_dt = DT_LINKFIX; /* type */
390 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
391 }
392 
393 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
394 {
395 	struct ravb_private *priv = netdev_priv(ndev);
396 	unsigned int ring_size;
397 
398 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
399 
400 	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
401 						  &priv->rx_desc_dma[q],
402 						  GFP_KERNEL);
403 
404 	return priv->rx_ring[q].raw;
405 }
406 
407 /* Init skb and descriptor buffer for Ethernet AVB */
408 static int ravb_ring_init(struct net_device *ndev, int q)
409 {
410 	struct ravb_private *priv = netdev_priv(ndev);
411 	const struct ravb_hw_info *info = priv->info;
412 	unsigned int num_tx_desc = priv->num_tx_desc;
413 	unsigned int ring_size;
414 	struct sk_buff *skb;
415 	unsigned int i;
416 
417 	/* Allocate RX and TX skb rings */
418 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
419 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
420 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
421 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
422 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
423 		goto error;
424 
425 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
426 		skb = ravb_alloc_skb(ndev, info, GFP_KERNEL);
427 		if (!skb)
428 			goto error;
429 		priv->rx_skb[q][i] = skb;
430 	}
431 
432 	if (num_tx_desc > 1) {
433 		/* Allocate rings for the aligned buffers */
434 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
435 					    DPTR_ALIGN - 1, GFP_KERNEL);
436 		if (!priv->tx_align[q])
437 			goto error;
438 	}
439 
440 	/* Allocate all RX descriptors. */
441 	if (!ravb_alloc_rx_desc(ndev, q))
442 		goto error;
443 
444 	priv->dirty_rx[q] = 0;
445 
446 	/* Allocate all TX descriptors. */
447 	ring_size = sizeof(struct ravb_tx_desc) *
448 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
449 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
450 					      &priv->tx_desc_dma[q],
451 					      GFP_KERNEL);
452 	if (!priv->tx_ring[q])
453 		goto error;
454 
455 	return 0;
456 
457 error:
458 	ravb_ring_free(ndev, q);
459 
460 	return -ENOMEM;
461 }
462 
463 static void ravb_csum_init_gbeth(struct net_device *ndev)
464 {
465 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
466 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
467 
468 	if (!(tx_enable || rx_enable))
469 		goto done;
470 
471 	ravb_write(ndev, 0, CSR0);
472 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
473 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
474 
475 		if (tx_enable)
476 			ndev->features &= ~NETIF_F_HW_CSUM;
477 
478 		if (rx_enable)
479 			ndev->features &= ~NETIF_F_RXCSUM;
480 	} else {
481 		if (tx_enable)
482 			ravb_write(ndev, CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, CSR1);
483 
484 		if (rx_enable)
485 			ravb_write(ndev, CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
486 				   CSR2);
487 	}
488 
489 done:
490 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
491 }
492 
493 static void ravb_emac_init_gbeth(struct net_device *ndev)
494 {
495 	struct ravb_private *priv = netdev_priv(ndev);
496 
497 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
498 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
499 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
500 	} else {
501 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
502 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
503 			    CXR31_SEL_LINK0);
504 	}
505 
506 	/* Receive frame limit set register */
507 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
508 
509 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
510 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
511 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
512 			 ECMR_TXF | ECMR_RXF, ECMR);
513 
514 	ravb_set_rate_gbeth(ndev);
515 
516 	/* Set MAC address */
517 	ravb_write(ndev,
518 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
519 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
520 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
521 
522 	/* E-MAC status register clear */
523 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
524 
525 	ravb_csum_init_gbeth(ndev);
526 
527 	/* E-MAC interrupt enable register */
528 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
529 }
530 
531 static void ravb_emac_init_rcar(struct net_device *ndev)
532 {
533 	/* Receive frame limit set register */
534 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
535 
536 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
537 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
538 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
539 		   ECMR_TE | ECMR_RE, ECMR);
540 
541 	ravb_set_rate_rcar(ndev);
542 
543 	/* Set MAC address */
544 	ravb_write(ndev,
545 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
546 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
547 	ravb_write(ndev,
548 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
549 
550 	/* E-MAC status register clear */
551 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
552 
553 	/* E-MAC interrupt enable register */
554 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
555 }
556 
557 /* E-MAC init function */
558 static void ravb_emac_init(struct net_device *ndev)
559 {
560 	struct ravb_private *priv = netdev_priv(ndev);
561 	const struct ravb_hw_info *info = priv->info;
562 
563 	info->emac_init(ndev);
564 }
565 
566 static int ravb_dmac_init_gbeth(struct net_device *ndev)
567 {
568 	struct ravb_private *priv = netdev_priv(ndev);
569 	int error;
570 
571 	error = ravb_ring_init(ndev, RAVB_BE);
572 	if (error)
573 		return error;
574 
575 	/* Descriptor format */
576 	ravb_ring_format(ndev, RAVB_BE);
577 
578 	/* Set DMAC RX */
579 	ravb_write(ndev, 0x60000000, RCR);
580 
581 	/* Set Max Frame Length (RTC) */
582 	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
583 
584 	/* Set FIFO size */
585 	ravb_write(ndev, 0x00222200, TGC);
586 
587 	ravb_write(ndev, 0, TCCR);
588 
589 	/* Frame receive */
590 	ravb_write(ndev, RIC0_FRE0, RIC0);
591 	/* Disable FIFO full warning */
592 	ravb_write(ndev, 0x0, RIC1);
593 	/* Receive FIFO full error, descriptor empty */
594 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
595 
596 	ravb_write(ndev, TIC_FTE0, TIC);
597 
598 	return 0;
599 }
600 
601 static int ravb_dmac_init_rcar(struct net_device *ndev)
602 {
603 	struct ravb_private *priv = netdev_priv(ndev);
604 	const struct ravb_hw_info *info = priv->info;
605 	int error;
606 
607 	error = ravb_ring_init(ndev, RAVB_BE);
608 	if (error)
609 		return error;
610 	error = ravb_ring_init(ndev, RAVB_NC);
611 	if (error) {
612 		ravb_ring_free(ndev, RAVB_BE);
613 		return error;
614 	}
615 
616 	/* Descriptor format */
617 	ravb_ring_format(ndev, RAVB_BE);
618 	ravb_ring_format(ndev, RAVB_NC);
619 
620 	/* Set AVB RX */
621 	ravb_write(ndev,
622 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
623 
624 	/* Set FIFO size */
625 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
626 
627 	/* Timestamp enable */
628 	ravb_write(ndev, TCCR_TFEN, TCCR);
629 
630 	/* Interrupt init: */
631 	if (info->multi_irqs) {
632 		/* Clear DIL.DPLx */
633 		ravb_write(ndev, 0, DIL);
634 		/* Set queue specific interrupt */
635 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
636 	}
637 	/* Frame receive */
638 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
639 	/* Disable FIFO full warning */
640 	ravb_write(ndev, 0, RIC1);
641 	/* Receive FIFO full error, descriptor empty */
642 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
643 	/* Frame transmitted, timestamp FIFO updated */
644 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
645 
646 	return 0;
647 }
648 
649 /* Device init function for Ethernet AVB */
650 static int ravb_dmac_init(struct net_device *ndev)
651 {
652 	struct ravb_private *priv = netdev_priv(ndev);
653 	const struct ravb_hw_info *info = priv->info;
654 	int error;
655 
656 	/* Set CONFIG mode */
657 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
658 	if (error)
659 		return error;
660 
661 	error = info->dmac_init(ndev);
662 	if (error)
663 		return error;
664 
665 	/* Setting the control will start the AVB-DMAC process. */
666 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
667 }
668 
669 static void ravb_get_tx_tstamp(struct net_device *ndev)
670 {
671 	struct ravb_private *priv = netdev_priv(ndev);
672 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
673 	struct skb_shared_hwtstamps shhwtstamps;
674 	struct sk_buff *skb;
675 	struct timespec64 ts;
676 	u16 tag, tfa_tag;
677 	int count;
678 	u32 tfa2;
679 
680 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
681 	while (count--) {
682 		tfa2 = ravb_read(ndev, TFA2);
683 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
684 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
685 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
686 			    ravb_read(ndev, TFA1);
687 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
688 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
689 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
690 					 list) {
691 			skb = ts_skb->skb;
692 			tag = ts_skb->tag;
693 			list_del(&ts_skb->list);
694 			kfree(ts_skb);
695 			if (tag == tfa_tag) {
696 				skb_tstamp_tx(skb, &shhwtstamps);
697 				dev_consume_skb_any(skb);
698 				break;
699 			} else {
700 				dev_kfree_skb_any(skb);
701 			}
702 		}
703 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
704 	}
705 }
706 
707 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
708 {
709 	__wsum csum_ip_hdr, csum_proto;
710 	u8 *hw_csum;
711 
712 	/* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
713 	 * bytes appended to packet data. First 2 bytes is ip header checksum
714 	 * and last 2 bytes is protocol checksum.
715 	 */
716 	if (unlikely(skb->len < sizeof(__sum16) * 2))
717 		return;
718 
719 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
720 	csum_proto = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
721 
722 	hw_csum -= sizeof(__sum16);
723 	csum_ip_hdr = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
724 	skb_trim(skb, skb->len - 2 * sizeof(__sum16));
725 
726 	/* TODO: IPV6 Rx checksum */
727 	if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
728 		skb->ip_summed = CHECKSUM_UNNECESSARY;
729 }
730 
731 static void ravb_rx_csum(struct sk_buff *skb)
732 {
733 	u8 *hw_csum;
734 
735 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
736 	 * appended to packet data
737 	 */
738 	if (unlikely(skb->len < sizeof(__sum16)))
739 		return;
740 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
741 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
742 	skb->ip_summed = CHECKSUM_COMPLETE;
743 	skb_trim(skb, skb->len - sizeof(__sum16));
744 }
745 
746 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
747 					  struct ravb_rx_desc *desc)
748 {
749 	struct ravb_private *priv = netdev_priv(ndev);
750 	struct sk_buff *skb;
751 
752 	skb = priv->rx_skb[RAVB_BE][entry];
753 	priv->rx_skb[RAVB_BE][entry] = NULL;
754 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
755 			 ALIGN(priv->info->rx_max_frame_size, 16),
756 			 DMA_FROM_DEVICE);
757 
758 	return skb;
759 }
760 
761 /* Packet receive function for Gigabit Ethernet */
762 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
763 {
764 	struct ravb_private *priv = netdev_priv(ndev);
765 	const struct ravb_hw_info *info = priv->info;
766 	struct net_device_stats *stats;
767 	struct ravb_rx_desc *desc;
768 	struct sk_buff *skb;
769 	dma_addr_t dma_addr;
770 	int rx_packets = 0;
771 	u8  desc_status;
772 	u16 pkt_len;
773 	u8  die_dt;
774 	int entry;
775 	int limit;
776 	int i;
777 
778 	entry = priv->cur_rx[q] % priv->num_rx_ring[q];
779 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
780 	stats = &priv->stats[q];
781 
782 	desc = &priv->rx_ring[q].desc[entry];
783 	for (i = 0; i < limit && rx_packets < *quota && desc->die_dt != DT_FEMPTY; i++) {
784 		/* Descriptor type must be checked before all other reads */
785 		dma_rmb();
786 		desc_status = desc->msc;
787 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
788 
789 		/* We use 0-byte descriptors to mark the DMA mapping errors */
790 		if (!pkt_len)
791 			continue;
792 
793 		if (desc_status & MSC_MC)
794 			stats->multicast++;
795 
796 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
797 			stats->rx_errors++;
798 			if (desc_status & MSC_CRC)
799 				stats->rx_crc_errors++;
800 			if (desc_status & MSC_RFE)
801 				stats->rx_frame_errors++;
802 			if (desc_status & (MSC_RTLF | MSC_RTSF))
803 				stats->rx_length_errors++;
804 			if (desc_status & MSC_CEEF)
805 				stats->rx_missed_errors++;
806 		} else {
807 			die_dt = desc->die_dt & 0xF0;
808 			switch (die_dt) {
809 			case DT_FSINGLE:
810 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
811 				skb_put(skb, pkt_len);
812 				skb->protocol = eth_type_trans(skb, ndev);
813 				if (ndev->features & NETIF_F_RXCSUM)
814 					ravb_rx_csum_gbeth(skb);
815 				napi_gro_receive(&priv->napi[q], skb);
816 				rx_packets++;
817 				stats->rx_bytes += pkt_len;
818 				break;
819 			case DT_FSTART:
820 				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
821 				skb_put(priv->rx_1st_skb, pkt_len);
822 				break;
823 			case DT_FMID:
824 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
825 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
826 							       priv->rx_1st_skb->len,
827 							       skb->data,
828 							       pkt_len);
829 				skb_put(priv->rx_1st_skb, pkt_len);
830 				dev_kfree_skb(skb);
831 				break;
832 			case DT_FEND:
833 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
834 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
835 							       priv->rx_1st_skb->len,
836 							       skb->data,
837 							       pkt_len);
838 				skb_put(priv->rx_1st_skb, pkt_len);
839 				dev_kfree_skb(skb);
840 				priv->rx_1st_skb->protocol =
841 					eth_type_trans(priv->rx_1st_skb, ndev);
842 				if (ndev->features & NETIF_F_RXCSUM)
843 					ravb_rx_csum_gbeth(skb);
844 				napi_gro_receive(&priv->napi[q],
845 						 priv->rx_1st_skb);
846 				rx_packets++;
847 				stats->rx_bytes += pkt_len;
848 				break;
849 			}
850 		}
851 
852 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
853 		desc = &priv->rx_ring[q].desc[entry];
854 	}
855 
856 	/* Refill the RX ring buffers. */
857 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
858 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
859 		desc = &priv->rx_ring[q].desc[entry];
860 		desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
861 
862 		if (!priv->rx_skb[q][entry]) {
863 			skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
864 			if (!skb)
865 				break;
866 			dma_addr = dma_map_single(ndev->dev.parent,
867 						  skb->data,
868 						  priv->info->rx_max_frame_size,
869 						  DMA_FROM_DEVICE);
870 			skb_checksum_none_assert(skb);
871 			/* We just set the data size to 0 for a failed mapping
872 			 * which should prevent DMA  from happening...
873 			 */
874 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
875 				desc->ds_cc = cpu_to_le16(0);
876 			desc->dptr = cpu_to_le32(dma_addr);
877 			priv->rx_skb[q][entry] = skb;
878 		}
879 		/* Descriptor type must be set after all the above writes */
880 		dma_wmb();
881 		desc->die_dt = DT_FEMPTY;
882 	}
883 
884 	stats->rx_packets += rx_packets;
885 	*quota -= rx_packets;
886 	return *quota == 0;
887 }
888 
889 /* Packet receive function for Ethernet AVB */
890 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
891 {
892 	struct ravb_private *priv = netdev_priv(ndev);
893 	const struct ravb_hw_info *info = priv->info;
894 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
895 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
896 			priv->cur_rx[q];
897 	struct net_device_stats *stats = &priv->stats[q];
898 	struct ravb_ex_rx_desc *desc;
899 	struct sk_buff *skb;
900 	dma_addr_t dma_addr;
901 	struct timespec64 ts;
902 	u8  desc_status;
903 	u16 pkt_len;
904 	int limit;
905 
906 	boguscnt = min(boguscnt, *quota);
907 	limit = boguscnt;
908 	desc = &priv->rx_ring[q].ex_desc[entry];
909 	while (desc->die_dt != DT_FEMPTY) {
910 		/* Descriptor type must be checked before all other reads */
911 		dma_rmb();
912 		desc_status = desc->msc;
913 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
914 
915 		if (--boguscnt < 0)
916 			break;
917 
918 		/* We use 0-byte descriptors to mark the DMA mapping errors */
919 		if (!pkt_len)
920 			continue;
921 
922 		if (desc_status & MSC_MC)
923 			stats->multicast++;
924 
925 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
926 				   MSC_CEEF)) {
927 			stats->rx_errors++;
928 			if (desc_status & MSC_CRC)
929 				stats->rx_crc_errors++;
930 			if (desc_status & MSC_RFE)
931 				stats->rx_frame_errors++;
932 			if (desc_status & (MSC_RTLF | MSC_RTSF))
933 				stats->rx_length_errors++;
934 			if (desc_status & MSC_CEEF)
935 				stats->rx_missed_errors++;
936 		} else {
937 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
938 
939 			skb = priv->rx_skb[q][entry];
940 			priv->rx_skb[q][entry] = NULL;
941 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
942 					 priv->info->rx_max_frame_size,
943 					 DMA_FROM_DEVICE);
944 			get_ts &= (q == RAVB_NC) ?
945 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
946 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
947 			if (get_ts) {
948 				struct skb_shared_hwtstamps *shhwtstamps;
949 
950 				shhwtstamps = skb_hwtstamps(skb);
951 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
952 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
953 					     32) | le32_to_cpu(desc->ts_sl);
954 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
955 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
956 			}
957 
958 			skb_put(skb, pkt_len);
959 			skb->protocol = eth_type_trans(skb, ndev);
960 			if (ndev->features & NETIF_F_RXCSUM)
961 				ravb_rx_csum(skb);
962 			napi_gro_receive(&priv->napi[q], skb);
963 			stats->rx_packets++;
964 			stats->rx_bytes += pkt_len;
965 		}
966 
967 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
968 		desc = &priv->rx_ring[q].ex_desc[entry];
969 	}
970 
971 	/* Refill the RX ring buffers. */
972 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
973 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
974 		desc = &priv->rx_ring[q].ex_desc[entry];
975 		desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
976 
977 		if (!priv->rx_skb[q][entry]) {
978 			skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
979 			if (!skb)
980 				break;	/* Better luck next round. */
981 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
982 						  priv->info->rx_max_frame_size,
983 						  DMA_FROM_DEVICE);
984 			skb_checksum_none_assert(skb);
985 			/* We just set the data size to 0 for a failed mapping
986 			 * which should prevent DMA  from happening...
987 			 */
988 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
989 				desc->ds_cc = cpu_to_le16(0);
990 			desc->dptr = cpu_to_le32(dma_addr);
991 			priv->rx_skb[q][entry] = skb;
992 		}
993 		/* Descriptor type must be set after all the above writes */
994 		dma_wmb();
995 		desc->die_dt = DT_FEMPTY;
996 	}
997 
998 	*quota -= limit - (++boguscnt);
999 
1000 	return boguscnt <= 0;
1001 }
1002 
1003 /* Packet receive function for Ethernet AVB */
1004 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1005 {
1006 	struct ravb_private *priv = netdev_priv(ndev);
1007 	const struct ravb_hw_info *info = priv->info;
1008 
1009 	return info->receive(ndev, quota, q);
1010 }
1011 
1012 static void ravb_rcv_snd_disable(struct net_device *ndev)
1013 {
1014 	/* Disable TX and RX */
1015 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1016 }
1017 
1018 static void ravb_rcv_snd_enable(struct net_device *ndev)
1019 {
1020 	/* Enable TX and RX */
1021 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1022 }
1023 
1024 /* function for waiting dma process finished */
1025 static int ravb_stop_dma(struct net_device *ndev)
1026 {
1027 	struct ravb_private *priv = netdev_priv(ndev);
1028 	const struct ravb_hw_info *info = priv->info;
1029 	int error;
1030 
1031 	/* Wait for stopping the hardware TX process */
1032 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1033 
1034 	if (error)
1035 		return error;
1036 
1037 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1038 			  0);
1039 	if (error)
1040 		return error;
1041 
1042 	/* Stop the E-MAC's RX/TX processes. */
1043 	ravb_rcv_snd_disable(ndev);
1044 
1045 	/* Wait for stopping the RX DMA process */
1046 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1047 	if (error)
1048 		return error;
1049 
1050 	/* Stop AVB-DMAC process */
1051 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1052 }
1053 
1054 /* E-MAC interrupt handler */
1055 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1056 {
1057 	struct ravb_private *priv = netdev_priv(ndev);
1058 	u32 ecsr, psr;
1059 
1060 	ecsr = ravb_read(ndev, ECSR);
1061 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1062 
1063 	if (ecsr & ECSR_MPD)
1064 		pm_wakeup_event(&priv->pdev->dev, 0);
1065 	if (ecsr & ECSR_ICD)
1066 		ndev->stats.tx_carrier_errors++;
1067 	if (ecsr & ECSR_LCHNG) {
1068 		/* Link changed */
1069 		if (priv->no_avb_link)
1070 			return;
1071 		psr = ravb_read(ndev, PSR);
1072 		if (priv->avb_link_active_low)
1073 			psr ^= PSR_LMON;
1074 		if (!(psr & PSR_LMON)) {
1075 			/* DIsable RX and TX */
1076 			ravb_rcv_snd_disable(ndev);
1077 		} else {
1078 			/* Enable RX and TX */
1079 			ravb_rcv_snd_enable(ndev);
1080 		}
1081 	}
1082 }
1083 
1084 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1085 {
1086 	struct net_device *ndev = dev_id;
1087 	struct ravb_private *priv = netdev_priv(ndev);
1088 	struct device *dev = &priv->pdev->dev;
1089 	irqreturn_t result = IRQ_HANDLED;
1090 
1091 	pm_runtime_get_noresume(dev);
1092 
1093 	if (unlikely(!pm_runtime_active(dev))) {
1094 		result = IRQ_NONE;
1095 		goto out_rpm_put;
1096 	}
1097 
1098 	spin_lock(&priv->lock);
1099 	ravb_emac_interrupt_unlocked(ndev);
1100 	spin_unlock(&priv->lock);
1101 
1102 out_rpm_put:
1103 	pm_runtime_put_noidle(dev);
1104 	return result;
1105 }
1106 
1107 /* Error interrupt handler */
1108 static void ravb_error_interrupt(struct net_device *ndev)
1109 {
1110 	struct ravb_private *priv = netdev_priv(ndev);
1111 	u32 eis, ris2;
1112 
1113 	eis = ravb_read(ndev, EIS);
1114 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1115 	if (eis & EIS_QFS) {
1116 		ris2 = ravb_read(ndev, RIS2);
1117 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1118 			   RIS2);
1119 
1120 		/* Receive Descriptor Empty int */
1121 		if (ris2 & RIS2_QFF0)
1122 			priv->stats[RAVB_BE].rx_over_errors++;
1123 
1124 		/* Receive Descriptor Empty int */
1125 		if (ris2 & RIS2_QFF1)
1126 			priv->stats[RAVB_NC].rx_over_errors++;
1127 
1128 		/* Receive FIFO Overflow int */
1129 		if (ris2 & RIS2_RFFF)
1130 			priv->rx_fifo_errors++;
1131 	}
1132 }
1133 
1134 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1135 {
1136 	struct ravb_private *priv = netdev_priv(ndev);
1137 	const struct ravb_hw_info *info = priv->info;
1138 	u32 ris0 = ravb_read(ndev, RIS0);
1139 	u32 ric0 = ravb_read(ndev, RIC0);
1140 	u32 tis  = ravb_read(ndev, TIS);
1141 	u32 tic  = ravb_read(ndev, TIC);
1142 
1143 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1144 		if (napi_schedule_prep(&priv->napi[q])) {
1145 			/* Mask RX and TX interrupts */
1146 			if (!info->irq_en_dis) {
1147 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1148 				ravb_write(ndev, tic & ~BIT(q), TIC);
1149 			} else {
1150 				ravb_write(ndev, BIT(q), RID0);
1151 				ravb_write(ndev, BIT(q), TID);
1152 			}
1153 			__napi_schedule(&priv->napi[q]);
1154 		} else {
1155 			netdev_warn(ndev,
1156 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1157 				    ris0, ric0);
1158 			netdev_warn(ndev,
1159 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1160 				    tis, tic);
1161 		}
1162 		return true;
1163 	}
1164 	return false;
1165 }
1166 
1167 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1168 {
1169 	u32 tis = ravb_read(ndev, TIS);
1170 
1171 	if (tis & TIS_TFUF) {
1172 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1173 		ravb_get_tx_tstamp(ndev);
1174 		return true;
1175 	}
1176 	return false;
1177 }
1178 
1179 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1180 {
1181 	struct net_device *ndev = dev_id;
1182 	struct ravb_private *priv = netdev_priv(ndev);
1183 	const struct ravb_hw_info *info = priv->info;
1184 	struct device *dev = &priv->pdev->dev;
1185 	irqreturn_t result = IRQ_NONE;
1186 	u32 iss;
1187 
1188 	pm_runtime_get_noresume(dev);
1189 
1190 	if (unlikely(!pm_runtime_active(dev)))
1191 		goto out_rpm_put;
1192 
1193 	spin_lock(&priv->lock);
1194 	/* Get interrupt status */
1195 	iss = ravb_read(ndev, ISS);
1196 
1197 	/* Received and transmitted interrupts */
1198 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1199 		int q;
1200 
1201 		/* Timestamp updated */
1202 		if (ravb_timestamp_interrupt(ndev))
1203 			result = IRQ_HANDLED;
1204 
1205 		/* Network control and best effort queue RX/TX */
1206 		if (info->nc_queues) {
1207 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1208 				if (ravb_queue_interrupt(ndev, q))
1209 					result = IRQ_HANDLED;
1210 			}
1211 		} else {
1212 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1213 				result = IRQ_HANDLED;
1214 		}
1215 	}
1216 
1217 	/* E-MAC status summary */
1218 	if (iss & ISS_MS) {
1219 		ravb_emac_interrupt_unlocked(ndev);
1220 		result = IRQ_HANDLED;
1221 	}
1222 
1223 	/* Error status summary */
1224 	if (iss & ISS_ES) {
1225 		ravb_error_interrupt(ndev);
1226 		result = IRQ_HANDLED;
1227 	}
1228 
1229 	/* gPTP interrupt status summary */
1230 	if (iss & ISS_CGIS) {
1231 		ravb_ptp_interrupt(ndev);
1232 		result = IRQ_HANDLED;
1233 	}
1234 
1235 	spin_unlock(&priv->lock);
1236 
1237 out_rpm_put:
1238 	pm_runtime_put_noidle(dev);
1239 	return result;
1240 }
1241 
1242 /* Timestamp/Error/gPTP interrupt handler */
1243 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1244 {
1245 	struct net_device *ndev = dev_id;
1246 	struct ravb_private *priv = netdev_priv(ndev);
1247 	struct device *dev = &priv->pdev->dev;
1248 	irqreturn_t result = IRQ_NONE;
1249 	u32 iss;
1250 
1251 	pm_runtime_get_noresume(dev);
1252 
1253 	if (unlikely(!pm_runtime_active(dev)))
1254 		goto out_rpm_put;
1255 
1256 	spin_lock(&priv->lock);
1257 	/* Get interrupt status */
1258 	iss = ravb_read(ndev, ISS);
1259 
1260 	/* Timestamp updated */
1261 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1262 		result = IRQ_HANDLED;
1263 
1264 	/* Error status summary */
1265 	if (iss & ISS_ES) {
1266 		ravb_error_interrupt(ndev);
1267 		result = IRQ_HANDLED;
1268 	}
1269 
1270 	/* gPTP interrupt status summary */
1271 	if (iss & ISS_CGIS) {
1272 		ravb_ptp_interrupt(ndev);
1273 		result = IRQ_HANDLED;
1274 	}
1275 
1276 	spin_unlock(&priv->lock);
1277 
1278 out_rpm_put:
1279 	pm_runtime_put_noidle(dev);
1280 	return result;
1281 }
1282 
1283 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1284 {
1285 	struct net_device *ndev = dev_id;
1286 	struct ravb_private *priv = netdev_priv(ndev);
1287 	struct device *dev = &priv->pdev->dev;
1288 	irqreturn_t result = IRQ_NONE;
1289 
1290 	pm_runtime_get_noresume(dev);
1291 
1292 	if (unlikely(!pm_runtime_active(dev)))
1293 		goto out_rpm_put;
1294 
1295 	spin_lock(&priv->lock);
1296 
1297 	/* Network control/Best effort queue RX/TX */
1298 	if (ravb_queue_interrupt(ndev, q))
1299 		result = IRQ_HANDLED;
1300 
1301 	spin_unlock(&priv->lock);
1302 
1303 out_rpm_put:
1304 	pm_runtime_put_noidle(dev);
1305 	return result;
1306 }
1307 
1308 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1309 {
1310 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1311 }
1312 
1313 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1314 {
1315 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1316 }
1317 
1318 static int ravb_poll(struct napi_struct *napi, int budget)
1319 {
1320 	struct net_device *ndev = napi->dev;
1321 	struct ravb_private *priv = netdev_priv(ndev);
1322 	const struct ravb_hw_info *info = priv->info;
1323 	unsigned long flags;
1324 	int q = napi - priv->napi;
1325 	int mask = BIT(q);
1326 	int quota = budget;
1327 	bool unmask;
1328 
1329 	/* Processing RX Descriptor Ring */
1330 	/* Clear RX interrupt */
1331 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1332 	unmask = !ravb_rx(ndev, &quota, q);
1333 
1334 	/* Processing TX Descriptor Ring */
1335 	spin_lock_irqsave(&priv->lock, flags);
1336 	/* Clear TX interrupt */
1337 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1338 	ravb_tx_free(ndev, q, true);
1339 	netif_wake_subqueue(ndev, q);
1340 	spin_unlock_irqrestore(&priv->lock, flags);
1341 
1342 	/* Receive error message handling */
1343 	priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1344 	if (info->nc_queues)
1345 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1346 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1347 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1348 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1349 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1350 
1351 	if (!unmask)
1352 		goto out;
1353 
1354 	napi_complete(napi);
1355 
1356 	/* Re-enable RX/TX interrupts */
1357 	spin_lock_irqsave(&priv->lock, flags);
1358 	if (!info->irq_en_dis) {
1359 		ravb_modify(ndev, RIC0, mask, mask);
1360 		ravb_modify(ndev, TIC,  mask, mask);
1361 	} else {
1362 		ravb_write(ndev, mask, RIE0);
1363 		ravb_write(ndev, mask, TIE);
1364 	}
1365 	spin_unlock_irqrestore(&priv->lock, flags);
1366 
1367 out:
1368 	return budget - quota;
1369 }
1370 
1371 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1372 {
1373 	struct ravb_private *priv = netdev_priv(ndev);
1374 
1375 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1376 }
1377 
1378 /* PHY state control function */
1379 static void ravb_adjust_link(struct net_device *ndev)
1380 {
1381 	struct ravb_private *priv = netdev_priv(ndev);
1382 	const struct ravb_hw_info *info = priv->info;
1383 	struct phy_device *phydev = ndev->phydev;
1384 	bool new_state = false;
1385 	unsigned long flags;
1386 
1387 	spin_lock_irqsave(&priv->lock, flags);
1388 
1389 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1390 	if (priv->no_avb_link)
1391 		ravb_rcv_snd_disable(ndev);
1392 
1393 	if (phydev->link) {
1394 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1395 			new_state = true;
1396 			priv->duplex = phydev->duplex;
1397 			ravb_set_duplex_gbeth(ndev);
1398 		}
1399 
1400 		if (phydev->speed != priv->speed) {
1401 			new_state = true;
1402 			priv->speed = phydev->speed;
1403 			info->set_rate(ndev);
1404 		}
1405 		if (!priv->link) {
1406 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1407 			new_state = true;
1408 			priv->link = phydev->link;
1409 		}
1410 	} else if (priv->link) {
1411 		new_state = true;
1412 		priv->link = 0;
1413 		priv->speed = 0;
1414 		if (info->half_duplex)
1415 			priv->duplex = -1;
1416 	}
1417 
1418 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1419 	if (priv->no_avb_link && phydev->link)
1420 		ravb_rcv_snd_enable(ndev);
1421 
1422 	spin_unlock_irqrestore(&priv->lock, flags);
1423 
1424 	if (new_state && netif_msg_link(priv))
1425 		phy_print_status(phydev);
1426 }
1427 
1428 /* PHY init function */
1429 static int ravb_phy_init(struct net_device *ndev)
1430 {
1431 	struct device_node *np = ndev->dev.parent->of_node;
1432 	struct ravb_private *priv = netdev_priv(ndev);
1433 	const struct ravb_hw_info *info = priv->info;
1434 	struct phy_device *phydev;
1435 	struct device_node *pn;
1436 	phy_interface_t iface;
1437 	int err;
1438 
1439 	priv->link = 0;
1440 	priv->speed = 0;
1441 	priv->duplex = -1;
1442 
1443 	/* Try connecting to PHY */
1444 	pn = of_parse_phandle(np, "phy-handle", 0);
1445 	if (!pn) {
1446 		/* In the case of a fixed PHY, the DT node associated
1447 		 * to the PHY is the Ethernet MAC DT node.
1448 		 */
1449 		if (of_phy_is_fixed_link(np)) {
1450 			err = of_phy_register_fixed_link(np);
1451 			if (err)
1452 				return err;
1453 		}
1454 		pn = of_node_get(np);
1455 	}
1456 
1457 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1458 				     : priv->phy_interface;
1459 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1460 	of_node_put(pn);
1461 	if (!phydev) {
1462 		netdev_err(ndev, "failed to connect PHY\n");
1463 		err = -ENOENT;
1464 		goto err_deregister_fixed_link;
1465 	}
1466 
1467 	if (!info->half_duplex) {
1468 		/* 10BASE, Pause and Asym Pause is not supported */
1469 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1470 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1471 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1472 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1473 
1474 		/* Half Duplex is not supported */
1475 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1476 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1477 	}
1478 
1479 	phy_attached_info(phydev);
1480 
1481 	return 0;
1482 
1483 err_deregister_fixed_link:
1484 	if (of_phy_is_fixed_link(np))
1485 		of_phy_deregister_fixed_link(np);
1486 
1487 	return err;
1488 }
1489 
1490 /* PHY control start function */
1491 static int ravb_phy_start(struct net_device *ndev)
1492 {
1493 	int error;
1494 
1495 	error = ravb_phy_init(ndev);
1496 	if (error)
1497 		return error;
1498 
1499 	phy_start(ndev->phydev);
1500 
1501 	return 0;
1502 }
1503 
1504 static u32 ravb_get_msglevel(struct net_device *ndev)
1505 {
1506 	struct ravb_private *priv = netdev_priv(ndev);
1507 
1508 	return priv->msg_enable;
1509 }
1510 
1511 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1512 {
1513 	struct ravb_private *priv = netdev_priv(ndev);
1514 
1515 	priv->msg_enable = value;
1516 }
1517 
1518 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1519 	"rx_queue_0_current",
1520 	"tx_queue_0_current",
1521 	"rx_queue_0_dirty",
1522 	"tx_queue_0_dirty",
1523 	"rx_queue_0_packets",
1524 	"tx_queue_0_packets",
1525 	"rx_queue_0_bytes",
1526 	"tx_queue_0_bytes",
1527 	"rx_queue_0_mcast_packets",
1528 	"rx_queue_0_errors",
1529 	"rx_queue_0_crc_errors",
1530 	"rx_queue_0_frame_errors",
1531 	"rx_queue_0_length_errors",
1532 	"rx_queue_0_csum_offload_errors",
1533 	"rx_queue_0_over_errors",
1534 };
1535 
1536 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1537 	"rx_queue_0_current",
1538 	"tx_queue_0_current",
1539 	"rx_queue_0_dirty",
1540 	"tx_queue_0_dirty",
1541 	"rx_queue_0_packets",
1542 	"tx_queue_0_packets",
1543 	"rx_queue_0_bytes",
1544 	"tx_queue_0_bytes",
1545 	"rx_queue_0_mcast_packets",
1546 	"rx_queue_0_errors",
1547 	"rx_queue_0_crc_errors",
1548 	"rx_queue_0_frame_errors",
1549 	"rx_queue_0_length_errors",
1550 	"rx_queue_0_missed_errors",
1551 	"rx_queue_0_over_errors",
1552 
1553 	"rx_queue_1_current",
1554 	"tx_queue_1_current",
1555 	"rx_queue_1_dirty",
1556 	"tx_queue_1_dirty",
1557 	"rx_queue_1_packets",
1558 	"tx_queue_1_packets",
1559 	"rx_queue_1_bytes",
1560 	"tx_queue_1_bytes",
1561 	"rx_queue_1_mcast_packets",
1562 	"rx_queue_1_errors",
1563 	"rx_queue_1_crc_errors",
1564 	"rx_queue_1_frame_errors",
1565 	"rx_queue_1_length_errors",
1566 	"rx_queue_1_missed_errors",
1567 	"rx_queue_1_over_errors",
1568 };
1569 
1570 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1571 {
1572 	struct ravb_private *priv = netdev_priv(netdev);
1573 	const struct ravb_hw_info *info = priv->info;
1574 
1575 	switch (sset) {
1576 	case ETH_SS_STATS:
1577 		return info->stats_len;
1578 	default:
1579 		return -EOPNOTSUPP;
1580 	}
1581 }
1582 
1583 static void ravb_get_ethtool_stats(struct net_device *ndev,
1584 				   struct ethtool_stats *estats, u64 *data)
1585 {
1586 	struct ravb_private *priv = netdev_priv(ndev);
1587 	const struct ravb_hw_info *info = priv->info;
1588 	int num_rx_q;
1589 	int i = 0;
1590 	int q;
1591 
1592 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1593 	/* Device-specific stats */
1594 	for (q = RAVB_BE; q < num_rx_q; q++) {
1595 		struct net_device_stats *stats = &priv->stats[q];
1596 
1597 		data[i++] = priv->cur_rx[q];
1598 		data[i++] = priv->cur_tx[q];
1599 		data[i++] = priv->dirty_rx[q];
1600 		data[i++] = priv->dirty_tx[q];
1601 		data[i++] = stats->rx_packets;
1602 		data[i++] = stats->tx_packets;
1603 		data[i++] = stats->rx_bytes;
1604 		data[i++] = stats->tx_bytes;
1605 		data[i++] = stats->multicast;
1606 		data[i++] = stats->rx_errors;
1607 		data[i++] = stats->rx_crc_errors;
1608 		data[i++] = stats->rx_frame_errors;
1609 		data[i++] = stats->rx_length_errors;
1610 		data[i++] = stats->rx_missed_errors;
1611 		data[i++] = stats->rx_over_errors;
1612 	}
1613 }
1614 
1615 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1616 {
1617 	struct ravb_private *priv = netdev_priv(ndev);
1618 	const struct ravb_hw_info *info = priv->info;
1619 
1620 	switch (stringset) {
1621 	case ETH_SS_STATS:
1622 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1623 		break;
1624 	}
1625 }
1626 
1627 static void ravb_get_ringparam(struct net_device *ndev,
1628 			       struct ethtool_ringparam *ring,
1629 			       struct kernel_ethtool_ringparam *kernel_ring,
1630 			       struct netlink_ext_ack *extack)
1631 {
1632 	struct ravb_private *priv = netdev_priv(ndev);
1633 
1634 	ring->rx_max_pending = BE_RX_RING_MAX;
1635 	ring->tx_max_pending = BE_TX_RING_MAX;
1636 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1637 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1638 }
1639 
1640 static int ravb_set_ringparam(struct net_device *ndev,
1641 			      struct ethtool_ringparam *ring,
1642 			      struct kernel_ethtool_ringparam *kernel_ring,
1643 			      struct netlink_ext_ack *extack)
1644 {
1645 	struct ravb_private *priv = netdev_priv(ndev);
1646 	const struct ravb_hw_info *info = priv->info;
1647 	int error;
1648 
1649 	if (ring->tx_pending > BE_TX_RING_MAX ||
1650 	    ring->rx_pending > BE_RX_RING_MAX ||
1651 	    ring->tx_pending < BE_TX_RING_MIN ||
1652 	    ring->rx_pending < BE_RX_RING_MIN)
1653 		return -EINVAL;
1654 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1655 		return -EINVAL;
1656 
1657 	if (netif_running(ndev)) {
1658 		netif_device_detach(ndev);
1659 		/* Stop PTP Clock driver */
1660 		if (info->gptp)
1661 			ravb_ptp_stop(ndev);
1662 		/* Wait for DMA stopping */
1663 		error = ravb_stop_dma(ndev);
1664 		if (error) {
1665 			netdev_err(ndev,
1666 				   "cannot set ringparam! Any AVB processes are still running?\n");
1667 			return error;
1668 		}
1669 		synchronize_irq(ndev->irq);
1670 
1671 		/* Free all the skb's in the RX queue and the DMA buffers. */
1672 		ravb_ring_free(ndev, RAVB_BE);
1673 		if (info->nc_queues)
1674 			ravb_ring_free(ndev, RAVB_NC);
1675 	}
1676 
1677 	/* Set new parameters */
1678 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1679 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1680 
1681 	if (netif_running(ndev)) {
1682 		error = ravb_dmac_init(ndev);
1683 		if (error) {
1684 			netdev_err(ndev,
1685 				   "%s: ravb_dmac_init() failed, error %d\n",
1686 				   __func__, error);
1687 			return error;
1688 		}
1689 
1690 		ravb_emac_init(ndev);
1691 
1692 		/* Initialise PTP Clock driver */
1693 		if (info->gptp)
1694 			ravb_ptp_init(ndev, priv->pdev);
1695 
1696 		netif_device_attach(ndev);
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 static int ravb_get_ts_info(struct net_device *ndev,
1703 			    struct ethtool_ts_info *info)
1704 {
1705 	struct ravb_private *priv = netdev_priv(ndev);
1706 	const struct ravb_hw_info *hw_info = priv->info;
1707 
1708 	info->so_timestamping =
1709 		SOF_TIMESTAMPING_TX_SOFTWARE |
1710 		SOF_TIMESTAMPING_RX_SOFTWARE |
1711 		SOF_TIMESTAMPING_SOFTWARE |
1712 		SOF_TIMESTAMPING_TX_HARDWARE |
1713 		SOF_TIMESTAMPING_RX_HARDWARE |
1714 		SOF_TIMESTAMPING_RAW_HARDWARE;
1715 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1716 	info->rx_filters =
1717 		(1 << HWTSTAMP_FILTER_NONE) |
1718 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1719 		(1 << HWTSTAMP_FILTER_ALL);
1720 	if (hw_info->gptp || hw_info->ccc_gac)
1721 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1722 
1723 	return 0;
1724 }
1725 
1726 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1727 {
1728 	struct ravb_private *priv = netdev_priv(ndev);
1729 
1730 	wol->supported = WAKE_MAGIC;
1731 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1732 }
1733 
1734 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1735 {
1736 	struct ravb_private *priv = netdev_priv(ndev);
1737 	const struct ravb_hw_info *info = priv->info;
1738 
1739 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1740 		return -EOPNOTSUPP;
1741 
1742 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1743 
1744 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1745 
1746 	return 0;
1747 }
1748 
1749 static const struct ethtool_ops ravb_ethtool_ops = {
1750 	.nway_reset		= phy_ethtool_nway_reset,
1751 	.get_msglevel		= ravb_get_msglevel,
1752 	.set_msglevel		= ravb_set_msglevel,
1753 	.get_link		= ethtool_op_get_link,
1754 	.get_strings		= ravb_get_strings,
1755 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1756 	.get_sset_count		= ravb_get_sset_count,
1757 	.get_ringparam		= ravb_get_ringparam,
1758 	.set_ringparam		= ravb_set_ringparam,
1759 	.get_ts_info		= ravb_get_ts_info,
1760 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1761 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1762 	.get_wol		= ravb_get_wol,
1763 	.set_wol		= ravb_set_wol,
1764 };
1765 
1766 static int ravb_set_config_mode(struct net_device *ndev)
1767 {
1768 	struct ravb_private *priv = netdev_priv(ndev);
1769 	const struct ravb_hw_info *info = priv->info;
1770 	int error;
1771 
1772 	if (info->gptp) {
1773 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1774 		if (error)
1775 			return error;
1776 		/* Set CSEL value */
1777 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1778 	} else if (info->ccc_gac) {
1779 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1780 	} else {
1781 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1782 	}
1783 
1784 	return error;
1785 }
1786 
1787 static void ravb_set_gti(struct net_device *ndev)
1788 {
1789 	struct ravb_private *priv = netdev_priv(ndev);
1790 	const struct ravb_hw_info *info = priv->info;
1791 
1792 	if (!(info->gptp || info->ccc_gac))
1793 		return;
1794 
1795 	ravb_write(ndev, priv->gti_tiv, GTI);
1796 
1797 	/* Request GTI loading */
1798 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1799 }
1800 
1801 static int ravb_compute_gti(struct net_device *ndev)
1802 {
1803 	struct ravb_private *priv = netdev_priv(ndev);
1804 	const struct ravb_hw_info *info = priv->info;
1805 	struct device *dev = ndev->dev.parent;
1806 	unsigned long rate;
1807 	u64 inc;
1808 
1809 	if (!(info->gptp || info->ccc_gac))
1810 		return 0;
1811 
1812 	if (info->gptp_ref_clk)
1813 		rate = clk_get_rate(priv->gptp_clk);
1814 	else
1815 		rate = clk_get_rate(priv->clk);
1816 	if (!rate)
1817 		return -EINVAL;
1818 
1819 	inc = div64_ul(1000000000ULL << 20, rate);
1820 
1821 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1822 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1823 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1824 		return -EINVAL;
1825 	}
1826 	priv->gti_tiv = inc;
1827 
1828 	return 0;
1829 }
1830 
1831 /* Set tx and rx clock internal delay modes */
1832 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1833 {
1834 	struct ravb_private *priv = netdev_priv(ndev);
1835 	bool explicit_delay = false;
1836 	u32 delay;
1837 
1838 	if (!priv->info->internal_delay)
1839 		return;
1840 
1841 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1842 		/* Valid values are 0 and 1800, according to DT bindings */
1843 		priv->rxcidm = !!delay;
1844 		explicit_delay = true;
1845 	}
1846 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1847 		/* Valid values are 0 and 2000, according to DT bindings */
1848 		priv->txcidm = !!delay;
1849 		explicit_delay = true;
1850 	}
1851 
1852 	if (explicit_delay)
1853 		return;
1854 
1855 	/* Fall back to legacy rgmii-*id behavior */
1856 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1857 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1858 		priv->rxcidm = 1;
1859 		priv->rgmii_override = 1;
1860 	}
1861 
1862 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1863 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1864 		priv->txcidm = 1;
1865 		priv->rgmii_override = 1;
1866 	}
1867 }
1868 
1869 static void ravb_set_delay_mode(struct net_device *ndev)
1870 {
1871 	struct ravb_private *priv = netdev_priv(ndev);
1872 	u32 set = 0;
1873 
1874 	if (!priv->info->internal_delay)
1875 		return;
1876 
1877 	if (priv->rxcidm)
1878 		set |= APSR_RDM;
1879 	if (priv->txcidm)
1880 		set |= APSR_TDM;
1881 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1882 }
1883 
1884 /* Network device open function for Ethernet AVB */
1885 static int ravb_open(struct net_device *ndev)
1886 {
1887 	struct ravb_private *priv = netdev_priv(ndev);
1888 	const struct ravb_hw_info *info = priv->info;
1889 	struct device *dev = &priv->pdev->dev;
1890 	int error;
1891 
1892 	napi_enable(&priv->napi[RAVB_BE]);
1893 	if (info->nc_queues)
1894 		napi_enable(&priv->napi[RAVB_NC]);
1895 
1896 	error = pm_runtime_resume_and_get(dev);
1897 	if (error < 0)
1898 		goto out_napi_off;
1899 
1900 	/* Set AVB config mode */
1901 	error = ravb_set_config_mode(ndev);
1902 	if (error)
1903 		goto out_rpm_put;
1904 
1905 	ravb_set_delay_mode(ndev);
1906 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1907 
1908 	/* Device init */
1909 	error = ravb_dmac_init(ndev);
1910 	if (error)
1911 		goto out_set_reset;
1912 
1913 	ravb_emac_init(ndev);
1914 
1915 	ravb_set_gti(ndev);
1916 
1917 	/* Initialise PTP Clock driver */
1918 	if (info->gptp || info->ccc_gac)
1919 		ravb_ptp_init(ndev, priv->pdev);
1920 
1921 	/* PHY control start */
1922 	error = ravb_phy_start(ndev);
1923 	if (error)
1924 		goto out_ptp_stop;
1925 
1926 	netif_tx_start_all_queues(ndev);
1927 
1928 	return 0;
1929 
1930 out_ptp_stop:
1931 	/* Stop PTP Clock driver */
1932 	if (info->gptp || info->ccc_gac)
1933 		ravb_ptp_stop(ndev);
1934 	ravb_stop_dma(ndev);
1935 out_set_reset:
1936 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1937 out_rpm_put:
1938 	pm_runtime_mark_last_busy(dev);
1939 	pm_runtime_put_autosuspend(dev);
1940 out_napi_off:
1941 	if (info->nc_queues)
1942 		napi_disable(&priv->napi[RAVB_NC]);
1943 	napi_disable(&priv->napi[RAVB_BE]);
1944 	return error;
1945 }
1946 
1947 /* Timeout function for Ethernet AVB */
1948 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1949 {
1950 	struct ravb_private *priv = netdev_priv(ndev);
1951 
1952 	netif_err(priv, tx_err, ndev,
1953 		  "transmit timed out, status %08x, resetting...\n",
1954 		  ravb_read(ndev, ISS));
1955 
1956 	/* tx_errors count up */
1957 	ndev->stats.tx_errors++;
1958 
1959 	schedule_work(&priv->work);
1960 }
1961 
1962 static void ravb_tx_timeout_work(struct work_struct *work)
1963 {
1964 	struct ravb_private *priv = container_of(work, struct ravb_private,
1965 						 work);
1966 	const struct ravb_hw_info *info = priv->info;
1967 	struct net_device *ndev = priv->ndev;
1968 	int error;
1969 
1970 	if (!rtnl_trylock()) {
1971 		usleep_range(1000, 2000);
1972 		schedule_work(&priv->work);
1973 		return;
1974 	}
1975 
1976 	netif_tx_stop_all_queues(ndev);
1977 
1978 	/* Stop PTP Clock driver */
1979 	if (info->gptp)
1980 		ravb_ptp_stop(ndev);
1981 
1982 	/* Wait for DMA stopping */
1983 	if (ravb_stop_dma(ndev)) {
1984 		/* If ravb_stop_dma() fails, the hardware is still operating
1985 		 * for TX and/or RX. So, this should not call the following
1986 		 * functions because ravb_dmac_init() is possible to fail too.
1987 		 * Also, this should not retry ravb_stop_dma() again and again
1988 		 * here because it's possible to wait forever. So, this just
1989 		 * re-enables the TX and RX and skip the following
1990 		 * re-initialization procedure.
1991 		 */
1992 		ravb_rcv_snd_enable(ndev);
1993 		goto out;
1994 	}
1995 
1996 	ravb_ring_free(ndev, RAVB_BE);
1997 	if (info->nc_queues)
1998 		ravb_ring_free(ndev, RAVB_NC);
1999 
2000 	/* Device init */
2001 	error = ravb_dmac_init(ndev);
2002 	if (error) {
2003 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2004 		 * should return here to avoid re-enabling the TX and RX in
2005 		 * ravb_emac_init().
2006 		 */
2007 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2008 			   __func__, error);
2009 		goto out_unlock;
2010 	}
2011 	ravb_emac_init(ndev);
2012 
2013 out:
2014 	/* Initialise PTP Clock driver */
2015 	if (info->gptp)
2016 		ravb_ptp_init(ndev, priv->pdev);
2017 
2018 	netif_tx_start_all_queues(ndev);
2019 
2020 out_unlock:
2021 	rtnl_unlock();
2022 }
2023 
2024 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2025 {
2026 	struct iphdr *ip = ip_hdr(skb);
2027 
2028 	/* TODO: Need to add support for VLAN tag 802.1Q */
2029 	if (skb_vlan_tag_present(skb))
2030 		return false;
2031 
2032 	/* TODO: Need to add hardware checksum for IPv6 */
2033 	if (skb->protocol != htons(ETH_P_IP))
2034 		return false;
2035 
2036 	switch (ip->protocol) {
2037 	case IPPROTO_TCP:
2038 		break;
2039 	case IPPROTO_UDP:
2040 		/* If the checksum value in the UDP header field is 0, TOE does
2041 		 * not calculate checksum for UDP part of this frame as it is
2042 		 * optional function as per standards.
2043 		 */
2044 		if (udp_hdr(skb)->check == 0)
2045 			return false;
2046 		break;
2047 	default:
2048 		return false;
2049 	}
2050 
2051 	return true;
2052 }
2053 
2054 /* Packet transmit function for Ethernet AVB */
2055 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2056 {
2057 	struct ravb_private *priv = netdev_priv(ndev);
2058 	const struct ravb_hw_info *info = priv->info;
2059 	unsigned int num_tx_desc = priv->num_tx_desc;
2060 	u16 q = skb_get_queue_mapping(skb);
2061 	struct ravb_tstamp_skb *ts_skb;
2062 	struct ravb_tx_desc *desc;
2063 	unsigned long flags;
2064 	dma_addr_t dma_addr;
2065 	void *buffer;
2066 	u32 entry;
2067 	u32 len;
2068 
2069 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2070 		skb_checksum_help(skb);
2071 
2072 	spin_lock_irqsave(&priv->lock, flags);
2073 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2074 	    num_tx_desc) {
2075 		netif_err(priv, tx_queued, ndev,
2076 			  "still transmitting with the full ring!\n");
2077 		netif_stop_subqueue(ndev, q);
2078 		spin_unlock_irqrestore(&priv->lock, flags);
2079 		return NETDEV_TX_BUSY;
2080 	}
2081 
2082 	if (skb_put_padto(skb, ETH_ZLEN))
2083 		goto exit;
2084 
2085 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2086 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2087 
2088 	if (num_tx_desc > 1) {
2089 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2090 			 entry / num_tx_desc * DPTR_ALIGN;
2091 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2092 
2093 		/* Zero length DMA descriptors are problematic as they seem
2094 		 * to terminate DMA transfers. Avoid them by simply using a
2095 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2096 		 * DPTR_ALIGN.
2097 		 *
2098 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2099 		 * bytes of data by the call to skb_put_padto() above this
2100 		 * is safe with respect to both the length of the first DMA
2101 		 * descriptor (len) overflowing the available data and the
2102 		 * length of the second DMA descriptor (skb->len - len)
2103 		 * being negative.
2104 		 */
2105 		if (len == 0)
2106 			len = DPTR_ALIGN;
2107 
2108 		memcpy(buffer, skb->data, len);
2109 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2110 					  DMA_TO_DEVICE);
2111 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2112 			goto drop;
2113 
2114 		desc = &priv->tx_ring[q][entry];
2115 		desc->ds_tagl = cpu_to_le16(len);
2116 		desc->dptr = cpu_to_le32(dma_addr);
2117 
2118 		buffer = skb->data + len;
2119 		len = skb->len - len;
2120 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2121 					  DMA_TO_DEVICE);
2122 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2123 			goto unmap;
2124 
2125 		desc++;
2126 	} else {
2127 		desc = &priv->tx_ring[q][entry];
2128 		len = skb->len;
2129 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2130 					  DMA_TO_DEVICE);
2131 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2132 			goto drop;
2133 	}
2134 	desc->ds_tagl = cpu_to_le16(len);
2135 	desc->dptr = cpu_to_le32(dma_addr);
2136 
2137 	/* TX timestamp required */
2138 	if (info->gptp || info->ccc_gac) {
2139 		if (q == RAVB_NC) {
2140 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2141 			if (!ts_skb) {
2142 				if (num_tx_desc > 1) {
2143 					desc--;
2144 					dma_unmap_single(ndev->dev.parent, dma_addr,
2145 							 len, DMA_TO_DEVICE);
2146 				}
2147 				goto unmap;
2148 			}
2149 			ts_skb->skb = skb_get(skb);
2150 			ts_skb->tag = priv->ts_skb_tag++;
2151 			priv->ts_skb_tag &= 0x3ff;
2152 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2153 
2154 			/* TAG and timestamp required flag */
2155 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2156 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2157 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2158 		}
2159 
2160 		skb_tx_timestamp(skb);
2161 	}
2162 	/* Descriptor type must be set after all the above writes */
2163 	dma_wmb();
2164 	if (num_tx_desc > 1) {
2165 		desc->die_dt = DT_FEND;
2166 		desc--;
2167 		desc->die_dt = DT_FSTART;
2168 	} else {
2169 		desc->die_dt = DT_FSINGLE;
2170 	}
2171 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2172 
2173 	priv->cur_tx[q] += num_tx_desc;
2174 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2175 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2176 	    !ravb_tx_free(ndev, q, true))
2177 		netif_stop_subqueue(ndev, q);
2178 
2179 exit:
2180 	spin_unlock_irqrestore(&priv->lock, flags);
2181 	return NETDEV_TX_OK;
2182 
2183 unmap:
2184 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2185 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2186 drop:
2187 	dev_kfree_skb_any(skb);
2188 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2189 	goto exit;
2190 }
2191 
2192 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2193 			     struct net_device *sb_dev)
2194 {
2195 	/* If skb needs TX timestamp, it is handled in network control queue */
2196 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2197 							       RAVB_BE;
2198 
2199 }
2200 
2201 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2202 {
2203 	struct ravb_private *priv = netdev_priv(ndev);
2204 	const struct ravb_hw_info *info = priv->info;
2205 	struct net_device_stats *nstats, *stats0, *stats1;
2206 	struct device *dev = &priv->pdev->dev;
2207 
2208 	nstats = &ndev->stats;
2209 
2210 	pm_runtime_get_noresume(dev);
2211 
2212 	if (!pm_runtime_active(dev))
2213 		goto out_rpm_put;
2214 
2215 	stats0 = &priv->stats[RAVB_BE];
2216 
2217 	if (info->tx_counters) {
2218 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2219 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2220 	}
2221 
2222 	if (info->carrier_counters) {
2223 		nstats->collisions += ravb_read(ndev, CXR41);
2224 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2225 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2226 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2227 	}
2228 
2229 	nstats->rx_packets = stats0->rx_packets;
2230 	nstats->tx_packets = stats0->tx_packets;
2231 	nstats->rx_bytes = stats0->rx_bytes;
2232 	nstats->tx_bytes = stats0->tx_bytes;
2233 	nstats->multicast = stats0->multicast;
2234 	nstats->rx_errors = stats0->rx_errors;
2235 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2236 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2237 	nstats->rx_length_errors = stats0->rx_length_errors;
2238 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2239 	nstats->rx_over_errors = stats0->rx_over_errors;
2240 	if (info->nc_queues) {
2241 		stats1 = &priv->stats[RAVB_NC];
2242 
2243 		nstats->rx_packets += stats1->rx_packets;
2244 		nstats->tx_packets += stats1->tx_packets;
2245 		nstats->rx_bytes += stats1->rx_bytes;
2246 		nstats->tx_bytes += stats1->tx_bytes;
2247 		nstats->multicast += stats1->multicast;
2248 		nstats->rx_errors += stats1->rx_errors;
2249 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2250 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2251 		nstats->rx_length_errors += stats1->rx_length_errors;
2252 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2253 		nstats->rx_over_errors += stats1->rx_over_errors;
2254 	}
2255 
2256 out_rpm_put:
2257 	pm_runtime_put_noidle(dev);
2258 	return nstats;
2259 }
2260 
2261 /* Update promiscuous bit */
2262 static void ravb_set_rx_mode(struct net_device *ndev)
2263 {
2264 	struct ravb_private *priv = netdev_priv(ndev);
2265 	unsigned long flags;
2266 
2267 	spin_lock_irqsave(&priv->lock, flags);
2268 	ravb_modify(ndev, ECMR, ECMR_PRM,
2269 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2270 	spin_unlock_irqrestore(&priv->lock, flags);
2271 }
2272 
2273 /* Device close function for Ethernet AVB */
2274 static int ravb_close(struct net_device *ndev)
2275 {
2276 	struct device_node *np = ndev->dev.parent->of_node;
2277 	struct ravb_private *priv = netdev_priv(ndev);
2278 	const struct ravb_hw_info *info = priv->info;
2279 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2280 	struct device *dev = &priv->pdev->dev;
2281 	int error;
2282 
2283 	netif_tx_stop_all_queues(ndev);
2284 
2285 	/* Disable interrupts by clearing the interrupt masks. */
2286 	ravb_write(ndev, 0, RIC0);
2287 	ravb_write(ndev, 0, RIC2);
2288 	ravb_write(ndev, 0, TIC);
2289 
2290 	/* PHY disconnect */
2291 	if (ndev->phydev) {
2292 		phy_stop(ndev->phydev);
2293 		phy_disconnect(ndev->phydev);
2294 		if (of_phy_is_fixed_link(np))
2295 			of_phy_deregister_fixed_link(np);
2296 	}
2297 
2298 	/* Stop PTP Clock driver */
2299 	if (info->gptp || info->ccc_gac)
2300 		ravb_ptp_stop(ndev);
2301 
2302 	/* Set the config mode to stop the AVB-DMAC's processes */
2303 	if (ravb_stop_dma(ndev) < 0)
2304 		netdev_err(ndev,
2305 			   "device will be stopped after h/w processes are done.\n");
2306 
2307 	/* Clear the timestamp list */
2308 	if (info->gptp || info->ccc_gac) {
2309 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2310 			list_del(&ts_skb->list);
2311 			kfree_skb(ts_skb->skb);
2312 			kfree(ts_skb);
2313 		}
2314 	}
2315 
2316 	cancel_work_sync(&priv->work);
2317 
2318 	if (info->nc_queues)
2319 		napi_disable(&priv->napi[RAVB_NC]);
2320 	napi_disable(&priv->napi[RAVB_BE]);
2321 
2322 	/* Free all the skb's in the RX queue and the DMA buffers. */
2323 	ravb_ring_free(ndev, RAVB_BE);
2324 	if (info->nc_queues)
2325 		ravb_ring_free(ndev, RAVB_NC);
2326 
2327 	/* Update statistics. */
2328 	ravb_get_stats(ndev);
2329 
2330 	/* Set reset mode. */
2331 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2332 	if (error)
2333 		return error;
2334 
2335 	pm_runtime_mark_last_busy(dev);
2336 	pm_runtime_put_autosuspend(dev);
2337 
2338 	return 0;
2339 }
2340 
2341 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2342 {
2343 	struct ravb_private *priv = netdev_priv(ndev);
2344 	struct hwtstamp_config config;
2345 
2346 	config.flags = 0;
2347 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2348 						HWTSTAMP_TX_OFF;
2349 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2350 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2351 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2352 		break;
2353 	case RAVB_RXTSTAMP_TYPE_ALL:
2354 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2355 		break;
2356 	default:
2357 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2358 	}
2359 
2360 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2361 		-EFAULT : 0;
2362 }
2363 
2364 /* Control hardware time stamping */
2365 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2366 {
2367 	struct ravb_private *priv = netdev_priv(ndev);
2368 	struct hwtstamp_config config;
2369 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2370 	u32 tstamp_tx_ctrl;
2371 
2372 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2373 		return -EFAULT;
2374 
2375 	switch (config.tx_type) {
2376 	case HWTSTAMP_TX_OFF:
2377 		tstamp_tx_ctrl = 0;
2378 		break;
2379 	case HWTSTAMP_TX_ON:
2380 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2381 		break;
2382 	default:
2383 		return -ERANGE;
2384 	}
2385 
2386 	switch (config.rx_filter) {
2387 	case HWTSTAMP_FILTER_NONE:
2388 		tstamp_rx_ctrl = 0;
2389 		break;
2390 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2391 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2392 		break;
2393 	default:
2394 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2395 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2396 	}
2397 
2398 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2399 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2400 
2401 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2402 		-EFAULT : 0;
2403 }
2404 
2405 /* ioctl to device function */
2406 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2407 {
2408 	struct phy_device *phydev = ndev->phydev;
2409 
2410 	if (!netif_running(ndev))
2411 		return -EINVAL;
2412 
2413 	if (!phydev)
2414 		return -ENODEV;
2415 
2416 	switch (cmd) {
2417 	case SIOCGHWTSTAMP:
2418 		return ravb_hwtstamp_get(ndev, req);
2419 	case SIOCSHWTSTAMP:
2420 		return ravb_hwtstamp_set(ndev, req);
2421 	}
2422 
2423 	return phy_mii_ioctl(phydev, req, cmd);
2424 }
2425 
2426 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2427 {
2428 	struct ravb_private *priv = netdev_priv(ndev);
2429 
2430 	ndev->mtu = new_mtu;
2431 
2432 	if (netif_running(ndev)) {
2433 		synchronize_irq(priv->emac_irq);
2434 		ravb_emac_init(ndev);
2435 	}
2436 
2437 	netdev_update_features(ndev);
2438 
2439 	return 0;
2440 }
2441 
2442 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2443 {
2444 	struct ravb_private *priv = netdev_priv(ndev);
2445 	unsigned long flags;
2446 
2447 	spin_lock_irqsave(&priv->lock, flags);
2448 
2449 	/* Disable TX and RX */
2450 	ravb_rcv_snd_disable(ndev);
2451 
2452 	/* Modify RX Checksum setting */
2453 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2454 
2455 	/* Enable TX and RX */
2456 	ravb_rcv_snd_enable(ndev);
2457 
2458 	spin_unlock_irqrestore(&priv->lock, flags);
2459 }
2460 
2461 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2462 				     u32 val, u32 mask)
2463 {
2464 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2465 	int ret;
2466 
2467 	ravb_write(ndev, csr0 & ~mask, CSR0);
2468 	ret = ravb_wait(ndev, CSR0, mask, 0);
2469 	if (!ret)
2470 		ravb_write(ndev, val, reg);
2471 
2472 	ravb_write(ndev, csr0, CSR0);
2473 
2474 	return ret;
2475 }
2476 
2477 static int ravb_set_features_gbeth(struct net_device *ndev,
2478 				   netdev_features_t features)
2479 {
2480 	netdev_features_t changed = ndev->features ^ features;
2481 	struct ravb_private *priv = netdev_priv(ndev);
2482 	unsigned long flags;
2483 	int ret = 0;
2484 	u32 val;
2485 
2486 	spin_lock_irqsave(&priv->lock, flags);
2487 	if (changed & NETIF_F_RXCSUM) {
2488 		if (features & NETIF_F_RXCSUM)
2489 			val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2490 		else
2491 			val = 0;
2492 
2493 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2494 		if (ret)
2495 			goto done;
2496 	}
2497 
2498 	if (changed & NETIF_F_HW_CSUM) {
2499 		if (features & NETIF_F_HW_CSUM)
2500 			val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2501 		else
2502 			val = 0;
2503 
2504 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2505 		if (ret)
2506 			goto done;
2507 	}
2508 
2509 done:
2510 	spin_unlock_irqrestore(&priv->lock, flags);
2511 
2512 	return ret;
2513 }
2514 
2515 static int ravb_set_features_rcar(struct net_device *ndev,
2516 				  netdev_features_t features)
2517 {
2518 	netdev_features_t changed = ndev->features ^ features;
2519 
2520 	if (changed & NETIF_F_RXCSUM)
2521 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2522 
2523 	return 0;
2524 }
2525 
2526 static int ravb_set_features(struct net_device *ndev,
2527 			     netdev_features_t features)
2528 {
2529 	struct ravb_private *priv = netdev_priv(ndev);
2530 	const struct ravb_hw_info *info = priv->info;
2531 	struct device *dev = &priv->pdev->dev;
2532 	int ret;
2533 
2534 	pm_runtime_get_noresume(dev);
2535 
2536 	if (pm_runtime_active(dev))
2537 		ret = info->set_feature(ndev, features);
2538 	else
2539 		ret = 0;
2540 
2541 	pm_runtime_put_noidle(dev);
2542 
2543 	if (ret)
2544 		return ret;
2545 
2546 	ndev->features = features;
2547 
2548 	return 0;
2549 }
2550 
2551 static const struct net_device_ops ravb_netdev_ops = {
2552 	.ndo_open		= ravb_open,
2553 	.ndo_stop		= ravb_close,
2554 	.ndo_start_xmit		= ravb_start_xmit,
2555 	.ndo_select_queue	= ravb_select_queue,
2556 	.ndo_get_stats		= ravb_get_stats,
2557 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2558 	.ndo_tx_timeout		= ravb_tx_timeout,
2559 	.ndo_eth_ioctl		= ravb_do_ioctl,
2560 	.ndo_change_mtu		= ravb_change_mtu,
2561 	.ndo_validate_addr	= eth_validate_addr,
2562 	.ndo_set_mac_address	= eth_mac_addr,
2563 	.ndo_set_features	= ravb_set_features,
2564 };
2565 
2566 /* MDIO bus init function */
2567 static int ravb_mdio_init(struct ravb_private *priv)
2568 {
2569 	struct platform_device *pdev = priv->pdev;
2570 	struct device *dev = &pdev->dev;
2571 	struct phy_device *phydev;
2572 	struct device_node *pn;
2573 	int error;
2574 
2575 	/* Bitbang init */
2576 	priv->mdiobb.ops = &bb_ops;
2577 
2578 	/* MII controller setting */
2579 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2580 	if (!priv->mii_bus)
2581 		return -ENOMEM;
2582 
2583 	/* Hook up MII support for ethtool */
2584 	priv->mii_bus->name = "ravb_mii";
2585 	priv->mii_bus->parent = dev;
2586 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2587 		 pdev->name, pdev->id);
2588 
2589 	/* Register MDIO bus */
2590 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2591 	if (error)
2592 		goto out_free_bus;
2593 
2594 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2595 	phydev = of_phy_find_device(pn);
2596 	if (phydev) {
2597 		phydev->mac_managed_pm = true;
2598 		put_device(&phydev->mdio.dev);
2599 	}
2600 	of_node_put(pn);
2601 
2602 	return 0;
2603 
2604 out_free_bus:
2605 	free_mdio_bitbang(priv->mii_bus);
2606 	return error;
2607 }
2608 
2609 /* MDIO bus release function */
2610 static int ravb_mdio_release(struct ravb_private *priv)
2611 {
2612 	/* Unregister mdio bus */
2613 	mdiobus_unregister(priv->mii_bus);
2614 
2615 	/* Free bitbang info */
2616 	free_mdio_bitbang(priv->mii_bus);
2617 
2618 	return 0;
2619 }
2620 
2621 static const struct ravb_hw_info ravb_gen3_hw_info = {
2622 	.receive = ravb_rx_rcar,
2623 	.set_rate = ravb_set_rate_rcar,
2624 	.set_feature = ravb_set_features_rcar,
2625 	.dmac_init = ravb_dmac_init_rcar,
2626 	.emac_init = ravb_emac_init_rcar,
2627 	.gstrings_stats = ravb_gstrings_stats,
2628 	.gstrings_size = sizeof(ravb_gstrings_stats),
2629 	.net_hw_features = NETIF_F_RXCSUM,
2630 	.net_features = NETIF_F_RXCSUM,
2631 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2632 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2633 	.rx_max_frame_size = SZ_2K,
2634 	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2635 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2636 	.internal_delay = 1,
2637 	.tx_counters = 1,
2638 	.multi_irqs = 1,
2639 	.irq_en_dis = 1,
2640 	.ccc_gac = 1,
2641 	.nc_queues = 1,
2642 	.magic_pkt = 1,
2643 };
2644 
2645 static const struct ravb_hw_info ravb_gen2_hw_info = {
2646 	.receive = ravb_rx_rcar,
2647 	.set_rate = ravb_set_rate_rcar,
2648 	.set_feature = ravb_set_features_rcar,
2649 	.dmac_init = ravb_dmac_init_rcar,
2650 	.emac_init = ravb_emac_init_rcar,
2651 	.gstrings_stats = ravb_gstrings_stats,
2652 	.gstrings_size = sizeof(ravb_gstrings_stats),
2653 	.net_hw_features = NETIF_F_RXCSUM,
2654 	.net_features = NETIF_F_RXCSUM,
2655 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2656 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2657 	.rx_max_frame_size = SZ_2K,
2658 	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2659 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2660 	.aligned_tx = 1,
2661 	.gptp = 1,
2662 	.nc_queues = 1,
2663 	.magic_pkt = 1,
2664 };
2665 
2666 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2667 	.receive = ravb_rx_rcar,
2668 	.set_rate = ravb_set_rate_rcar,
2669 	.set_feature = ravb_set_features_rcar,
2670 	.dmac_init = ravb_dmac_init_rcar,
2671 	.emac_init = ravb_emac_init_rcar,
2672 	.gstrings_stats = ravb_gstrings_stats,
2673 	.gstrings_size = sizeof(ravb_gstrings_stats),
2674 	.net_hw_features = NETIF_F_RXCSUM,
2675 	.net_features = NETIF_F_RXCSUM,
2676 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2677 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2678 	.rx_max_frame_size = SZ_2K,
2679 	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2680 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2681 	.multi_irqs = 1,
2682 	.err_mgmt_irqs = 1,
2683 	.gptp = 1,
2684 	.gptp_ref_clk = 1,
2685 	.nc_queues = 1,
2686 	.magic_pkt = 1,
2687 };
2688 
2689 static const struct ravb_hw_info gbeth_hw_info = {
2690 	.receive = ravb_rx_gbeth,
2691 	.set_rate = ravb_set_rate_gbeth,
2692 	.set_feature = ravb_set_features_gbeth,
2693 	.dmac_init = ravb_dmac_init_gbeth,
2694 	.emac_init = ravb_emac_init_gbeth,
2695 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2696 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2697 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2698 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2699 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2700 	.tccr_mask = TCCR_TSRQ0,
2701 	.rx_max_frame_size = SZ_8K,
2702 	.rx_max_desc_use = 4080,
2703 	.rx_desc_size = sizeof(struct ravb_rx_desc),
2704 	.aligned_tx = 1,
2705 	.tx_counters = 1,
2706 	.carrier_counters = 1,
2707 	.half_duplex = 1,
2708 };
2709 
2710 static const struct of_device_id ravb_match_table[] = {
2711 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2712 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2713 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2714 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2715 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2716 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2717 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2718 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2719 	{ }
2720 };
2721 MODULE_DEVICE_TABLE(of, ravb_match_table);
2722 
2723 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2724 			  const char *ch, int *irq, irq_handler_t handler)
2725 {
2726 	struct platform_device *pdev = priv->pdev;
2727 	struct net_device *ndev = priv->ndev;
2728 	struct device *dev = &pdev->dev;
2729 	const char *dev_name;
2730 	unsigned long flags;
2731 	int error, irq_num;
2732 
2733 	if (irq_name) {
2734 		dev_name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
2735 		if (!dev_name)
2736 			return -ENOMEM;
2737 
2738 		irq_num = platform_get_irq_byname(pdev, irq_name);
2739 		flags = 0;
2740 	} else {
2741 		dev_name = ndev->name;
2742 		irq_num = platform_get_irq(pdev, 0);
2743 		flags = IRQF_SHARED;
2744 	}
2745 	if (irq_num < 0)
2746 		return irq_num;
2747 
2748 	if (irq)
2749 		*irq = irq_num;
2750 
2751 	error = devm_request_irq(dev, irq_num, handler, flags, dev_name, ndev);
2752 	if (error)
2753 		netdev_err(ndev, "cannot request IRQ %s\n", dev_name);
2754 
2755 	return error;
2756 }
2757 
2758 static int ravb_setup_irqs(struct ravb_private *priv)
2759 {
2760 	const struct ravb_hw_info *info = priv->info;
2761 	struct net_device *ndev = priv->ndev;
2762 	const char *irq_name, *emac_irq_name;
2763 	int error;
2764 
2765 	if (!info->multi_irqs)
2766 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2767 
2768 	if (info->err_mgmt_irqs) {
2769 		irq_name = "dia";
2770 		emac_irq_name = "line3";
2771 	} else {
2772 		irq_name = "ch22";
2773 		emac_irq_name = "ch24";
2774 	}
2775 
2776 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2777 	if (error)
2778 		return error;
2779 
2780 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2781 			       ravb_emac_interrupt);
2782 	if (error)
2783 		return error;
2784 
2785 	if (info->err_mgmt_irqs) {
2786 		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2787 		if (error)
2788 			return error;
2789 
2790 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2791 		if (error)
2792 			return error;
2793 	}
2794 
2795 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2796 	if (error)
2797 		return error;
2798 
2799 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2800 	if (error)
2801 		return error;
2802 
2803 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2804 	if (error)
2805 		return error;
2806 
2807 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2808 }
2809 
2810 static int ravb_probe(struct platform_device *pdev)
2811 {
2812 	struct device_node *np = pdev->dev.of_node;
2813 	const struct ravb_hw_info *info;
2814 	struct reset_control *rstc;
2815 	struct ravb_private *priv;
2816 	struct net_device *ndev;
2817 	struct resource *res;
2818 	int error, q;
2819 
2820 	if (!np) {
2821 		dev_err(&pdev->dev,
2822 			"this driver is required to be instantiated from device tree\n");
2823 		return -EINVAL;
2824 	}
2825 
2826 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2827 	if (IS_ERR(rstc))
2828 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2829 				     "failed to get cpg reset\n");
2830 
2831 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2832 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2833 	if (!ndev)
2834 		return -ENOMEM;
2835 
2836 	info = of_device_get_match_data(&pdev->dev);
2837 
2838 	ndev->features = info->net_features;
2839 	ndev->hw_features = info->net_hw_features;
2840 
2841 	error = reset_control_deassert(rstc);
2842 	if (error)
2843 		goto out_free_netdev;
2844 
2845 	SET_NETDEV_DEV(ndev, &pdev->dev);
2846 
2847 	priv = netdev_priv(ndev);
2848 	priv->info = info;
2849 	priv->rstc = rstc;
2850 	priv->ndev = ndev;
2851 	priv->pdev = pdev;
2852 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2853 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2854 	if (info->nc_queues) {
2855 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2856 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2857 	}
2858 
2859 	error = ravb_setup_irqs(priv);
2860 	if (error)
2861 		goto out_reset_assert;
2862 
2863 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2864 	if (IS_ERR(priv->clk)) {
2865 		error = PTR_ERR(priv->clk);
2866 		goto out_reset_assert;
2867 	}
2868 
2869 	if (info->gptp_ref_clk) {
2870 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2871 		if (IS_ERR(priv->gptp_clk)) {
2872 			error = PTR_ERR(priv->gptp_clk);
2873 			goto out_reset_assert;
2874 		}
2875 	}
2876 
2877 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2878 	if (IS_ERR(priv->refclk)) {
2879 		error = PTR_ERR(priv->refclk);
2880 		goto out_reset_assert;
2881 	}
2882 	clk_prepare(priv->refclk);
2883 
2884 	platform_set_drvdata(pdev, ndev);
2885 	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2886 	pm_runtime_use_autosuspend(&pdev->dev);
2887 	pm_runtime_enable(&pdev->dev);
2888 	error = pm_runtime_resume_and_get(&pdev->dev);
2889 	if (error < 0)
2890 		goto out_rpm_disable;
2891 
2892 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2893 	if (IS_ERR(priv->addr)) {
2894 		error = PTR_ERR(priv->addr);
2895 		goto out_rpm_put;
2896 	}
2897 
2898 	/* The Ether-specific entries in the device structure. */
2899 	ndev->base_addr = res->start;
2900 
2901 	spin_lock_init(&priv->lock);
2902 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2903 
2904 	error = of_get_phy_mode(np, &priv->phy_interface);
2905 	if (error && error != -ENODEV)
2906 		goto out_rpm_put;
2907 
2908 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2909 	priv->avb_link_active_low =
2910 		of_property_read_bool(np, "renesas,ether-link-active-low");
2911 
2912 	ndev->max_mtu = info->rx_max_frame_size -
2913 		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2914 	ndev->min_mtu = ETH_MIN_MTU;
2915 
2916 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2917 	 * Use two descriptor to handle such situation. First descriptor to
2918 	 * handle aligned data buffer and second descriptor to handle the
2919 	 * overflow data because of alignment.
2920 	 */
2921 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2922 
2923 	/* Set function */
2924 	ndev->netdev_ops = &ravb_netdev_ops;
2925 	ndev->ethtool_ops = &ravb_ethtool_ops;
2926 
2927 	error = ravb_compute_gti(ndev);
2928 	if (error)
2929 		goto out_rpm_put;
2930 
2931 	ravb_parse_delay_mode(np, ndev);
2932 
2933 	/* Allocate descriptor base address table */
2934 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2935 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2936 					    &priv->desc_bat_dma, GFP_KERNEL);
2937 	if (!priv->desc_bat) {
2938 		dev_err(&pdev->dev,
2939 			"Cannot allocate desc base address table (size %d bytes)\n",
2940 			priv->desc_bat_size);
2941 		error = -ENOMEM;
2942 		goto out_rpm_put;
2943 	}
2944 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2945 		priv->desc_bat[q].die_dt = DT_EOS;
2946 
2947 	/* Initialise HW timestamp list */
2948 	INIT_LIST_HEAD(&priv->ts_skb_list);
2949 
2950 	/* Debug message level */
2951 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2952 
2953 	/* Set config mode as this is needed for PHY initialization. */
2954 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2955 	if (error)
2956 		goto out_rpm_put;
2957 
2958 	/* Read and set MAC address */
2959 	ravb_read_mac_address(np, ndev);
2960 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2961 		dev_warn(&pdev->dev,
2962 			 "no valid MAC address supplied, using a random one\n");
2963 		eth_hw_addr_random(ndev);
2964 	}
2965 
2966 	/* MDIO bus init */
2967 	error = ravb_mdio_init(priv);
2968 	if (error) {
2969 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2970 		goto out_reset_mode;
2971 	}
2972 
2973 	/* Undo previous switch to config opmode. */
2974 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2975 	if (error)
2976 		goto out_mdio_release;
2977 
2978 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2979 	if (info->nc_queues)
2980 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2981 
2982 	/* Network device register */
2983 	error = register_netdev(ndev);
2984 	if (error)
2985 		goto out_napi_del;
2986 
2987 	device_set_wakeup_capable(&pdev->dev, 1);
2988 
2989 	/* Print device information */
2990 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2991 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2992 
2993 	pm_runtime_mark_last_busy(&pdev->dev);
2994 	pm_runtime_put_autosuspend(&pdev->dev);
2995 
2996 	return 0;
2997 
2998 out_napi_del:
2999 	if (info->nc_queues)
3000 		netif_napi_del(&priv->napi[RAVB_NC]);
3001 
3002 	netif_napi_del(&priv->napi[RAVB_BE]);
3003 out_mdio_release:
3004 	ravb_mdio_release(priv);
3005 out_reset_mode:
3006 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3007 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3008 			  priv->desc_bat_dma);
3009 out_rpm_put:
3010 	pm_runtime_put(&pdev->dev);
3011 out_rpm_disable:
3012 	pm_runtime_disable(&pdev->dev);
3013 	pm_runtime_dont_use_autosuspend(&pdev->dev);
3014 	clk_unprepare(priv->refclk);
3015 out_reset_assert:
3016 	reset_control_assert(rstc);
3017 out_free_netdev:
3018 	free_netdev(ndev);
3019 	return error;
3020 }
3021 
3022 static void ravb_remove(struct platform_device *pdev)
3023 {
3024 	struct net_device *ndev = platform_get_drvdata(pdev);
3025 	struct ravb_private *priv = netdev_priv(ndev);
3026 	const struct ravb_hw_info *info = priv->info;
3027 	struct device *dev = &priv->pdev->dev;
3028 	int error;
3029 
3030 	error = pm_runtime_resume_and_get(dev);
3031 	if (error < 0)
3032 		return;
3033 
3034 	unregister_netdev(ndev);
3035 	if (info->nc_queues)
3036 		netif_napi_del(&priv->napi[RAVB_NC]);
3037 	netif_napi_del(&priv->napi[RAVB_BE]);
3038 
3039 	ravb_mdio_release(priv);
3040 
3041 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3042 			  priv->desc_bat_dma);
3043 
3044 	pm_runtime_put_sync_suspend(&pdev->dev);
3045 	pm_runtime_disable(&pdev->dev);
3046 	pm_runtime_dont_use_autosuspend(dev);
3047 	clk_unprepare(priv->refclk);
3048 	reset_control_assert(priv->rstc);
3049 	free_netdev(ndev);
3050 	platform_set_drvdata(pdev, NULL);
3051 }
3052 
3053 static int ravb_wol_setup(struct net_device *ndev)
3054 {
3055 	struct ravb_private *priv = netdev_priv(ndev);
3056 	const struct ravb_hw_info *info = priv->info;
3057 
3058 	/* Disable interrupts by clearing the interrupt masks. */
3059 	ravb_write(ndev, 0, RIC0);
3060 	ravb_write(ndev, 0, RIC2);
3061 	ravb_write(ndev, 0, TIC);
3062 
3063 	/* Only allow ECI interrupts */
3064 	synchronize_irq(priv->emac_irq);
3065 	if (info->nc_queues)
3066 		napi_disable(&priv->napi[RAVB_NC]);
3067 	napi_disable(&priv->napi[RAVB_BE]);
3068 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3069 
3070 	/* Enable MagicPacket */
3071 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3072 
3073 	if (priv->info->ccc_gac)
3074 		ravb_ptp_stop(ndev);
3075 
3076 	return enable_irq_wake(priv->emac_irq);
3077 }
3078 
3079 static int ravb_wol_restore(struct net_device *ndev)
3080 {
3081 	struct ravb_private *priv = netdev_priv(ndev);
3082 	const struct ravb_hw_info *info = priv->info;
3083 	int error;
3084 
3085 	/* Set reset mode to rearm the WoL logic. */
3086 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3087 	if (error)
3088 		return error;
3089 
3090 	/* Set AVB config mode. */
3091 	error = ravb_set_config_mode(ndev);
3092 	if (error)
3093 		return error;
3094 
3095 	if (priv->info->ccc_gac)
3096 		ravb_ptp_init(ndev, priv->pdev);
3097 
3098 	if (info->nc_queues)
3099 		napi_enable(&priv->napi[RAVB_NC]);
3100 	napi_enable(&priv->napi[RAVB_BE]);
3101 
3102 	/* Disable MagicPacket */
3103 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3104 
3105 	ravb_close(ndev);
3106 
3107 	return disable_irq_wake(priv->emac_irq);
3108 }
3109 
3110 static int ravb_suspend(struct device *dev)
3111 {
3112 	struct net_device *ndev = dev_get_drvdata(dev);
3113 	struct ravb_private *priv = netdev_priv(ndev);
3114 	int ret;
3115 
3116 	if (!netif_running(ndev))
3117 		goto reset_assert;
3118 
3119 	netif_device_detach(ndev);
3120 
3121 	if (priv->wol_enabled)
3122 		return ravb_wol_setup(ndev);
3123 
3124 	ret = ravb_close(ndev);
3125 	if (ret)
3126 		return ret;
3127 
3128 	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3129 	if (ret)
3130 		return ret;
3131 
3132 reset_assert:
3133 	return reset_control_assert(priv->rstc);
3134 }
3135 
3136 static int ravb_resume(struct device *dev)
3137 {
3138 	struct net_device *ndev = dev_get_drvdata(dev);
3139 	struct ravb_private *priv = netdev_priv(ndev);
3140 	int ret;
3141 
3142 	ret = reset_control_deassert(priv->rstc);
3143 	if (ret)
3144 		return ret;
3145 
3146 	if (!netif_running(ndev))
3147 		return 0;
3148 
3149 	/* If WoL is enabled restore the interface. */
3150 	if (priv->wol_enabled) {
3151 		ret = ravb_wol_restore(ndev);
3152 		if (ret)
3153 			return ret;
3154 	} else {
3155 		ret = pm_runtime_force_resume(dev);
3156 		if (ret)
3157 			return ret;
3158 	}
3159 
3160 	/* Reopening the interface will restore the device to the working state. */
3161 	ret = ravb_open(ndev);
3162 	if (ret < 0)
3163 		goto out_rpm_put;
3164 
3165 	ravb_set_rx_mode(ndev);
3166 	netif_device_attach(ndev);
3167 
3168 	return 0;
3169 
3170 out_rpm_put:
3171 	if (!priv->wol_enabled) {
3172 		pm_runtime_mark_last_busy(dev);
3173 		pm_runtime_put_autosuspend(dev);
3174 	}
3175 
3176 	return ret;
3177 }
3178 
3179 static int ravb_runtime_suspend(struct device *dev)
3180 {
3181 	struct net_device *ndev = dev_get_drvdata(dev);
3182 	struct ravb_private *priv = netdev_priv(ndev);
3183 
3184 	clk_disable(priv->refclk);
3185 
3186 	return 0;
3187 }
3188 
3189 static int ravb_runtime_resume(struct device *dev)
3190 {
3191 	struct net_device *ndev = dev_get_drvdata(dev);
3192 	struct ravb_private *priv = netdev_priv(ndev);
3193 
3194 	return clk_enable(priv->refclk);
3195 }
3196 
3197 static const struct dev_pm_ops ravb_dev_pm_ops = {
3198 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3199 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3200 };
3201 
3202 static struct platform_driver ravb_driver = {
3203 	.probe		= ravb_probe,
3204 	.remove_new	= ravb_remove,
3205 	.driver = {
3206 		.name	= "ravb",
3207 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3208 		.of_match_table = ravb_match_table,
3209 	},
3210 };
3211 
3212 module_platform_driver(ravb_driver);
3213 
3214 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3215 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3216 MODULE_LICENSE("GPL v2");
3217