xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision dd5b2498d845f925904cb2afabb6ba11bfc317c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2015 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (mac) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	int num_tx_desc = priv->num_tx_desc;
179 	struct ravb_tx_desc *desc;
180 	int free_num = 0;
181 	int entry;
182 	u32 size;
183 
184 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 		bool txed;
186 
187 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 					     num_tx_desc);
189 		desc = &priv->tx_ring[q][entry];
190 		txed = desc->die_dt == DT_FEMPTY;
191 		if (free_txed_only && !txed)
192 			break;
193 		/* Descriptor type must be checked before all other reads */
194 		dma_rmb();
195 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 		/* Free the original skb. */
197 		if (priv->tx_skb[q][entry / num_tx_desc]) {
198 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 					 size, DMA_TO_DEVICE);
200 			/* Last packet descriptor? */
201 			if (entry % num_tx_desc == num_tx_desc - 1) {
202 				entry /= num_tx_desc;
203 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 				priv->tx_skb[q][entry] = NULL;
205 				if (txed)
206 					stats->tx_packets++;
207 			}
208 			free_num++;
209 		}
210 		if (txed)
211 			stats->tx_bytes += size;
212 		desc->die_dt = DT_EEMPTY;
213 	}
214 	return free_num;
215 }
216 
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 	struct ravb_private *priv = netdev_priv(ndev);
221 	int num_tx_desc = priv->num_tx_desc;
222 	int ring_size;
223 	int i;
224 
225 	if (priv->rx_ring[q]) {
226 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228 
229 			if (!dma_mapping_error(ndev->dev.parent,
230 					       le32_to_cpu(desc->dptr)))
231 				dma_unmap_single(ndev->dev.parent,
232 						 le32_to_cpu(desc->dptr),
233 						 priv->rx_buf_sz,
234 						 DMA_FROM_DEVICE);
235 		}
236 		ring_size = sizeof(struct ravb_ex_rx_desc) *
237 			    (priv->num_rx_ring[q] + 1);
238 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 				  priv->rx_desc_dma[q]);
240 		priv->rx_ring[q] = NULL;
241 	}
242 
243 	if (priv->tx_ring[q]) {
244 		ravb_tx_free(ndev, q, false);
245 
246 		ring_size = sizeof(struct ravb_tx_desc) *
247 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 				  priv->tx_desc_dma[q]);
250 		priv->tx_ring[q] = NULL;
251 	}
252 
253 	/* Free RX skb ringbuffer */
254 	if (priv->rx_skb[q]) {
255 		for (i = 0; i < priv->num_rx_ring[q]; i++)
256 			dev_kfree_skb(priv->rx_skb[q][i]);
257 	}
258 	kfree(priv->rx_skb[q]);
259 	priv->rx_skb[q] = NULL;
260 
261 	/* Free aligned TX buffers */
262 	kfree(priv->tx_align[q]);
263 	priv->tx_align[q] = NULL;
264 
265 	/* Free TX skb ringbuffer.
266 	 * SKBs are freed by ravb_tx_free() call above.
267 	 */
268 	kfree(priv->tx_skb[q]);
269 	priv->tx_skb[q] = NULL;
270 }
271 
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 	struct ravb_private *priv = netdev_priv(ndev);
276 	int num_tx_desc = priv->num_tx_desc;
277 	struct ravb_ex_rx_desc *rx_desc;
278 	struct ravb_tx_desc *tx_desc;
279 	struct ravb_desc *desc;
280 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 			   num_tx_desc;
283 	dma_addr_t dma_addr;
284 	int i;
285 
286 	priv->cur_rx[q] = 0;
287 	priv->cur_tx[q] = 0;
288 	priv->dirty_rx[q] = 0;
289 	priv->dirty_tx[q] = 0;
290 
291 	memset(priv->rx_ring[q], 0, rx_ring_size);
292 	/* Build RX ring buffer */
293 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 		/* RX descriptor */
295 		rx_desc = &priv->rx_ring[q][i];
296 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
297 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 					  priv->rx_buf_sz,
299 					  DMA_FROM_DEVICE);
300 		/* We just set the data size to 0 for a failed mapping which
301 		 * should prevent DMA from happening...
302 		 */
303 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 			rx_desc->ds_cc = cpu_to_le16(0);
305 		rx_desc->dptr = cpu_to_le32(dma_addr);
306 		rx_desc->die_dt = DT_FEMPTY;
307 	}
308 	rx_desc = &priv->rx_ring[q][i];
309 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 	rx_desc->die_dt = DT_LINKFIX; /* type */
311 
312 	memset(priv->tx_ring[q], 0, tx_ring_size);
313 	/* Build TX ring buffer */
314 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 	     i++, tx_desc++) {
316 		tx_desc->die_dt = DT_EEMPTY;
317 		if (num_tx_desc > 1) {
318 			tx_desc++;
319 			tx_desc->die_dt = DT_EEMPTY;
320 		}
321 	}
322 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 	tx_desc->die_dt = DT_LINKFIX; /* type */
324 
325 	/* RX descriptor base address for best effort */
326 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329 
330 	/* TX descriptor base address for best effort */
331 	desc = &priv->desc_bat[q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335 
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 	struct ravb_private *priv = netdev_priv(ndev);
340 	int num_tx_desc = priv->num_tx_desc;
341 	struct sk_buff *skb;
342 	int ring_size;
343 	int i;
344 
345 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
346 		ETH_HLEN + VLAN_HLEN + sizeof(__sum16);
347 
348 	/* Allocate RX and TX skb rings */
349 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
350 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
351 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
352 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
353 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
354 		goto error;
355 
356 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
357 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
358 		if (!skb)
359 			goto error;
360 		ravb_set_buffer_align(skb);
361 		priv->rx_skb[q][i] = skb;
362 	}
363 
364 	if (num_tx_desc > 1) {
365 		/* Allocate rings for the aligned buffers */
366 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 					    DPTR_ALIGN - 1, GFP_KERNEL);
368 		if (!priv->tx_align[q])
369 			goto error;
370 	}
371 
372 	/* Allocate all RX descriptors. */
373 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
374 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
375 					      &priv->rx_desc_dma[q],
376 					      GFP_KERNEL);
377 	if (!priv->rx_ring[q])
378 		goto error;
379 
380 	priv->dirty_rx[q] = 0;
381 
382 	/* Allocate all TX descriptors. */
383 	ring_size = sizeof(struct ravb_tx_desc) *
384 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
385 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
386 					      &priv->tx_desc_dma[q],
387 					      GFP_KERNEL);
388 	if (!priv->tx_ring[q])
389 		goto error;
390 
391 	return 0;
392 
393 error:
394 	ravb_ring_free(ndev, q);
395 
396 	return -ENOMEM;
397 }
398 
399 /* E-MAC init function */
400 static void ravb_emac_init(struct net_device *ndev)
401 {
402 	/* Receive frame limit set register */
403 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
404 
405 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
406 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
407 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
408 		   ECMR_TE | ECMR_RE, ECMR);
409 
410 	ravb_set_rate(ndev);
411 
412 	/* Set MAC address */
413 	ravb_write(ndev,
414 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
415 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
416 	ravb_write(ndev,
417 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
418 
419 	/* E-MAC status register clear */
420 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
421 
422 	/* E-MAC interrupt enable register */
423 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
424 }
425 
426 /* Device init function for Ethernet AVB */
427 static int ravb_dmac_init(struct net_device *ndev)
428 {
429 	struct ravb_private *priv = netdev_priv(ndev);
430 	int error;
431 
432 	/* Set CONFIG mode */
433 	error = ravb_config(ndev);
434 	if (error)
435 		return error;
436 
437 	error = ravb_ring_init(ndev, RAVB_BE);
438 	if (error)
439 		return error;
440 	error = ravb_ring_init(ndev, RAVB_NC);
441 	if (error) {
442 		ravb_ring_free(ndev, RAVB_BE);
443 		return error;
444 	}
445 
446 	/* Descriptor format */
447 	ravb_ring_format(ndev, RAVB_BE);
448 	ravb_ring_format(ndev, RAVB_NC);
449 
450 #if defined(__LITTLE_ENDIAN)
451 	ravb_modify(ndev, CCC, CCC_BOC, 0);
452 #else
453 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
454 #endif
455 
456 	/* Set AVB RX */
457 	ravb_write(ndev,
458 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
459 
460 	/* Set FIFO size */
461 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
462 
463 	/* Timestamp enable */
464 	ravb_write(ndev, TCCR_TFEN, TCCR);
465 
466 	/* Interrupt init: */
467 	if (priv->chip_id == RCAR_GEN3) {
468 		/* Clear DIL.DPLx */
469 		ravb_write(ndev, 0, DIL);
470 		/* Set queue specific interrupt */
471 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
472 	}
473 	/* Frame receive */
474 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
475 	/* Disable FIFO full warning */
476 	ravb_write(ndev, 0, RIC1);
477 	/* Receive FIFO full error, descriptor empty */
478 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
479 	/* Frame transmitted, timestamp FIFO updated */
480 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
481 
482 	/* Setting the control will start the AVB-DMAC process. */
483 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
484 
485 	return 0;
486 }
487 
488 static void ravb_get_tx_tstamp(struct net_device *ndev)
489 {
490 	struct ravb_private *priv = netdev_priv(ndev);
491 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
492 	struct skb_shared_hwtstamps shhwtstamps;
493 	struct sk_buff *skb;
494 	struct timespec64 ts;
495 	u16 tag, tfa_tag;
496 	int count;
497 	u32 tfa2;
498 
499 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
500 	while (count--) {
501 		tfa2 = ravb_read(ndev, TFA2);
502 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
503 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
504 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
505 			    ravb_read(ndev, TFA1);
506 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
507 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
508 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
509 					 list) {
510 			skb = ts_skb->skb;
511 			tag = ts_skb->tag;
512 			list_del(&ts_skb->list);
513 			kfree(ts_skb);
514 			if (tag == tfa_tag) {
515 				skb_tstamp_tx(skb, &shhwtstamps);
516 				break;
517 			}
518 		}
519 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
520 	}
521 }
522 
523 static void ravb_rx_csum(struct sk_buff *skb)
524 {
525 	u8 *hw_csum;
526 
527 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
528 	 * appended to packet data
529 	 */
530 	if (unlikely(skb->len < sizeof(__sum16)))
531 		return;
532 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
533 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
534 	skb->ip_summed = CHECKSUM_COMPLETE;
535 	skb_trim(skb, skb->len - sizeof(__sum16));
536 }
537 
538 /* Packet receive function for Ethernet AVB */
539 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
540 {
541 	struct ravb_private *priv = netdev_priv(ndev);
542 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
543 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
544 			priv->cur_rx[q];
545 	struct net_device_stats *stats = &priv->stats[q];
546 	struct ravb_ex_rx_desc *desc;
547 	struct sk_buff *skb;
548 	dma_addr_t dma_addr;
549 	struct timespec64 ts;
550 	u8  desc_status;
551 	u16 pkt_len;
552 	int limit;
553 
554 	boguscnt = min(boguscnt, *quota);
555 	limit = boguscnt;
556 	desc = &priv->rx_ring[q][entry];
557 	while (desc->die_dt != DT_FEMPTY) {
558 		/* Descriptor type must be checked before all other reads */
559 		dma_rmb();
560 		desc_status = desc->msc;
561 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
562 
563 		if (--boguscnt < 0)
564 			break;
565 
566 		/* We use 0-byte descriptors to mark the DMA mapping errors */
567 		if (!pkt_len)
568 			continue;
569 
570 		if (desc_status & MSC_MC)
571 			stats->multicast++;
572 
573 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
574 				   MSC_CEEF)) {
575 			stats->rx_errors++;
576 			if (desc_status & MSC_CRC)
577 				stats->rx_crc_errors++;
578 			if (desc_status & MSC_RFE)
579 				stats->rx_frame_errors++;
580 			if (desc_status & (MSC_RTLF | MSC_RTSF))
581 				stats->rx_length_errors++;
582 			if (desc_status & MSC_CEEF)
583 				stats->rx_missed_errors++;
584 		} else {
585 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
586 
587 			skb = priv->rx_skb[q][entry];
588 			priv->rx_skb[q][entry] = NULL;
589 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
590 					 priv->rx_buf_sz,
591 					 DMA_FROM_DEVICE);
592 			get_ts &= (q == RAVB_NC) ?
593 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
594 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
595 			if (get_ts) {
596 				struct skb_shared_hwtstamps *shhwtstamps;
597 
598 				shhwtstamps = skb_hwtstamps(skb);
599 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
600 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
601 					     32) | le32_to_cpu(desc->ts_sl);
602 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
603 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
604 			}
605 
606 			skb_put(skb, pkt_len);
607 			skb->protocol = eth_type_trans(skb, ndev);
608 			if (ndev->features & NETIF_F_RXCSUM)
609 				ravb_rx_csum(skb);
610 			napi_gro_receive(&priv->napi[q], skb);
611 			stats->rx_packets++;
612 			stats->rx_bytes += pkt_len;
613 		}
614 
615 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
616 		desc = &priv->rx_ring[q][entry];
617 	}
618 
619 	/* Refill the RX ring buffers. */
620 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
621 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
622 		desc = &priv->rx_ring[q][entry];
623 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
624 
625 		if (!priv->rx_skb[q][entry]) {
626 			skb = netdev_alloc_skb(ndev,
627 					       priv->rx_buf_sz +
628 					       RAVB_ALIGN - 1);
629 			if (!skb)
630 				break;	/* Better luck next round. */
631 			ravb_set_buffer_align(skb);
632 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
633 						  le16_to_cpu(desc->ds_cc),
634 						  DMA_FROM_DEVICE);
635 			skb_checksum_none_assert(skb);
636 			/* We just set the data size to 0 for a failed mapping
637 			 * which should prevent DMA  from happening...
638 			 */
639 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
640 				desc->ds_cc = cpu_to_le16(0);
641 			desc->dptr = cpu_to_le32(dma_addr);
642 			priv->rx_skb[q][entry] = skb;
643 		}
644 		/* Descriptor type must be set after all the above writes */
645 		dma_wmb();
646 		desc->die_dt = DT_FEMPTY;
647 	}
648 
649 	*quota -= limit - (++boguscnt);
650 
651 	return boguscnt <= 0;
652 }
653 
654 static void ravb_rcv_snd_disable(struct net_device *ndev)
655 {
656 	/* Disable TX and RX */
657 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
658 }
659 
660 static void ravb_rcv_snd_enable(struct net_device *ndev)
661 {
662 	/* Enable TX and RX */
663 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
664 }
665 
666 /* function for waiting dma process finished */
667 static int ravb_stop_dma(struct net_device *ndev)
668 {
669 	int error;
670 
671 	/* Wait for stopping the hardware TX process */
672 	error = ravb_wait(ndev, TCCR,
673 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
674 	if (error)
675 		return error;
676 
677 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
678 			  0);
679 	if (error)
680 		return error;
681 
682 	/* Stop the E-MAC's RX/TX processes. */
683 	ravb_rcv_snd_disable(ndev);
684 
685 	/* Wait for stopping the RX DMA process */
686 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
687 	if (error)
688 		return error;
689 
690 	/* Stop AVB-DMAC process */
691 	return ravb_config(ndev);
692 }
693 
694 /* E-MAC interrupt handler */
695 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
696 {
697 	struct ravb_private *priv = netdev_priv(ndev);
698 	u32 ecsr, psr;
699 
700 	ecsr = ravb_read(ndev, ECSR);
701 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
702 
703 	if (ecsr & ECSR_MPD)
704 		pm_wakeup_event(&priv->pdev->dev, 0);
705 	if (ecsr & ECSR_ICD)
706 		ndev->stats.tx_carrier_errors++;
707 	if (ecsr & ECSR_LCHNG) {
708 		/* Link changed */
709 		if (priv->no_avb_link)
710 			return;
711 		psr = ravb_read(ndev, PSR);
712 		if (priv->avb_link_active_low)
713 			psr ^= PSR_LMON;
714 		if (!(psr & PSR_LMON)) {
715 			/* DIsable RX and TX */
716 			ravb_rcv_snd_disable(ndev);
717 		} else {
718 			/* Enable RX and TX */
719 			ravb_rcv_snd_enable(ndev);
720 		}
721 	}
722 }
723 
724 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
725 {
726 	struct net_device *ndev = dev_id;
727 	struct ravb_private *priv = netdev_priv(ndev);
728 
729 	spin_lock(&priv->lock);
730 	ravb_emac_interrupt_unlocked(ndev);
731 	mmiowb();
732 	spin_unlock(&priv->lock);
733 	return IRQ_HANDLED;
734 }
735 
736 /* Error interrupt handler */
737 static void ravb_error_interrupt(struct net_device *ndev)
738 {
739 	struct ravb_private *priv = netdev_priv(ndev);
740 	u32 eis, ris2;
741 
742 	eis = ravb_read(ndev, EIS);
743 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
744 	if (eis & EIS_QFS) {
745 		ris2 = ravb_read(ndev, RIS2);
746 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
747 			   RIS2);
748 
749 		/* Receive Descriptor Empty int */
750 		if (ris2 & RIS2_QFF0)
751 			priv->stats[RAVB_BE].rx_over_errors++;
752 
753 		    /* Receive Descriptor Empty int */
754 		if (ris2 & RIS2_QFF1)
755 			priv->stats[RAVB_NC].rx_over_errors++;
756 
757 		/* Receive FIFO Overflow int */
758 		if (ris2 & RIS2_RFFF)
759 			priv->rx_fifo_errors++;
760 	}
761 }
762 
763 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
764 {
765 	struct ravb_private *priv = netdev_priv(ndev);
766 	u32 ris0 = ravb_read(ndev, RIS0);
767 	u32 ric0 = ravb_read(ndev, RIC0);
768 	u32 tis  = ravb_read(ndev, TIS);
769 	u32 tic  = ravb_read(ndev, TIC);
770 
771 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
772 		if (napi_schedule_prep(&priv->napi[q])) {
773 			/* Mask RX and TX interrupts */
774 			if (priv->chip_id == RCAR_GEN2) {
775 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
776 				ravb_write(ndev, tic & ~BIT(q), TIC);
777 			} else {
778 				ravb_write(ndev, BIT(q), RID0);
779 				ravb_write(ndev, BIT(q), TID);
780 			}
781 			__napi_schedule(&priv->napi[q]);
782 		} else {
783 			netdev_warn(ndev,
784 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
785 				    ris0, ric0);
786 			netdev_warn(ndev,
787 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
788 				    tis, tic);
789 		}
790 		return true;
791 	}
792 	return false;
793 }
794 
795 static bool ravb_timestamp_interrupt(struct net_device *ndev)
796 {
797 	u32 tis = ravb_read(ndev, TIS);
798 
799 	if (tis & TIS_TFUF) {
800 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
801 		ravb_get_tx_tstamp(ndev);
802 		return true;
803 	}
804 	return false;
805 }
806 
807 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
808 {
809 	struct net_device *ndev = dev_id;
810 	struct ravb_private *priv = netdev_priv(ndev);
811 	irqreturn_t result = IRQ_NONE;
812 	u32 iss;
813 
814 	spin_lock(&priv->lock);
815 	/* Get interrupt status */
816 	iss = ravb_read(ndev, ISS);
817 
818 	/* Received and transmitted interrupts */
819 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
820 		int q;
821 
822 		/* Timestamp updated */
823 		if (ravb_timestamp_interrupt(ndev))
824 			result = IRQ_HANDLED;
825 
826 		/* Network control and best effort queue RX/TX */
827 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
828 			if (ravb_queue_interrupt(ndev, q))
829 				result = IRQ_HANDLED;
830 		}
831 	}
832 
833 	/* E-MAC status summary */
834 	if (iss & ISS_MS) {
835 		ravb_emac_interrupt_unlocked(ndev);
836 		result = IRQ_HANDLED;
837 	}
838 
839 	/* Error status summary */
840 	if (iss & ISS_ES) {
841 		ravb_error_interrupt(ndev);
842 		result = IRQ_HANDLED;
843 	}
844 
845 	/* gPTP interrupt status summary */
846 	if (iss & ISS_CGIS) {
847 		ravb_ptp_interrupt(ndev);
848 		result = IRQ_HANDLED;
849 	}
850 
851 	mmiowb();
852 	spin_unlock(&priv->lock);
853 	return result;
854 }
855 
856 /* Timestamp/Error/gPTP interrupt handler */
857 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
858 {
859 	struct net_device *ndev = dev_id;
860 	struct ravb_private *priv = netdev_priv(ndev);
861 	irqreturn_t result = IRQ_NONE;
862 	u32 iss;
863 
864 	spin_lock(&priv->lock);
865 	/* Get interrupt status */
866 	iss = ravb_read(ndev, ISS);
867 
868 	/* Timestamp updated */
869 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
870 		result = IRQ_HANDLED;
871 
872 	/* Error status summary */
873 	if (iss & ISS_ES) {
874 		ravb_error_interrupt(ndev);
875 		result = IRQ_HANDLED;
876 	}
877 
878 	/* gPTP interrupt status summary */
879 	if (iss & ISS_CGIS) {
880 		ravb_ptp_interrupt(ndev);
881 		result = IRQ_HANDLED;
882 	}
883 
884 	mmiowb();
885 	spin_unlock(&priv->lock);
886 	return result;
887 }
888 
889 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
890 {
891 	struct net_device *ndev = dev_id;
892 	struct ravb_private *priv = netdev_priv(ndev);
893 	irqreturn_t result = IRQ_NONE;
894 
895 	spin_lock(&priv->lock);
896 
897 	/* Network control/Best effort queue RX/TX */
898 	if (ravb_queue_interrupt(ndev, q))
899 		result = IRQ_HANDLED;
900 
901 	mmiowb();
902 	spin_unlock(&priv->lock);
903 	return result;
904 }
905 
906 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
907 {
908 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
909 }
910 
911 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
912 {
913 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
914 }
915 
916 static int ravb_poll(struct napi_struct *napi, int budget)
917 {
918 	struct net_device *ndev = napi->dev;
919 	struct ravb_private *priv = netdev_priv(ndev);
920 	unsigned long flags;
921 	int q = napi - priv->napi;
922 	int mask = BIT(q);
923 	int quota = budget;
924 	u32 ris0, tis;
925 
926 	for (;;) {
927 		tis = ravb_read(ndev, TIS);
928 		ris0 = ravb_read(ndev, RIS0);
929 		if (!((ris0 & mask) || (tis & mask)))
930 			break;
931 
932 		/* Processing RX Descriptor Ring */
933 		if (ris0 & mask) {
934 			/* Clear RX interrupt */
935 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
936 			if (ravb_rx(ndev, &quota, q))
937 				goto out;
938 		}
939 		/* Processing TX Descriptor Ring */
940 		if (tis & mask) {
941 			spin_lock_irqsave(&priv->lock, flags);
942 			/* Clear TX interrupt */
943 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
944 			ravb_tx_free(ndev, q, true);
945 			netif_wake_subqueue(ndev, q);
946 			mmiowb();
947 			spin_unlock_irqrestore(&priv->lock, flags);
948 		}
949 	}
950 
951 	napi_complete(napi);
952 
953 	/* Re-enable RX/TX interrupts */
954 	spin_lock_irqsave(&priv->lock, flags);
955 	if (priv->chip_id == RCAR_GEN2) {
956 		ravb_modify(ndev, RIC0, mask, mask);
957 		ravb_modify(ndev, TIC,  mask, mask);
958 	} else {
959 		ravb_write(ndev, mask, RIE0);
960 		ravb_write(ndev, mask, TIE);
961 	}
962 	mmiowb();
963 	spin_unlock_irqrestore(&priv->lock, flags);
964 
965 	/* Receive error message handling */
966 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
967 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
968 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
969 		ndev->stats.rx_over_errors = priv->rx_over_errors;
970 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
971 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
972 out:
973 	return budget - quota;
974 }
975 
976 /* PHY state control function */
977 static void ravb_adjust_link(struct net_device *ndev)
978 {
979 	struct ravb_private *priv = netdev_priv(ndev);
980 	struct phy_device *phydev = ndev->phydev;
981 	bool new_state = false;
982 	unsigned long flags;
983 
984 	spin_lock_irqsave(&priv->lock, flags);
985 
986 	/* Disable TX and RX right over here, if E-MAC change is ignored */
987 	if (priv->no_avb_link)
988 		ravb_rcv_snd_disable(ndev);
989 
990 	if (phydev->link) {
991 		if (phydev->speed != priv->speed) {
992 			new_state = true;
993 			priv->speed = phydev->speed;
994 			ravb_set_rate(ndev);
995 		}
996 		if (!priv->link) {
997 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
998 			new_state = true;
999 			priv->link = phydev->link;
1000 		}
1001 	} else if (priv->link) {
1002 		new_state = true;
1003 		priv->link = 0;
1004 		priv->speed = 0;
1005 	}
1006 
1007 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1008 	if (priv->no_avb_link && phydev->link)
1009 		ravb_rcv_snd_enable(ndev);
1010 
1011 	mmiowb();
1012 	spin_unlock_irqrestore(&priv->lock, flags);
1013 
1014 	if (new_state && netif_msg_link(priv))
1015 		phy_print_status(phydev);
1016 }
1017 
1018 static const struct soc_device_attribute r8a7795es10[] = {
1019 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1020 	{ /* sentinel */ }
1021 };
1022 
1023 /* PHY init function */
1024 static int ravb_phy_init(struct net_device *ndev)
1025 {
1026 	struct device_node *np = ndev->dev.parent->of_node;
1027 	struct ravb_private *priv = netdev_priv(ndev);
1028 	struct phy_device *phydev;
1029 	struct device_node *pn;
1030 	int err;
1031 
1032 	priv->link = 0;
1033 	priv->speed = 0;
1034 
1035 	/* Try connecting to PHY */
1036 	pn = of_parse_phandle(np, "phy-handle", 0);
1037 	if (!pn) {
1038 		/* In the case of a fixed PHY, the DT node associated
1039 		 * to the PHY is the Ethernet MAC DT node.
1040 		 */
1041 		if (of_phy_is_fixed_link(np)) {
1042 			err = of_phy_register_fixed_link(np);
1043 			if (err)
1044 				return err;
1045 		}
1046 		pn = of_node_get(np);
1047 	}
1048 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1049 				priv->phy_interface);
1050 	of_node_put(pn);
1051 	if (!phydev) {
1052 		netdev_err(ndev, "failed to connect PHY\n");
1053 		err = -ENOENT;
1054 		goto err_deregister_fixed_link;
1055 	}
1056 
1057 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1058 	 * at this time.
1059 	 */
1060 	if (soc_device_match(r8a7795es10)) {
1061 		err = phy_set_max_speed(phydev, SPEED_100);
1062 		if (err) {
1063 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1064 			goto err_phy_disconnect;
1065 		}
1066 
1067 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1068 	}
1069 
1070 	/* 10BASE, Pause and Asym Pause is not supported */
1071 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1072 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1073 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1074 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1075 
1076 	/* Half Duplex is not supported */
1077 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1078 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1079 
1080 	phy_attached_info(phydev);
1081 
1082 	return 0;
1083 
1084 err_phy_disconnect:
1085 	phy_disconnect(phydev);
1086 err_deregister_fixed_link:
1087 	if (of_phy_is_fixed_link(np))
1088 		of_phy_deregister_fixed_link(np);
1089 
1090 	return err;
1091 }
1092 
1093 /* PHY control start function */
1094 static int ravb_phy_start(struct net_device *ndev)
1095 {
1096 	int error;
1097 
1098 	error = ravb_phy_init(ndev);
1099 	if (error)
1100 		return error;
1101 
1102 	phy_start(ndev->phydev);
1103 
1104 	return 0;
1105 }
1106 
1107 static u32 ravb_get_msglevel(struct net_device *ndev)
1108 {
1109 	struct ravb_private *priv = netdev_priv(ndev);
1110 
1111 	return priv->msg_enable;
1112 }
1113 
1114 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1115 {
1116 	struct ravb_private *priv = netdev_priv(ndev);
1117 
1118 	priv->msg_enable = value;
1119 }
1120 
1121 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1122 	"rx_queue_0_current",
1123 	"tx_queue_0_current",
1124 	"rx_queue_0_dirty",
1125 	"tx_queue_0_dirty",
1126 	"rx_queue_0_packets",
1127 	"tx_queue_0_packets",
1128 	"rx_queue_0_bytes",
1129 	"tx_queue_0_bytes",
1130 	"rx_queue_0_mcast_packets",
1131 	"rx_queue_0_errors",
1132 	"rx_queue_0_crc_errors",
1133 	"rx_queue_0_frame_errors",
1134 	"rx_queue_0_length_errors",
1135 	"rx_queue_0_missed_errors",
1136 	"rx_queue_0_over_errors",
1137 
1138 	"rx_queue_1_current",
1139 	"tx_queue_1_current",
1140 	"rx_queue_1_dirty",
1141 	"tx_queue_1_dirty",
1142 	"rx_queue_1_packets",
1143 	"tx_queue_1_packets",
1144 	"rx_queue_1_bytes",
1145 	"tx_queue_1_bytes",
1146 	"rx_queue_1_mcast_packets",
1147 	"rx_queue_1_errors",
1148 	"rx_queue_1_crc_errors",
1149 	"rx_queue_1_frame_errors",
1150 	"rx_queue_1_length_errors",
1151 	"rx_queue_1_missed_errors",
1152 	"rx_queue_1_over_errors",
1153 };
1154 
1155 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1156 
1157 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1158 {
1159 	switch (sset) {
1160 	case ETH_SS_STATS:
1161 		return RAVB_STATS_LEN;
1162 	default:
1163 		return -EOPNOTSUPP;
1164 	}
1165 }
1166 
1167 static void ravb_get_ethtool_stats(struct net_device *ndev,
1168 				   struct ethtool_stats *estats, u64 *data)
1169 {
1170 	struct ravb_private *priv = netdev_priv(ndev);
1171 	int i = 0;
1172 	int q;
1173 
1174 	/* Device-specific stats */
1175 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1176 		struct net_device_stats *stats = &priv->stats[q];
1177 
1178 		data[i++] = priv->cur_rx[q];
1179 		data[i++] = priv->cur_tx[q];
1180 		data[i++] = priv->dirty_rx[q];
1181 		data[i++] = priv->dirty_tx[q];
1182 		data[i++] = stats->rx_packets;
1183 		data[i++] = stats->tx_packets;
1184 		data[i++] = stats->rx_bytes;
1185 		data[i++] = stats->tx_bytes;
1186 		data[i++] = stats->multicast;
1187 		data[i++] = stats->rx_errors;
1188 		data[i++] = stats->rx_crc_errors;
1189 		data[i++] = stats->rx_frame_errors;
1190 		data[i++] = stats->rx_length_errors;
1191 		data[i++] = stats->rx_missed_errors;
1192 		data[i++] = stats->rx_over_errors;
1193 	}
1194 }
1195 
1196 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1197 {
1198 	switch (stringset) {
1199 	case ETH_SS_STATS:
1200 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1201 		break;
1202 	}
1203 }
1204 
1205 static void ravb_get_ringparam(struct net_device *ndev,
1206 			       struct ethtool_ringparam *ring)
1207 {
1208 	struct ravb_private *priv = netdev_priv(ndev);
1209 
1210 	ring->rx_max_pending = BE_RX_RING_MAX;
1211 	ring->tx_max_pending = BE_TX_RING_MAX;
1212 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1213 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1214 }
1215 
1216 static int ravb_set_ringparam(struct net_device *ndev,
1217 			      struct ethtool_ringparam *ring)
1218 {
1219 	struct ravb_private *priv = netdev_priv(ndev);
1220 	int error;
1221 
1222 	if (ring->tx_pending > BE_TX_RING_MAX ||
1223 	    ring->rx_pending > BE_RX_RING_MAX ||
1224 	    ring->tx_pending < BE_TX_RING_MIN ||
1225 	    ring->rx_pending < BE_RX_RING_MIN)
1226 		return -EINVAL;
1227 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1228 		return -EINVAL;
1229 
1230 	if (netif_running(ndev)) {
1231 		netif_device_detach(ndev);
1232 		/* Stop PTP Clock driver */
1233 		if (priv->chip_id == RCAR_GEN2)
1234 			ravb_ptp_stop(ndev);
1235 		/* Wait for DMA stopping */
1236 		error = ravb_stop_dma(ndev);
1237 		if (error) {
1238 			netdev_err(ndev,
1239 				   "cannot set ringparam! Any AVB processes are still running?\n");
1240 			return error;
1241 		}
1242 		synchronize_irq(ndev->irq);
1243 
1244 		/* Free all the skb's in the RX queue and the DMA buffers. */
1245 		ravb_ring_free(ndev, RAVB_BE);
1246 		ravb_ring_free(ndev, RAVB_NC);
1247 	}
1248 
1249 	/* Set new parameters */
1250 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1251 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1252 
1253 	if (netif_running(ndev)) {
1254 		error = ravb_dmac_init(ndev);
1255 		if (error) {
1256 			netdev_err(ndev,
1257 				   "%s: ravb_dmac_init() failed, error %d\n",
1258 				   __func__, error);
1259 			return error;
1260 		}
1261 
1262 		ravb_emac_init(ndev);
1263 
1264 		/* Initialise PTP Clock driver */
1265 		if (priv->chip_id == RCAR_GEN2)
1266 			ravb_ptp_init(ndev, priv->pdev);
1267 
1268 		netif_device_attach(ndev);
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static int ravb_get_ts_info(struct net_device *ndev,
1275 			    struct ethtool_ts_info *info)
1276 {
1277 	struct ravb_private *priv = netdev_priv(ndev);
1278 
1279 	info->so_timestamping =
1280 		SOF_TIMESTAMPING_TX_SOFTWARE |
1281 		SOF_TIMESTAMPING_RX_SOFTWARE |
1282 		SOF_TIMESTAMPING_SOFTWARE |
1283 		SOF_TIMESTAMPING_TX_HARDWARE |
1284 		SOF_TIMESTAMPING_RX_HARDWARE |
1285 		SOF_TIMESTAMPING_RAW_HARDWARE;
1286 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1287 	info->rx_filters =
1288 		(1 << HWTSTAMP_FILTER_NONE) |
1289 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1290 		(1 << HWTSTAMP_FILTER_ALL);
1291 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1292 
1293 	return 0;
1294 }
1295 
1296 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1297 {
1298 	struct ravb_private *priv = netdev_priv(ndev);
1299 
1300 	wol->supported = WAKE_MAGIC;
1301 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1302 }
1303 
1304 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1305 {
1306 	struct ravb_private *priv = netdev_priv(ndev);
1307 
1308 	if (wol->wolopts & ~WAKE_MAGIC)
1309 		return -EOPNOTSUPP;
1310 
1311 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1312 
1313 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1314 
1315 	return 0;
1316 }
1317 
1318 static const struct ethtool_ops ravb_ethtool_ops = {
1319 	.nway_reset		= phy_ethtool_nway_reset,
1320 	.get_msglevel		= ravb_get_msglevel,
1321 	.set_msglevel		= ravb_set_msglevel,
1322 	.get_link		= ethtool_op_get_link,
1323 	.get_strings		= ravb_get_strings,
1324 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1325 	.get_sset_count		= ravb_get_sset_count,
1326 	.get_ringparam		= ravb_get_ringparam,
1327 	.set_ringparam		= ravb_set_ringparam,
1328 	.get_ts_info		= ravb_get_ts_info,
1329 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1330 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1331 	.get_wol		= ravb_get_wol,
1332 	.set_wol		= ravb_set_wol,
1333 };
1334 
1335 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1336 				struct net_device *ndev, struct device *dev,
1337 				const char *ch)
1338 {
1339 	char *name;
1340 	int error;
1341 
1342 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1343 	if (!name)
1344 		return -ENOMEM;
1345 	error = request_irq(irq, handler, 0, name, ndev);
1346 	if (error)
1347 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1348 
1349 	return error;
1350 }
1351 
1352 /* Network device open function for Ethernet AVB */
1353 static int ravb_open(struct net_device *ndev)
1354 {
1355 	struct ravb_private *priv = netdev_priv(ndev);
1356 	struct platform_device *pdev = priv->pdev;
1357 	struct device *dev = &pdev->dev;
1358 	int error;
1359 
1360 	napi_enable(&priv->napi[RAVB_BE]);
1361 	napi_enable(&priv->napi[RAVB_NC]);
1362 
1363 	if (priv->chip_id == RCAR_GEN2) {
1364 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1365 				    ndev->name, ndev);
1366 		if (error) {
1367 			netdev_err(ndev, "cannot request IRQ\n");
1368 			goto out_napi_off;
1369 		}
1370 	} else {
1371 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1372 				      dev, "ch22:multi");
1373 		if (error)
1374 			goto out_napi_off;
1375 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1376 				      dev, "ch24:emac");
1377 		if (error)
1378 			goto out_free_irq;
1379 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1380 				      ndev, dev, "ch0:rx_be");
1381 		if (error)
1382 			goto out_free_irq_emac;
1383 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1384 				      ndev, dev, "ch18:tx_be");
1385 		if (error)
1386 			goto out_free_irq_be_rx;
1387 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1388 				      ndev, dev, "ch1:rx_nc");
1389 		if (error)
1390 			goto out_free_irq_be_tx;
1391 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1392 				      ndev, dev, "ch19:tx_nc");
1393 		if (error)
1394 			goto out_free_irq_nc_rx;
1395 	}
1396 
1397 	/* Device init */
1398 	error = ravb_dmac_init(ndev);
1399 	if (error)
1400 		goto out_free_irq_nc_tx;
1401 	ravb_emac_init(ndev);
1402 
1403 	/* Initialise PTP Clock driver */
1404 	if (priv->chip_id == RCAR_GEN2)
1405 		ravb_ptp_init(ndev, priv->pdev);
1406 
1407 	netif_tx_start_all_queues(ndev);
1408 
1409 	/* PHY control start */
1410 	error = ravb_phy_start(ndev);
1411 	if (error)
1412 		goto out_ptp_stop;
1413 
1414 	return 0;
1415 
1416 out_ptp_stop:
1417 	/* Stop PTP Clock driver */
1418 	if (priv->chip_id == RCAR_GEN2)
1419 		ravb_ptp_stop(ndev);
1420 out_free_irq_nc_tx:
1421 	if (priv->chip_id == RCAR_GEN2)
1422 		goto out_free_irq;
1423 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1424 out_free_irq_nc_rx:
1425 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1426 out_free_irq_be_tx:
1427 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1428 out_free_irq_be_rx:
1429 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1430 out_free_irq_emac:
1431 	free_irq(priv->emac_irq, ndev);
1432 out_free_irq:
1433 	free_irq(ndev->irq, ndev);
1434 out_napi_off:
1435 	napi_disable(&priv->napi[RAVB_NC]);
1436 	napi_disable(&priv->napi[RAVB_BE]);
1437 	return error;
1438 }
1439 
1440 /* Timeout function for Ethernet AVB */
1441 static void ravb_tx_timeout(struct net_device *ndev)
1442 {
1443 	struct ravb_private *priv = netdev_priv(ndev);
1444 
1445 	netif_err(priv, tx_err, ndev,
1446 		  "transmit timed out, status %08x, resetting...\n",
1447 		  ravb_read(ndev, ISS));
1448 
1449 	/* tx_errors count up */
1450 	ndev->stats.tx_errors++;
1451 
1452 	schedule_work(&priv->work);
1453 }
1454 
1455 static void ravb_tx_timeout_work(struct work_struct *work)
1456 {
1457 	struct ravb_private *priv = container_of(work, struct ravb_private,
1458 						 work);
1459 	struct net_device *ndev = priv->ndev;
1460 
1461 	netif_tx_stop_all_queues(ndev);
1462 
1463 	/* Stop PTP Clock driver */
1464 	if (priv->chip_id == RCAR_GEN2)
1465 		ravb_ptp_stop(ndev);
1466 
1467 	/* Wait for DMA stopping */
1468 	ravb_stop_dma(ndev);
1469 
1470 	ravb_ring_free(ndev, RAVB_BE);
1471 	ravb_ring_free(ndev, RAVB_NC);
1472 
1473 	/* Device init */
1474 	ravb_dmac_init(ndev);
1475 	ravb_emac_init(ndev);
1476 
1477 	/* Initialise PTP Clock driver */
1478 	if (priv->chip_id == RCAR_GEN2)
1479 		ravb_ptp_init(ndev, priv->pdev);
1480 
1481 	netif_tx_start_all_queues(ndev);
1482 }
1483 
1484 /* Packet transmit function for Ethernet AVB */
1485 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1486 {
1487 	struct ravb_private *priv = netdev_priv(ndev);
1488 	int num_tx_desc = priv->num_tx_desc;
1489 	u16 q = skb_get_queue_mapping(skb);
1490 	struct ravb_tstamp_skb *ts_skb;
1491 	struct ravb_tx_desc *desc;
1492 	unsigned long flags;
1493 	u32 dma_addr;
1494 	void *buffer;
1495 	u32 entry;
1496 	u32 len;
1497 
1498 	spin_lock_irqsave(&priv->lock, flags);
1499 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1500 	    num_tx_desc) {
1501 		netif_err(priv, tx_queued, ndev,
1502 			  "still transmitting with the full ring!\n");
1503 		netif_stop_subqueue(ndev, q);
1504 		spin_unlock_irqrestore(&priv->lock, flags);
1505 		return NETDEV_TX_BUSY;
1506 	}
1507 
1508 	if (skb_put_padto(skb, ETH_ZLEN))
1509 		goto exit;
1510 
1511 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1512 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1513 
1514 	if (num_tx_desc > 1) {
1515 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1516 			 entry / num_tx_desc * DPTR_ALIGN;
1517 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1518 
1519 		/* Zero length DMA descriptors are problematic as they seem
1520 		 * to terminate DMA transfers. Avoid them by simply using a
1521 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1522 		 * DPTR_ALIGN.
1523 		 *
1524 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1525 		 * bytes of data by the call to skb_put_padto() above this
1526 		 * is safe with respect to both the length of the first DMA
1527 		 * descriptor (len) overflowing the available data and the
1528 		 * length of the second DMA descriptor (skb->len - len)
1529 		 * being negative.
1530 		 */
1531 		if (len == 0)
1532 			len = DPTR_ALIGN;
1533 
1534 		memcpy(buffer, skb->data, len);
1535 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1536 					  DMA_TO_DEVICE);
1537 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1538 			goto drop;
1539 
1540 		desc = &priv->tx_ring[q][entry];
1541 		desc->ds_tagl = cpu_to_le16(len);
1542 		desc->dptr = cpu_to_le32(dma_addr);
1543 
1544 		buffer = skb->data + len;
1545 		len = skb->len - len;
1546 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1547 					  DMA_TO_DEVICE);
1548 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1549 			goto unmap;
1550 
1551 		desc++;
1552 	} else {
1553 		desc = &priv->tx_ring[q][entry];
1554 		len = skb->len;
1555 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1556 					  DMA_TO_DEVICE);
1557 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1558 			goto drop;
1559 	}
1560 	desc->ds_tagl = cpu_to_le16(len);
1561 	desc->dptr = cpu_to_le32(dma_addr);
1562 
1563 	/* TX timestamp required */
1564 	if (q == RAVB_NC) {
1565 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1566 		if (!ts_skb) {
1567 			if (num_tx_desc > 1) {
1568 				desc--;
1569 				dma_unmap_single(ndev->dev.parent, dma_addr,
1570 						 len, DMA_TO_DEVICE);
1571 			}
1572 			goto unmap;
1573 		}
1574 		ts_skb->skb = skb;
1575 		ts_skb->tag = priv->ts_skb_tag++;
1576 		priv->ts_skb_tag &= 0x3ff;
1577 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1578 
1579 		/* TAG and timestamp required flag */
1580 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1581 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1582 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1583 	}
1584 
1585 	skb_tx_timestamp(skb);
1586 	/* Descriptor type must be set after all the above writes */
1587 	dma_wmb();
1588 	if (num_tx_desc > 1) {
1589 		desc->die_dt = DT_FEND;
1590 		desc--;
1591 		desc->die_dt = DT_FSTART;
1592 	} else {
1593 		desc->die_dt = DT_FSINGLE;
1594 	}
1595 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1596 
1597 	priv->cur_tx[q] += num_tx_desc;
1598 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1599 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1600 	    !ravb_tx_free(ndev, q, true))
1601 		netif_stop_subqueue(ndev, q);
1602 
1603 exit:
1604 	mmiowb();
1605 	spin_unlock_irqrestore(&priv->lock, flags);
1606 	return NETDEV_TX_OK;
1607 
1608 unmap:
1609 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1610 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1611 drop:
1612 	dev_kfree_skb_any(skb);
1613 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1614 	goto exit;
1615 }
1616 
1617 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1618 			     struct net_device *sb_dev)
1619 {
1620 	/* If skb needs TX timestamp, it is handled in network control queue */
1621 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1622 							       RAVB_BE;
1623 
1624 }
1625 
1626 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1627 {
1628 	struct ravb_private *priv = netdev_priv(ndev);
1629 	struct net_device_stats *nstats, *stats0, *stats1;
1630 
1631 	nstats = &ndev->stats;
1632 	stats0 = &priv->stats[RAVB_BE];
1633 	stats1 = &priv->stats[RAVB_NC];
1634 
1635 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1636 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1637 	nstats->collisions += ravb_read(ndev, CDCR);
1638 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1639 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1640 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1641 
1642 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1643 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1644 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1645 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1646 
1647 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1648 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1649 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1650 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1651 	nstats->multicast = stats0->multicast + stats1->multicast;
1652 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1653 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1654 	nstats->rx_frame_errors =
1655 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1656 	nstats->rx_length_errors =
1657 		stats0->rx_length_errors + stats1->rx_length_errors;
1658 	nstats->rx_missed_errors =
1659 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1660 	nstats->rx_over_errors =
1661 		stats0->rx_over_errors + stats1->rx_over_errors;
1662 
1663 	return nstats;
1664 }
1665 
1666 /* Update promiscuous bit */
1667 static void ravb_set_rx_mode(struct net_device *ndev)
1668 {
1669 	struct ravb_private *priv = netdev_priv(ndev);
1670 	unsigned long flags;
1671 
1672 	spin_lock_irqsave(&priv->lock, flags);
1673 	ravb_modify(ndev, ECMR, ECMR_PRM,
1674 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1675 	mmiowb();
1676 	spin_unlock_irqrestore(&priv->lock, flags);
1677 }
1678 
1679 /* Device close function for Ethernet AVB */
1680 static int ravb_close(struct net_device *ndev)
1681 {
1682 	struct device_node *np = ndev->dev.parent->of_node;
1683 	struct ravb_private *priv = netdev_priv(ndev);
1684 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1685 
1686 	netif_tx_stop_all_queues(ndev);
1687 
1688 	/* Disable interrupts by clearing the interrupt masks. */
1689 	ravb_write(ndev, 0, RIC0);
1690 	ravb_write(ndev, 0, RIC2);
1691 	ravb_write(ndev, 0, TIC);
1692 
1693 	/* Stop PTP Clock driver */
1694 	if (priv->chip_id == RCAR_GEN2)
1695 		ravb_ptp_stop(ndev);
1696 
1697 	/* Set the config mode to stop the AVB-DMAC's processes */
1698 	if (ravb_stop_dma(ndev) < 0)
1699 		netdev_err(ndev,
1700 			   "device will be stopped after h/w processes are done.\n");
1701 
1702 	/* Clear the timestamp list */
1703 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1704 		list_del(&ts_skb->list);
1705 		kfree(ts_skb);
1706 	}
1707 
1708 	/* PHY disconnect */
1709 	if (ndev->phydev) {
1710 		phy_stop(ndev->phydev);
1711 		phy_disconnect(ndev->phydev);
1712 		if (of_phy_is_fixed_link(np))
1713 			of_phy_deregister_fixed_link(np);
1714 	}
1715 
1716 	if (priv->chip_id != RCAR_GEN2) {
1717 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1718 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1719 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1720 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1721 		free_irq(priv->emac_irq, ndev);
1722 	}
1723 	free_irq(ndev->irq, ndev);
1724 
1725 	napi_disable(&priv->napi[RAVB_NC]);
1726 	napi_disable(&priv->napi[RAVB_BE]);
1727 
1728 	/* Free all the skb's in the RX queue and the DMA buffers. */
1729 	ravb_ring_free(ndev, RAVB_BE);
1730 	ravb_ring_free(ndev, RAVB_NC);
1731 
1732 	return 0;
1733 }
1734 
1735 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1736 {
1737 	struct ravb_private *priv = netdev_priv(ndev);
1738 	struct hwtstamp_config config;
1739 
1740 	config.flags = 0;
1741 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1742 						HWTSTAMP_TX_OFF;
1743 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1744 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1745 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1746 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1747 	else
1748 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1749 
1750 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1751 		-EFAULT : 0;
1752 }
1753 
1754 /* Control hardware time stamping */
1755 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1756 {
1757 	struct ravb_private *priv = netdev_priv(ndev);
1758 	struct hwtstamp_config config;
1759 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1760 	u32 tstamp_tx_ctrl;
1761 
1762 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1763 		return -EFAULT;
1764 
1765 	/* Reserved for future extensions */
1766 	if (config.flags)
1767 		return -EINVAL;
1768 
1769 	switch (config.tx_type) {
1770 	case HWTSTAMP_TX_OFF:
1771 		tstamp_tx_ctrl = 0;
1772 		break;
1773 	case HWTSTAMP_TX_ON:
1774 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1775 		break;
1776 	default:
1777 		return -ERANGE;
1778 	}
1779 
1780 	switch (config.rx_filter) {
1781 	case HWTSTAMP_FILTER_NONE:
1782 		tstamp_rx_ctrl = 0;
1783 		break;
1784 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1785 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1786 		break;
1787 	default:
1788 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1789 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1790 	}
1791 
1792 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1793 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1794 
1795 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1796 		-EFAULT : 0;
1797 }
1798 
1799 /* ioctl to device function */
1800 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1801 {
1802 	struct phy_device *phydev = ndev->phydev;
1803 
1804 	if (!netif_running(ndev))
1805 		return -EINVAL;
1806 
1807 	if (!phydev)
1808 		return -ENODEV;
1809 
1810 	switch (cmd) {
1811 	case SIOCGHWTSTAMP:
1812 		return ravb_hwtstamp_get(ndev, req);
1813 	case SIOCSHWTSTAMP:
1814 		return ravb_hwtstamp_set(ndev, req);
1815 	}
1816 
1817 	return phy_mii_ioctl(phydev, req, cmd);
1818 }
1819 
1820 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1821 {
1822 	if (netif_running(ndev))
1823 		return -EBUSY;
1824 
1825 	ndev->mtu = new_mtu;
1826 	netdev_update_features(ndev);
1827 
1828 	return 0;
1829 }
1830 
1831 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1832 {
1833 	struct ravb_private *priv = netdev_priv(ndev);
1834 	unsigned long flags;
1835 
1836 	spin_lock_irqsave(&priv->lock, flags);
1837 
1838 	/* Disable TX and RX */
1839 	ravb_rcv_snd_disable(ndev);
1840 
1841 	/* Modify RX Checksum setting */
1842 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1843 
1844 	/* Enable TX and RX */
1845 	ravb_rcv_snd_enable(ndev);
1846 
1847 	spin_unlock_irqrestore(&priv->lock, flags);
1848 }
1849 
1850 static int ravb_set_features(struct net_device *ndev,
1851 			     netdev_features_t features)
1852 {
1853 	netdev_features_t changed = ndev->features ^ features;
1854 
1855 	if (changed & NETIF_F_RXCSUM)
1856 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1857 
1858 	ndev->features = features;
1859 
1860 	return 0;
1861 }
1862 
1863 static const struct net_device_ops ravb_netdev_ops = {
1864 	.ndo_open		= ravb_open,
1865 	.ndo_stop		= ravb_close,
1866 	.ndo_start_xmit		= ravb_start_xmit,
1867 	.ndo_select_queue	= ravb_select_queue,
1868 	.ndo_get_stats		= ravb_get_stats,
1869 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1870 	.ndo_tx_timeout		= ravb_tx_timeout,
1871 	.ndo_do_ioctl		= ravb_do_ioctl,
1872 	.ndo_change_mtu		= ravb_change_mtu,
1873 	.ndo_validate_addr	= eth_validate_addr,
1874 	.ndo_set_mac_address	= eth_mac_addr,
1875 	.ndo_set_features	= ravb_set_features,
1876 };
1877 
1878 /* MDIO bus init function */
1879 static int ravb_mdio_init(struct ravb_private *priv)
1880 {
1881 	struct platform_device *pdev = priv->pdev;
1882 	struct device *dev = &pdev->dev;
1883 	int error;
1884 
1885 	/* Bitbang init */
1886 	priv->mdiobb.ops = &bb_ops;
1887 
1888 	/* MII controller setting */
1889 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1890 	if (!priv->mii_bus)
1891 		return -ENOMEM;
1892 
1893 	/* Hook up MII support for ethtool */
1894 	priv->mii_bus->name = "ravb_mii";
1895 	priv->mii_bus->parent = dev;
1896 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1897 		 pdev->name, pdev->id);
1898 
1899 	/* Register MDIO bus */
1900 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1901 	if (error)
1902 		goto out_free_bus;
1903 
1904 	return 0;
1905 
1906 out_free_bus:
1907 	free_mdio_bitbang(priv->mii_bus);
1908 	return error;
1909 }
1910 
1911 /* MDIO bus release function */
1912 static int ravb_mdio_release(struct ravb_private *priv)
1913 {
1914 	/* Unregister mdio bus */
1915 	mdiobus_unregister(priv->mii_bus);
1916 
1917 	/* Free bitbang info */
1918 	free_mdio_bitbang(priv->mii_bus);
1919 
1920 	return 0;
1921 }
1922 
1923 static const struct of_device_id ravb_match_table[] = {
1924 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1925 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1926 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1927 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1928 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1929 	{ }
1930 };
1931 MODULE_DEVICE_TABLE(of, ravb_match_table);
1932 
1933 static int ravb_set_gti(struct net_device *ndev)
1934 {
1935 	struct ravb_private *priv = netdev_priv(ndev);
1936 	struct device *dev = ndev->dev.parent;
1937 	unsigned long rate;
1938 	uint64_t inc;
1939 
1940 	rate = clk_get_rate(priv->clk);
1941 	if (!rate)
1942 		return -EINVAL;
1943 
1944 	inc = 1000000000ULL << 20;
1945 	do_div(inc, rate);
1946 
1947 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1948 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1949 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1950 		return -EINVAL;
1951 	}
1952 
1953 	ravb_write(ndev, inc, GTI);
1954 
1955 	return 0;
1956 }
1957 
1958 static void ravb_set_config_mode(struct net_device *ndev)
1959 {
1960 	struct ravb_private *priv = netdev_priv(ndev);
1961 
1962 	if (priv->chip_id == RCAR_GEN2) {
1963 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1964 		/* Set CSEL value */
1965 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1966 	} else {
1967 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1968 			    CCC_GAC | CCC_CSEL_HPB);
1969 	}
1970 }
1971 
1972 /* Set tx and rx clock internal delay modes */
1973 static void ravb_set_delay_mode(struct net_device *ndev)
1974 {
1975 	struct ravb_private *priv = netdev_priv(ndev);
1976 	int set = 0;
1977 
1978 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1979 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1980 		set |= APSR_DM_RDM;
1981 
1982 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1983 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1984 		set |= APSR_DM_TDM;
1985 
1986 	ravb_modify(ndev, APSR, APSR_DM, set);
1987 }
1988 
1989 static int ravb_probe(struct platform_device *pdev)
1990 {
1991 	struct device_node *np = pdev->dev.of_node;
1992 	struct ravb_private *priv;
1993 	enum ravb_chip_id chip_id;
1994 	struct net_device *ndev;
1995 	int error, irq, q;
1996 	struct resource *res;
1997 	int i;
1998 
1999 	if (!np) {
2000 		dev_err(&pdev->dev,
2001 			"this driver is required to be instantiated from device tree\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	/* Get base address */
2006 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2007 	if (!res) {
2008 		dev_err(&pdev->dev, "invalid resource\n");
2009 		return -EINVAL;
2010 	}
2011 
2012 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2013 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2014 	if (!ndev)
2015 		return -ENOMEM;
2016 
2017 	ndev->features = NETIF_F_RXCSUM;
2018 	ndev->hw_features = NETIF_F_RXCSUM;
2019 
2020 	pm_runtime_enable(&pdev->dev);
2021 	pm_runtime_get_sync(&pdev->dev);
2022 
2023 	/* The Ether-specific entries in the device structure. */
2024 	ndev->base_addr = res->start;
2025 
2026 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2027 
2028 	if (chip_id == RCAR_GEN3)
2029 		irq = platform_get_irq_byname(pdev, "ch22");
2030 	else
2031 		irq = platform_get_irq(pdev, 0);
2032 	if (irq < 0) {
2033 		error = irq;
2034 		goto out_release;
2035 	}
2036 	ndev->irq = irq;
2037 
2038 	SET_NETDEV_DEV(ndev, &pdev->dev);
2039 
2040 	priv = netdev_priv(ndev);
2041 	priv->ndev = ndev;
2042 	priv->pdev = pdev;
2043 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2044 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2045 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2046 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2047 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2048 	if (IS_ERR(priv->addr)) {
2049 		error = PTR_ERR(priv->addr);
2050 		goto out_release;
2051 	}
2052 
2053 	spin_lock_init(&priv->lock);
2054 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2055 
2056 	priv->phy_interface = of_get_phy_mode(np);
2057 
2058 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2059 	priv->avb_link_active_low =
2060 		of_property_read_bool(np, "renesas,ether-link-active-low");
2061 
2062 	if (chip_id == RCAR_GEN3) {
2063 		irq = platform_get_irq_byname(pdev, "ch24");
2064 		if (irq < 0) {
2065 			error = irq;
2066 			goto out_release;
2067 		}
2068 		priv->emac_irq = irq;
2069 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2070 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2071 			if (irq < 0) {
2072 				error = irq;
2073 				goto out_release;
2074 			}
2075 			priv->rx_irqs[i] = irq;
2076 		}
2077 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2078 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2079 			if (irq < 0) {
2080 				error = irq;
2081 				goto out_release;
2082 			}
2083 			priv->tx_irqs[i] = irq;
2084 		}
2085 	}
2086 
2087 	priv->chip_id = chip_id;
2088 
2089 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2090 	if (IS_ERR(priv->clk)) {
2091 		error = PTR_ERR(priv->clk);
2092 		goto out_release;
2093 	}
2094 
2095 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2096 	ndev->min_mtu = ETH_MIN_MTU;
2097 
2098 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2099 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2100 
2101 	/* Set function */
2102 	ndev->netdev_ops = &ravb_netdev_ops;
2103 	ndev->ethtool_ops = &ravb_ethtool_ops;
2104 
2105 	/* Set AVB config mode */
2106 	ravb_set_config_mode(ndev);
2107 
2108 	/* Set GTI value */
2109 	error = ravb_set_gti(ndev);
2110 	if (error)
2111 		goto out_release;
2112 
2113 	/* Request GTI loading */
2114 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2115 
2116 	if (priv->chip_id != RCAR_GEN2)
2117 		ravb_set_delay_mode(ndev);
2118 
2119 	/* Allocate descriptor base address table */
2120 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2121 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2122 					    &priv->desc_bat_dma, GFP_KERNEL);
2123 	if (!priv->desc_bat) {
2124 		dev_err(&pdev->dev,
2125 			"Cannot allocate desc base address table (size %d bytes)\n",
2126 			priv->desc_bat_size);
2127 		error = -ENOMEM;
2128 		goto out_release;
2129 	}
2130 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2131 		priv->desc_bat[q].die_dt = DT_EOS;
2132 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2133 
2134 	/* Initialise HW timestamp list */
2135 	INIT_LIST_HEAD(&priv->ts_skb_list);
2136 
2137 	/* Initialise PTP Clock driver */
2138 	if (chip_id != RCAR_GEN2)
2139 		ravb_ptp_init(ndev, pdev);
2140 
2141 	/* Debug message level */
2142 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2143 
2144 	/* Read and set MAC address */
2145 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2146 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2147 		dev_warn(&pdev->dev,
2148 			 "no valid MAC address supplied, using a random one\n");
2149 		eth_hw_addr_random(ndev);
2150 	}
2151 
2152 	/* MDIO bus init */
2153 	error = ravb_mdio_init(priv);
2154 	if (error) {
2155 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2156 		goto out_dma_free;
2157 	}
2158 
2159 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2160 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2161 
2162 	/* Network device register */
2163 	error = register_netdev(ndev);
2164 	if (error)
2165 		goto out_napi_del;
2166 
2167 	device_set_wakeup_capable(&pdev->dev, 1);
2168 
2169 	/* Print device information */
2170 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2171 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2172 
2173 	platform_set_drvdata(pdev, ndev);
2174 
2175 	return 0;
2176 
2177 out_napi_del:
2178 	netif_napi_del(&priv->napi[RAVB_NC]);
2179 	netif_napi_del(&priv->napi[RAVB_BE]);
2180 	ravb_mdio_release(priv);
2181 out_dma_free:
2182 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2183 			  priv->desc_bat_dma);
2184 
2185 	/* Stop PTP Clock driver */
2186 	if (chip_id != RCAR_GEN2)
2187 		ravb_ptp_stop(ndev);
2188 out_release:
2189 	free_netdev(ndev);
2190 
2191 	pm_runtime_put(&pdev->dev);
2192 	pm_runtime_disable(&pdev->dev);
2193 	return error;
2194 }
2195 
2196 static int ravb_remove(struct platform_device *pdev)
2197 {
2198 	struct net_device *ndev = platform_get_drvdata(pdev);
2199 	struct ravb_private *priv = netdev_priv(ndev);
2200 
2201 	/* Stop PTP Clock driver */
2202 	if (priv->chip_id != RCAR_GEN2)
2203 		ravb_ptp_stop(ndev);
2204 
2205 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2206 			  priv->desc_bat_dma);
2207 	/* Set reset mode */
2208 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2209 	pm_runtime_put_sync(&pdev->dev);
2210 	unregister_netdev(ndev);
2211 	netif_napi_del(&priv->napi[RAVB_NC]);
2212 	netif_napi_del(&priv->napi[RAVB_BE]);
2213 	ravb_mdio_release(priv);
2214 	pm_runtime_disable(&pdev->dev);
2215 	free_netdev(ndev);
2216 	platform_set_drvdata(pdev, NULL);
2217 
2218 	return 0;
2219 }
2220 
2221 static int ravb_wol_setup(struct net_device *ndev)
2222 {
2223 	struct ravb_private *priv = netdev_priv(ndev);
2224 
2225 	/* Disable interrupts by clearing the interrupt masks. */
2226 	ravb_write(ndev, 0, RIC0);
2227 	ravb_write(ndev, 0, RIC2);
2228 	ravb_write(ndev, 0, TIC);
2229 
2230 	/* Only allow ECI interrupts */
2231 	synchronize_irq(priv->emac_irq);
2232 	napi_disable(&priv->napi[RAVB_NC]);
2233 	napi_disable(&priv->napi[RAVB_BE]);
2234 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2235 
2236 	/* Enable MagicPacket */
2237 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2238 
2239 	return enable_irq_wake(priv->emac_irq);
2240 }
2241 
2242 static int ravb_wol_restore(struct net_device *ndev)
2243 {
2244 	struct ravb_private *priv = netdev_priv(ndev);
2245 	int ret;
2246 
2247 	napi_enable(&priv->napi[RAVB_NC]);
2248 	napi_enable(&priv->napi[RAVB_BE]);
2249 
2250 	/* Disable MagicPacket */
2251 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2252 
2253 	ret = ravb_close(ndev);
2254 	if (ret < 0)
2255 		return ret;
2256 
2257 	return disable_irq_wake(priv->emac_irq);
2258 }
2259 
2260 static int __maybe_unused ravb_suspend(struct device *dev)
2261 {
2262 	struct net_device *ndev = dev_get_drvdata(dev);
2263 	struct ravb_private *priv = netdev_priv(ndev);
2264 	int ret;
2265 
2266 	if (!netif_running(ndev))
2267 		return 0;
2268 
2269 	netif_device_detach(ndev);
2270 
2271 	if (priv->wol_enabled)
2272 		ret = ravb_wol_setup(ndev);
2273 	else
2274 		ret = ravb_close(ndev);
2275 
2276 	return ret;
2277 }
2278 
2279 static int __maybe_unused ravb_resume(struct device *dev)
2280 {
2281 	struct net_device *ndev = dev_get_drvdata(dev);
2282 	struct ravb_private *priv = netdev_priv(ndev);
2283 	int ret = 0;
2284 
2285 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2286 	if (priv->wol_enabled)
2287 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2288 
2289 	/* All register have been reset to default values.
2290 	 * Restore all registers which where setup at probe time and
2291 	 * reopen device if it was running before system suspended.
2292 	 */
2293 
2294 	/* Set AVB config mode */
2295 	ravb_set_config_mode(ndev);
2296 
2297 	/* Set GTI value */
2298 	ret = ravb_set_gti(ndev);
2299 	if (ret)
2300 		return ret;
2301 
2302 	/* Request GTI loading */
2303 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2304 
2305 	if (priv->chip_id != RCAR_GEN2)
2306 		ravb_set_delay_mode(ndev);
2307 
2308 	/* Restore descriptor base address table */
2309 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2310 
2311 	if (netif_running(ndev)) {
2312 		if (priv->wol_enabled) {
2313 			ret = ravb_wol_restore(ndev);
2314 			if (ret)
2315 				return ret;
2316 		}
2317 		ret = ravb_open(ndev);
2318 		if (ret < 0)
2319 			return ret;
2320 		netif_device_attach(ndev);
2321 	}
2322 
2323 	return ret;
2324 }
2325 
2326 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2327 {
2328 	/* Runtime PM callback shared between ->runtime_suspend()
2329 	 * and ->runtime_resume(). Simply returns success.
2330 	 *
2331 	 * This driver re-initializes all registers after
2332 	 * pm_runtime_get_sync() anyway so there is no need
2333 	 * to save and restore registers here.
2334 	 */
2335 	return 0;
2336 }
2337 
2338 static const struct dev_pm_ops ravb_dev_pm_ops = {
2339 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2340 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2341 };
2342 
2343 static struct platform_driver ravb_driver = {
2344 	.probe		= ravb_probe,
2345 	.remove		= ravb_remove,
2346 	.driver = {
2347 		.name	= "ravb",
2348 		.pm	= &ravb_dev_pm_ops,
2349 		.of_match_table = ravb_match_table,
2350 	},
2351 };
2352 
2353 module_platform_driver(ravb_driver);
2354 
2355 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2356 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2357 MODULE_LICENSE("GPL v2");
2358