xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 		 u32 set)
45 {
46 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48 
49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 	int i;
52 
53 	for (i = 0; i < 10000; i++) {
54 		if ((ravb_read(ndev, reg) & mask) == value)
55 			return 0;
56 		udelay(10);
57 	}
58 	return -ETIMEDOUT;
59 }
60 
61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 	u32 csr_ops = 1U << (opmode & CCC_OPC);
64 	u32 ccc_mask = CCC_OPC;
65 	int error;
66 
67 	/* If gPTP active in config mode is supported it needs to be configured
68 	 * along with CSEL and operating mode in the same access. This is a
69 	 * hardware limitation.
70 	 */
71 	if (opmode & CCC_GAC)
72 		ccc_mask |= CCC_GAC | CCC_CSEL;
73 
74 	/* Set operating mode */
75 	ravb_modify(ndev, CCC, ccc_mask, opmode);
76 	/* Check if the operating mode is changed to the requested one */
77 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 	if (error) {
79 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 			   opmode & CCC_OPC);
81 	}
82 
83 	return error;
84 }
85 
86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 	struct ravb_private *priv = netdev_priv(ndev);
89 
90 	switch (priv->speed) {
91 	case 10:		/* 10BASE */
92 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 		break;
94 	case 100:		/* 100BASE */
95 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 		break;
97 	case 1000:		/* 1000BASE */
98 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 		break;
100 	}
101 }
102 
103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 	struct ravb_private *priv = netdev_priv(ndev);
106 
107 	switch (priv->speed) {
108 	case 100:		/* 100BASE */
109 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 		break;
111 	case 1000:		/* 1000BASE */
112 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 		break;
114 	}
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
122 static void ravb_read_mac_address(struct device_node *np,
123 				  struct net_device *ndev)
124 {
125 	int ret;
126 
127 	ret = of_get_ethdev_address(np, ndev);
128 	if (ret) {
129 		u32 mahr = ravb_read(ndev, MAHR);
130 		u32 malr = ravb_read(ndev, MALR);
131 		u8 addr[ETH_ALEN];
132 
133 		addr[0] = (mahr >> 24) & 0xFF;
134 		addr[1] = (mahr >> 16) & 0xFF;
135 		addr[2] = (mahr >>  8) & 0xFF;
136 		addr[3] = (mahr >>  0) & 0xFF;
137 		addr[4] = (malr >>  8) & 0xFF;
138 		addr[5] = (malr >>  0) & 0xFF;
139 		eth_hw_addr_set(ndev, addr);
140 	}
141 }
142 
143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 						 mdiobb);
147 
148 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150 
151 /* MDC pin control */
152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156 
157 /* Data I/O pin control */
158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162 
163 /* Set data bit */
164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168 
169 /* Get data bit */
170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 						 mdiobb);
174 
175 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177 
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 	.owner = THIS_MODULE,
181 	.set_mdc = ravb_set_mdc,
182 	.set_mdio_dir = ravb_set_mdio_dir,
183 	.set_mdio_data = ravb_set_mdio_data,
184 	.get_mdio_data = ravb_get_mdio_data,
185 };
186 
187 static struct ravb_rx_desc *
188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 		 unsigned int i)
190 {
191 	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193 
194 /* Free TX skb function for AVB-IP */
195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 
243 	if (!priv->rx_ring[q].raw)
244 		return;
245 
246 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 			  priv->rx_desc_dma[q]);
249 	priv->rx_ring[q].raw = NULL;
250 }
251 
252 /* Free skb's and DMA buffers for Ethernet AVB */
253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 	struct ravb_private *priv = netdev_priv(ndev);
256 	unsigned int num_tx_desc = priv->num_tx_desc;
257 	unsigned int ring_size;
258 	unsigned int i;
259 
260 	ravb_rx_ring_free(ndev, q);
261 
262 	if (priv->tx_ring[q]) {
263 		ravb_tx_free(ndev, q, false);
264 
265 		ring_size = sizeof(struct ravb_tx_desc) *
266 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
267 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 				  priv->tx_desc_dma[q]);
269 		priv->tx_ring[q] = NULL;
270 	}
271 
272 	/* Free RX buffers */
273 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 		if (priv->rx_buffers[q][i].page)
275 			page_pool_put_page(priv->rx_pool[q],
276 					   priv->rx_buffers[q][i].page,
277 					   0, true);
278 	}
279 	kfree(priv->rx_buffers[q]);
280 	priv->rx_buffers[q] = NULL;
281 	page_pool_destroy(priv->rx_pool[q]);
282 
283 	/* Free aligned TX buffers */
284 	kfree(priv->tx_align[q]);
285 	priv->tx_align[q] = NULL;
286 
287 	/* Free TX skb ringbuffer.
288 	 * SKBs are freed by ravb_tx_free() call above.
289 	 */
290 	kfree(priv->tx_skb[q]);
291 	priv->tx_skb[q] = NULL;
292 }
293 
294 static int
295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 		     struct ravb_rx_desc *rx_desc)
297 {
298 	struct ravb_private *priv = netdev_priv(ndev);
299 	const struct ravb_hw_info *info = priv->info;
300 	struct ravb_rx_buffer *rx_buff;
301 	dma_addr_t dma_addr;
302 	unsigned int size;
303 
304 	rx_buff = &priv->rx_buffers[q][entry];
305 	size = info->rx_buffer_size;
306 	rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 					&size, gfp_mask);
308 	if (unlikely(!rx_buff->page)) {
309 		/* We just set the data size to 0 for a failed mapping which
310 		 * should prevent DMA from happening...
311 		 */
312 		rx_desc->ds_cc = cpu_to_le16(0);
313 		return -ENOMEM;
314 	}
315 
316 	dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 	dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 				   info->rx_buffer_size, DMA_FROM_DEVICE);
319 	rx_desc->dptr = cpu_to_le32(dma_addr);
320 
321 	/* The end of the RX buffer is used to store skb shared data, so we need
322 	 * to ensure that the hardware leaves enough space for this.
323 	 */
324 	rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 				     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 				     ETH_FCS_LEN + sizeof(__sum16));
327 	return 0;
328 }
329 
330 static u32
331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 	struct ravb_private *priv = netdev_priv(ndev);
334 	struct ravb_rx_desc *rx_desc;
335 	u32 i, entry;
336 
337 	for (i = 0; i < count; i++) {
338 		entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 		rx_desc = ravb_rx_get_desc(priv, q, entry);
340 
341 		if (!priv->rx_buffers[q][entry].page) {
342 			if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 							  gfp_mask, rx_desc)))
344 				break;
345 		}
346 		/* Descriptor type must be set after all the above writes */
347 		dma_wmb();
348 		rx_desc->die_dt = DT_FEMPTY;
349 	}
350 
351 	return i;
352 }
353 
354 /* Format skb and descriptor buffer for Ethernet AVB */
355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 	struct ravb_private *priv = netdev_priv(ndev);
358 	unsigned int num_tx_desc = priv->num_tx_desc;
359 	struct ravb_rx_desc *rx_desc;
360 	struct ravb_tx_desc *tx_desc;
361 	struct ravb_desc *desc;
362 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 				    num_tx_desc;
364 	unsigned int i;
365 
366 	priv->cur_rx[q] = 0;
367 	priv->cur_tx[q] = 0;
368 	priv->dirty_rx[q] = 0;
369 	priv->dirty_tx[q] = 0;
370 
371 	/* Regular RX descriptors have already been initialized by
372 	 * ravb_rx_ring_refill(), we just need to initialize the final link
373 	 * descriptor.
374 	 */
375 	rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 	rx_desc->die_dt = DT_LINKFIX; /* type */
378 
379 	memset(priv->tx_ring[q], 0, tx_ring_size);
380 	/* Build TX ring buffer */
381 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 	     i++, tx_desc++) {
383 		tx_desc->die_dt = DT_EEMPTY;
384 		if (num_tx_desc > 1) {
385 			tx_desc++;
386 			tx_desc->die_dt = DT_EEMPTY;
387 		}
388 	}
389 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 	tx_desc->die_dt = DT_LINKFIX; /* type */
391 
392 	/* RX descriptor base address for best effort */
393 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 	desc->die_dt = DT_LINKFIX; /* type */
395 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396 
397 	/* TX descriptor base address for best effort */
398 	desc = &priv->desc_bat[q];
399 	desc->die_dt = DT_LINKFIX; /* type */
400 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402 
403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 	struct ravb_private *priv = netdev_priv(ndev);
406 	unsigned int ring_size;
407 
408 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409 
410 	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 						  &priv->rx_desc_dma[q],
412 						  GFP_KERNEL);
413 
414 	return priv->rx_ring[q].raw;
415 }
416 
417 /* Init skb and descriptor buffer for Ethernet AVB */
418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 	struct ravb_private *priv = netdev_priv(ndev);
421 	unsigned int num_tx_desc = priv->num_tx_desc;
422 	struct page_pool_params params = {
423 		.order = 0,
424 		.flags = PP_FLAG_DMA_MAP,
425 		.pool_size = priv->num_rx_ring[q],
426 		.nid = NUMA_NO_NODE,
427 		.dev = ndev->dev.parent,
428 		.dma_dir = DMA_FROM_DEVICE,
429 	};
430 	unsigned int ring_size;
431 	u32 num_filled;
432 
433 	/* Allocate RX page pool and buffers */
434 	priv->rx_pool[q] = page_pool_create(&params);
435 	if (IS_ERR(priv->rx_pool[q]))
436 		goto error;
437 
438 	/* Allocate RX buffers */
439 	priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 				      sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 	if (!priv->rx_buffers[q])
442 		goto error;
443 
444 	/* Allocate TX skb rings */
445 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 	if (!priv->tx_skb[q])
448 		goto error;
449 
450 	/* Allocate all RX descriptors. */
451 	if (!ravb_alloc_rx_desc(ndev, q))
452 		goto error;
453 
454 	/* Populate RX ring buffer. */
455 	priv->dirty_rx[q] = 0;
456 	ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 	memset(priv->rx_ring[q].raw, 0, ring_size);
458 	num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 					 GFP_KERNEL);
460 	if (num_filled != priv->num_rx_ring[q])
461 		goto error;
462 
463 	if (num_tx_desc > 1) {
464 		/* Allocate rings for the aligned buffers */
465 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 					    DPTR_ALIGN - 1, GFP_KERNEL);
467 		if (!priv->tx_align[q])
468 			goto error;
469 	}
470 
471 	/* Allocate all TX descriptors. */
472 	ring_size = sizeof(struct ravb_tx_desc) *
473 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
474 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 					      &priv->tx_desc_dma[q],
476 					      GFP_KERNEL);
477 	if (!priv->tx_ring[q])
478 		goto error;
479 
480 	return 0;
481 
482 error:
483 	ravb_ring_free(ndev, q);
484 
485 	return -ENOMEM;
486 }
487 
488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492 
493 	if (!(tx_enable || rx_enable))
494 		goto done;
495 
496 	ravb_write(ndev, 0, CSR0);
497 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
499 
500 		if (tx_enable)
501 			ndev->features &= ~NETIF_F_HW_CSUM;
502 
503 		if (rx_enable)
504 			ndev->features &= ~NETIF_F_RXCSUM;
505 	} else {
506 		if (tx_enable)
507 			ravb_write(ndev, CSR1_CSUM_ENABLE, CSR1);
508 
509 		if (rx_enable)
510 			ravb_write(ndev, CSR2_CSUM_ENABLE, CSR2);
511 	}
512 
513 done:
514 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
515 }
516 
517 static void ravb_emac_init_gbeth(struct net_device *ndev)
518 {
519 	struct ravb_private *priv = netdev_priv(ndev);
520 
521 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
522 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
523 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
524 	} else {
525 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
526 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
527 			    CXR31_SEL_LINK0);
528 	}
529 
530 	/* Receive frame limit set register */
531 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
532 
533 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
534 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
535 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
536 			 ECMR_TXF | ECMR_RXF, ECMR);
537 
538 	ravb_set_rate_gbeth(ndev);
539 
540 	/* Set MAC address */
541 	ravb_write(ndev,
542 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
543 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
544 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
545 
546 	/* E-MAC status register clear */
547 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
548 
549 	ravb_csum_init_gbeth(ndev);
550 
551 	/* E-MAC interrupt enable register */
552 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
553 }
554 
555 static void ravb_emac_init_rcar(struct net_device *ndev)
556 {
557 	struct ravb_private *priv = netdev_priv(ndev);
558 
559 	/* Set receive frame length
560 	 *
561 	 * The length set here describes the frame from the destination address
562 	 * up to and including the CRC data. However only the frame data,
563 	 * excluding the CRC, are transferred to memory. To allow for the
564 	 * largest frames add the CRC length to the maximum Rx descriptor size.
565 	 */
566 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
567 
568 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
569 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
570 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
571 		   ECMR_TE | ECMR_RE, ECMR);
572 
573 	ravb_set_rate_rcar(ndev);
574 
575 	/* Set MAC address */
576 	ravb_write(ndev,
577 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
578 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
579 	ravb_write(ndev,
580 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
581 
582 	/* E-MAC status register clear */
583 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
584 
585 	/* E-MAC interrupt enable register */
586 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
587 }
588 
589 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
590 {
591 	struct ravb_private *priv = netdev_priv(ndev);
592 	bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
593 
594 	ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
595 
596 	ravb_emac_init_rcar(ndev);
597 }
598 
599 /* E-MAC init function */
600 static void ravb_emac_init(struct net_device *ndev)
601 {
602 	struct ravb_private *priv = netdev_priv(ndev);
603 	const struct ravb_hw_info *info = priv->info;
604 
605 	info->emac_init(ndev);
606 }
607 
608 static int ravb_dmac_init_gbeth(struct net_device *ndev)
609 {
610 	struct ravb_private *priv = netdev_priv(ndev);
611 	int error;
612 
613 	error = ravb_ring_init(ndev, RAVB_BE);
614 	if (error)
615 		return error;
616 
617 	/* Descriptor format */
618 	ravb_ring_format(ndev, RAVB_BE);
619 
620 	/* Set DMAC RX */
621 	ravb_write(ndev, 0x60000000, RCR);
622 
623 	/* Set Max Frame Length (RTC) */
624 	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
625 
626 	/* Set FIFO size */
627 	ravb_write(ndev, 0x00222200, TGC);
628 
629 	ravb_write(ndev, 0, TCCR);
630 
631 	/* Frame receive */
632 	ravb_write(ndev, RIC0_FRE0, RIC0);
633 	/* Disable FIFO full warning */
634 	ravb_write(ndev, 0x0, RIC1);
635 	/* Receive FIFO full error, descriptor empty */
636 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
637 
638 	ravb_write(ndev, TIC_FTE0, TIC);
639 
640 	return 0;
641 }
642 
643 static int ravb_dmac_init_rcar(struct net_device *ndev)
644 {
645 	struct ravb_private *priv = netdev_priv(ndev);
646 	const struct ravb_hw_info *info = priv->info;
647 	int error;
648 
649 	error = ravb_ring_init(ndev, RAVB_BE);
650 	if (error)
651 		return error;
652 	error = ravb_ring_init(ndev, RAVB_NC);
653 	if (error) {
654 		ravb_ring_free(ndev, RAVB_BE);
655 		return error;
656 	}
657 
658 	/* Descriptor format */
659 	ravb_ring_format(ndev, RAVB_BE);
660 	ravb_ring_format(ndev, RAVB_NC);
661 
662 	/* Set AVB RX */
663 	ravb_write(ndev,
664 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
665 
666 	/* Set FIFO size */
667 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
668 
669 	/* Timestamp enable */
670 	ravb_write(ndev, TCCR_TFEN, TCCR);
671 
672 	/* Interrupt init: */
673 	if (info->multi_irqs) {
674 		/* Clear DIL.DPLx */
675 		ravb_write(ndev, 0, DIL);
676 		/* Set queue specific interrupt */
677 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
678 	}
679 	/* Frame receive */
680 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
681 	/* Disable FIFO full warning */
682 	ravb_write(ndev, 0, RIC1);
683 	/* Receive FIFO full error, descriptor empty */
684 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
685 	/* Frame transmitted, timestamp FIFO updated */
686 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
687 
688 	return 0;
689 }
690 
691 /* Device init function for Ethernet AVB */
692 static int ravb_dmac_init(struct net_device *ndev)
693 {
694 	struct ravb_private *priv = netdev_priv(ndev);
695 	const struct ravb_hw_info *info = priv->info;
696 	int error;
697 
698 	/* Set CONFIG mode */
699 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
700 	if (error)
701 		return error;
702 
703 	error = info->dmac_init(ndev);
704 	if (error)
705 		return error;
706 
707 	/* Setting the control will start the AVB-DMAC process. */
708 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
709 }
710 
711 static void ravb_get_tx_tstamp(struct net_device *ndev)
712 {
713 	struct ravb_private *priv = netdev_priv(ndev);
714 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
715 	struct skb_shared_hwtstamps shhwtstamps;
716 	struct sk_buff *skb;
717 	struct timespec64 ts;
718 	u16 tag, tfa_tag;
719 	int count;
720 	u32 tfa2;
721 
722 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
723 	while (count--) {
724 		tfa2 = ravb_read(ndev, TFA2);
725 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
726 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
727 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
728 			    ravb_read(ndev, TFA1);
729 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
730 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
731 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
732 					 list) {
733 			skb = ts_skb->skb;
734 			tag = ts_skb->tag;
735 			list_del(&ts_skb->list);
736 			kfree(ts_skb);
737 			if (tag == tfa_tag) {
738 				skb_tstamp_tx(skb, &shhwtstamps);
739 				dev_consume_skb_any(skb);
740 				break;
741 			} else {
742 				dev_kfree_skb_any(skb);
743 			}
744 		}
745 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
746 	}
747 }
748 
749 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
750 {
751 	struct skb_shared_info *shinfo = skb_shinfo(skb);
752 	size_t csum_len;
753 	u16 *hw_csum;
754 
755 	/* The hardware checksum status is contained in 4 bytes appended to
756 	 * packet data.
757 	 *
758 	 * For ipv4, the first 2 bytes are the ip header checksum status. We can
759 	 * ignore this as it will always be re-checked in inet_gro_receive().
760 	 *
761 	 * The last 2 bytes are the protocol checksum status which will be zero
762 	 * if the checksum has been validated.
763 	 */
764 	csum_len = sizeof(*hw_csum) * 2;
765 	if (unlikely(skb->len < csum_len))
766 		return;
767 
768 	if (skb_is_nonlinear(skb)) {
769 		skb_frag_t *last_frag = &shinfo->frags[shinfo->nr_frags - 1];
770 
771 		hw_csum = (u16 *)(skb_frag_address(last_frag) +
772 				  skb_frag_size(last_frag));
773 		skb_frag_size_sub(last_frag, csum_len);
774 	} else {
775 		hw_csum = (u16 *)skb_tail_pointer(skb);
776 		skb_trim(skb, skb->len - csum_len);
777 	}
778 
779 	if (!get_unaligned(--hw_csum))
780 		skb->ip_summed = CHECKSUM_UNNECESSARY;
781 }
782 
783 static void ravb_rx_csum(struct sk_buff *skb)
784 {
785 	u8 *hw_csum;
786 
787 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
788 	 * appended to packet data
789 	 */
790 	if (unlikely(skb->len < sizeof(__sum16)))
791 		return;
792 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
793 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
794 	skb->ip_summed = CHECKSUM_COMPLETE;
795 	skb_trim(skb, skb->len - sizeof(__sum16));
796 }
797 
798 /* Packet receive function for Gigabit Ethernet */
799 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
800 {
801 	struct ravb_private *priv = netdev_priv(ndev);
802 	const struct ravb_hw_info *info = priv->info;
803 	struct net_device_stats *stats;
804 	struct ravb_rx_desc *desc;
805 	struct sk_buff *skb;
806 	int rx_packets = 0;
807 	u8  desc_status;
808 	u16 desc_len;
809 	u8  die_dt;
810 	int entry;
811 	int limit;
812 	int i;
813 
814 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
815 	stats = &priv->stats[q];
816 
817 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
818 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
819 		desc = &priv->rx_ring[q].desc[entry];
820 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
821 			break;
822 
823 		/* Descriptor type must be checked before all other reads */
824 		dma_rmb();
825 		desc_status = desc->msc;
826 		desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
827 
828 		/* We use 0-byte descriptors to mark the DMA mapping errors */
829 		if (!desc_len)
830 			continue;
831 
832 		if (desc_status & MSC_MC)
833 			stats->multicast++;
834 
835 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
836 			stats->rx_errors++;
837 			if (desc_status & MSC_CRC)
838 				stats->rx_crc_errors++;
839 			if (desc_status & MSC_RFE)
840 				stats->rx_frame_errors++;
841 			if (desc_status & (MSC_RTLF | MSC_RTSF))
842 				stats->rx_length_errors++;
843 			if (desc_status & MSC_CEEF)
844 				stats->rx_missed_errors++;
845 		} else {
846 			struct ravb_rx_buffer *rx_buff;
847 			void *rx_addr;
848 
849 			rx_buff = &priv->rx_buffers[q][entry];
850 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
851 			die_dt = desc->die_dt & 0xF0;
852 			dma_sync_single_for_cpu(ndev->dev.parent,
853 						le32_to_cpu(desc->dptr),
854 						desc_len, DMA_FROM_DEVICE);
855 
856 			switch (die_dt) {
857 			case DT_FSINGLE:
858 			case DT_FSTART:
859 				/* Start of packet: Set initial data length. */
860 				skb = napi_build_skb(rx_addr,
861 						     info->rx_buffer_size);
862 				if (unlikely(!skb)) {
863 					stats->rx_errors++;
864 					page_pool_put_page(priv->rx_pool[q],
865 							   rx_buff->page, 0,
866 							   true);
867 					goto refill;
868 				}
869 				skb_mark_for_recycle(skb);
870 				skb_put(skb, desc_len);
871 
872 				/* Save this skb if the packet spans multiple
873 				 * descriptors.
874 				 */
875 				if (die_dt == DT_FSTART)
876 					priv->rx_1st_skb = skb;
877 				break;
878 
879 			case DT_FMID:
880 			case DT_FEND:
881 				/* Continuing a packet: Add this buffer as an RX
882 				 * frag.
883 				 */
884 
885 				/* rx_1st_skb will be NULL if napi_build_skb()
886 				 * failed for the first descriptor of a
887 				 * multi-descriptor packet.
888 				 */
889 				if (unlikely(!priv->rx_1st_skb)) {
890 					stats->rx_errors++;
891 					page_pool_put_page(priv->rx_pool[q],
892 							   rx_buff->page, 0,
893 							   true);
894 
895 					/* We may find a DT_FSINGLE or DT_FSTART
896 					 * descriptor in the queue which we can
897 					 * process, so don't give up yet.
898 					 */
899 					continue;
900 				}
901 				skb_add_rx_frag(priv->rx_1st_skb,
902 						skb_shinfo(priv->rx_1st_skb)->nr_frags,
903 						rx_buff->page, rx_buff->offset,
904 						desc_len, info->rx_buffer_size);
905 
906 				/* Set skb to point at the whole packet so that
907 				 * we only need one code path for finishing a
908 				 * packet.
909 				 */
910 				skb = priv->rx_1st_skb;
911 			}
912 
913 			switch (die_dt) {
914 			case DT_FSINGLE:
915 			case DT_FEND:
916 				/* Finishing a packet: Determine protocol &
917 				 * checksum, hand off to NAPI and update our
918 				 * stats.
919 				 */
920 				skb->protocol = eth_type_trans(skb, ndev);
921 				if (ndev->features & NETIF_F_RXCSUM)
922 					ravb_rx_csum_gbeth(skb);
923 				stats->rx_bytes += skb->len;
924 				napi_gro_receive(&priv->napi[q], skb);
925 				rx_packets++;
926 
927 				/* Clear rx_1st_skb so that it will only be
928 				 * non-NULL when valid.
929 				 */
930 				priv->rx_1st_skb = NULL;
931 			}
932 
933 			/* Mark this RX buffer as consumed. */
934 			rx_buff->page = NULL;
935 		}
936 	}
937 
938 refill:
939 	/* Refill the RX ring buffers. */
940 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
941 						 priv->cur_rx[q] - priv->dirty_rx[q],
942 						 GFP_ATOMIC);
943 
944 	stats->rx_packets += rx_packets;
945 	return rx_packets;
946 }
947 
948 /* Packet receive function for Ethernet AVB */
949 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
950 {
951 	struct ravb_private *priv = netdev_priv(ndev);
952 	const struct ravb_hw_info *info = priv->info;
953 	struct net_device_stats *stats = &priv->stats[q];
954 	struct ravb_ex_rx_desc *desc;
955 	unsigned int limit, i;
956 	struct sk_buff *skb;
957 	struct timespec64 ts;
958 	int rx_packets = 0;
959 	u8  desc_status;
960 	u16 pkt_len;
961 	int entry;
962 
963 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
964 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
965 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
966 		desc = &priv->rx_ring[q].ex_desc[entry];
967 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
968 			break;
969 
970 		/* Descriptor type must be checked before all other reads */
971 		dma_rmb();
972 		desc_status = desc->msc;
973 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
974 
975 		/* We use 0-byte descriptors to mark the DMA mapping errors */
976 		if (!pkt_len)
977 			continue;
978 
979 		if (desc_status & MSC_MC)
980 			stats->multicast++;
981 
982 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
983 				   MSC_CEEF)) {
984 			stats->rx_errors++;
985 			if (desc_status & MSC_CRC)
986 				stats->rx_crc_errors++;
987 			if (desc_status & MSC_RFE)
988 				stats->rx_frame_errors++;
989 			if (desc_status & (MSC_RTLF | MSC_RTSF))
990 				stats->rx_length_errors++;
991 			if (desc_status & MSC_CEEF)
992 				stats->rx_missed_errors++;
993 		} else {
994 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
995 			struct ravb_rx_buffer *rx_buff;
996 			void *rx_addr;
997 
998 			rx_buff = &priv->rx_buffers[q][entry];
999 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1000 			dma_sync_single_for_cpu(ndev->dev.parent,
1001 						le32_to_cpu(desc->dptr),
1002 						pkt_len, DMA_FROM_DEVICE);
1003 
1004 			skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1005 			if (unlikely(!skb)) {
1006 				stats->rx_errors++;
1007 				page_pool_put_page(priv->rx_pool[q],
1008 						   rx_buff->page, 0, true);
1009 				break;
1010 			}
1011 			skb_mark_for_recycle(skb);
1012 			get_ts &= (q == RAVB_NC) ?
1013 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1014 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1015 			if (get_ts) {
1016 				struct skb_shared_hwtstamps *shhwtstamps;
1017 
1018 				shhwtstamps = skb_hwtstamps(skb);
1019 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1020 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1021 					     32) | le32_to_cpu(desc->ts_sl);
1022 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
1023 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1024 			}
1025 
1026 			skb_put(skb, pkt_len);
1027 			skb->protocol = eth_type_trans(skb, ndev);
1028 			if (ndev->features & NETIF_F_RXCSUM)
1029 				ravb_rx_csum(skb);
1030 			napi_gro_receive(&priv->napi[q], skb);
1031 			rx_packets++;
1032 			stats->rx_bytes += pkt_len;
1033 
1034 			/* Mark this RX buffer as consumed. */
1035 			rx_buff->page = NULL;
1036 		}
1037 	}
1038 
1039 	/* Refill the RX ring buffers. */
1040 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1041 						 priv->cur_rx[q] - priv->dirty_rx[q],
1042 						 GFP_ATOMIC);
1043 
1044 	stats->rx_packets += rx_packets;
1045 	return rx_packets;
1046 }
1047 
1048 /* Packet receive function for Ethernet AVB */
1049 static int ravb_rx(struct net_device *ndev, int budget, int q)
1050 {
1051 	struct ravb_private *priv = netdev_priv(ndev);
1052 	const struct ravb_hw_info *info = priv->info;
1053 
1054 	return info->receive(ndev, budget, q);
1055 }
1056 
1057 static void ravb_rcv_snd_disable(struct net_device *ndev)
1058 {
1059 	/* Disable TX and RX */
1060 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1061 }
1062 
1063 static void ravb_rcv_snd_enable(struct net_device *ndev)
1064 {
1065 	/* Enable TX and RX */
1066 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1067 }
1068 
1069 /* function for waiting dma process finished */
1070 static int ravb_stop_dma(struct net_device *ndev)
1071 {
1072 	struct ravb_private *priv = netdev_priv(ndev);
1073 	const struct ravb_hw_info *info = priv->info;
1074 	int error;
1075 
1076 	/* Wait for stopping the hardware TX process */
1077 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1078 
1079 	if (error)
1080 		return error;
1081 
1082 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1083 			  0);
1084 	if (error)
1085 		return error;
1086 
1087 	/* Stop the E-MAC's RX/TX processes. */
1088 	ravb_rcv_snd_disable(ndev);
1089 
1090 	/* Wait for stopping the RX DMA process */
1091 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1092 	if (error)
1093 		return error;
1094 
1095 	/* Stop AVB-DMAC process */
1096 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1097 }
1098 
1099 /* E-MAC interrupt handler */
1100 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1101 {
1102 	struct ravb_private *priv = netdev_priv(ndev);
1103 	u32 ecsr, psr;
1104 
1105 	ecsr = ravb_read(ndev, ECSR);
1106 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1107 
1108 	if (ecsr & ECSR_MPD)
1109 		pm_wakeup_event(&priv->pdev->dev, 0);
1110 	if (ecsr & ECSR_ICD)
1111 		ndev->stats.tx_carrier_errors++;
1112 	if (ecsr & ECSR_LCHNG) {
1113 		/* Link changed */
1114 		if (priv->no_avb_link)
1115 			return;
1116 		psr = ravb_read(ndev, PSR);
1117 		if (priv->avb_link_active_low)
1118 			psr ^= PSR_LMON;
1119 		if (!(psr & PSR_LMON)) {
1120 			/* DIsable RX and TX */
1121 			ravb_rcv_snd_disable(ndev);
1122 		} else {
1123 			/* Enable RX and TX */
1124 			ravb_rcv_snd_enable(ndev);
1125 		}
1126 	}
1127 }
1128 
1129 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1130 {
1131 	struct net_device *ndev = dev_id;
1132 	struct ravb_private *priv = netdev_priv(ndev);
1133 	struct device *dev = &priv->pdev->dev;
1134 	irqreturn_t result = IRQ_HANDLED;
1135 
1136 	pm_runtime_get_noresume(dev);
1137 
1138 	if (unlikely(!pm_runtime_active(dev))) {
1139 		result = IRQ_NONE;
1140 		goto out_rpm_put;
1141 	}
1142 
1143 	spin_lock(&priv->lock);
1144 	ravb_emac_interrupt_unlocked(ndev);
1145 	spin_unlock(&priv->lock);
1146 
1147 out_rpm_put:
1148 	pm_runtime_put_noidle(dev);
1149 	return result;
1150 }
1151 
1152 /* Error interrupt handler */
1153 static void ravb_error_interrupt(struct net_device *ndev)
1154 {
1155 	struct ravb_private *priv = netdev_priv(ndev);
1156 	u32 eis, ris2;
1157 
1158 	eis = ravb_read(ndev, EIS);
1159 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1160 	if (eis & EIS_QFS) {
1161 		ris2 = ravb_read(ndev, RIS2);
1162 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1163 			   RIS2);
1164 
1165 		/* Receive Descriptor Empty int */
1166 		if (ris2 & RIS2_QFF0)
1167 			priv->stats[RAVB_BE].rx_over_errors++;
1168 
1169 		/* Receive Descriptor Empty int */
1170 		if (ris2 & RIS2_QFF1)
1171 			priv->stats[RAVB_NC].rx_over_errors++;
1172 
1173 		/* Receive FIFO Overflow int */
1174 		if (ris2 & RIS2_RFFF)
1175 			priv->rx_fifo_errors++;
1176 	}
1177 }
1178 
1179 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1180 {
1181 	struct ravb_private *priv = netdev_priv(ndev);
1182 	const struct ravb_hw_info *info = priv->info;
1183 	u32 ris0 = ravb_read(ndev, RIS0);
1184 	u32 ric0 = ravb_read(ndev, RIC0);
1185 	u32 tis  = ravb_read(ndev, TIS);
1186 	u32 tic  = ravb_read(ndev, TIC);
1187 
1188 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1189 		if (napi_schedule_prep(&priv->napi[q])) {
1190 			/* Mask RX and TX interrupts */
1191 			if (!info->irq_en_dis) {
1192 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1193 				ravb_write(ndev, tic & ~BIT(q), TIC);
1194 			} else {
1195 				ravb_write(ndev, BIT(q), RID0);
1196 				ravb_write(ndev, BIT(q), TID);
1197 			}
1198 			__napi_schedule(&priv->napi[q]);
1199 		} else {
1200 			netdev_warn(ndev,
1201 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1202 				    ris0, ric0);
1203 			netdev_warn(ndev,
1204 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1205 				    tis, tic);
1206 		}
1207 		return true;
1208 	}
1209 	return false;
1210 }
1211 
1212 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1213 {
1214 	u32 tis = ravb_read(ndev, TIS);
1215 
1216 	if (tis & TIS_TFUF) {
1217 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1218 		ravb_get_tx_tstamp(ndev);
1219 		return true;
1220 	}
1221 	return false;
1222 }
1223 
1224 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1225 {
1226 	struct net_device *ndev = dev_id;
1227 	struct ravb_private *priv = netdev_priv(ndev);
1228 	const struct ravb_hw_info *info = priv->info;
1229 	struct device *dev = &priv->pdev->dev;
1230 	irqreturn_t result = IRQ_NONE;
1231 	u32 iss;
1232 
1233 	pm_runtime_get_noresume(dev);
1234 
1235 	if (unlikely(!pm_runtime_active(dev)))
1236 		goto out_rpm_put;
1237 
1238 	spin_lock(&priv->lock);
1239 	/* Get interrupt status */
1240 	iss = ravb_read(ndev, ISS);
1241 
1242 	/* Received and transmitted interrupts */
1243 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1244 		int q;
1245 
1246 		/* Timestamp updated */
1247 		if (ravb_timestamp_interrupt(ndev))
1248 			result = IRQ_HANDLED;
1249 
1250 		/* Network control and best effort queue RX/TX */
1251 		if (info->nc_queues) {
1252 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1253 				if (ravb_queue_interrupt(ndev, q))
1254 					result = IRQ_HANDLED;
1255 			}
1256 		} else {
1257 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1258 				result = IRQ_HANDLED;
1259 		}
1260 	}
1261 
1262 	/* E-MAC status summary */
1263 	if (iss & ISS_MS) {
1264 		ravb_emac_interrupt_unlocked(ndev);
1265 		result = IRQ_HANDLED;
1266 	}
1267 
1268 	/* Error status summary */
1269 	if (iss & ISS_ES) {
1270 		ravb_error_interrupt(ndev);
1271 		result = IRQ_HANDLED;
1272 	}
1273 
1274 	/* gPTP interrupt status summary */
1275 	if (iss & ISS_CGIS) {
1276 		ravb_ptp_interrupt(ndev);
1277 		result = IRQ_HANDLED;
1278 	}
1279 
1280 	spin_unlock(&priv->lock);
1281 
1282 out_rpm_put:
1283 	pm_runtime_put_noidle(dev);
1284 	return result;
1285 }
1286 
1287 /* Timestamp/Error/gPTP interrupt handler */
1288 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1289 {
1290 	struct net_device *ndev = dev_id;
1291 	struct ravb_private *priv = netdev_priv(ndev);
1292 	struct device *dev = &priv->pdev->dev;
1293 	irqreturn_t result = IRQ_NONE;
1294 	u32 iss;
1295 
1296 	pm_runtime_get_noresume(dev);
1297 
1298 	if (unlikely(!pm_runtime_active(dev)))
1299 		goto out_rpm_put;
1300 
1301 	spin_lock(&priv->lock);
1302 	/* Get interrupt status */
1303 	iss = ravb_read(ndev, ISS);
1304 
1305 	/* Timestamp updated */
1306 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1307 		result = IRQ_HANDLED;
1308 
1309 	/* Error status summary */
1310 	if (iss & ISS_ES) {
1311 		ravb_error_interrupt(ndev);
1312 		result = IRQ_HANDLED;
1313 	}
1314 
1315 	/* gPTP interrupt status summary */
1316 	if (iss & ISS_CGIS) {
1317 		ravb_ptp_interrupt(ndev);
1318 		result = IRQ_HANDLED;
1319 	}
1320 
1321 	spin_unlock(&priv->lock);
1322 
1323 out_rpm_put:
1324 	pm_runtime_put_noidle(dev);
1325 	return result;
1326 }
1327 
1328 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1329 {
1330 	struct net_device *ndev = dev_id;
1331 	struct ravb_private *priv = netdev_priv(ndev);
1332 	struct device *dev = &priv->pdev->dev;
1333 	irqreturn_t result = IRQ_NONE;
1334 
1335 	pm_runtime_get_noresume(dev);
1336 
1337 	if (unlikely(!pm_runtime_active(dev)))
1338 		goto out_rpm_put;
1339 
1340 	spin_lock(&priv->lock);
1341 
1342 	/* Network control/Best effort queue RX/TX */
1343 	if (ravb_queue_interrupt(ndev, q))
1344 		result = IRQ_HANDLED;
1345 
1346 	spin_unlock(&priv->lock);
1347 
1348 out_rpm_put:
1349 	pm_runtime_put_noidle(dev);
1350 	return result;
1351 }
1352 
1353 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1354 {
1355 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1356 }
1357 
1358 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1359 {
1360 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1361 }
1362 
1363 static int ravb_poll(struct napi_struct *napi, int budget)
1364 {
1365 	struct net_device *ndev = napi->dev;
1366 	struct ravb_private *priv = netdev_priv(ndev);
1367 	const struct ravb_hw_info *info = priv->info;
1368 	unsigned long flags;
1369 	int q = napi - priv->napi;
1370 	int mask = BIT(q);
1371 	int work_done;
1372 
1373 	/* Processing RX Descriptor Ring */
1374 	/* Clear RX interrupt */
1375 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1376 	work_done = ravb_rx(ndev, budget, q);
1377 
1378 	/* Processing TX Descriptor Ring */
1379 	spin_lock_irqsave(&priv->lock, flags);
1380 	/* Clear TX interrupt */
1381 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1382 	ravb_tx_free(ndev, q, true);
1383 	netif_wake_subqueue(ndev, q);
1384 	spin_unlock_irqrestore(&priv->lock, flags);
1385 
1386 	/* Receive error message handling */
1387 	priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1388 	if (info->nc_queues)
1389 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1390 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1391 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1392 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1393 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1394 
1395 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1396 		/* Re-enable RX/TX interrupts */
1397 		spin_lock_irqsave(&priv->lock, flags);
1398 		if (!info->irq_en_dis) {
1399 			ravb_modify(ndev, RIC0, mask, mask);
1400 			ravb_modify(ndev, TIC,  mask, mask);
1401 		} else {
1402 			ravb_write(ndev, mask, RIE0);
1403 			ravb_write(ndev, mask, TIE);
1404 		}
1405 		spin_unlock_irqrestore(&priv->lock, flags);
1406 	}
1407 
1408 	return work_done;
1409 }
1410 
1411 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1412 {
1413 	struct ravb_private *priv = netdev_priv(ndev);
1414 
1415 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1416 }
1417 
1418 /* PHY state control function */
1419 static void ravb_adjust_link(struct net_device *ndev)
1420 {
1421 	struct ravb_private *priv = netdev_priv(ndev);
1422 	const struct ravb_hw_info *info = priv->info;
1423 	struct phy_device *phydev = ndev->phydev;
1424 	bool new_state = false;
1425 	unsigned long flags;
1426 
1427 	spin_lock_irqsave(&priv->lock, flags);
1428 
1429 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1430 	if (priv->no_avb_link)
1431 		ravb_rcv_snd_disable(ndev);
1432 
1433 	if (phydev->link) {
1434 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1435 			new_state = true;
1436 			priv->duplex = phydev->duplex;
1437 			ravb_set_duplex_gbeth(ndev);
1438 		}
1439 
1440 		if (phydev->speed != priv->speed) {
1441 			new_state = true;
1442 			priv->speed = phydev->speed;
1443 			info->set_rate(ndev);
1444 		}
1445 		if (!priv->link) {
1446 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1447 			new_state = true;
1448 			priv->link = phydev->link;
1449 		}
1450 	} else if (priv->link) {
1451 		new_state = true;
1452 		priv->link = 0;
1453 		priv->speed = 0;
1454 		if (info->half_duplex)
1455 			priv->duplex = -1;
1456 	}
1457 
1458 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1459 	if (priv->no_avb_link && phydev->link)
1460 		ravb_rcv_snd_enable(ndev);
1461 
1462 	spin_unlock_irqrestore(&priv->lock, flags);
1463 
1464 	if (new_state && netif_msg_link(priv))
1465 		phy_print_status(phydev);
1466 }
1467 
1468 /* PHY init function */
1469 static int ravb_phy_init(struct net_device *ndev)
1470 {
1471 	struct device_node *np = ndev->dev.parent->of_node;
1472 	struct ravb_private *priv = netdev_priv(ndev);
1473 	const struct ravb_hw_info *info = priv->info;
1474 	struct phy_device *phydev;
1475 	struct device_node *pn;
1476 	phy_interface_t iface;
1477 	int err;
1478 
1479 	priv->link = 0;
1480 	priv->speed = 0;
1481 	priv->duplex = -1;
1482 
1483 	/* Try connecting to PHY */
1484 	pn = of_parse_phandle(np, "phy-handle", 0);
1485 	if (!pn) {
1486 		/* In the case of a fixed PHY, the DT node associated
1487 		 * to the PHY is the Ethernet MAC DT node.
1488 		 */
1489 		if (of_phy_is_fixed_link(np)) {
1490 			err = of_phy_register_fixed_link(np);
1491 			if (err)
1492 				return err;
1493 		}
1494 		pn = of_node_get(np);
1495 	}
1496 
1497 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1498 				     : priv->phy_interface;
1499 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1500 	of_node_put(pn);
1501 	if (!phydev) {
1502 		netdev_err(ndev, "failed to connect PHY\n");
1503 		err = -ENOENT;
1504 		goto err_deregister_fixed_link;
1505 	}
1506 
1507 	if (!info->half_duplex) {
1508 		/* 10BASE, Pause and Asym Pause is not supported */
1509 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1510 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1511 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1512 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1513 
1514 		/* Half Duplex is not supported */
1515 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1516 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1517 	}
1518 
1519 	phy_attached_info(phydev);
1520 
1521 	return 0;
1522 
1523 err_deregister_fixed_link:
1524 	if (of_phy_is_fixed_link(np))
1525 		of_phy_deregister_fixed_link(np);
1526 
1527 	return err;
1528 }
1529 
1530 /* PHY control start function */
1531 static int ravb_phy_start(struct net_device *ndev)
1532 {
1533 	int error;
1534 
1535 	error = ravb_phy_init(ndev);
1536 	if (error)
1537 		return error;
1538 
1539 	phy_start(ndev->phydev);
1540 
1541 	return 0;
1542 }
1543 
1544 static u32 ravb_get_msglevel(struct net_device *ndev)
1545 {
1546 	struct ravb_private *priv = netdev_priv(ndev);
1547 
1548 	return priv->msg_enable;
1549 }
1550 
1551 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1552 {
1553 	struct ravb_private *priv = netdev_priv(ndev);
1554 
1555 	priv->msg_enable = value;
1556 }
1557 
1558 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1559 	"rx_queue_0_current",
1560 	"tx_queue_0_current",
1561 	"rx_queue_0_dirty",
1562 	"tx_queue_0_dirty",
1563 	"rx_queue_0_packets",
1564 	"tx_queue_0_packets",
1565 	"rx_queue_0_bytes",
1566 	"tx_queue_0_bytes",
1567 	"rx_queue_0_mcast_packets",
1568 	"rx_queue_0_errors",
1569 	"rx_queue_0_crc_errors",
1570 	"rx_queue_0_frame_errors",
1571 	"rx_queue_0_length_errors",
1572 	"rx_queue_0_csum_offload_errors",
1573 	"rx_queue_0_over_errors",
1574 };
1575 
1576 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1577 	"rx_queue_0_current",
1578 	"tx_queue_0_current",
1579 	"rx_queue_0_dirty",
1580 	"tx_queue_0_dirty",
1581 	"rx_queue_0_packets",
1582 	"tx_queue_0_packets",
1583 	"rx_queue_0_bytes",
1584 	"tx_queue_0_bytes",
1585 	"rx_queue_0_mcast_packets",
1586 	"rx_queue_0_errors",
1587 	"rx_queue_0_crc_errors",
1588 	"rx_queue_0_frame_errors",
1589 	"rx_queue_0_length_errors",
1590 	"rx_queue_0_missed_errors",
1591 	"rx_queue_0_over_errors",
1592 
1593 	"rx_queue_1_current",
1594 	"tx_queue_1_current",
1595 	"rx_queue_1_dirty",
1596 	"tx_queue_1_dirty",
1597 	"rx_queue_1_packets",
1598 	"tx_queue_1_packets",
1599 	"rx_queue_1_bytes",
1600 	"tx_queue_1_bytes",
1601 	"rx_queue_1_mcast_packets",
1602 	"rx_queue_1_errors",
1603 	"rx_queue_1_crc_errors",
1604 	"rx_queue_1_frame_errors",
1605 	"rx_queue_1_length_errors",
1606 	"rx_queue_1_missed_errors",
1607 	"rx_queue_1_over_errors",
1608 };
1609 
1610 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1611 {
1612 	struct ravb_private *priv = netdev_priv(netdev);
1613 	const struct ravb_hw_info *info = priv->info;
1614 
1615 	switch (sset) {
1616 	case ETH_SS_STATS:
1617 		return info->stats_len;
1618 	default:
1619 		return -EOPNOTSUPP;
1620 	}
1621 }
1622 
1623 static void ravb_get_ethtool_stats(struct net_device *ndev,
1624 				   struct ethtool_stats *estats, u64 *data)
1625 {
1626 	struct ravb_private *priv = netdev_priv(ndev);
1627 	const struct ravb_hw_info *info = priv->info;
1628 	int num_rx_q;
1629 	int i = 0;
1630 	int q;
1631 
1632 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1633 	/* Device-specific stats */
1634 	for (q = RAVB_BE; q < num_rx_q; q++) {
1635 		struct net_device_stats *stats = &priv->stats[q];
1636 
1637 		data[i++] = priv->cur_rx[q];
1638 		data[i++] = priv->cur_tx[q];
1639 		data[i++] = priv->dirty_rx[q];
1640 		data[i++] = priv->dirty_tx[q];
1641 		data[i++] = stats->rx_packets;
1642 		data[i++] = stats->tx_packets;
1643 		data[i++] = stats->rx_bytes;
1644 		data[i++] = stats->tx_bytes;
1645 		data[i++] = stats->multicast;
1646 		data[i++] = stats->rx_errors;
1647 		data[i++] = stats->rx_crc_errors;
1648 		data[i++] = stats->rx_frame_errors;
1649 		data[i++] = stats->rx_length_errors;
1650 		data[i++] = stats->rx_missed_errors;
1651 		data[i++] = stats->rx_over_errors;
1652 	}
1653 }
1654 
1655 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1656 {
1657 	struct ravb_private *priv = netdev_priv(ndev);
1658 	const struct ravb_hw_info *info = priv->info;
1659 
1660 	switch (stringset) {
1661 	case ETH_SS_STATS:
1662 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1663 		break;
1664 	}
1665 }
1666 
1667 static void ravb_get_ringparam(struct net_device *ndev,
1668 			       struct ethtool_ringparam *ring,
1669 			       struct kernel_ethtool_ringparam *kernel_ring,
1670 			       struct netlink_ext_ack *extack)
1671 {
1672 	struct ravb_private *priv = netdev_priv(ndev);
1673 
1674 	ring->rx_max_pending = BE_RX_RING_MAX;
1675 	ring->tx_max_pending = BE_TX_RING_MAX;
1676 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1677 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1678 }
1679 
1680 static int ravb_set_ringparam(struct net_device *ndev,
1681 			      struct ethtool_ringparam *ring,
1682 			      struct kernel_ethtool_ringparam *kernel_ring,
1683 			      struct netlink_ext_ack *extack)
1684 {
1685 	struct ravb_private *priv = netdev_priv(ndev);
1686 	const struct ravb_hw_info *info = priv->info;
1687 	int error;
1688 
1689 	if (ring->tx_pending > BE_TX_RING_MAX ||
1690 	    ring->rx_pending > BE_RX_RING_MAX ||
1691 	    ring->tx_pending < BE_TX_RING_MIN ||
1692 	    ring->rx_pending < BE_RX_RING_MIN)
1693 		return -EINVAL;
1694 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1695 		return -EINVAL;
1696 
1697 	if (netif_running(ndev)) {
1698 		netif_device_detach(ndev);
1699 		/* Stop PTP Clock driver */
1700 		if (info->gptp)
1701 			ravb_ptp_stop(ndev);
1702 		/* Wait for DMA stopping */
1703 		error = ravb_stop_dma(ndev);
1704 		if (error) {
1705 			netdev_err(ndev,
1706 				   "cannot set ringparam! Any AVB processes are still running?\n");
1707 			return error;
1708 		}
1709 		synchronize_irq(ndev->irq);
1710 
1711 		/* Free all the skb's in the RX queue and the DMA buffers. */
1712 		ravb_ring_free(ndev, RAVB_BE);
1713 		if (info->nc_queues)
1714 			ravb_ring_free(ndev, RAVB_NC);
1715 	}
1716 
1717 	/* Set new parameters */
1718 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1719 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1720 
1721 	if (netif_running(ndev)) {
1722 		error = ravb_dmac_init(ndev);
1723 		if (error) {
1724 			netdev_err(ndev,
1725 				   "%s: ravb_dmac_init() failed, error %d\n",
1726 				   __func__, error);
1727 			return error;
1728 		}
1729 
1730 		ravb_emac_init(ndev);
1731 
1732 		/* Initialise PTP Clock driver */
1733 		if (info->gptp)
1734 			ravb_ptp_init(ndev, priv->pdev);
1735 
1736 		netif_device_attach(ndev);
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static int ravb_get_ts_info(struct net_device *ndev,
1743 			    struct kernel_ethtool_ts_info *info)
1744 {
1745 	struct ravb_private *priv = netdev_priv(ndev);
1746 	const struct ravb_hw_info *hw_info = priv->info;
1747 
1748 	if (hw_info->gptp || hw_info->ccc_gac) {
1749 		info->so_timestamping =
1750 			SOF_TIMESTAMPING_TX_SOFTWARE |
1751 			SOF_TIMESTAMPING_TX_HARDWARE |
1752 			SOF_TIMESTAMPING_RX_HARDWARE |
1753 			SOF_TIMESTAMPING_RAW_HARDWARE;
1754 		info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1755 		info->rx_filters =
1756 			(1 << HWTSTAMP_FILTER_NONE) |
1757 			(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1758 			(1 << HWTSTAMP_FILTER_ALL);
1759 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1766 {
1767 	struct ravb_private *priv = netdev_priv(ndev);
1768 
1769 	wol->supported = WAKE_MAGIC;
1770 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1771 }
1772 
1773 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1774 {
1775 	struct ravb_private *priv = netdev_priv(ndev);
1776 	const struct ravb_hw_info *info = priv->info;
1777 
1778 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1779 		return -EOPNOTSUPP;
1780 
1781 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1782 
1783 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1784 
1785 	return 0;
1786 }
1787 
1788 static const struct ethtool_ops ravb_ethtool_ops = {
1789 	.nway_reset		= phy_ethtool_nway_reset,
1790 	.get_msglevel		= ravb_get_msglevel,
1791 	.set_msglevel		= ravb_set_msglevel,
1792 	.get_link		= ethtool_op_get_link,
1793 	.get_strings		= ravb_get_strings,
1794 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1795 	.get_sset_count		= ravb_get_sset_count,
1796 	.get_ringparam		= ravb_get_ringparam,
1797 	.set_ringparam		= ravb_set_ringparam,
1798 	.get_ts_info		= ravb_get_ts_info,
1799 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1800 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1801 	.get_wol		= ravb_get_wol,
1802 	.set_wol		= ravb_set_wol,
1803 };
1804 
1805 static int ravb_set_config_mode(struct net_device *ndev)
1806 {
1807 	struct ravb_private *priv = netdev_priv(ndev);
1808 	const struct ravb_hw_info *info = priv->info;
1809 	int error;
1810 
1811 	if (info->gptp) {
1812 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1813 		if (error)
1814 			return error;
1815 		/* Set CSEL value */
1816 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1817 	} else if (info->ccc_gac) {
1818 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1819 	} else {
1820 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1821 	}
1822 
1823 	return error;
1824 }
1825 
1826 static void ravb_set_gti(struct net_device *ndev)
1827 {
1828 	struct ravb_private *priv = netdev_priv(ndev);
1829 	const struct ravb_hw_info *info = priv->info;
1830 
1831 	if (!(info->gptp || info->ccc_gac))
1832 		return;
1833 
1834 	ravb_write(ndev, priv->gti_tiv, GTI);
1835 
1836 	/* Request GTI loading */
1837 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1838 }
1839 
1840 static int ravb_compute_gti(struct net_device *ndev)
1841 {
1842 	struct ravb_private *priv = netdev_priv(ndev);
1843 	const struct ravb_hw_info *info = priv->info;
1844 	struct device *dev = ndev->dev.parent;
1845 	unsigned long rate;
1846 	u64 inc;
1847 
1848 	if (!(info->gptp || info->ccc_gac))
1849 		return 0;
1850 
1851 	if (info->gptp_ref_clk)
1852 		rate = clk_get_rate(priv->gptp_clk);
1853 	else
1854 		rate = clk_get_rate(priv->clk);
1855 	if (!rate)
1856 		return -EINVAL;
1857 
1858 	inc = div64_ul(1000000000ULL << 20, rate);
1859 
1860 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1861 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1862 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1863 		return -EINVAL;
1864 	}
1865 	priv->gti_tiv = inc;
1866 
1867 	return 0;
1868 }
1869 
1870 /* Set tx and rx clock internal delay modes */
1871 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1872 {
1873 	struct ravb_private *priv = netdev_priv(ndev);
1874 	bool explicit_delay = false;
1875 	u32 delay;
1876 
1877 	if (!priv->info->internal_delay)
1878 		return;
1879 
1880 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1881 		/* Valid values are 0 and 1800, according to DT bindings */
1882 		priv->rxcidm = !!delay;
1883 		explicit_delay = true;
1884 	}
1885 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1886 		/* Valid values are 0 and 2000, according to DT bindings */
1887 		priv->txcidm = !!delay;
1888 		explicit_delay = true;
1889 	}
1890 
1891 	if (explicit_delay)
1892 		return;
1893 
1894 	/* Fall back to legacy rgmii-*id behavior */
1895 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1896 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1897 		priv->rxcidm = 1;
1898 		priv->rgmii_override = 1;
1899 	}
1900 
1901 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1902 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1903 		priv->txcidm = 1;
1904 		priv->rgmii_override = 1;
1905 	}
1906 }
1907 
1908 static void ravb_set_delay_mode(struct net_device *ndev)
1909 {
1910 	struct ravb_private *priv = netdev_priv(ndev);
1911 	u32 set = 0;
1912 
1913 	if (!priv->info->internal_delay)
1914 		return;
1915 
1916 	if (priv->rxcidm)
1917 		set |= APSR_RDM;
1918 	if (priv->txcidm)
1919 		set |= APSR_TDM;
1920 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1921 }
1922 
1923 /* Network device open function for Ethernet AVB */
1924 static int ravb_open(struct net_device *ndev)
1925 {
1926 	struct ravb_private *priv = netdev_priv(ndev);
1927 	const struct ravb_hw_info *info = priv->info;
1928 	struct device *dev = &priv->pdev->dev;
1929 	int error;
1930 
1931 	napi_enable(&priv->napi[RAVB_BE]);
1932 	if (info->nc_queues)
1933 		napi_enable(&priv->napi[RAVB_NC]);
1934 
1935 	error = pm_runtime_resume_and_get(dev);
1936 	if (error < 0)
1937 		goto out_napi_off;
1938 
1939 	/* Set AVB config mode */
1940 	error = ravb_set_config_mode(ndev);
1941 	if (error)
1942 		goto out_rpm_put;
1943 
1944 	ravb_set_delay_mode(ndev);
1945 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1946 
1947 	/* Device init */
1948 	error = ravb_dmac_init(ndev);
1949 	if (error)
1950 		goto out_set_reset;
1951 
1952 	ravb_emac_init(ndev);
1953 
1954 	ravb_set_gti(ndev);
1955 
1956 	/* Initialise PTP Clock driver */
1957 	if (info->gptp || info->ccc_gac)
1958 		ravb_ptp_init(ndev, priv->pdev);
1959 
1960 	/* PHY control start */
1961 	error = ravb_phy_start(ndev);
1962 	if (error)
1963 		goto out_ptp_stop;
1964 
1965 	netif_tx_start_all_queues(ndev);
1966 
1967 	return 0;
1968 
1969 out_ptp_stop:
1970 	/* Stop PTP Clock driver */
1971 	if (info->gptp || info->ccc_gac)
1972 		ravb_ptp_stop(ndev);
1973 	ravb_stop_dma(ndev);
1974 out_set_reset:
1975 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1976 out_rpm_put:
1977 	pm_runtime_mark_last_busy(dev);
1978 	pm_runtime_put_autosuspend(dev);
1979 out_napi_off:
1980 	if (info->nc_queues)
1981 		napi_disable(&priv->napi[RAVB_NC]);
1982 	napi_disable(&priv->napi[RAVB_BE]);
1983 	return error;
1984 }
1985 
1986 /* Timeout function for Ethernet AVB */
1987 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1988 {
1989 	struct ravb_private *priv = netdev_priv(ndev);
1990 
1991 	netif_err(priv, tx_err, ndev,
1992 		  "transmit timed out, status %08x, resetting...\n",
1993 		  ravb_read(ndev, ISS));
1994 
1995 	/* tx_errors count up */
1996 	ndev->stats.tx_errors++;
1997 
1998 	schedule_work(&priv->work);
1999 }
2000 
2001 static void ravb_tx_timeout_work(struct work_struct *work)
2002 {
2003 	struct ravb_private *priv = container_of(work, struct ravb_private,
2004 						 work);
2005 	const struct ravb_hw_info *info = priv->info;
2006 	struct net_device *ndev = priv->ndev;
2007 	int error;
2008 
2009 	if (!rtnl_trylock()) {
2010 		usleep_range(1000, 2000);
2011 		schedule_work(&priv->work);
2012 		return;
2013 	}
2014 
2015 	netif_tx_stop_all_queues(ndev);
2016 
2017 	/* Stop PTP Clock driver */
2018 	if (info->gptp)
2019 		ravb_ptp_stop(ndev);
2020 
2021 	/* Wait for DMA stopping */
2022 	if (ravb_stop_dma(ndev)) {
2023 		/* If ravb_stop_dma() fails, the hardware is still operating
2024 		 * for TX and/or RX. So, this should not call the following
2025 		 * functions because ravb_dmac_init() is possible to fail too.
2026 		 * Also, this should not retry ravb_stop_dma() again and again
2027 		 * here because it's possible to wait forever. So, this just
2028 		 * re-enables the TX and RX and skip the following
2029 		 * re-initialization procedure.
2030 		 */
2031 		ravb_rcv_snd_enable(ndev);
2032 		goto out;
2033 	}
2034 
2035 	ravb_ring_free(ndev, RAVB_BE);
2036 	if (info->nc_queues)
2037 		ravb_ring_free(ndev, RAVB_NC);
2038 
2039 	/* Device init */
2040 	error = ravb_dmac_init(ndev);
2041 	if (error) {
2042 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2043 		 * should return here to avoid re-enabling the TX and RX in
2044 		 * ravb_emac_init().
2045 		 */
2046 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2047 			   __func__, error);
2048 		goto out_unlock;
2049 	}
2050 	ravb_emac_init(ndev);
2051 
2052 out:
2053 	/* Initialise PTP Clock driver */
2054 	if (info->gptp)
2055 		ravb_ptp_init(ndev, priv->pdev);
2056 
2057 	netif_tx_start_all_queues(ndev);
2058 
2059 out_unlock:
2060 	rtnl_unlock();
2061 }
2062 
2063 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2064 {
2065 	u16 net_protocol = ntohs(skb->protocol);
2066 	u8 inner_protocol;
2067 
2068 	/* GbEth IP can calculate the checksum if:
2069 	 * - there are zero or one VLAN headers with TPID=0x8100
2070 	 * - the network protocol is IPv4 or IPv6
2071 	 * - the transport protocol is TCP, UDP or ICMP
2072 	 * - the packet is not fragmented
2073 	 */
2074 
2075 	if (net_protocol == ETH_P_8021Q) {
2076 		struct vlan_hdr vhdr, *vh;
2077 
2078 		vh = skb_header_pointer(skb, ETH_HLEN, sizeof(vhdr), &vhdr);
2079 		if (!vh)
2080 			return false;
2081 
2082 		net_protocol = ntohs(vh->h_vlan_encapsulated_proto);
2083 	}
2084 
2085 	switch (net_protocol) {
2086 	case ETH_P_IP:
2087 		inner_protocol = ip_hdr(skb)->protocol;
2088 		break;
2089 	case ETH_P_IPV6:
2090 		inner_protocol = ipv6_hdr(skb)->nexthdr;
2091 		break;
2092 	default:
2093 		return false;
2094 	}
2095 
2096 	switch (inner_protocol) {
2097 	case IPPROTO_TCP:
2098 	case IPPROTO_UDP:
2099 		return true;
2100 	default:
2101 		return false;
2102 	}
2103 }
2104 
2105 /* Packet transmit function for Ethernet AVB */
2106 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2107 {
2108 	struct ravb_private *priv = netdev_priv(ndev);
2109 	const struct ravb_hw_info *info = priv->info;
2110 	unsigned int num_tx_desc = priv->num_tx_desc;
2111 	u16 q = skb_get_queue_mapping(skb);
2112 	struct ravb_tstamp_skb *ts_skb;
2113 	struct ravb_tx_desc *desc;
2114 	unsigned long flags;
2115 	dma_addr_t dma_addr;
2116 	void *buffer;
2117 	u32 entry;
2118 	u32 len;
2119 
2120 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2121 		skb_checksum_help(skb);
2122 
2123 	spin_lock_irqsave(&priv->lock, flags);
2124 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2125 	    num_tx_desc) {
2126 		netif_err(priv, tx_queued, ndev,
2127 			  "still transmitting with the full ring!\n");
2128 		netif_stop_subqueue(ndev, q);
2129 		spin_unlock_irqrestore(&priv->lock, flags);
2130 		return NETDEV_TX_BUSY;
2131 	}
2132 
2133 	if (skb_put_padto(skb, ETH_ZLEN))
2134 		goto exit;
2135 
2136 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2137 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2138 
2139 	if (num_tx_desc > 1) {
2140 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2141 			 entry / num_tx_desc * DPTR_ALIGN;
2142 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2143 
2144 		/* Zero length DMA descriptors are problematic as they seem
2145 		 * to terminate DMA transfers. Avoid them by simply using a
2146 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2147 		 * DPTR_ALIGN.
2148 		 *
2149 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2150 		 * bytes of data by the call to skb_put_padto() above this
2151 		 * is safe with respect to both the length of the first DMA
2152 		 * descriptor (len) overflowing the available data and the
2153 		 * length of the second DMA descriptor (skb->len - len)
2154 		 * being negative.
2155 		 */
2156 		if (len == 0)
2157 			len = DPTR_ALIGN;
2158 
2159 		memcpy(buffer, skb->data, len);
2160 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2161 					  DMA_TO_DEVICE);
2162 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2163 			goto drop;
2164 
2165 		desc = &priv->tx_ring[q][entry];
2166 		desc->ds_tagl = cpu_to_le16(len);
2167 		desc->dptr = cpu_to_le32(dma_addr);
2168 
2169 		buffer = skb->data + len;
2170 		len = skb->len - len;
2171 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2172 					  DMA_TO_DEVICE);
2173 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2174 			goto unmap;
2175 
2176 		desc++;
2177 	} else {
2178 		desc = &priv->tx_ring[q][entry];
2179 		len = skb->len;
2180 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2181 					  DMA_TO_DEVICE);
2182 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2183 			goto drop;
2184 	}
2185 	desc->ds_tagl = cpu_to_le16(len);
2186 	desc->dptr = cpu_to_le32(dma_addr);
2187 
2188 	/* TX timestamp required */
2189 	if (info->gptp || info->ccc_gac) {
2190 		if (q == RAVB_NC) {
2191 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2192 			if (!ts_skb) {
2193 				if (num_tx_desc > 1) {
2194 					desc--;
2195 					dma_unmap_single(ndev->dev.parent, dma_addr,
2196 							 len, DMA_TO_DEVICE);
2197 				}
2198 				goto unmap;
2199 			}
2200 			ts_skb->skb = skb_get(skb);
2201 			ts_skb->tag = priv->ts_skb_tag++;
2202 			priv->ts_skb_tag &= 0x3ff;
2203 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2204 
2205 			/* TAG and timestamp required flag */
2206 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2207 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2208 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2209 		}
2210 
2211 		skb_tx_timestamp(skb);
2212 	}
2213 	/* Descriptor type must be set after all the above writes */
2214 	dma_wmb();
2215 	if (num_tx_desc > 1) {
2216 		desc->die_dt = DT_FEND;
2217 		desc--;
2218 		desc->die_dt = DT_FSTART;
2219 	} else {
2220 		desc->die_dt = DT_FSINGLE;
2221 	}
2222 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2223 
2224 	priv->cur_tx[q] += num_tx_desc;
2225 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2226 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2227 	    !ravb_tx_free(ndev, q, true))
2228 		netif_stop_subqueue(ndev, q);
2229 
2230 exit:
2231 	spin_unlock_irqrestore(&priv->lock, flags);
2232 	return NETDEV_TX_OK;
2233 
2234 unmap:
2235 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2236 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2237 drop:
2238 	dev_kfree_skb_any(skb);
2239 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2240 	goto exit;
2241 }
2242 
2243 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2244 			     struct net_device *sb_dev)
2245 {
2246 	/* If skb needs TX timestamp, it is handled in network control queue */
2247 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2248 							       RAVB_BE;
2249 
2250 }
2251 
2252 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2253 {
2254 	struct ravb_private *priv = netdev_priv(ndev);
2255 	const struct ravb_hw_info *info = priv->info;
2256 	struct net_device_stats *nstats, *stats0, *stats1;
2257 	struct device *dev = &priv->pdev->dev;
2258 
2259 	nstats = &ndev->stats;
2260 
2261 	pm_runtime_get_noresume(dev);
2262 
2263 	if (!pm_runtime_active(dev))
2264 		goto out_rpm_put;
2265 
2266 	stats0 = &priv->stats[RAVB_BE];
2267 
2268 	if (info->tx_counters) {
2269 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2270 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2271 	}
2272 
2273 	if (info->carrier_counters) {
2274 		nstats->collisions += ravb_read(ndev, CXR41);
2275 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2276 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2277 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2278 	}
2279 
2280 	nstats->rx_packets = stats0->rx_packets;
2281 	nstats->tx_packets = stats0->tx_packets;
2282 	nstats->rx_bytes = stats0->rx_bytes;
2283 	nstats->tx_bytes = stats0->tx_bytes;
2284 	nstats->multicast = stats0->multicast;
2285 	nstats->rx_errors = stats0->rx_errors;
2286 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2287 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2288 	nstats->rx_length_errors = stats0->rx_length_errors;
2289 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2290 	nstats->rx_over_errors = stats0->rx_over_errors;
2291 	if (info->nc_queues) {
2292 		stats1 = &priv->stats[RAVB_NC];
2293 
2294 		nstats->rx_packets += stats1->rx_packets;
2295 		nstats->tx_packets += stats1->tx_packets;
2296 		nstats->rx_bytes += stats1->rx_bytes;
2297 		nstats->tx_bytes += stats1->tx_bytes;
2298 		nstats->multicast += stats1->multicast;
2299 		nstats->rx_errors += stats1->rx_errors;
2300 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2301 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2302 		nstats->rx_length_errors += stats1->rx_length_errors;
2303 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2304 		nstats->rx_over_errors += stats1->rx_over_errors;
2305 	}
2306 
2307 out_rpm_put:
2308 	pm_runtime_put_noidle(dev);
2309 	return nstats;
2310 }
2311 
2312 /* Update promiscuous bit */
2313 static void ravb_set_rx_mode(struct net_device *ndev)
2314 {
2315 	struct ravb_private *priv = netdev_priv(ndev);
2316 	unsigned long flags;
2317 
2318 	spin_lock_irqsave(&priv->lock, flags);
2319 	ravb_modify(ndev, ECMR, ECMR_PRM,
2320 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2321 	spin_unlock_irqrestore(&priv->lock, flags);
2322 }
2323 
2324 /* Device close function for Ethernet AVB */
2325 static int ravb_close(struct net_device *ndev)
2326 {
2327 	struct device_node *np = ndev->dev.parent->of_node;
2328 	struct ravb_private *priv = netdev_priv(ndev);
2329 	const struct ravb_hw_info *info = priv->info;
2330 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2331 	struct device *dev = &priv->pdev->dev;
2332 	int error;
2333 
2334 	netif_tx_stop_all_queues(ndev);
2335 
2336 	/* Disable interrupts by clearing the interrupt masks. */
2337 	ravb_write(ndev, 0, RIC0);
2338 	ravb_write(ndev, 0, RIC2);
2339 	ravb_write(ndev, 0, TIC);
2340 
2341 	/* PHY disconnect */
2342 	if (ndev->phydev) {
2343 		phy_stop(ndev->phydev);
2344 		phy_disconnect(ndev->phydev);
2345 		if (of_phy_is_fixed_link(np))
2346 			of_phy_deregister_fixed_link(np);
2347 	}
2348 
2349 	/* Stop PTP Clock driver */
2350 	if (info->gptp || info->ccc_gac)
2351 		ravb_ptp_stop(ndev);
2352 
2353 	/* Set the config mode to stop the AVB-DMAC's processes */
2354 	if (ravb_stop_dma(ndev) < 0)
2355 		netdev_err(ndev,
2356 			   "device will be stopped after h/w processes are done.\n");
2357 
2358 	/* Clear the timestamp list */
2359 	if (info->gptp || info->ccc_gac) {
2360 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2361 			list_del(&ts_skb->list);
2362 			kfree_skb(ts_skb->skb);
2363 			kfree(ts_skb);
2364 		}
2365 	}
2366 
2367 	cancel_work_sync(&priv->work);
2368 
2369 	if (info->nc_queues)
2370 		napi_disable(&priv->napi[RAVB_NC]);
2371 	napi_disable(&priv->napi[RAVB_BE]);
2372 
2373 	/* Free all the skb's in the RX queue and the DMA buffers. */
2374 	ravb_ring_free(ndev, RAVB_BE);
2375 	if (info->nc_queues)
2376 		ravb_ring_free(ndev, RAVB_NC);
2377 
2378 	/* Update statistics. */
2379 	ravb_get_stats(ndev);
2380 
2381 	/* Set reset mode. */
2382 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2383 	if (error)
2384 		return error;
2385 
2386 	pm_runtime_mark_last_busy(dev);
2387 	pm_runtime_put_autosuspend(dev);
2388 
2389 	return 0;
2390 }
2391 
2392 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2393 {
2394 	struct ravb_private *priv = netdev_priv(ndev);
2395 	struct hwtstamp_config config;
2396 
2397 	config.flags = 0;
2398 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2399 						HWTSTAMP_TX_OFF;
2400 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2401 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2402 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2403 		break;
2404 	case RAVB_RXTSTAMP_TYPE_ALL:
2405 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2406 		break;
2407 	default:
2408 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2409 	}
2410 
2411 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2412 		-EFAULT : 0;
2413 }
2414 
2415 /* Control hardware time stamping */
2416 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2417 {
2418 	struct ravb_private *priv = netdev_priv(ndev);
2419 	struct hwtstamp_config config;
2420 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2421 	u32 tstamp_tx_ctrl;
2422 
2423 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2424 		return -EFAULT;
2425 
2426 	switch (config.tx_type) {
2427 	case HWTSTAMP_TX_OFF:
2428 		tstamp_tx_ctrl = 0;
2429 		break;
2430 	case HWTSTAMP_TX_ON:
2431 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2432 		break;
2433 	default:
2434 		return -ERANGE;
2435 	}
2436 
2437 	switch (config.rx_filter) {
2438 	case HWTSTAMP_FILTER_NONE:
2439 		tstamp_rx_ctrl = 0;
2440 		break;
2441 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2442 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2443 		break;
2444 	default:
2445 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2446 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2447 	}
2448 
2449 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2450 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2451 
2452 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2453 		-EFAULT : 0;
2454 }
2455 
2456 /* ioctl to device function */
2457 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2458 {
2459 	struct phy_device *phydev = ndev->phydev;
2460 
2461 	if (!netif_running(ndev))
2462 		return -EINVAL;
2463 
2464 	if (!phydev)
2465 		return -ENODEV;
2466 
2467 	switch (cmd) {
2468 	case SIOCGHWTSTAMP:
2469 		return ravb_hwtstamp_get(ndev, req);
2470 	case SIOCSHWTSTAMP:
2471 		return ravb_hwtstamp_set(ndev, req);
2472 	}
2473 
2474 	return phy_mii_ioctl(phydev, req, cmd);
2475 }
2476 
2477 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2478 {
2479 	struct ravb_private *priv = netdev_priv(ndev);
2480 
2481 	WRITE_ONCE(ndev->mtu, new_mtu);
2482 
2483 	if (netif_running(ndev)) {
2484 		synchronize_irq(priv->emac_irq);
2485 		ravb_emac_init(ndev);
2486 	}
2487 
2488 	netdev_update_features(ndev);
2489 
2490 	return 0;
2491 }
2492 
2493 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2494 {
2495 	struct ravb_private *priv = netdev_priv(ndev);
2496 	unsigned long flags;
2497 
2498 	spin_lock_irqsave(&priv->lock, flags);
2499 
2500 	/* Disable TX and RX */
2501 	ravb_rcv_snd_disable(ndev);
2502 
2503 	/* Modify RX Checksum setting */
2504 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2505 
2506 	/* Enable TX and RX */
2507 	ravb_rcv_snd_enable(ndev);
2508 
2509 	spin_unlock_irqrestore(&priv->lock, flags);
2510 }
2511 
2512 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2513 				     u32 val, u32 mask)
2514 {
2515 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2516 	int ret;
2517 
2518 	ravb_write(ndev, csr0 & ~mask, CSR0);
2519 	ret = ravb_wait(ndev, CSR0, mask, 0);
2520 	if (!ret)
2521 		ravb_write(ndev, val, reg);
2522 
2523 	ravb_write(ndev, csr0, CSR0);
2524 
2525 	return ret;
2526 }
2527 
2528 static int ravb_set_features_gbeth(struct net_device *ndev,
2529 				   netdev_features_t features)
2530 {
2531 	netdev_features_t changed = ndev->features ^ features;
2532 	struct ravb_private *priv = netdev_priv(ndev);
2533 	unsigned long flags;
2534 	int ret = 0;
2535 	u32 val;
2536 
2537 	spin_lock_irqsave(&priv->lock, flags);
2538 	if (changed & NETIF_F_RXCSUM) {
2539 		if (features & NETIF_F_RXCSUM)
2540 			val = CSR2_CSUM_ENABLE;
2541 		else
2542 			val = 0;
2543 
2544 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2545 		if (ret)
2546 			goto done;
2547 	}
2548 
2549 	if (changed & NETIF_F_HW_CSUM) {
2550 		if (features & NETIF_F_HW_CSUM)
2551 			val = CSR1_CSUM_ENABLE;
2552 		else
2553 			val = 0;
2554 
2555 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2556 		if (ret)
2557 			goto done;
2558 	}
2559 
2560 done:
2561 	spin_unlock_irqrestore(&priv->lock, flags);
2562 
2563 	return ret;
2564 }
2565 
2566 static int ravb_set_features_rcar(struct net_device *ndev,
2567 				  netdev_features_t features)
2568 {
2569 	netdev_features_t changed = ndev->features ^ features;
2570 
2571 	if (changed & NETIF_F_RXCSUM)
2572 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2573 
2574 	return 0;
2575 }
2576 
2577 static int ravb_set_features(struct net_device *ndev,
2578 			     netdev_features_t features)
2579 {
2580 	struct ravb_private *priv = netdev_priv(ndev);
2581 	const struct ravb_hw_info *info = priv->info;
2582 	struct device *dev = &priv->pdev->dev;
2583 	int ret;
2584 
2585 	pm_runtime_get_noresume(dev);
2586 
2587 	if (pm_runtime_active(dev))
2588 		ret = info->set_feature(ndev, features);
2589 	else
2590 		ret = 0;
2591 
2592 	pm_runtime_put_noidle(dev);
2593 
2594 	if (ret)
2595 		return ret;
2596 
2597 	ndev->features = features;
2598 
2599 	return 0;
2600 }
2601 
2602 static const struct net_device_ops ravb_netdev_ops = {
2603 	.ndo_open		= ravb_open,
2604 	.ndo_stop		= ravb_close,
2605 	.ndo_start_xmit		= ravb_start_xmit,
2606 	.ndo_select_queue	= ravb_select_queue,
2607 	.ndo_get_stats		= ravb_get_stats,
2608 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2609 	.ndo_tx_timeout		= ravb_tx_timeout,
2610 	.ndo_eth_ioctl		= ravb_do_ioctl,
2611 	.ndo_change_mtu		= ravb_change_mtu,
2612 	.ndo_validate_addr	= eth_validate_addr,
2613 	.ndo_set_mac_address	= eth_mac_addr,
2614 	.ndo_set_features	= ravb_set_features,
2615 };
2616 
2617 /* MDIO bus init function */
2618 static int ravb_mdio_init(struct ravb_private *priv)
2619 {
2620 	struct platform_device *pdev = priv->pdev;
2621 	struct device *dev = &pdev->dev;
2622 	struct device_node *mdio_node;
2623 	struct phy_device *phydev;
2624 	struct device_node *pn;
2625 	int error;
2626 
2627 	/* Bitbang init */
2628 	priv->mdiobb.ops = &bb_ops;
2629 
2630 	/* MII controller setting */
2631 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2632 	if (!priv->mii_bus)
2633 		return -ENOMEM;
2634 
2635 	/* Hook up MII support for ethtool */
2636 	priv->mii_bus->name = "ravb_mii";
2637 	priv->mii_bus->parent = dev;
2638 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2639 		 pdev->name, pdev->id);
2640 
2641 	/* Register MDIO bus */
2642 	mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2643 	if (!mdio_node) {
2644 		/* backwards compatibility for DT lacking mdio subnode */
2645 		mdio_node = of_node_get(dev->of_node);
2646 	}
2647 	error = of_mdiobus_register(priv->mii_bus, mdio_node);
2648 	of_node_put(mdio_node);
2649 	if (error)
2650 		goto out_free_bus;
2651 
2652 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2653 	phydev = of_phy_find_device(pn);
2654 	if (phydev) {
2655 		phydev->mac_managed_pm = true;
2656 		put_device(&phydev->mdio.dev);
2657 	}
2658 	of_node_put(pn);
2659 
2660 	return 0;
2661 
2662 out_free_bus:
2663 	free_mdio_bitbang(priv->mii_bus);
2664 	return error;
2665 }
2666 
2667 /* MDIO bus release function */
2668 static int ravb_mdio_release(struct ravb_private *priv)
2669 {
2670 	/* Unregister mdio bus */
2671 	mdiobus_unregister(priv->mii_bus);
2672 
2673 	/* Free bitbang info */
2674 	free_mdio_bitbang(priv->mii_bus);
2675 
2676 	return 0;
2677 }
2678 
2679 static const struct ravb_hw_info ravb_gen2_hw_info = {
2680 	.receive = ravb_rx_rcar,
2681 	.set_rate = ravb_set_rate_rcar,
2682 	.set_feature = ravb_set_features_rcar,
2683 	.dmac_init = ravb_dmac_init_rcar,
2684 	.emac_init = ravb_emac_init_rcar,
2685 	.gstrings_stats = ravb_gstrings_stats,
2686 	.gstrings_size = sizeof(ravb_gstrings_stats),
2687 	.net_hw_features = NETIF_F_RXCSUM,
2688 	.net_features = NETIF_F_RXCSUM,
2689 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2690 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2691 	.tx_max_frame_size = SZ_2K,
2692 	.rx_max_frame_size = SZ_2K,
2693 	.rx_buffer_size = SZ_2K +
2694 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2695 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2696 	.aligned_tx = 1,
2697 	.gptp = 1,
2698 	.nc_queues = 1,
2699 	.magic_pkt = 1,
2700 };
2701 
2702 static const struct ravb_hw_info ravb_gen3_hw_info = {
2703 	.receive = ravb_rx_rcar,
2704 	.set_rate = ravb_set_rate_rcar,
2705 	.set_feature = ravb_set_features_rcar,
2706 	.dmac_init = ravb_dmac_init_rcar,
2707 	.emac_init = ravb_emac_init_rcar,
2708 	.gstrings_stats = ravb_gstrings_stats,
2709 	.gstrings_size = sizeof(ravb_gstrings_stats),
2710 	.net_hw_features = NETIF_F_RXCSUM,
2711 	.net_features = NETIF_F_RXCSUM,
2712 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2713 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2714 	.tx_max_frame_size = SZ_2K,
2715 	.rx_max_frame_size = SZ_2K,
2716 	.rx_buffer_size = SZ_2K +
2717 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2718 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2719 	.internal_delay = 1,
2720 	.tx_counters = 1,
2721 	.multi_irqs = 1,
2722 	.irq_en_dis = 1,
2723 	.ccc_gac = 1,
2724 	.nc_queues = 1,
2725 	.magic_pkt = 1,
2726 };
2727 
2728 static const struct ravb_hw_info ravb_gen4_hw_info = {
2729 	.receive = ravb_rx_rcar,
2730 	.set_rate = ravb_set_rate_rcar,
2731 	.set_feature = ravb_set_features_rcar,
2732 	.dmac_init = ravb_dmac_init_rcar,
2733 	.emac_init = ravb_emac_init_rcar_gen4,
2734 	.gstrings_stats = ravb_gstrings_stats,
2735 	.gstrings_size = sizeof(ravb_gstrings_stats),
2736 	.net_hw_features = NETIF_F_RXCSUM,
2737 	.net_features = NETIF_F_RXCSUM,
2738 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2739 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2740 	.tx_max_frame_size = SZ_2K,
2741 	.rx_max_frame_size = SZ_2K,
2742 	.rx_buffer_size = SZ_2K +
2743 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2744 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2745 	.internal_delay = 1,
2746 	.tx_counters = 1,
2747 	.multi_irqs = 1,
2748 	.irq_en_dis = 1,
2749 	.ccc_gac = 1,
2750 	.nc_queues = 1,
2751 	.magic_pkt = 1,
2752 };
2753 
2754 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2755 	.receive = ravb_rx_rcar,
2756 	.set_rate = ravb_set_rate_rcar,
2757 	.set_feature = ravb_set_features_rcar,
2758 	.dmac_init = ravb_dmac_init_rcar,
2759 	.emac_init = ravb_emac_init_rcar,
2760 	.gstrings_stats = ravb_gstrings_stats,
2761 	.gstrings_size = sizeof(ravb_gstrings_stats),
2762 	.net_hw_features = NETIF_F_RXCSUM,
2763 	.net_features = NETIF_F_RXCSUM,
2764 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2765 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2766 	.rx_max_frame_size = SZ_2K,
2767 	.rx_buffer_size = SZ_2K +
2768 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2769 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2770 	.multi_irqs = 1,
2771 	.err_mgmt_irqs = 1,
2772 	.gptp = 1,
2773 	.gptp_ref_clk = 1,
2774 	.nc_queues = 1,
2775 	.magic_pkt = 1,
2776 };
2777 
2778 static const struct ravb_hw_info gbeth_hw_info = {
2779 	.receive = ravb_rx_gbeth,
2780 	.set_rate = ravb_set_rate_gbeth,
2781 	.set_feature = ravb_set_features_gbeth,
2782 	.dmac_init = ravb_dmac_init_gbeth,
2783 	.emac_init = ravb_emac_init_gbeth,
2784 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2785 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2786 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2787 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2788 	.vlan_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2789 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2790 	.tccr_mask = TCCR_TSRQ0,
2791 	.tx_max_frame_size = 1522,
2792 	.rx_max_frame_size = SZ_8K,
2793 	.rx_buffer_size = SZ_2K,
2794 	.rx_desc_size = sizeof(struct ravb_rx_desc),
2795 	.aligned_tx = 1,
2796 	.coalesce_irqs = 1,
2797 	.tx_counters = 1,
2798 	.carrier_counters = 1,
2799 	.half_duplex = 1,
2800 };
2801 
2802 static const struct of_device_id ravb_match_table[] = {
2803 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2804 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2805 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2806 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2807 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2808 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2809 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2810 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2811 	{ }
2812 };
2813 MODULE_DEVICE_TABLE(of, ravb_match_table);
2814 
2815 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2816 			  const char *ch, int *irq, irq_handler_t handler)
2817 {
2818 	struct platform_device *pdev = priv->pdev;
2819 	struct net_device *ndev = priv->ndev;
2820 	struct device *dev = &pdev->dev;
2821 	const char *devname = dev_name(dev);
2822 	unsigned long flags;
2823 	int error, irq_num;
2824 
2825 	if (irq_name) {
2826 		devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2827 		if (!devname)
2828 			return -ENOMEM;
2829 
2830 		irq_num = platform_get_irq_byname(pdev, irq_name);
2831 		flags = 0;
2832 	} else {
2833 		irq_num = platform_get_irq(pdev, 0);
2834 		flags = IRQF_SHARED;
2835 	}
2836 	if (irq_num < 0)
2837 		return irq_num;
2838 
2839 	if (irq)
2840 		*irq = irq_num;
2841 
2842 	error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2843 	if (error)
2844 		netdev_err(ndev, "cannot request IRQ %s\n", devname);
2845 
2846 	return error;
2847 }
2848 
2849 static int ravb_setup_irqs(struct ravb_private *priv)
2850 {
2851 	const struct ravb_hw_info *info = priv->info;
2852 	struct net_device *ndev = priv->ndev;
2853 	const char *irq_name, *emac_irq_name;
2854 	int error;
2855 
2856 	if (!info->multi_irqs)
2857 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2858 
2859 	if (info->err_mgmt_irqs) {
2860 		irq_name = "dia";
2861 		emac_irq_name = "line3";
2862 	} else {
2863 		irq_name = "ch22";
2864 		emac_irq_name = "ch24";
2865 	}
2866 
2867 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2868 	if (error)
2869 		return error;
2870 
2871 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2872 			       ravb_emac_interrupt);
2873 	if (error)
2874 		return error;
2875 
2876 	if (info->err_mgmt_irqs) {
2877 		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2878 		if (error)
2879 			return error;
2880 
2881 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2882 		if (error)
2883 			return error;
2884 	}
2885 
2886 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2887 	if (error)
2888 		return error;
2889 
2890 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2891 	if (error)
2892 		return error;
2893 
2894 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2895 	if (error)
2896 		return error;
2897 
2898 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2899 }
2900 
2901 static int ravb_probe(struct platform_device *pdev)
2902 {
2903 	struct device_node *np = pdev->dev.of_node;
2904 	const struct ravb_hw_info *info;
2905 	struct reset_control *rstc;
2906 	struct ravb_private *priv;
2907 	struct net_device *ndev;
2908 	struct resource *res;
2909 	int error, q;
2910 
2911 	if (!np) {
2912 		dev_err(&pdev->dev,
2913 			"this driver is required to be instantiated from device tree\n");
2914 		return -EINVAL;
2915 	}
2916 
2917 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2918 	if (IS_ERR(rstc))
2919 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2920 				     "failed to get cpg reset\n");
2921 
2922 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2923 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2924 	if (!ndev)
2925 		return -ENOMEM;
2926 
2927 	info = of_device_get_match_data(&pdev->dev);
2928 
2929 	ndev->features = info->net_features;
2930 	ndev->hw_features = info->net_hw_features;
2931 	ndev->vlan_features = info->vlan_features;
2932 
2933 	error = reset_control_deassert(rstc);
2934 	if (error)
2935 		goto out_free_netdev;
2936 
2937 	SET_NETDEV_DEV(ndev, &pdev->dev);
2938 
2939 	priv = netdev_priv(ndev);
2940 	priv->info = info;
2941 	priv->rstc = rstc;
2942 	priv->ndev = ndev;
2943 	priv->pdev = pdev;
2944 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2945 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2946 	if (info->nc_queues) {
2947 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2948 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2949 	}
2950 
2951 	error = ravb_setup_irqs(priv);
2952 	if (error)
2953 		goto out_reset_assert;
2954 
2955 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2956 	if (IS_ERR(priv->clk)) {
2957 		error = PTR_ERR(priv->clk);
2958 		goto out_reset_assert;
2959 	}
2960 
2961 	if (info->gptp_ref_clk) {
2962 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2963 		if (IS_ERR(priv->gptp_clk)) {
2964 			error = PTR_ERR(priv->gptp_clk);
2965 			goto out_reset_assert;
2966 		}
2967 	}
2968 
2969 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2970 	if (IS_ERR(priv->refclk)) {
2971 		error = PTR_ERR(priv->refclk);
2972 		goto out_reset_assert;
2973 	}
2974 	clk_prepare(priv->refclk);
2975 
2976 	platform_set_drvdata(pdev, ndev);
2977 	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2978 	pm_runtime_use_autosuspend(&pdev->dev);
2979 	pm_runtime_enable(&pdev->dev);
2980 	error = pm_runtime_resume_and_get(&pdev->dev);
2981 	if (error < 0)
2982 		goto out_rpm_disable;
2983 
2984 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2985 	if (IS_ERR(priv->addr)) {
2986 		error = PTR_ERR(priv->addr);
2987 		goto out_rpm_put;
2988 	}
2989 
2990 	/* The Ether-specific entries in the device structure. */
2991 	ndev->base_addr = res->start;
2992 
2993 	spin_lock_init(&priv->lock);
2994 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2995 
2996 	error = of_get_phy_mode(np, &priv->phy_interface);
2997 	if (error && error != -ENODEV)
2998 		goto out_rpm_put;
2999 
3000 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
3001 	priv->avb_link_active_low =
3002 		of_property_read_bool(np, "renesas,ether-link-active-low");
3003 
3004 	ndev->max_mtu = info->tx_max_frame_size -
3005 		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3006 	ndev->min_mtu = ETH_MIN_MTU;
3007 
3008 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3009 	 * Use two descriptor to handle such situation. First descriptor to
3010 	 * handle aligned data buffer and second descriptor to handle the
3011 	 * overflow data because of alignment.
3012 	 */
3013 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3014 
3015 	/* Set function */
3016 	ndev->netdev_ops = &ravb_netdev_ops;
3017 	ndev->ethtool_ops = &ravb_ethtool_ops;
3018 
3019 	error = ravb_compute_gti(ndev);
3020 	if (error)
3021 		goto out_rpm_put;
3022 
3023 	ravb_parse_delay_mode(np, ndev);
3024 
3025 	/* Allocate descriptor base address table */
3026 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
3027 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3028 					    &priv->desc_bat_dma, GFP_KERNEL);
3029 	if (!priv->desc_bat) {
3030 		dev_err(&pdev->dev,
3031 			"Cannot allocate desc base address table (size %d bytes)\n",
3032 			priv->desc_bat_size);
3033 		error = -ENOMEM;
3034 		goto out_rpm_put;
3035 	}
3036 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
3037 		priv->desc_bat[q].die_dt = DT_EOS;
3038 
3039 	/* Initialise HW timestamp list */
3040 	INIT_LIST_HEAD(&priv->ts_skb_list);
3041 
3042 	/* Debug message level */
3043 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3044 
3045 	/* Set config mode as this is needed for PHY initialization. */
3046 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3047 	if (error)
3048 		goto out_rpm_put;
3049 
3050 	/* Read and set MAC address */
3051 	ravb_read_mac_address(np, ndev);
3052 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3053 		dev_warn(&pdev->dev,
3054 			 "no valid MAC address supplied, using a random one\n");
3055 		eth_hw_addr_random(ndev);
3056 	}
3057 
3058 	/* MDIO bus init */
3059 	error = ravb_mdio_init(priv);
3060 	if (error) {
3061 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
3062 		goto out_reset_mode;
3063 	}
3064 
3065 	/* Undo previous switch to config opmode. */
3066 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3067 	if (error)
3068 		goto out_mdio_release;
3069 
3070 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3071 	if (info->nc_queues)
3072 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3073 
3074 	if (info->coalesce_irqs) {
3075 		netdev_sw_irq_coalesce_default_on(ndev);
3076 		if (num_present_cpus() == 1)
3077 			dev_set_threaded(ndev, true);
3078 	}
3079 
3080 	/* Network device register */
3081 	error = register_netdev(ndev);
3082 	if (error)
3083 		goto out_napi_del;
3084 
3085 	device_set_wakeup_capable(&pdev->dev, 1);
3086 
3087 	/* Print device information */
3088 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3089 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3090 
3091 	pm_runtime_mark_last_busy(&pdev->dev);
3092 	pm_runtime_put_autosuspend(&pdev->dev);
3093 
3094 	return 0;
3095 
3096 out_napi_del:
3097 	if (info->nc_queues)
3098 		netif_napi_del(&priv->napi[RAVB_NC]);
3099 
3100 	netif_napi_del(&priv->napi[RAVB_BE]);
3101 out_mdio_release:
3102 	ravb_mdio_release(priv);
3103 out_reset_mode:
3104 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3105 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3106 			  priv->desc_bat_dma);
3107 out_rpm_put:
3108 	pm_runtime_put(&pdev->dev);
3109 out_rpm_disable:
3110 	pm_runtime_disable(&pdev->dev);
3111 	pm_runtime_dont_use_autosuspend(&pdev->dev);
3112 	clk_unprepare(priv->refclk);
3113 out_reset_assert:
3114 	reset_control_assert(rstc);
3115 out_free_netdev:
3116 	free_netdev(ndev);
3117 	return error;
3118 }
3119 
3120 static void ravb_remove(struct platform_device *pdev)
3121 {
3122 	struct net_device *ndev = platform_get_drvdata(pdev);
3123 	struct ravb_private *priv = netdev_priv(ndev);
3124 	const struct ravb_hw_info *info = priv->info;
3125 	struct device *dev = &priv->pdev->dev;
3126 	int error;
3127 
3128 	error = pm_runtime_resume_and_get(dev);
3129 	if (error < 0)
3130 		return;
3131 
3132 	unregister_netdev(ndev);
3133 	if (info->nc_queues)
3134 		netif_napi_del(&priv->napi[RAVB_NC]);
3135 	netif_napi_del(&priv->napi[RAVB_BE]);
3136 
3137 	ravb_mdio_release(priv);
3138 
3139 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3140 			  priv->desc_bat_dma);
3141 
3142 	pm_runtime_put_sync_suspend(&pdev->dev);
3143 	pm_runtime_disable(&pdev->dev);
3144 	pm_runtime_dont_use_autosuspend(dev);
3145 	clk_unprepare(priv->refclk);
3146 	reset_control_assert(priv->rstc);
3147 	free_netdev(ndev);
3148 	platform_set_drvdata(pdev, NULL);
3149 }
3150 
3151 static int ravb_wol_setup(struct net_device *ndev)
3152 {
3153 	struct ravb_private *priv = netdev_priv(ndev);
3154 	const struct ravb_hw_info *info = priv->info;
3155 
3156 	/* Disable interrupts by clearing the interrupt masks. */
3157 	ravb_write(ndev, 0, RIC0);
3158 	ravb_write(ndev, 0, RIC2);
3159 	ravb_write(ndev, 0, TIC);
3160 
3161 	/* Only allow ECI interrupts */
3162 	synchronize_irq(priv->emac_irq);
3163 	if (info->nc_queues)
3164 		napi_disable(&priv->napi[RAVB_NC]);
3165 	napi_disable(&priv->napi[RAVB_BE]);
3166 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3167 
3168 	/* Enable MagicPacket */
3169 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3170 
3171 	if (priv->info->ccc_gac)
3172 		ravb_ptp_stop(ndev);
3173 
3174 	return enable_irq_wake(priv->emac_irq);
3175 }
3176 
3177 static int ravb_wol_restore(struct net_device *ndev)
3178 {
3179 	struct ravb_private *priv = netdev_priv(ndev);
3180 	const struct ravb_hw_info *info = priv->info;
3181 	int error;
3182 
3183 	/* Set reset mode to rearm the WoL logic. */
3184 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3185 	if (error)
3186 		return error;
3187 
3188 	/* Set AVB config mode. */
3189 	error = ravb_set_config_mode(ndev);
3190 	if (error)
3191 		return error;
3192 
3193 	if (priv->info->ccc_gac)
3194 		ravb_ptp_init(ndev, priv->pdev);
3195 
3196 	if (info->nc_queues)
3197 		napi_enable(&priv->napi[RAVB_NC]);
3198 	napi_enable(&priv->napi[RAVB_BE]);
3199 
3200 	/* Disable MagicPacket */
3201 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3202 
3203 	ravb_close(ndev);
3204 
3205 	return disable_irq_wake(priv->emac_irq);
3206 }
3207 
3208 static int ravb_suspend(struct device *dev)
3209 {
3210 	struct net_device *ndev = dev_get_drvdata(dev);
3211 	struct ravb_private *priv = netdev_priv(ndev);
3212 	int ret;
3213 
3214 	if (!netif_running(ndev))
3215 		goto reset_assert;
3216 
3217 	netif_device_detach(ndev);
3218 
3219 	if (priv->wol_enabled)
3220 		return ravb_wol_setup(ndev);
3221 
3222 	ret = ravb_close(ndev);
3223 	if (ret)
3224 		return ret;
3225 
3226 	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3227 	if (ret)
3228 		return ret;
3229 
3230 reset_assert:
3231 	return reset_control_assert(priv->rstc);
3232 }
3233 
3234 static int ravb_resume(struct device *dev)
3235 {
3236 	struct net_device *ndev = dev_get_drvdata(dev);
3237 	struct ravb_private *priv = netdev_priv(ndev);
3238 	int ret;
3239 
3240 	ret = reset_control_deassert(priv->rstc);
3241 	if (ret)
3242 		return ret;
3243 
3244 	if (!netif_running(ndev))
3245 		return 0;
3246 
3247 	/* If WoL is enabled restore the interface. */
3248 	if (priv->wol_enabled) {
3249 		ret = ravb_wol_restore(ndev);
3250 		if (ret)
3251 			return ret;
3252 	} else {
3253 		ret = pm_runtime_force_resume(dev);
3254 		if (ret)
3255 			return ret;
3256 	}
3257 
3258 	/* Reopening the interface will restore the device to the working state. */
3259 	ret = ravb_open(ndev);
3260 	if (ret < 0)
3261 		goto out_rpm_put;
3262 
3263 	ravb_set_rx_mode(ndev);
3264 	netif_device_attach(ndev);
3265 
3266 	return 0;
3267 
3268 out_rpm_put:
3269 	if (!priv->wol_enabled) {
3270 		pm_runtime_mark_last_busy(dev);
3271 		pm_runtime_put_autosuspend(dev);
3272 	}
3273 
3274 	return ret;
3275 }
3276 
3277 static int ravb_runtime_suspend(struct device *dev)
3278 {
3279 	struct net_device *ndev = dev_get_drvdata(dev);
3280 	struct ravb_private *priv = netdev_priv(ndev);
3281 
3282 	clk_disable(priv->refclk);
3283 
3284 	return 0;
3285 }
3286 
3287 static int ravb_runtime_resume(struct device *dev)
3288 {
3289 	struct net_device *ndev = dev_get_drvdata(dev);
3290 	struct ravb_private *priv = netdev_priv(ndev);
3291 
3292 	return clk_enable(priv->refclk);
3293 }
3294 
3295 static const struct dev_pm_ops ravb_dev_pm_ops = {
3296 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3297 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3298 };
3299 
3300 static struct platform_driver ravb_driver = {
3301 	.probe		= ravb_probe,
3302 	.remove		= ravb_remove,
3303 	.driver = {
3304 		.name	= "ravb",
3305 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3306 		.of_match_table = ravb_match_table,
3307 	},
3308 };
3309 
3310 module_platform_driver(ravb_driver);
3311 
3312 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3313 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3314 MODULE_LICENSE("GPL v2");
3315