xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 6e59bcc9c8adec9a5bbedfa95a89946c56c510d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 		 u32 set)
45 {
46 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48 
49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 	int i;
52 
53 	for (i = 0; i < 10000; i++) {
54 		if ((ravb_read(ndev, reg) & mask) == value)
55 			return 0;
56 		udelay(10);
57 	}
58 	return -ETIMEDOUT;
59 }
60 
61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 	u32 csr_ops = 1U << (opmode & CCC_OPC);
64 	u32 ccc_mask = CCC_OPC;
65 	int error;
66 
67 	/* If gPTP active in config mode is supported it needs to be configured
68 	 * along with CSEL and operating mode in the same access. This is a
69 	 * hardware limitation.
70 	 */
71 	if (opmode & CCC_GAC)
72 		ccc_mask |= CCC_GAC | CCC_CSEL;
73 
74 	/* Set operating mode */
75 	ravb_modify(ndev, CCC, ccc_mask, opmode);
76 	/* Check if the operating mode is changed to the requested one */
77 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 	if (error) {
79 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 			   opmode & CCC_OPC);
81 	}
82 
83 	return error;
84 }
85 
86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 	struct ravb_private *priv = netdev_priv(ndev);
89 
90 	switch (priv->speed) {
91 	case 10:		/* 10BASE */
92 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 		break;
94 	case 100:		/* 100BASE */
95 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 		break;
97 	case 1000:		/* 1000BASE */
98 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 		break;
100 	}
101 }
102 
103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 	struct ravb_private *priv = netdev_priv(ndev);
106 
107 	switch (priv->speed) {
108 	case 100:		/* 100BASE */
109 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 		break;
111 	case 1000:		/* 1000BASE */
112 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 		break;
114 	}
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
122 static void ravb_read_mac_address(struct device_node *np,
123 				  struct net_device *ndev)
124 {
125 	int ret;
126 
127 	ret = of_get_ethdev_address(np, ndev);
128 	if (ret) {
129 		u32 mahr = ravb_read(ndev, MAHR);
130 		u32 malr = ravb_read(ndev, MALR);
131 		u8 addr[ETH_ALEN];
132 
133 		addr[0] = (mahr >> 24) & 0xFF;
134 		addr[1] = (mahr >> 16) & 0xFF;
135 		addr[2] = (mahr >>  8) & 0xFF;
136 		addr[3] = (mahr >>  0) & 0xFF;
137 		addr[4] = (malr >>  8) & 0xFF;
138 		addr[5] = (malr >>  0) & 0xFF;
139 		eth_hw_addr_set(ndev, addr);
140 	}
141 }
142 
143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 						 mdiobb);
147 
148 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150 
151 /* MDC pin control */
152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156 
157 /* Data I/O pin control */
158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162 
163 /* Set data bit */
164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168 
169 /* Get data bit */
170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 						 mdiobb);
174 
175 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177 
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 	.owner = THIS_MODULE,
181 	.set_mdc = ravb_set_mdc,
182 	.set_mdio_dir = ravb_set_mdio_dir,
183 	.set_mdio_data = ravb_set_mdio_data,
184 	.get_mdio_data = ravb_get_mdio_data,
185 };
186 
187 static struct ravb_rx_desc *
188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 		 unsigned int i)
190 {
191 	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193 
194 /* Free TX skb function for AVB-IP */
195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 
243 	if (!priv->rx_ring[q].raw)
244 		return;
245 
246 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 			  priv->rx_desc_dma[q]);
249 	priv->rx_ring[q].raw = NULL;
250 }
251 
252 /* Free skb's and DMA buffers for Ethernet AVB */
253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 	struct ravb_private *priv = netdev_priv(ndev);
256 	unsigned int num_tx_desc = priv->num_tx_desc;
257 	unsigned int ring_size;
258 	unsigned int i;
259 
260 	ravb_rx_ring_free(ndev, q);
261 
262 	if (priv->tx_ring[q]) {
263 		ravb_tx_free(ndev, q, false);
264 
265 		ring_size = sizeof(struct ravb_tx_desc) *
266 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
267 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 				  priv->tx_desc_dma[q]);
269 		priv->tx_ring[q] = NULL;
270 	}
271 
272 	/* Free RX buffers */
273 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 		if (priv->rx_buffers[q][i].page)
275 			page_pool_put_page(priv->rx_pool[q],
276 					   priv->rx_buffers[q][i].page,
277 					   0, true);
278 	}
279 	kfree(priv->rx_buffers[q]);
280 	priv->rx_buffers[q] = NULL;
281 	page_pool_destroy(priv->rx_pool[q]);
282 
283 	/* Free aligned TX buffers */
284 	kfree(priv->tx_align[q]);
285 	priv->tx_align[q] = NULL;
286 
287 	/* Free TX skb ringbuffer.
288 	 * SKBs are freed by ravb_tx_free() call above.
289 	 */
290 	kfree(priv->tx_skb[q]);
291 	priv->tx_skb[q] = NULL;
292 }
293 
294 static int
295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 		     struct ravb_rx_desc *rx_desc)
297 {
298 	struct ravb_private *priv = netdev_priv(ndev);
299 	const struct ravb_hw_info *info = priv->info;
300 	struct ravb_rx_buffer *rx_buff;
301 	dma_addr_t dma_addr;
302 	unsigned int size;
303 
304 	rx_buff = &priv->rx_buffers[q][entry];
305 	size = info->rx_buffer_size;
306 	rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 					&size, gfp_mask);
308 	if (unlikely(!rx_buff->page)) {
309 		/* We just set the data size to 0 for a failed mapping which
310 		 * should prevent DMA from happening...
311 		 */
312 		rx_desc->ds_cc = cpu_to_le16(0);
313 		return -ENOMEM;
314 	}
315 
316 	dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 	dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 				   info->rx_buffer_size, DMA_FROM_DEVICE);
319 	rx_desc->dptr = cpu_to_le32(dma_addr);
320 
321 	/* The end of the RX buffer is used to store skb shared data, so we need
322 	 * to ensure that the hardware leaves enough space for this.
323 	 */
324 	rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 				     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 				     ETH_FCS_LEN + sizeof(__sum16));
327 	return 0;
328 }
329 
330 static u32
331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 	struct ravb_private *priv = netdev_priv(ndev);
334 	struct ravb_rx_desc *rx_desc;
335 	u32 i, entry;
336 
337 	for (i = 0; i < count; i++) {
338 		entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 		rx_desc = ravb_rx_get_desc(priv, q, entry);
340 
341 		if (!priv->rx_buffers[q][entry].page) {
342 			if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 							  gfp_mask, rx_desc)))
344 				break;
345 		}
346 		/* Descriptor type must be set after all the above writes */
347 		dma_wmb();
348 		rx_desc->die_dt = DT_FEMPTY;
349 	}
350 
351 	return i;
352 }
353 
354 /* Format skb and descriptor buffer for Ethernet AVB */
355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 	struct ravb_private *priv = netdev_priv(ndev);
358 	unsigned int num_tx_desc = priv->num_tx_desc;
359 	struct ravb_rx_desc *rx_desc;
360 	struct ravb_tx_desc *tx_desc;
361 	struct ravb_desc *desc;
362 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 				    num_tx_desc;
364 	unsigned int i;
365 
366 	priv->cur_rx[q] = 0;
367 	priv->cur_tx[q] = 0;
368 	priv->dirty_rx[q] = 0;
369 	priv->dirty_tx[q] = 0;
370 
371 	/* Regular RX descriptors have already been initialized by
372 	 * ravb_rx_ring_refill(), we just need to initialize the final link
373 	 * descriptor.
374 	 */
375 	rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 	rx_desc->die_dt = DT_LINKFIX; /* type */
378 
379 	memset(priv->tx_ring[q], 0, tx_ring_size);
380 	/* Build TX ring buffer */
381 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 	     i++, tx_desc++) {
383 		tx_desc->die_dt = DT_EEMPTY;
384 		if (num_tx_desc > 1) {
385 			tx_desc++;
386 			tx_desc->die_dt = DT_EEMPTY;
387 		}
388 	}
389 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 	tx_desc->die_dt = DT_LINKFIX; /* type */
391 
392 	/* RX descriptor base address for best effort */
393 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 	desc->die_dt = DT_LINKFIX; /* type */
395 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396 
397 	/* TX descriptor base address for best effort */
398 	desc = &priv->desc_bat[q];
399 	desc->die_dt = DT_LINKFIX; /* type */
400 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402 
403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 	struct ravb_private *priv = netdev_priv(ndev);
406 	unsigned int ring_size;
407 
408 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409 
410 	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 						  &priv->rx_desc_dma[q],
412 						  GFP_KERNEL);
413 
414 	return priv->rx_ring[q].raw;
415 }
416 
417 /* Init skb and descriptor buffer for Ethernet AVB */
418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 	struct ravb_private *priv = netdev_priv(ndev);
421 	unsigned int num_tx_desc = priv->num_tx_desc;
422 	struct page_pool_params params = {
423 		.order = 0,
424 		.flags = PP_FLAG_DMA_MAP,
425 		.pool_size = priv->num_rx_ring[q],
426 		.nid = NUMA_NO_NODE,
427 		.dev = ndev->dev.parent,
428 		.dma_dir = DMA_FROM_DEVICE,
429 	};
430 	unsigned int ring_size;
431 	u32 num_filled;
432 
433 	/* Allocate RX page pool and buffers */
434 	priv->rx_pool[q] = page_pool_create(&params);
435 	if (IS_ERR(priv->rx_pool[q]))
436 		goto error;
437 
438 	/* Allocate RX buffers */
439 	priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 				      sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 	if (!priv->rx_buffers[q])
442 		goto error;
443 
444 	/* Allocate TX skb rings */
445 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 	if (!priv->tx_skb[q])
448 		goto error;
449 
450 	/* Allocate all RX descriptors. */
451 	if (!ravb_alloc_rx_desc(ndev, q))
452 		goto error;
453 
454 	/* Populate RX ring buffer. */
455 	priv->dirty_rx[q] = 0;
456 	ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 	memset(priv->rx_ring[q].raw, 0, ring_size);
458 	num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 					 GFP_KERNEL);
460 	if (num_filled != priv->num_rx_ring[q])
461 		goto error;
462 
463 	if (num_tx_desc > 1) {
464 		/* Allocate rings for the aligned buffers */
465 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 					    DPTR_ALIGN - 1, GFP_KERNEL);
467 		if (!priv->tx_align[q])
468 			goto error;
469 	}
470 
471 	/* Allocate all TX descriptors. */
472 	ring_size = sizeof(struct ravb_tx_desc) *
473 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
474 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 					      &priv->tx_desc_dma[q],
476 					      GFP_KERNEL);
477 	if (!priv->tx_ring[q])
478 		goto error;
479 
480 	return 0;
481 
482 error:
483 	ravb_ring_free(ndev, q);
484 
485 	return -ENOMEM;
486 }
487 
488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492 
493 	if (!(tx_enable || rx_enable))
494 		goto done;
495 
496 	ravb_write(ndev, 0, CSR0);
497 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
499 
500 		if (tx_enable)
501 			ndev->features &= ~NETIF_F_HW_CSUM;
502 
503 		if (rx_enable)
504 			ndev->features &= ~NETIF_F_RXCSUM;
505 	} else {
506 		if (tx_enable)
507 			ravb_write(ndev, CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, CSR1);
508 
509 		if (rx_enable)
510 			ravb_write(ndev, CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
511 				   CSR2);
512 	}
513 
514 done:
515 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
516 }
517 
518 static void ravb_emac_init_gbeth(struct net_device *ndev)
519 {
520 	struct ravb_private *priv = netdev_priv(ndev);
521 
522 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
523 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
524 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
525 	} else {
526 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
527 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
528 			    CXR31_SEL_LINK0);
529 	}
530 
531 	/* Receive frame limit set register */
532 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
533 
534 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
535 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
536 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
537 			 ECMR_TXF | ECMR_RXF, ECMR);
538 
539 	ravb_set_rate_gbeth(ndev);
540 
541 	/* Set MAC address */
542 	ravb_write(ndev,
543 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
544 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
545 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
546 
547 	/* E-MAC status register clear */
548 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
549 
550 	ravb_csum_init_gbeth(ndev);
551 
552 	/* E-MAC interrupt enable register */
553 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
554 }
555 
556 static void ravb_emac_init_rcar(struct net_device *ndev)
557 {
558 	struct ravb_private *priv = netdev_priv(ndev);
559 
560 	/* Set receive frame length
561 	 *
562 	 * The length set here describes the frame from the destination address
563 	 * up to and including the CRC data. However only the frame data,
564 	 * excluding the CRC, are transferred to memory. To allow for the
565 	 * largest frames add the CRC length to the maximum Rx descriptor size.
566 	 */
567 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
568 
569 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
570 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
571 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
572 		   ECMR_TE | ECMR_RE, ECMR);
573 
574 	ravb_set_rate_rcar(ndev);
575 
576 	/* Set MAC address */
577 	ravb_write(ndev,
578 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
579 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
580 	ravb_write(ndev,
581 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
582 
583 	/* E-MAC status register clear */
584 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
585 
586 	/* E-MAC interrupt enable register */
587 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
588 }
589 
590 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
591 {
592 	struct ravb_private *priv = netdev_priv(ndev);
593 	bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
594 
595 	ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
596 
597 	ravb_emac_init_rcar(ndev);
598 }
599 
600 /* E-MAC init function */
601 static void ravb_emac_init(struct net_device *ndev)
602 {
603 	struct ravb_private *priv = netdev_priv(ndev);
604 	const struct ravb_hw_info *info = priv->info;
605 
606 	info->emac_init(ndev);
607 }
608 
609 static int ravb_dmac_init_gbeth(struct net_device *ndev)
610 {
611 	struct ravb_private *priv = netdev_priv(ndev);
612 	int error;
613 
614 	error = ravb_ring_init(ndev, RAVB_BE);
615 	if (error)
616 		return error;
617 
618 	/* Descriptor format */
619 	ravb_ring_format(ndev, RAVB_BE);
620 
621 	/* Set DMAC RX */
622 	ravb_write(ndev, 0x60000000, RCR);
623 
624 	/* Set Max Frame Length (RTC) */
625 	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
626 
627 	/* Set FIFO size */
628 	ravb_write(ndev, 0x00222200, TGC);
629 
630 	ravb_write(ndev, 0, TCCR);
631 
632 	/* Frame receive */
633 	ravb_write(ndev, RIC0_FRE0, RIC0);
634 	/* Disable FIFO full warning */
635 	ravb_write(ndev, 0x0, RIC1);
636 	/* Receive FIFO full error, descriptor empty */
637 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
638 
639 	ravb_write(ndev, TIC_FTE0, TIC);
640 
641 	return 0;
642 }
643 
644 static int ravb_dmac_init_rcar(struct net_device *ndev)
645 {
646 	struct ravb_private *priv = netdev_priv(ndev);
647 	const struct ravb_hw_info *info = priv->info;
648 	int error;
649 
650 	error = ravb_ring_init(ndev, RAVB_BE);
651 	if (error)
652 		return error;
653 	error = ravb_ring_init(ndev, RAVB_NC);
654 	if (error) {
655 		ravb_ring_free(ndev, RAVB_BE);
656 		return error;
657 	}
658 
659 	/* Descriptor format */
660 	ravb_ring_format(ndev, RAVB_BE);
661 	ravb_ring_format(ndev, RAVB_NC);
662 
663 	/* Set AVB RX */
664 	ravb_write(ndev,
665 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
666 
667 	/* Set FIFO size */
668 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
669 
670 	/* Timestamp enable */
671 	ravb_write(ndev, TCCR_TFEN, TCCR);
672 
673 	/* Interrupt init: */
674 	if (info->multi_irqs) {
675 		/* Clear DIL.DPLx */
676 		ravb_write(ndev, 0, DIL);
677 		/* Set queue specific interrupt */
678 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
679 	}
680 	/* Frame receive */
681 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
682 	/* Disable FIFO full warning */
683 	ravb_write(ndev, 0, RIC1);
684 	/* Receive FIFO full error, descriptor empty */
685 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
686 	/* Frame transmitted, timestamp FIFO updated */
687 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
688 
689 	return 0;
690 }
691 
692 /* Device init function for Ethernet AVB */
693 static int ravb_dmac_init(struct net_device *ndev)
694 {
695 	struct ravb_private *priv = netdev_priv(ndev);
696 	const struct ravb_hw_info *info = priv->info;
697 	int error;
698 
699 	/* Set CONFIG mode */
700 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
701 	if (error)
702 		return error;
703 
704 	error = info->dmac_init(ndev);
705 	if (error)
706 		return error;
707 
708 	/* Setting the control will start the AVB-DMAC process. */
709 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
710 }
711 
712 static void ravb_get_tx_tstamp(struct net_device *ndev)
713 {
714 	struct ravb_private *priv = netdev_priv(ndev);
715 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
716 	struct skb_shared_hwtstamps shhwtstamps;
717 	struct sk_buff *skb;
718 	struct timespec64 ts;
719 	u16 tag, tfa_tag;
720 	int count;
721 	u32 tfa2;
722 
723 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
724 	while (count--) {
725 		tfa2 = ravb_read(ndev, TFA2);
726 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
727 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
728 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
729 			    ravb_read(ndev, TFA1);
730 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
731 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
732 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
733 					 list) {
734 			skb = ts_skb->skb;
735 			tag = ts_skb->tag;
736 			list_del(&ts_skb->list);
737 			kfree(ts_skb);
738 			if (tag == tfa_tag) {
739 				skb_tstamp_tx(skb, &shhwtstamps);
740 				dev_consume_skb_any(skb);
741 				break;
742 			} else {
743 				dev_kfree_skb_any(skb);
744 			}
745 		}
746 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
747 	}
748 }
749 
750 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
751 {
752 	struct skb_shared_info *shinfo = skb_shinfo(skb);
753 	__wsum csum_ip_hdr, csum_proto;
754 	skb_frag_t *last_frag;
755 	u8 *hw_csum;
756 
757 	/* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
758 	 * bytes appended to packet data. First 2 bytes is ip header checksum
759 	 * and last 2 bytes is protocol checksum.
760 	 */
761 	if (unlikely(skb->len < sizeof(__sum16) * 2))
762 		return;
763 
764 	if (skb_is_nonlinear(skb)) {
765 		last_frag = &shinfo->frags[shinfo->nr_frags - 1];
766 		hw_csum = skb_frag_address(last_frag) +
767 			  skb_frag_size(last_frag);
768 	} else {
769 		hw_csum = skb_tail_pointer(skb);
770 	}
771 
772 	hw_csum -= sizeof(__sum16);
773 	csum_proto = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
774 
775 	hw_csum -= sizeof(__sum16);
776 	csum_ip_hdr = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
777 
778 	if (skb_is_nonlinear(skb))
779 		skb_frag_size_sub(last_frag, 2 * sizeof(__sum16));
780 	else
781 		skb_trim(skb, skb->len - 2 * sizeof(__sum16));
782 
783 	/* TODO: IPV6 Rx checksum */
784 	if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
785 		skb->ip_summed = CHECKSUM_UNNECESSARY;
786 }
787 
788 static void ravb_rx_csum(struct sk_buff *skb)
789 {
790 	u8 *hw_csum;
791 
792 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
793 	 * appended to packet data
794 	 */
795 	if (unlikely(skb->len < sizeof(__sum16)))
796 		return;
797 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
798 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
799 	skb->ip_summed = CHECKSUM_COMPLETE;
800 	skb_trim(skb, skb->len - sizeof(__sum16));
801 }
802 
803 /* Packet receive function for Gigabit Ethernet */
804 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
805 {
806 	struct ravb_private *priv = netdev_priv(ndev);
807 	const struct ravb_hw_info *info = priv->info;
808 	struct net_device_stats *stats;
809 	struct ravb_rx_desc *desc;
810 	struct sk_buff *skb;
811 	int rx_packets = 0;
812 	u8  desc_status;
813 	u16 desc_len;
814 	u8  die_dt;
815 	int entry;
816 	int limit;
817 	int i;
818 
819 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
820 	stats = &priv->stats[q];
821 
822 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
823 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
824 		desc = &priv->rx_ring[q].desc[entry];
825 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
826 			break;
827 
828 		/* Descriptor type must be checked before all other reads */
829 		dma_rmb();
830 		desc_status = desc->msc;
831 		desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
832 
833 		/* We use 0-byte descriptors to mark the DMA mapping errors */
834 		if (!desc_len)
835 			continue;
836 
837 		if (desc_status & MSC_MC)
838 			stats->multicast++;
839 
840 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
841 			stats->rx_errors++;
842 			if (desc_status & MSC_CRC)
843 				stats->rx_crc_errors++;
844 			if (desc_status & MSC_RFE)
845 				stats->rx_frame_errors++;
846 			if (desc_status & (MSC_RTLF | MSC_RTSF))
847 				stats->rx_length_errors++;
848 			if (desc_status & MSC_CEEF)
849 				stats->rx_missed_errors++;
850 		} else {
851 			struct ravb_rx_buffer *rx_buff;
852 			void *rx_addr;
853 
854 			rx_buff = &priv->rx_buffers[q][entry];
855 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
856 			die_dt = desc->die_dt & 0xF0;
857 			dma_sync_single_for_cpu(ndev->dev.parent,
858 						le32_to_cpu(desc->dptr),
859 						desc_len, DMA_FROM_DEVICE);
860 
861 			switch (die_dt) {
862 			case DT_FSINGLE:
863 			case DT_FSTART:
864 				/* Start of packet: Set initial data length. */
865 				skb = napi_build_skb(rx_addr,
866 						     info->rx_buffer_size);
867 				if (unlikely(!skb)) {
868 					stats->rx_errors++;
869 					page_pool_put_page(priv->rx_pool[q],
870 							   rx_buff->page, 0,
871 							   true);
872 					goto refill;
873 				}
874 				skb_mark_for_recycle(skb);
875 				skb_put(skb, desc_len);
876 
877 				/* Save this skb if the packet spans multiple
878 				 * descriptors.
879 				 */
880 				if (die_dt == DT_FSTART)
881 					priv->rx_1st_skb = skb;
882 				break;
883 
884 			case DT_FMID:
885 			case DT_FEND:
886 				/* Continuing a packet: Add this buffer as an RX
887 				 * frag.
888 				 */
889 
890 				/* rx_1st_skb will be NULL if napi_build_skb()
891 				 * failed for the first descriptor of a
892 				 * multi-descriptor packet.
893 				 */
894 				if (unlikely(!priv->rx_1st_skb)) {
895 					stats->rx_errors++;
896 					page_pool_put_page(priv->rx_pool[q],
897 							   rx_buff->page, 0,
898 							   true);
899 
900 					/* We may find a DT_FSINGLE or DT_FSTART
901 					 * descriptor in the queue which we can
902 					 * process, so don't give up yet.
903 					 */
904 					continue;
905 				}
906 				skb_add_rx_frag(priv->rx_1st_skb,
907 						skb_shinfo(priv->rx_1st_skb)->nr_frags,
908 						rx_buff->page, rx_buff->offset,
909 						desc_len, info->rx_buffer_size);
910 
911 				/* Set skb to point at the whole packet so that
912 				 * we only need one code path for finishing a
913 				 * packet.
914 				 */
915 				skb = priv->rx_1st_skb;
916 			}
917 
918 			switch (die_dt) {
919 			case DT_FSINGLE:
920 			case DT_FEND:
921 				/* Finishing a packet: Determine protocol &
922 				 * checksum, hand off to NAPI and update our
923 				 * stats.
924 				 */
925 				skb->protocol = eth_type_trans(skb, ndev);
926 				if (ndev->features & NETIF_F_RXCSUM)
927 					ravb_rx_csum_gbeth(skb);
928 				stats->rx_bytes += skb->len;
929 				napi_gro_receive(&priv->napi[q], skb);
930 				rx_packets++;
931 
932 				/* Clear rx_1st_skb so that it will only be
933 				 * non-NULL when valid.
934 				 */
935 				priv->rx_1st_skb = NULL;
936 			}
937 
938 			/* Mark this RX buffer as consumed. */
939 			rx_buff->page = NULL;
940 		}
941 	}
942 
943 refill:
944 	/* Refill the RX ring buffers. */
945 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
946 						 priv->cur_rx[q] - priv->dirty_rx[q],
947 						 GFP_ATOMIC);
948 
949 	stats->rx_packets += rx_packets;
950 	return rx_packets;
951 }
952 
953 /* Packet receive function for Ethernet AVB */
954 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
955 {
956 	struct ravb_private *priv = netdev_priv(ndev);
957 	const struct ravb_hw_info *info = priv->info;
958 	struct net_device_stats *stats = &priv->stats[q];
959 	struct ravb_ex_rx_desc *desc;
960 	unsigned int limit, i;
961 	struct sk_buff *skb;
962 	struct timespec64 ts;
963 	int rx_packets = 0;
964 	u8  desc_status;
965 	u16 pkt_len;
966 	int entry;
967 
968 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
969 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
970 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
971 		desc = &priv->rx_ring[q].ex_desc[entry];
972 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
973 			break;
974 
975 		/* Descriptor type must be checked before all other reads */
976 		dma_rmb();
977 		desc_status = desc->msc;
978 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
979 
980 		/* We use 0-byte descriptors to mark the DMA mapping errors */
981 		if (!pkt_len)
982 			continue;
983 
984 		if (desc_status & MSC_MC)
985 			stats->multicast++;
986 
987 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
988 				   MSC_CEEF)) {
989 			stats->rx_errors++;
990 			if (desc_status & MSC_CRC)
991 				stats->rx_crc_errors++;
992 			if (desc_status & MSC_RFE)
993 				stats->rx_frame_errors++;
994 			if (desc_status & (MSC_RTLF | MSC_RTSF))
995 				stats->rx_length_errors++;
996 			if (desc_status & MSC_CEEF)
997 				stats->rx_missed_errors++;
998 		} else {
999 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
1000 			struct ravb_rx_buffer *rx_buff;
1001 			void *rx_addr;
1002 
1003 			rx_buff = &priv->rx_buffers[q][entry];
1004 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1005 			dma_sync_single_for_cpu(ndev->dev.parent,
1006 						le32_to_cpu(desc->dptr),
1007 						pkt_len, DMA_FROM_DEVICE);
1008 
1009 			skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1010 			if (unlikely(!skb)) {
1011 				stats->rx_errors++;
1012 				page_pool_put_page(priv->rx_pool[q],
1013 						   rx_buff->page, 0, true);
1014 				break;
1015 			}
1016 			skb_mark_for_recycle(skb);
1017 			get_ts &= (q == RAVB_NC) ?
1018 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1019 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1020 			if (get_ts) {
1021 				struct skb_shared_hwtstamps *shhwtstamps;
1022 
1023 				shhwtstamps = skb_hwtstamps(skb);
1024 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1025 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1026 					     32) | le32_to_cpu(desc->ts_sl);
1027 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
1028 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1029 			}
1030 
1031 			skb_put(skb, pkt_len);
1032 			skb->protocol = eth_type_trans(skb, ndev);
1033 			if (ndev->features & NETIF_F_RXCSUM)
1034 				ravb_rx_csum(skb);
1035 			napi_gro_receive(&priv->napi[q], skb);
1036 			rx_packets++;
1037 			stats->rx_bytes += pkt_len;
1038 
1039 			/* Mark this RX buffer as consumed. */
1040 			rx_buff->page = NULL;
1041 		}
1042 	}
1043 
1044 	/* Refill the RX ring buffers. */
1045 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1046 						 priv->cur_rx[q] - priv->dirty_rx[q],
1047 						 GFP_ATOMIC);
1048 
1049 	stats->rx_packets += rx_packets;
1050 	return rx_packets;
1051 }
1052 
1053 /* Packet receive function for Ethernet AVB */
1054 static int ravb_rx(struct net_device *ndev, int budget, int q)
1055 {
1056 	struct ravb_private *priv = netdev_priv(ndev);
1057 	const struct ravb_hw_info *info = priv->info;
1058 
1059 	return info->receive(ndev, budget, q);
1060 }
1061 
1062 static void ravb_rcv_snd_disable(struct net_device *ndev)
1063 {
1064 	/* Disable TX and RX */
1065 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1066 }
1067 
1068 static void ravb_rcv_snd_enable(struct net_device *ndev)
1069 {
1070 	/* Enable TX and RX */
1071 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1072 }
1073 
1074 /* function for waiting dma process finished */
1075 static int ravb_stop_dma(struct net_device *ndev)
1076 {
1077 	struct ravb_private *priv = netdev_priv(ndev);
1078 	const struct ravb_hw_info *info = priv->info;
1079 	int error;
1080 
1081 	/* Wait for stopping the hardware TX process */
1082 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1083 
1084 	if (error)
1085 		return error;
1086 
1087 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1088 			  0);
1089 	if (error)
1090 		return error;
1091 
1092 	/* Stop the E-MAC's RX/TX processes. */
1093 	ravb_rcv_snd_disable(ndev);
1094 
1095 	/* Wait for stopping the RX DMA process */
1096 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1097 	if (error)
1098 		return error;
1099 
1100 	/* Stop AVB-DMAC process */
1101 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1102 }
1103 
1104 /* E-MAC interrupt handler */
1105 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1106 {
1107 	struct ravb_private *priv = netdev_priv(ndev);
1108 	u32 ecsr, psr;
1109 
1110 	ecsr = ravb_read(ndev, ECSR);
1111 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1112 
1113 	if (ecsr & ECSR_MPD)
1114 		pm_wakeup_event(&priv->pdev->dev, 0);
1115 	if (ecsr & ECSR_ICD)
1116 		ndev->stats.tx_carrier_errors++;
1117 	if (ecsr & ECSR_LCHNG) {
1118 		/* Link changed */
1119 		if (priv->no_avb_link)
1120 			return;
1121 		psr = ravb_read(ndev, PSR);
1122 		if (priv->avb_link_active_low)
1123 			psr ^= PSR_LMON;
1124 		if (!(psr & PSR_LMON)) {
1125 			/* DIsable RX and TX */
1126 			ravb_rcv_snd_disable(ndev);
1127 		} else {
1128 			/* Enable RX and TX */
1129 			ravb_rcv_snd_enable(ndev);
1130 		}
1131 	}
1132 }
1133 
1134 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1135 {
1136 	struct net_device *ndev = dev_id;
1137 	struct ravb_private *priv = netdev_priv(ndev);
1138 	struct device *dev = &priv->pdev->dev;
1139 	irqreturn_t result = IRQ_HANDLED;
1140 
1141 	pm_runtime_get_noresume(dev);
1142 
1143 	if (unlikely(!pm_runtime_active(dev))) {
1144 		result = IRQ_NONE;
1145 		goto out_rpm_put;
1146 	}
1147 
1148 	spin_lock(&priv->lock);
1149 	ravb_emac_interrupt_unlocked(ndev);
1150 	spin_unlock(&priv->lock);
1151 
1152 out_rpm_put:
1153 	pm_runtime_put_noidle(dev);
1154 	return result;
1155 }
1156 
1157 /* Error interrupt handler */
1158 static void ravb_error_interrupt(struct net_device *ndev)
1159 {
1160 	struct ravb_private *priv = netdev_priv(ndev);
1161 	u32 eis, ris2;
1162 
1163 	eis = ravb_read(ndev, EIS);
1164 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1165 	if (eis & EIS_QFS) {
1166 		ris2 = ravb_read(ndev, RIS2);
1167 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1168 			   RIS2);
1169 
1170 		/* Receive Descriptor Empty int */
1171 		if (ris2 & RIS2_QFF0)
1172 			priv->stats[RAVB_BE].rx_over_errors++;
1173 
1174 		/* Receive Descriptor Empty int */
1175 		if (ris2 & RIS2_QFF1)
1176 			priv->stats[RAVB_NC].rx_over_errors++;
1177 
1178 		/* Receive FIFO Overflow int */
1179 		if (ris2 & RIS2_RFFF)
1180 			priv->rx_fifo_errors++;
1181 	}
1182 }
1183 
1184 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1185 {
1186 	struct ravb_private *priv = netdev_priv(ndev);
1187 	const struct ravb_hw_info *info = priv->info;
1188 	u32 ris0 = ravb_read(ndev, RIS0);
1189 	u32 ric0 = ravb_read(ndev, RIC0);
1190 	u32 tis  = ravb_read(ndev, TIS);
1191 	u32 tic  = ravb_read(ndev, TIC);
1192 
1193 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1194 		if (napi_schedule_prep(&priv->napi[q])) {
1195 			/* Mask RX and TX interrupts */
1196 			if (!info->irq_en_dis) {
1197 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1198 				ravb_write(ndev, tic & ~BIT(q), TIC);
1199 			} else {
1200 				ravb_write(ndev, BIT(q), RID0);
1201 				ravb_write(ndev, BIT(q), TID);
1202 			}
1203 			__napi_schedule(&priv->napi[q]);
1204 		} else {
1205 			netdev_warn(ndev,
1206 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1207 				    ris0, ric0);
1208 			netdev_warn(ndev,
1209 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1210 				    tis, tic);
1211 		}
1212 		return true;
1213 	}
1214 	return false;
1215 }
1216 
1217 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1218 {
1219 	u32 tis = ravb_read(ndev, TIS);
1220 
1221 	if (tis & TIS_TFUF) {
1222 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1223 		ravb_get_tx_tstamp(ndev);
1224 		return true;
1225 	}
1226 	return false;
1227 }
1228 
1229 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1230 {
1231 	struct net_device *ndev = dev_id;
1232 	struct ravb_private *priv = netdev_priv(ndev);
1233 	const struct ravb_hw_info *info = priv->info;
1234 	struct device *dev = &priv->pdev->dev;
1235 	irqreturn_t result = IRQ_NONE;
1236 	u32 iss;
1237 
1238 	pm_runtime_get_noresume(dev);
1239 
1240 	if (unlikely(!pm_runtime_active(dev)))
1241 		goto out_rpm_put;
1242 
1243 	spin_lock(&priv->lock);
1244 	/* Get interrupt status */
1245 	iss = ravb_read(ndev, ISS);
1246 
1247 	/* Received and transmitted interrupts */
1248 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1249 		int q;
1250 
1251 		/* Timestamp updated */
1252 		if (ravb_timestamp_interrupt(ndev))
1253 			result = IRQ_HANDLED;
1254 
1255 		/* Network control and best effort queue RX/TX */
1256 		if (info->nc_queues) {
1257 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1258 				if (ravb_queue_interrupt(ndev, q))
1259 					result = IRQ_HANDLED;
1260 			}
1261 		} else {
1262 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1263 				result = IRQ_HANDLED;
1264 		}
1265 	}
1266 
1267 	/* E-MAC status summary */
1268 	if (iss & ISS_MS) {
1269 		ravb_emac_interrupt_unlocked(ndev);
1270 		result = IRQ_HANDLED;
1271 	}
1272 
1273 	/* Error status summary */
1274 	if (iss & ISS_ES) {
1275 		ravb_error_interrupt(ndev);
1276 		result = IRQ_HANDLED;
1277 	}
1278 
1279 	/* gPTP interrupt status summary */
1280 	if (iss & ISS_CGIS) {
1281 		ravb_ptp_interrupt(ndev);
1282 		result = IRQ_HANDLED;
1283 	}
1284 
1285 	spin_unlock(&priv->lock);
1286 
1287 out_rpm_put:
1288 	pm_runtime_put_noidle(dev);
1289 	return result;
1290 }
1291 
1292 /* Timestamp/Error/gPTP interrupt handler */
1293 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1294 {
1295 	struct net_device *ndev = dev_id;
1296 	struct ravb_private *priv = netdev_priv(ndev);
1297 	struct device *dev = &priv->pdev->dev;
1298 	irqreturn_t result = IRQ_NONE;
1299 	u32 iss;
1300 
1301 	pm_runtime_get_noresume(dev);
1302 
1303 	if (unlikely(!pm_runtime_active(dev)))
1304 		goto out_rpm_put;
1305 
1306 	spin_lock(&priv->lock);
1307 	/* Get interrupt status */
1308 	iss = ravb_read(ndev, ISS);
1309 
1310 	/* Timestamp updated */
1311 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1312 		result = IRQ_HANDLED;
1313 
1314 	/* Error status summary */
1315 	if (iss & ISS_ES) {
1316 		ravb_error_interrupt(ndev);
1317 		result = IRQ_HANDLED;
1318 	}
1319 
1320 	/* gPTP interrupt status summary */
1321 	if (iss & ISS_CGIS) {
1322 		ravb_ptp_interrupt(ndev);
1323 		result = IRQ_HANDLED;
1324 	}
1325 
1326 	spin_unlock(&priv->lock);
1327 
1328 out_rpm_put:
1329 	pm_runtime_put_noidle(dev);
1330 	return result;
1331 }
1332 
1333 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1334 {
1335 	struct net_device *ndev = dev_id;
1336 	struct ravb_private *priv = netdev_priv(ndev);
1337 	struct device *dev = &priv->pdev->dev;
1338 	irqreturn_t result = IRQ_NONE;
1339 
1340 	pm_runtime_get_noresume(dev);
1341 
1342 	if (unlikely(!pm_runtime_active(dev)))
1343 		goto out_rpm_put;
1344 
1345 	spin_lock(&priv->lock);
1346 
1347 	/* Network control/Best effort queue RX/TX */
1348 	if (ravb_queue_interrupt(ndev, q))
1349 		result = IRQ_HANDLED;
1350 
1351 	spin_unlock(&priv->lock);
1352 
1353 out_rpm_put:
1354 	pm_runtime_put_noidle(dev);
1355 	return result;
1356 }
1357 
1358 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1359 {
1360 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1361 }
1362 
1363 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1364 {
1365 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1366 }
1367 
1368 static int ravb_poll(struct napi_struct *napi, int budget)
1369 {
1370 	struct net_device *ndev = napi->dev;
1371 	struct ravb_private *priv = netdev_priv(ndev);
1372 	const struct ravb_hw_info *info = priv->info;
1373 	unsigned long flags;
1374 	int q = napi - priv->napi;
1375 	int mask = BIT(q);
1376 	int work_done;
1377 
1378 	/* Processing RX Descriptor Ring */
1379 	/* Clear RX interrupt */
1380 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1381 	work_done = ravb_rx(ndev, budget, q);
1382 
1383 	/* Processing TX Descriptor Ring */
1384 	spin_lock_irqsave(&priv->lock, flags);
1385 	/* Clear TX interrupt */
1386 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1387 	ravb_tx_free(ndev, q, true);
1388 	netif_wake_subqueue(ndev, q);
1389 	spin_unlock_irqrestore(&priv->lock, flags);
1390 
1391 	/* Receive error message handling */
1392 	priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1393 	if (info->nc_queues)
1394 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1395 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1396 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1397 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1398 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1399 
1400 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1401 		/* Re-enable RX/TX interrupts */
1402 		spin_lock_irqsave(&priv->lock, flags);
1403 		if (!info->irq_en_dis) {
1404 			ravb_modify(ndev, RIC0, mask, mask);
1405 			ravb_modify(ndev, TIC,  mask, mask);
1406 		} else {
1407 			ravb_write(ndev, mask, RIE0);
1408 			ravb_write(ndev, mask, TIE);
1409 		}
1410 		spin_unlock_irqrestore(&priv->lock, flags);
1411 	}
1412 
1413 	return work_done;
1414 }
1415 
1416 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1417 {
1418 	struct ravb_private *priv = netdev_priv(ndev);
1419 
1420 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1421 }
1422 
1423 /* PHY state control function */
1424 static void ravb_adjust_link(struct net_device *ndev)
1425 {
1426 	struct ravb_private *priv = netdev_priv(ndev);
1427 	const struct ravb_hw_info *info = priv->info;
1428 	struct phy_device *phydev = ndev->phydev;
1429 	bool new_state = false;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&priv->lock, flags);
1433 
1434 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1435 	if (priv->no_avb_link)
1436 		ravb_rcv_snd_disable(ndev);
1437 
1438 	if (phydev->link) {
1439 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1440 			new_state = true;
1441 			priv->duplex = phydev->duplex;
1442 			ravb_set_duplex_gbeth(ndev);
1443 		}
1444 
1445 		if (phydev->speed != priv->speed) {
1446 			new_state = true;
1447 			priv->speed = phydev->speed;
1448 			info->set_rate(ndev);
1449 		}
1450 		if (!priv->link) {
1451 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1452 			new_state = true;
1453 			priv->link = phydev->link;
1454 		}
1455 	} else if (priv->link) {
1456 		new_state = true;
1457 		priv->link = 0;
1458 		priv->speed = 0;
1459 		if (info->half_duplex)
1460 			priv->duplex = -1;
1461 	}
1462 
1463 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1464 	if (priv->no_avb_link && phydev->link)
1465 		ravb_rcv_snd_enable(ndev);
1466 
1467 	spin_unlock_irqrestore(&priv->lock, flags);
1468 
1469 	if (new_state && netif_msg_link(priv))
1470 		phy_print_status(phydev);
1471 }
1472 
1473 /* PHY init function */
1474 static int ravb_phy_init(struct net_device *ndev)
1475 {
1476 	struct device_node *np = ndev->dev.parent->of_node;
1477 	struct ravb_private *priv = netdev_priv(ndev);
1478 	const struct ravb_hw_info *info = priv->info;
1479 	struct phy_device *phydev;
1480 	struct device_node *pn;
1481 	phy_interface_t iface;
1482 	int err;
1483 
1484 	priv->link = 0;
1485 	priv->speed = 0;
1486 	priv->duplex = -1;
1487 
1488 	/* Try connecting to PHY */
1489 	pn = of_parse_phandle(np, "phy-handle", 0);
1490 	if (!pn) {
1491 		/* In the case of a fixed PHY, the DT node associated
1492 		 * to the PHY is the Ethernet MAC DT node.
1493 		 */
1494 		if (of_phy_is_fixed_link(np)) {
1495 			err = of_phy_register_fixed_link(np);
1496 			if (err)
1497 				return err;
1498 		}
1499 		pn = of_node_get(np);
1500 	}
1501 
1502 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1503 				     : priv->phy_interface;
1504 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1505 	of_node_put(pn);
1506 	if (!phydev) {
1507 		netdev_err(ndev, "failed to connect PHY\n");
1508 		err = -ENOENT;
1509 		goto err_deregister_fixed_link;
1510 	}
1511 
1512 	if (!info->half_duplex) {
1513 		/* 10BASE, Pause and Asym Pause is not supported */
1514 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1515 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1516 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1517 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1518 
1519 		/* Half Duplex is not supported */
1520 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1521 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1522 	}
1523 
1524 	phy_attached_info(phydev);
1525 
1526 	return 0;
1527 
1528 err_deregister_fixed_link:
1529 	if (of_phy_is_fixed_link(np))
1530 		of_phy_deregister_fixed_link(np);
1531 
1532 	return err;
1533 }
1534 
1535 /* PHY control start function */
1536 static int ravb_phy_start(struct net_device *ndev)
1537 {
1538 	int error;
1539 
1540 	error = ravb_phy_init(ndev);
1541 	if (error)
1542 		return error;
1543 
1544 	phy_start(ndev->phydev);
1545 
1546 	return 0;
1547 }
1548 
1549 static u32 ravb_get_msglevel(struct net_device *ndev)
1550 {
1551 	struct ravb_private *priv = netdev_priv(ndev);
1552 
1553 	return priv->msg_enable;
1554 }
1555 
1556 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1557 {
1558 	struct ravb_private *priv = netdev_priv(ndev);
1559 
1560 	priv->msg_enable = value;
1561 }
1562 
1563 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1564 	"rx_queue_0_current",
1565 	"tx_queue_0_current",
1566 	"rx_queue_0_dirty",
1567 	"tx_queue_0_dirty",
1568 	"rx_queue_0_packets",
1569 	"tx_queue_0_packets",
1570 	"rx_queue_0_bytes",
1571 	"tx_queue_0_bytes",
1572 	"rx_queue_0_mcast_packets",
1573 	"rx_queue_0_errors",
1574 	"rx_queue_0_crc_errors",
1575 	"rx_queue_0_frame_errors",
1576 	"rx_queue_0_length_errors",
1577 	"rx_queue_0_csum_offload_errors",
1578 	"rx_queue_0_over_errors",
1579 };
1580 
1581 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1582 	"rx_queue_0_current",
1583 	"tx_queue_0_current",
1584 	"rx_queue_0_dirty",
1585 	"tx_queue_0_dirty",
1586 	"rx_queue_0_packets",
1587 	"tx_queue_0_packets",
1588 	"rx_queue_0_bytes",
1589 	"tx_queue_0_bytes",
1590 	"rx_queue_0_mcast_packets",
1591 	"rx_queue_0_errors",
1592 	"rx_queue_0_crc_errors",
1593 	"rx_queue_0_frame_errors",
1594 	"rx_queue_0_length_errors",
1595 	"rx_queue_0_missed_errors",
1596 	"rx_queue_0_over_errors",
1597 
1598 	"rx_queue_1_current",
1599 	"tx_queue_1_current",
1600 	"rx_queue_1_dirty",
1601 	"tx_queue_1_dirty",
1602 	"rx_queue_1_packets",
1603 	"tx_queue_1_packets",
1604 	"rx_queue_1_bytes",
1605 	"tx_queue_1_bytes",
1606 	"rx_queue_1_mcast_packets",
1607 	"rx_queue_1_errors",
1608 	"rx_queue_1_crc_errors",
1609 	"rx_queue_1_frame_errors",
1610 	"rx_queue_1_length_errors",
1611 	"rx_queue_1_missed_errors",
1612 	"rx_queue_1_over_errors",
1613 };
1614 
1615 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1616 {
1617 	struct ravb_private *priv = netdev_priv(netdev);
1618 	const struct ravb_hw_info *info = priv->info;
1619 
1620 	switch (sset) {
1621 	case ETH_SS_STATS:
1622 		return info->stats_len;
1623 	default:
1624 		return -EOPNOTSUPP;
1625 	}
1626 }
1627 
1628 static void ravb_get_ethtool_stats(struct net_device *ndev,
1629 				   struct ethtool_stats *estats, u64 *data)
1630 {
1631 	struct ravb_private *priv = netdev_priv(ndev);
1632 	const struct ravb_hw_info *info = priv->info;
1633 	int num_rx_q;
1634 	int i = 0;
1635 	int q;
1636 
1637 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1638 	/* Device-specific stats */
1639 	for (q = RAVB_BE; q < num_rx_q; q++) {
1640 		struct net_device_stats *stats = &priv->stats[q];
1641 
1642 		data[i++] = priv->cur_rx[q];
1643 		data[i++] = priv->cur_tx[q];
1644 		data[i++] = priv->dirty_rx[q];
1645 		data[i++] = priv->dirty_tx[q];
1646 		data[i++] = stats->rx_packets;
1647 		data[i++] = stats->tx_packets;
1648 		data[i++] = stats->rx_bytes;
1649 		data[i++] = stats->tx_bytes;
1650 		data[i++] = stats->multicast;
1651 		data[i++] = stats->rx_errors;
1652 		data[i++] = stats->rx_crc_errors;
1653 		data[i++] = stats->rx_frame_errors;
1654 		data[i++] = stats->rx_length_errors;
1655 		data[i++] = stats->rx_missed_errors;
1656 		data[i++] = stats->rx_over_errors;
1657 	}
1658 }
1659 
1660 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1661 {
1662 	struct ravb_private *priv = netdev_priv(ndev);
1663 	const struct ravb_hw_info *info = priv->info;
1664 
1665 	switch (stringset) {
1666 	case ETH_SS_STATS:
1667 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1668 		break;
1669 	}
1670 }
1671 
1672 static void ravb_get_ringparam(struct net_device *ndev,
1673 			       struct ethtool_ringparam *ring,
1674 			       struct kernel_ethtool_ringparam *kernel_ring,
1675 			       struct netlink_ext_ack *extack)
1676 {
1677 	struct ravb_private *priv = netdev_priv(ndev);
1678 
1679 	ring->rx_max_pending = BE_RX_RING_MAX;
1680 	ring->tx_max_pending = BE_TX_RING_MAX;
1681 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1682 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1683 }
1684 
1685 static int ravb_set_ringparam(struct net_device *ndev,
1686 			      struct ethtool_ringparam *ring,
1687 			      struct kernel_ethtool_ringparam *kernel_ring,
1688 			      struct netlink_ext_ack *extack)
1689 {
1690 	struct ravb_private *priv = netdev_priv(ndev);
1691 	const struct ravb_hw_info *info = priv->info;
1692 	int error;
1693 
1694 	if (ring->tx_pending > BE_TX_RING_MAX ||
1695 	    ring->rx_pending > BE_RX_RING_MAX ||
1696 	    ring->tx_pending < BE_TX_RING_MIN ||
1697 	    ring->rx_pending < BE_RX_RING_MIN)
1698 		return -EINVAL;
1699 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1700 		return -EINVAL;
1701 
1702 	if (netif_running(ndev)) {
1703 		netif_device_detach(ndev);
1704 		/* Stop PTP Clock driver */
1705 		if (info->gptp)
1706 			ravb_ptp_stop(ndev);
1707 		/* Wait for DMA stopping */
1708 		error = ravb_stop_dma(ndev);
1709 		if (error) {
1710 			netdev_err(ndev,
1711 				   "cannot set ringparam! Any AVB processes are still running?\n");
1712 			return error;
1713 		}
1714 		synchronize_irq(ndev->irq);
1715 
1716 		/* Free all the skb's in the RX queue and the DMA buffers. */
1717 		ravb_ring_free(ndev, RAVB_BE);
1718 		if (info->nc_queues)
1719 			ravb_ring_free(ndev, RAVB_NC);
1720 	}
1721 
1722 	/* Set new parameters */
1723 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1724 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1725 
1726 	if (netif_running(ndev)) {
1727 		error = ravb_dmac_init(ndev);
1728 		if (error) {
1729 			netdev_err(ndev,
1730 				   "%s: ravb_dmac_init() failed, error %d\n",
1731 				   __func__, error);
1732 			return error;
1733 		}
1734 
1735 		ravb_emac_init(ndev);
1736 
1737 		/* Initialise PTP Clock driver */
1738 		if (info->gptp)
1739 			ravb_ptp_init(ndev, priv->pdev);
1740 
1741 		netif_device_attach(ndev);
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 static int ravb_get_ts_info(struct net_device *ndev,
1748 			    struct kernel_ethtool_ts_info *info)
1749 {
1750 	struct ravb_private *priv = netdev_priv(ndev);
1751 	const struct ravb_hw_info *hw_info = priv->info;
1752 
1753 	info->so_timestamping =
1754 		SOF_TIMESTAMPING_TX_SOFTWARE |
1755 		SOF_TIMESTAMPING_TX_HARDWARE |
1756 		SOF_TIMESTAMPING_RX_HARDWARE |
1757 		SOF_TIMESTAMPING_RAW_HARDWARE;
1758 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1759 	info->rx_filters =
1760 		(1 << HWTSTAMP_FILTER_NONE) |
1761 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1762 		(1 << HWTSTAMP_FILTER_ALL);
1763 	if (hw_info->gptp || hw_info->ccc_gac)
1764 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1765 	else
1766 		info->phc_index = 0;
1767 
1768 	return 0;
1769 }
1770 
1771 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1772 {
1773 	struct ravb_private *priv = netdev_priv(ndev);
1774 
1775 	wol->supported = WAKE_MAGIC;
1776 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1777 }
1778 
1779 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1780 {
1781 	struct ravb_private *priv = netdev_priv(ndev);
1782 	const struct ravb_hw_info *info = priv->info;
1783 
1784 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1785 		return -EOPNOTSUPP;
1786 
1787 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1788 
1789 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1790 
1791 	return 0;
1792 }
1793 
1794 static const struct ethtool_ops ravb_ethtool_ops = {
1795 	.nway_reset		= phy_ethtool_nway_reset,
1796 	.get_msglevel		= ravb_get_msglevel,
1797 	.set_msglevel		= ravb_set_msglevel,
1798 	.get_link		= ethtool_op_get_link,
1799 	.get_strings		= ravb_get_strings,
1800 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1801 	.get_sset_count		= ravb_get_sset_count,
1802 	.get_ringparam		= ravb_get_ringparam,
1803 	.set_ringparam		= ravb_set_ringparam,
1804 	.get_ts_info		= ravb_get_ts_info,
1805 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1806 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1807 	.get_wol		= ravb_get_wol,
1808 	.set_wol		= ravb_set_wol,
1809 };
1810 
1811 static int ravb_set_config_mode(struct net_device *ndev)
1812 {
1813 	struct ravb_private *priv = netdev_priv(ndev);
1814 	const struct ravb_hw_info *info = priv->info;
1815 	int error;
1816 
1817 	if (info->gptp) {
1818 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1819 		if (error)
1820 			return error;
1821 		/* Set CSEL value */
1822 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1823 	} else if (info->ccc_gac) {
1824 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1825 	} else {
1826 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1827 	}
1828 
1829 	return error;
1830 }
1831 
1832 static void ravb_set_gti(struct net_device *ndev)
1833 {
1834 	struct ravb_private *priv = netdev_priv(ndev);
1835 	const struct ravb_hw_info *info = priv->info;
1836 
1837 	if (!(info->gptp || info->ccc_gac))
1838 		return;
1839 
1840 	ravb_write(ndev, priv->gti_tiv, GTI);
1841 
1842 	/* Request GTI loading */
1843 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1844 }
1845 
1846 static int ravb_compute_gti(struct net_device *ndev)
1847 {
1848 	struct ravb_private *priv = netdev_priv(ndev);
1849 	const struct ravb_hw_info *info = priv->info;
1850 	struct device *dev = ndev->dev.parent;
1851 	unsigned long rate;
1852 	u64 inc;
1853 
1854 	if (!(info->gptp || info->ccc_gac))
1855 		return 0;
1856 
1857 	if (info->gptp_ref_clk)
1858 		rate = clk_get_rate(priv->gptp_clk);
1859 	else
1860 		rate = clk_get_rate(priv->clk);
1861 	if (!rate)
1862 		return -EINVAL;
1863 
1864 	inc = div64_ul(1000000000ULL << 20, rate);
1865 
1866 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1867 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1868 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1869 		return -EINVAL;
1870 	}
1871 	priv->gti_tiv = inc;
1872 
1873 	return 0;
1874 }
1875 
1876 /* Set tx and rx clock internal delay modes */
1877 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1878 {
1879 	struct ravb_private *priv = netdev_priv(ndev);
1880 	bool explicit_delay = false;
1881 	u32 delay;
1882 
1883 	if (!priv->info->internal_delay)
1884 		return;
1885 
1886 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1887 		/* Valid values are 0 and 1800, according to DT bindings */
1888 		priv->rxcidm = !!delay;
1889 		explicit_delay = true;
1890 	}
1891 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1892 		/* Valid values are 0 and 2000, according to DT bindings */
1893 		priv->txcidm = !!delay;
1894 		explicit_delay = true;
1895 	}
1896 
1897 	if (explicit_delay)
1898 		return;
1899 
1900 	/* Fall back to legacy rgmii-*id behavior */
1901 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1902 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1903 		priv->rxcidm = 1;
1904 		priv->rgmii_override = 1;
1905 	}
1906 
1907 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1908 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1909 		priv->txcidm = 1;
1910 		priv->rgmii_override = 1;
1911 	}
1912 }
1913 
1914 static void ravb_set_delay_mode(struct net_device *ndev)
1915 {
1916 	struct ravb_private *priv = netdev_priv(ndev);
1917 	u32 set = 0;
1918 
1919 	if (!priv->info->internal_delay)
1920 		return;
1921 
1922 	if (priv->rxcidm)
1923 		set |= APSR_RDM;
1924 	if (priv->txcidm)
1925 		set |= APSR_TDM;
1926 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1927 }
1928 
1929 /* Network device open function for Ethernet AVB */
1930 static int ravb_open(struct net_device *ndev)
1931 {
1932 	struct ravb_private *priv = netdev_priv(ndev);
1933 	const struct ravb_hw_info *info = priv->info;
1934 	struct device *dev = &priv->pdev->dev;
1935 	int error;
1936 
1937 	napi_enable(&priv->napi[RAVB_BE]);
1938 	if (info->nc_queues)
1939 		napi_enable(&priv->napi[RAVB_NC]);
1940 
1941 	error = pm_runtime_resume_and_get(dev);
1942 	if (error < 0)
1943 		goto out_napi_off;
1944 
1945 	/* Set AVB config mode */
1946 	error = ravb_set_config_mode(ndev);
1947 	if (error)
1948 		goto out_rpm_put;
1949 
1950 	ravb_set_delay_mode(ndev);
1951 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1952 
1953 	/* Device init */
1954 	error = ravb_dmac_init(ndev);
1955 	if (error)
1956 		goto out_set_reset;
1957 
1958 	ravb_emac_init(ndev);
1959 
1960 	ravb_set_gti(ndev);
1961 
1962 	/* Initialise PTP Clock driver */
1963 	if (info->gptp || info->ccc_gac)
1964 		ravb_ptp_init(ndev, priv->pdev);
1965 
1966 	/* PHY control start */
1967 	error = ravb_phy_start(ndev);
1968 	if (error)
1969 		goto out_ptp_stop;
1970 
1971 	netif_tx_start_all_queues(ndev);
1972 
1973 	return 0;
1974 
1975 out_ptp_stop:
1976 	/* Stop PTP Clock driver */
1977 	if (info->gptp || info->ccc_gac)
1978 		ravb_ptp_stop(ndev);
1979 	ravb_stop_dma(ndev);
1980 out_set_reset:
1981 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1982 out_rpm_put:
1983 	pm_runtime_mark_last_busy(dev);
1984 	pm_runtime_put_autosuspend(dev);
1985 out_napi_off:
1986 	if (info->nc_queues)
1987 		napi_disable(&priv->napi[RAVB_NC]);
1988 	napi_disable(&priv->napi[RAVB_BE]);
1989 	return error;
1990 }
1991 
1992 /* Timeout function for Ethernet AVB */
1993 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1994 {
1995 	struct ravb_private *priv = netdev_priv(ndev);
1996 
1997 	netif_err(priv, tx_err, ndev,
1998 		  "transmit timed out, status %08x, resetting...\n",
1999 		  ravb_read(ndev, ISS));
2000 
2001 	/* tx_errors count up */
2002 	ndev->stats.tx_errors++;
2003 
2004 	schedule_work(&priv->work);
2005 }
2006 
2007 static void ravb_tx_timeout_work(struct work_struct *work)
2008 {
2009 	struct ravb_private *priv = container_of(work, struct ravb_private,
2010 						 work);
2011 	const struct ravb_hw_info *info = priv->info;
2012 	struct net_device *ndev = priv->ndev;
2013 	int error;
2014 
2015 	if (!rtnl_trylock()) {
2016 		usleep_range(1000, 2000);
2017 		schedule_work(&priv->work);
2018 		return;
2019 	}
2020 
2021 	netif_tx_stop_all_queues(ndev);
2022 
2023 	/* Stop PTP Clock driver */
2024 	if (info->gptp)
2025 		ravb_ptp_stop(ndev);
2026 
2027 	/* Wait for DMA stopping */
2028 	if (ravb_stop_dma(ndev)) {
2029 		/* If ravb_stop_dma() fails, the hardware is still operating
2030 		 * for TX and/or RX. So, this should not call the following
2031 		 * functions because ravb_dmac_init() is possible to fail too.
2032 		 * Also, this should not retry ravb_stop_dma() again and again
2033 		 * here because it's possible to wait forever. So, this just
2034 		 * re-enables the TX and RX and skip the following
2035 		 * re-initialization procedure.
2036 		 */
2037 		ravb_rcv_snd_enable(ndev);
2038 		goto out;
2039 	}
2040 
2041 	ravb_ring_free(ndev, RAVB_BE);
2042 	if (info->nc_queues)
2043 		ravb_ring_free(ndev, RAVB_NC);
2044 
2045 	/* Device init */
2046 	error = ravb_dmac_init(ndev);
2047 	if (error) {
2048 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2049 		 * should return here to avoid re-enabling the TX and RX in
2050 		 * ravb_emac_init().
2051 		 */
2052 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2053 			   __func__, error);
2054 		goto out_unlock;
2055 	}
2056 	ravb_emac_init(ndev);
2057 
2058 out:
2059 	/* Initialise PTP Clock driver */
2060 	if (info->gptp)
2061 		ravb_ptp_init(ndev, priv->pdev);
2062 
2063 	netif_tx_start_all_queues(ndev);
2064 
2065 out_unlock:
2066 	rtnl_unlock();
2067 }
2068 
2069 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2070 {
2071 	struct iphdr *ip = ip_hdr(skb);
2072 
2073 	/* TODO: Need to add support for VLAN tag 802.1Q */
2074 	if (skb_vlan_tag_present(skb))
2075 		return false;
2076 
2077 	/* TODO: Need to add hardware checksum for IPv6 */
2078 	if (skb->protocol != htons(ETH_P_IP))
2079 		return false;
2080 
2081 	switch (ip->protocol) {
2082 	case IPPROTO_TCP:
2083 		break;
2084 	case IPPROTO_UDP:
2085 		/* If the checksum value in the UDP header field is 0, TOE does
2086 		 * not calculate checksum for UDP part of this frame as it is
2087 		 * optional function as per standards.
2088 		 */
2089 		if (udp_hdr(skb)->check == 0)
2090 			return false;
2091 		break;
2092 	default:
2093 		return false;
2094 	}
2095 
2096 	return true;
2097 }
2098 
2099 /* Packet transmit function for Ethernet AVB */
2100 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2101 {
2102 	struct ravb_private *priv = netdev_priv(ndev);
2103 	const struct ravb_hw_info *info = priv->info;
2104 	unsigned int num_tx_desc = priv->num_tx_desc;
2105 	u16 q = skb_get_queue_mapping(skb);
2106 	struct ravb_tstamp_skb *ts_skb;
2107 	struct ravb_tx_desc *desc;
2108 	unsigned long flags;
2109 	dma_addr_t dma_addr;
2110 	void *buffer;
2111 	u32 entry;
2112 	u32 len;
2113 
2114 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2115 		skb_checksum_help(skb);
2116 
2117 	spin_lock_irqsave(&priv->lock, flags);
2118 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2119 	    num_tx_desc) {
2120 		netif_err(priv, tx_queued, ndev,
2121 			  "still transmitting with the full ring!\n");
2122 		netif_stop_subqueue(ndev, q);
2123 		spin_unlock_irqrestore(&priv->lock, flags);
2124 		return NETDEV_TX_BUSY;
2125 	}
2126 
2127 	if (skb_put_padto(skb, ETH_ZLEN))
2128 		goto exit;
2129 
2130 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2131 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2132 
2133 	if (num_tx_desc > 1) {
2134 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2135 			 entry / num_tx_desc * DPTR_ALIGN;
2136 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2137 
2138 		/* Zero length DMA descriptors are problematic as they seem
2139 		 * to terminate DMA transfers. Avoid them by simply using a
2140 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2141 		 * DPTR_ALIGN.
2142 		 *
2143 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2144 		 * bytes of data by the call to skb_put_padto() above this
2145 		 * is safe with respect to both the length of the first DMA
2146 		 * descriptor (len) overflowing the available data and the
2147 		 * length of the second DMA descriptor (skb->len - len)
2148 		 * being negative.
2149 		 */
2150 		if (len == 0)
2151 			len = DPTR_ALIGN;
2152 
2153 		memcpy(buffer, skb->data, len);
2154 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2155 					  DMA_TO_DEVICE);
2156 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2157 			goto drop;
2158 
2159 		desc = &priv->tx_ring[q][entry];
2160 		desc->ds_tagl = cpu_to_le16(len);
2161 		desc->dptr = cpu_to_le32(dma_addr);
2162 
2163 		buffer = skb->data + len;
2164 		len = skb->len - len;
2165 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2166 					  DMA_TO_DEVICE);
2167 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2168 			goto unmap;
2169 
2170 		desc++;
2171 	} else {
2172 		desc = &priv->tx_ring[q][entry];
2173 		len = skb->len;
2174 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2175 					  DMA_TO_DEVICE);
2176 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2177 			goto drop;
2178 	}
2179 	desc->ds_tagl = cpu_to_le16(len);
2180 	desc->dptr = cpu_to_le32(dma_addr);
2181 
2182 	/* TX timestamp required */
2183 	if (info->gptp || info->ccc_gac) {
2184 		if (q == RAVB_NC) {
2185 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2186 			if (!ts_skb) {
2187 				if (num_tx_desc > 1) {
2188 					desc--;
2189 					dma_unmap_single(ndev->dev.parent, dma_addr,
2190 							 len, DMA_TO_DEVICE);
2191 				}
2192 				goto unmap;
2193 			}
2194 			ts_skb->skb = skb_get(skb);
2195 			ts_skb->tag = priv->ts_skb_tag++;
2196 			priv->ts_skb_tag &= 0x3ff;
2197 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2198 
2199 			/* TAG and timestamp required flag */
2200 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2201 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2202 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2203 		}
2204 
2205 		skb_tx_timestamp(skb);
2206 	}
2207 	/* Descriptor type must be set after all the above writes */
2208 	dma_wmb();
2209 	if (num_tx_desc > 1) {
2210 		desc->die_dt = DT_FEND;
2211 		desc--;
2212 		desc->die_dt = DT_FSTART;
2213 	} else {
2214 		desc->die_dt = DT_FSINGLE;
2215 	}
2216 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2217 
2218 	priv->cur_tx[q] += num_tx_desc;
2219 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2220 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2221 	    !ravb_tx_free(ndev, q, true))
2222 		netif_stop_subqueue(ndev, q);
2223 
2224 exit:
2225 	spin_unlock_irqrestore(&priv->lock, flags);
2226 	return NETDEV_TX_OK;
2227 
2228 unmap:
2229 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2230 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2231 drop:
2232 	dev_kfree_skb_any(skb);
2233 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2234 	goto exit;
2235 }
2236 
2237 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2238 			     struct net_device *sb_dev)
2239 {
2240 	/* If skb needs TX timestamp, it is handled in network control queue */
2241 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2242 							       RAVB_BE;
2243 
2244 }
2245 
2246 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2247 {
2248 	struct ravb_private *priv = netdev_priv(ndev);
2249 	const struct ravb_hw_info *info = priv->info;
2250 	struct net_device_stats *nstats, *stats0, *stats1;
2251 	struct device *dev = &priv->pdev->dev;
2252 
2253 	nstats = &ndev->stats;
2254 
2255 	pm_runtime_get_noresume(dev);
2256 
2257 	if (!pm_runtime_active(dev))
2258 		goto out_rpm_put;
2259 
2260 	stats0 = &priv->stats[RAVB_BE];
2261 
2262 	if (info->tx_counters) {
2263 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2264 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2265 	}
2266 
2267 	if (info->carrier_counters) {
2268 		nstats->collisions += ravb_read(ndev, CXR41);
2269 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2270 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2271 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2272 	}
2273 
2274 	nstats->rx_packets = stats0->rx_packets;
2275 	nstats->tx_packets = stats0->tx_packets;
2276 	nstats->rx_bytes = stats0->rx_bytes;
2277 	nstats->tx_bytes = stats0->tx_bytes;
2278 	nstats->multicast = stats0->multicast;
2279 	nstats->rx_errors = stats0->rx_errors;
2280 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2281 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2282 	nstats->rx_length_errors = stats0->rx_length_errors;
2283 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2284 	nstats->rx_over_errors = stats0->rx_over_errors;
2285 	if (info->nc_queues) {
2286 		stats1 = &priv->stats[RAVB_NC];
2287 
2288 		nstats->rx_packets += stats1->rx_packets;
2289 		nstats->tx_packets += stats1->tx_packets;
2290 		nstats->rx_bytes += stats1->rx_bytes;
2291 		nstats->tx_bytes += stats1->tx_bytes;
2292 		nstats->multicast += stats1->multicast;
2293 		nstats->rx_errors += stats1->rx_errors;
2294 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2295 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2296 		nstats->rx_length_errors += stats1->rx_length_errors;
2297 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2298 		nstats->rx_over_errors += stats1->rx_over_errors;
2299 	}
2300 
2301 out_rpm_put:
2302 	pm_runtime_put_noidle(dev);
2303 	return nstats;
2304 }
2305 
2306 /* Update promiscuous bit */
2307 static void ravb_set_rx_mode(struct net_device *ndev)
2308 {
2309 	struct ravb_private *priv = netdev_priv(ndev);
2310 	unsigned long flags;
2311 
2312 	spin_lock_irqsave(&priv->lock, flags);
2313 	ravb_modify(ndev, ECMR, ECMR_PRM,
2314 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2315 	spin_unlock_irqrestore(&priv->lock, flags);
2316 }
2317 
2318 /* Device close function for Ethernet AVB */
2319 static int ravb_close(struct net_device *ndev)
2320 {
2321 	struct device_node *np = ndev->dev.parent->of_node;
2322 	struct ravb_private *priv = netdev_priv(ndev);
2323 	const struct ravb_hw_info *info = priv->info;
2324 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2325 	struct device *dev = &priv->pdev->dev;
2326 	int error;
2327 
2328 	netif_tx_stop_all_queues(ndev);
2329 
2330 	/* Disable interrupts by clearing the interrupt masks. */
2331 	ravb_write(ndev, 0, RIC0);
2332 	ravb_write(ndev, 0, RIC2);
2333 	ravb_write(ndev, 0, TIC);
2334 
2335 	/* PHY disconnect */
2336 	if (ndev->phydev) {
2337 		phy_stop(ndev->phydev);
2338 		phy_disconnect(ndev->phydev);
2339 		if (of_phy_is_fixed_link(np))
2340 			of_phy_deregister_fixed_link(np);
2341 	}
2342 
2343 	/* Stop PTP Clock driver */
2344 	if (info->gptp || info->ccc_gac)
2345 		ravb_ptp_stop(ndev);
2346 
2347 	/* Set the config mode to stop the AVB-DMAC's processes */
2348 	if (ravb_stop_dma(ndev) < 0)
2349 		netdev_err(ndev,
2350 			   "device will be stopped after h/w processes are done.\n");
2351 
2352 	/* Clear the timestamp list */
2353 	if (info->gptp || info->ccc_gac) {
2354 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2355 			list_del(&ts_skb->list);
2356 			kfree_skb(ts_skb->skb);
2357 			kfree(ts_skb);
2358 		}
2359 	}
2360 
2361 	cancel_work_sync(&priv->work);
2362 
2363 	if (info->nc_queues)
2364 		napi_disable(&priv->napi[RAVB_NC]);
2365 	napi_disable(&priv->napi[RAVB_BE]);
2366 
2367 	/* Free all the skb's in the RX queue and the DMA buffers. */
2368 	ravb_ring_free(ndev, RAVB_BE);
2369 	if (info->nc_queues)
2370 		ravb_ring_free(ndev, RAVB_NC);
2371 
2372 	/* Update statistics. */
2373 	ravb_get_stats(ndev);
2374 
2375 	/* Set reset mode. */
2376 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2377 	if (error)
2378 		return error;
2379 
2380 	pm_runtime_mark_last_busy(dev);
2381 	pm_runtime_put_autosuspend(dev);
2382 
2383 	return 0;
2384 }
2385 
2386 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2387 {
2388 	struct ravb_private *priv = netdev_priv(ndev);
2389 	struct hwtstamp_config config;
2390 
2391 	config.flags = 0;
2392 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2393 						HWTSTAMP_TX_OFF;
2394 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2395 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2396 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2397 		break;
2398 	case RAVB_RXTSTAMP_TYPE_ALL:
2399 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2400 		break;
2401 	default:
2402 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2403 	}
2404 
2405 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2406 		-EFAULT : 0;
2407 }
2408 
2409 /* Control hardware time stamping */
2410 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2411 {
2412 	struct ravb_private *priv = netdev_priv(ndev);
2413 	struct hwtstamp_config config;
2414 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2415 	u32 tstamp_tx_ctrl;
2416 
2417 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2418 		return -EFAULT;
2419 
2420 	switch (config.tx_type) {
2421 	case HWTSTAMP_TX_OFF:
2422 		tstamp_tx_ctrl = 0;
2423 		break;
2424 	case HWTSTAMP_TX_ON:
2425 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2426 		break;
2427 	default:
2428 		return -ERANGE;
2429 	}
2430 
2431 	switch (config.rx_filter) {
2432 	case HWTSTAMP_FILTER_NONE:
2433 		tstamp_rx_ctrl = 0;
2434 		break;
2435 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2436 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2437 		break;
2438 	default:
2439 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2440 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2441 	}
2442 
2443 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2444 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2445 
2446 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2447 		-EFAULT : 0;
2448 }
2449 
2450 /* ioctl to device function */
2451 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2452 {
2453 	struct phy_device *phydev = ndev->phydev;
2454 
2455 	if (!netif_running(ndev))
2456 		return -EINVAL;
2457 
2458 	if (!phydev)
2459 		return -ENODEV;
2460 
2461 	switch (cmd) {
2462 	case SIOCGHWTSTAMP:
2463 		return ravb_hwtstamp_get(ndev, req);
2464 	case SIOCSHWTSTAMP:
2465 		return ravb_hwtstamp_set(ndev, req);
2466 	}
2467 
2468 	return phy_mii_ioctl(phydev, req, cmd);
2469 }
2470 
2471 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2472 {
2473 	struct ravb_private *priv = netdev_priv(ndev);
2474 
2475 	WRITE_ONCE(ndev->mtu, new_mtu);
2476 
2477 	if (netif_running(ndev)) {
2478 		synchronize_irq(priv->emac_irq);
2479 		ravb_emac_init(ndev);
2480 	}
2481 
2482 	netdev_update_features(ndev);
2483 
2484 	return 0;
2485 }
2486 
2487 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2488 {
2489 	struct ravb_private *priv = netdev_priv(ndev);
2490 	unsigned long flags;
2491 
2492 	spin_lock_irqsave(&priv->lock, flags);
2493 
2494 	/* Disable TX and RX */
2495 	ravb_rcv_snd_disable(ndev);
2496 
2497 	/* Modify RX Checksum setting */
2498 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2499 
2500 	/* Enable TX and RX */
2501 	ravb_rcv_snd_enable(ndev);
2502 
2503 	spin_unlock_irqrestore(&priv->lock, flags);
2504 }
2505 
2506 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2507 				     u32 val, u32 mask)
2508 {
2509 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2510 	int ret;
2511 
2512 	ravb_write(ndev, csr0 & ~mask, CSR0);
2513 	ret = ravb_wait(ndev, CSR0, mask, 0);
2514 	if (!ret)
2515 		ravb_write(ndev, val, reg);
2516 
2517 	ravb_write(ndev, csr0, CSR0);
2518 
2519 	return ret;
2520 }
2521 
2522 static int ravb_set_features_gbeth(struct net_device *ndev,
2523 				   netdev_features_t features)
2524 {
2525 	netdev_features_t changed = ndev->features ^ features;
2526 	struct ravb_private *priv = netdev_priv(ndev);
2527 	unsigned long flags;
2528 	int ret = 0;
2529 	u32 val;
2530 
2531 	spin_lock_irqsave(&priv->lock, flags);
2532 	if (changed & NETIF_F_RXCSUM) {
2533 		if (features & NETIF_F_RXCSUM)
2534 			val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2535 		else
2536 			val = 0;
2537 
2538 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2539 		if (ret)
2540 			goto done;
2541 	}
2542 
2543 	if (changed & NETIF_F_HW_CSUM) {
2544 		if (features & NETIF_F_HW_CSUM)
2545 			val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2546 		else
2547 			val = 0;
2548 
2549 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2550 		if (ret)
2551 			goto done;
2552 	}
2553 
2554 done:
2555 	spin_unlock_irqrestore(&priv->lock, flags);
2556 
2557 	return ret;
2558 }
2559 
2560 static int ravb_set_features_rcar(struct net_device *ndev,
2561 				  netdev_features_t features)
2562 {
2563 	netdev_features_t changed = ndev->features ^ features;
2564 
2565 	if (changed & NETIF_F_RXCSUM)
2566 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2567 
2568 	return 0;
2569 }
2570 
2571 static int ravb_set_features(struct net_device *ndev,
2572 			     netdev_features_t features)
2573 {
2574 	struct ravb_private *priv = netdev_priv(ndev);
2575 	const struct ravb_hw_info *info = priv->info;
2576 	struct device *dev = &priv->pdev->dev;
2577 	int ret;
2578 
2579 	pm_runtime_get_noresume(dev);
2580 
2581 	if (pm_runtime_active(dev))
2582 		ret = info->set_feature(ndev, features);
2583 	else
2584 		ret = 0;
2585 
2586 	pm_runtime_put_noidle(dev);
2587 
2588 	if (ret)
2589 		return ret;
2590 
2591 	ndev->features = features;
2592 
2593 	return 0;
2594 }
2595 
2596 static const struct net_device_ops ravb_netdev_ops = {
2597 	.ndo_open		= ravb_open,
2598 	.ndo_stop		= ravb_close,
2599 	.ndo_start_xmit		= ravb_start_xmit,
2600 	.ndo_select_queue	= ravb_select_queue,
2601 	.ndo_get_stats		= ravb_get_stats,
2602 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2603 	.ndo_tx_timeout		= ravb_tx_timeout,
2604 	.ndo_eth_ioctl		= ravb_do_ioctl,
2605 	.ndo_change_mtu		= ravb_change_mtu,
2606 	.ndo_validate_addr	= eth_validate_addr,
2607 	.ndo_set_mac_address	= eth_mac_addr,
2608 	.ndo_set_features	= ravb_set_features,
2609 };
2610 
2611 /* MDIO bus init function */
2612 static int ravb_mdio_init(struct ravb_private *priv)
2613 {
2614 	struct platform_device *pdev = priv->pdev;
2615 	struct device *dev = &pdev->dev;
2616 	struct device_node *mdio_node;
2617 	struct phy_device *phydev;
2618 	struct device_node *pn;
2619 	int error;
2620 
2621 	/* Bitbang init */
2622 	priv->mdiobb.ops = &bb_ops;
2623 
2624 	/* MII controller setting */
2625 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2626 	if (!priv->mii_bus)
2627 		return -ENOMEM;
2628 
2629 	/* Hook up MII support for ethtool */
2630 	priv->mii_bus->name = "ravb_mii";
2631 	priv->mii_bus->parent = dev;
2632 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2633 		 pdev->name, pdev->id);
2634 
2635 	/* Register MDIO bus */
2636 	mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2637 	if (!mdio_node) {
2638 		/* backwards compatibility for DT lacking mdio subnode */
2639 		mdio_node = of_node_get(dev->of_node);
2640 	}
2641 	error = of_mdiobus_register(priv->mii_bus, mdio_node);
2642 	of_node_put(mdio_node);
2643 	if (error)
2644 		goto out_free_bus;
2645 
2646 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2647 	phydev = of_phy_find_device(pn);
2648 	if (phydev) {
2649 		phydev->mac_managed_pm = true;
2650 		put_device(&phydev->mdio.dev);
2651 	}
2652 	of_node_put(pn);
2653 
2654 	return 0;
2655 
2656 out_free_bus:
2657 	free_mdio_bitbang(priv->mii_bus);
2658 	return error;
2659 }
2660 
2661 /* MDIO bus release function */
2662 static int ravb_mdio_release(struct ravb_private *priv)
2663 {
2664 	/* Unregister mdio bus */
2665 	mdiobus_unregister(priv->mii_bus);
2666 
2667 	/* Free bitbang info */
2668 	free_mdio_bitbang(priv->mii_bus);
2669 
2670 	return 0;
2671 }
2672 
2673 static const struct ravb_hw_info ravb_gen2_hw_info = {
2674 	.receive = ravb_rx_rcar,
2675 	.set_rate = ravb_set_rate_rcar,
2676 	.set_feature = ravb_set_features_rcar,
2677 	.dmac_init = ravb_dmac_init_rcar,
2678 	.emac_init = ravb_emac_init_rcar,
2679 	.gstrings_stats = ravb_gstrings_stats,
2680 	.gstrings_size = sizeof(ravb_gstrings_stats),
2681 	.net_hw_features = NETIF_F_RXCSUM,
2682 	.net_features = NETIF_F_RXCSUM,
2683 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2684 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2685 	.tx_max_frame_size = SZ_2K,
2686 	.rx_max_frame_size = SZ_2K,
2687 	.rx_buffer_size = SZ_2K +
2688 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2689 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2690 	.aligned_tx = 1,
2691 	.gptp = 1,
2692 	.nc_queues = 1,
2693 	.magic_pkt = 1,
2694 };
2695 
2696 static const struct ravb_hw_info ravb_gen3_hw_info = {
2697 	.receive = ravb_rx_rcar,
2698 	.set_rate = ravb_set_rate_rcar,
2699 	.set_feature = ravb_set_features_rcar,
2700 	.dmac_init = ravb_dmac_init_rcar,
2701 	.emac_init = ravb_emac_init_rcar,
2702 	.gstrings_stats = ravb_gstrings_stats,
2703 	.gstrings_size = sizeof(ravb_gstrings_stats),
2704 	.net_hw_features = NETIF_F_RXCSUM,
2705 	.net_features = NETIF_F_RXCSUM,
2706 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2707 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2708 	.tx_max_frame_size = SZ_2K,
2709 	.rx_max_frame_size = SZ_2K,
2710 	.rx_buffer_size = SZ_2K +
2711 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2712 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2713 	.internal_delay = 1,
2714 	.tx_counters = 1,
2715 	.multi_irqs = 1,
2716 	.irq_en_dis = 1,
2717 	.ccc_gac = 1,
2718 	.nc_queues = 1,
2719 	.magic_pkt = 1,
2720 };
2721 
2722 static const struct ravb_hw_info ravb_gen4_hw_info = {
2723 	.receive = ravb_rx_rcar,
2724 	.set_rate = ravb_set_rate_rcar,
2725 	.set_feature = ravb_set_features_rcar,
2726 	.dmac_init = ravb_dmac_init_rcar,
2727 	.emac_init = ravb_emac_init_rcar_gen4,
2728 	.gstrings_stats = ravb_gstrings_stats,
2729 	.gstrings_size = sizeof(ravb_gstrings_stats),
2730 	.net_hw_features = NETIF_F_RXCSUM,
2731 	.net_features = NETIF_F_RXCSUM,
2732 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2733 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2734 	.tx_max_frame_size = SZ_2K,
2735 	.rx_max_frame_size = SZ_2K,
2736 	.rx_buffer_size = SZ_2K +
2737 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2738 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2739 	.internal_delay = 1,
2740 	.tx_counters = 1,
2741 	.multi_irqs = 1,
2742 	.irq_en_dis = 1,
2743 	.ccc_gac = 1,
2744 	.nc_queues = 1,
2745 	.magic_pkt = 1,
2746 };
2747 
2748 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2749 	.receive = ravb_rx_rcar,
2750 	.set_rate = ravb_set_rate_rcar,
2751 	.set_feature = ravb_set_features_rcar,
2752 	.dmac_init = ravb_dmac_init_rcar,
2753 	.emac_init = ravb_emac_init_rcar,
2754 	.gstrings_stats = ravb_gstrings_stats,
2755 	.gstrings_size = sizeof(ravb_gstrings_stats),
2756 	.net_hw_features = NETIF_F_RXCSUM,
2757 	.net_features = NETIF_F_RXCSUM,
2758 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2759 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2760 	.rx_max_frame_size = SZ_2K,
2761 	.rx_buffer_size = SZ_2K +
2762 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2763 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2764 	.multi_irqs = 1,
2765 	.err_mgmt_irqs = 1,
2766 	.gptp = 1,
2767 	.gptp_ref_clk = 1,
2768 	.nc_queues = 1,
2769 	.magic_pkt = 1,
2770 };
2771 
2772 static const struct ravb_hw_info gbeth_hw_info = {
2773 	.receive = ravb_rx_gbeth,
2774 	.set_rate = ravb_set_rate_gbeth,
2775 	.set_feature = ravb_set_features_gbeth,
2776 	.dmac_init = ravb_dmac_init_gbeth,
2777 	.emac_init = ravb_emac_init_gbeth,
2778 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2779 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2780 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2781 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2782 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2783 	.tccr_mask = TCCR_TSRQ0,
2784 	.tx_max_frame_size = 1522,
2785 	.rx_max_frame_size = SZ_8K,
2786 	.rx_buffer_size = SZ_2K,
2787 	.rx_desc_size = sizeof(struct ravb_rx_desc),
2788 	.aligned_tx = 1,
2789 	.coalesce_irqs = 1,
2790 	.tx_counters = 1,
2791 	.carrier_counters = 1,
2792 	.half_duplex = 1,
2793 };
2794 
2795 static const struct of_device_id ravb_match_table[] = {
2796 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2797 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2798 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2799 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2800 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2801 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2802 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2803 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2804 	{ }
2805 };
2806 MODULE_DEVICE_TABLE(of, ravb_match_table);
2807 
2808 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2809 			  const char *ch, int *irq, irq_handler_t handler)
2810 {
2811 	struct platform_device *pdev = priv->pdev;
2812 	struct net_device *ndev = priv->ndev;
2813 	struct device *dev = &pdev->dev;
2814 	const char *devname = dev_name(dev);
2815 	unsigned long flags;
2816 	int error, irq_num;
2817 
2818 	if (irq_name) {
2819 		devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2820 		if (!devname)
2821 			return -ENOMEM;
2822 
2823 		irq_num = platform_get_irq_byname(pdev, irq_name);
2824 		flags = 0;
2825 	} else {
2826 		irq_num = platform_get_irq(pdev, 0);
2827 		flags = IRQF_SHARED;
2828 	}
2829 	if (irq_num < 0)
2830 		return irq_num;
2831 
2832 	if (irq)
2833 		*irq = irq_num;
2834 
2835 	error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2836 	if (error)
2837 		netdev_err(ndev, "cannot request IRQ %s\n", devname);
2838 
2839 	return error;
2840 }
2841 
2842 static int ravb_setup_irqs(struct ravb_private *priv)
2843 {
2844 	const struct ravb_hw_info *info = priv->info;
2845 	struct net_device *ndev = priv->ndev;
2846 	const char *irq_name, *emac_irq_name;
2847 	int error;
2848 
2849 	if (!info->multi_irqs)
2850 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2851 
2852 	if (info->err_mgmt_irqs) {
2853 		irq_name = "dia";
2854 		emac_irq_name = "line3";
2855 	} else {
2856 		irq_name = "ch22";
2857 		emac_irq_name = "ch24";
2858 	}
2859 
2860 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2861 	if (error)
2862 		return error;
2863 
2864 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2865 			       ravb_emac_interrupt);
2866 	if (error)
2867 		return error;
2868 
2869 	if (info->err_mgmt_irqs) {
2870 		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2871 		if (error)
2872 			return error;
2873 
2874 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2875 		if (error)
2876 			return error;
2877 	}
2878 
2879 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2880 	if (error)
2881 		return error;
2882 
2883 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2884 	if (error)
2885 		return error;
2886 
2887 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2888 	if (error)
2889 		return error;
2890 
2891 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2892 }
2893 
2894 static int ravb_probe(struct platform_device *pdev)
2895 {
2896 	struct device_node *np = pdev->dev.of_node;
2897 	const struct ravb_hw_info *info;
2898 	struct reset_control *rstc;
2899 	struct ravb_private *priv;
2900 	struct net_device *ndev;
2901 	struct resource *res;
2902 	int error, q;
2903 
2904 	if (!np) {
2905 		dev_err(&pdev->dev,
2906 			"this driver is required to be instantiated from device tree\n");
2907 		return -EINVAL;
2908 	}
2909 
2910 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2911 	if (IS_ERR(rstc))
2912 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2913 				     "failed to get cpg reset\n");
2914 
2915 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2916 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2917 	if (!ndev)
2918 		return -ENOMEM;
2919 
2920 	info = of_device_get_match_data(&pdev->dev);
2921 
2922 	ndev->features = info->net_features;
2923 	ndev->hw_features = info->net_hw_features;
2924 
2925 	error = reset_control_deassert(rstc);
2926 	if (error)
2927 		goto out_free_netdev;
2928 
2929 	SET_NETDEV_DEV(ndev, &pdev->dev);
2930 
2931 	priv = netdev_priv(ndev);
2932 	priv->info = info;
2933 	priv->rstc = rstc;
2934 	priv->ndev = ndev;
2935 	priv->pdev = pdev;
2936 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2937 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2938 	if (info->nc_queues) {
2939 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2940 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2941 	}
2942 
2943 	error = ravb_setup_irqs(priv);
2944 	if (error)
2945 		goto out_reset_assert;
2946 
2947 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2948 	if (IS_ERR(priv->clk)) {
2949 		error = PTR_ERR(priv->clk);
2950 		goto out_reset_assert;
2951 	}
2952 
2953 	if (info->gptp_ref_clk) {
2954 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2955 		if (IS_ERR(priv->gptp_clk)) {
2956 			error = PTR_ERR(priv->gptp_clk);
2957 			goto out_reset_assert;
2958 		}
2959 	}
2960 
2961 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2962 	if (IS_ERR(priv->refclk)) {
2963 		error = PTR_ERR(priv->refclk);
2964 		goto out_reset_assert;
2965 	}
2966 	clk_prepare(priv->refclk);
2967 
2968 	platform_set_drvdata(pdev, ndev);
2969 	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2970 	pm_runtime_use_autosuspend(&pdev->dev);
2971 	pm_runtime_enable(&pdev->dev);
2972 	error = pm_runtime_resume_and_get(&pdev->dev);
2973 	if (error < 0)
2974 		goto out_rpm_disable;
2975 
2976 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2977 	if (IS_ERR(priv->addr)) {
2978 		error = PTR_ERR(priv->addr);
2979 		goto out_rpm_put;
2980 	}
2981 
2982 	/* The Ether-specific entries in the device structure. */
2983 	ndev->base_addr = res->start;
2984 
2985 	spin_lock_init(&priv->lock);
2986 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2987 
2988 	error = of_get_phy_mode(np, &priv->phy_interface);
2989 	if (error && error != -ENODEV)
2990 		goto out_rpm_put;
2991 
2992 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2993 	priv->avb_link_active_low =
2994 		of_property_read_bool(np, "renesas,ether-link-active-low");
2995 
2996 	ndev->max_mtu = info->tx_max_frame_size -
2997 		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2998 	ndev->min_mtu = ETH_MIN_MTU;
2999 
3000 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3001 	 * Use two descriptor to handle such situation. First descriptor to
3002 	 * handle aligned data buffer and second descriptor to handle the
3003 	 * overflow data because of alignment.
3004 	 */
3005 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3006 
3007 	/* Set function */
3008 	ndev->netdev_ops = &ravb_netdev_ops;
3009 	ndev->ethtool_ops = &ravb_ethtool_ops;
3010 
3011 	error = ravb_compute_gti(ndev);
3012 	if (error)
3013 		goto out_rpm_put;
3014 
3015 	ravb_parse_delay_mode(np, ndev);
3016 
3017 	/* Allocate descriptor base address table */
3018 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
3019 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3020 					    &priv->desc_bat_dma, GFP_KERNEL);
3021 	if (!priv->desc_bat) {
3022 		dev_err(&pdev->dev,
3023 			"Cannot allocate desc base address table (size %d bytes)\n",
3024 			priv->desc_bat_size);
3025 		error = -ENOMEM;
3026 		goto out_rpm_put;
3027 	}
3028 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
3029 		priv->desc_bat[q].die_dt = DT_EOS;
3030 
3031 	/* Initialise HW timestamp list */
3032 	INIT_LIST_HEAD(&priv->ts_skb_list);
3033 
3034 	/* Debug message level */
3035 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3036 
3037 	/* Set config mode as this is needed for PHY initialization. */
3038 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3039 	if (error)
3040 		goto out_rpm_put;
3041 
3042 	/* Read and set MAC address */
3043 	ravb_read_mac_address(np, ndev);
3044 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3045 		dev_warn(&pdev->dev,
3046 			 "no valid MAC address supplied, using a random one\n");
3047 		eth_hw_addr_random(ndev);
3048 	}
3049 
3050 	/* MDIO bus init */
3051 	error = ravb_mdio_init(priv);
3052 	if (error) {
3053 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
3054 		goto out_reset_mode;
3055 	}
3056 
3057 	/* Undo previous switch to config opmode. */
3058 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3059 	if (error)
3060 		goto out_mdio_release;
3061 
3062 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3063 	if (info->nc_queues)
3064 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3065 
3066 	if (info->coalesce_irqs) {
3067 		netdev_sw_irq_coalesce_default_on(ndev);
3068 		if (num_present_cpus() == 1)
3069 			dev_set_threaded(ndev, true);
3070 	}
3071 
3072 	/* Network device register */
3073 	error = register_netdev(ndev);
3074 	if (error)
3075 		goto out_napi_del;
3076 
3077 	device_set_wakeup_capable(&pdev->dev, 1);
3078 
3079 	/* Print device information */
3080 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3081 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3082 
3083 	pm_runtime_mark_last_busy(&pdev->dev);
3084 	pm_runtime_put_autosuspend(&pdev->dev);
3085 
3086 	return 0;
3087 
3088 out_napi_del:
3089 	if (info->nc_queues)
3090 		netif_napi_del(&priv->napi[RAVB_NC]);
3091 
3092 	netif_napi_del(&priv->napi[RAVB_BE]);
3093 out_mdio_release:
3094 	ravb_mdio_release(priv);
3095 out_reset_mode:
3096 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3097 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3098 			  priv->desc_bat_dma);
3099 out_rpm_put:
3100 	pm_runtime_put(&pdev->dev);
3101 out_rpm_disable:
3102 	pm_runtime_disable(&pdev->dev);
3103 	pm_runtime_dont_use_autosuspend(&pdev->dev);
3104 	clk_unprepare(priv->refclk);
3105 out_reset_assert:
3106 	reset_control_assert(rstc);
3107 out_free_netdev:
3108 	free_netdev(ndev);
3109 	return error;
3110 }
3111 
3112 static void ravb_remove(struct platform_device *pdev)
3113 {
3114 	struct net_device *ndev = platform_get_drvdata(pdev);
3115 	struct ravb_private *priv = netdev_priv(ndev);
3116 	const struct ravb_hw_info *info = priv->info;
3117 	struct device *dev = &priv->pdev->dev;
3118 	int error;
3119 
3120 	error = pm_runtime_resume_and_get(dev);
3121 	if (error < 0)
3122 		return;
3123 
3124 	unregister_netdev(ndev);
3125 	if (info->nc_queues)
3126 		netif_napi_del(&priv->napi[RAVB_NC]);
3127 	netif_napi_del(&priv->napi[RAVB_BE]);
3128 
3129 	ravb_mdio_release(priv);
3130 
3131 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3132 			  priv->desc_bat_dma);
3133 
3134 	pm_runtime_put_sync_suspend(&pdev->dev);
3135 	pm_runtime_disable(&pdev->dev);
3136 	pm_runtime_dont_use_autosuspend(dev);
3137 	clk_unprepare(priv->refclk);
3138 	reset_control_assert(priv->rstc);
3139 	free_netdev(ndev);
3140 	platform_set_drvdata(pdev, NULL);
3141 }
3142 
3143 static int ravb_wol_setup(struct net_device *ndev)
3144 {
3145 	struct ravb_private *priv = netdev_priv(ndev);
3146 	const struct ravb_hw_info *info = priv->info;
3147 
3148 	/* Disable interrupts by clearing the interrupt masks. */
3149 	ravb_write(ndev, 0, RIC0);
3150 	ravb_write(ndev, 0, RIC2);
3151 	ravb_write(ndev, 0, TIC);
3152 
3153 	/* Only allow ECI interrupts */
3154 	synchronize_irq(priv->emac_irq);
3155 	if (info->nc_queues)
3156 		napi_disable(&priv->napi[RAVB_NC]);
3157 	napi_disable(&priv->napi[RAVB_BE]);
3158 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3159 
3160 	/* Enable MagicPacket */
3161 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3162 
3163 	if (priv->info->ccc_gac)
3164 		ravb_ptp_stop(ndev);
3165 
3166 	return enable_irq_wake(priv->emac_irq);
3167 }
3168 
3169 static int ravb_wol_restore(struct net_device *ndev)
3170 {
3171 	struct ravb_private *priv = netdev_priv(ndev);
3172 	const struct ravb_hw_info *info = priv->info;
3173 	int error;
3174 
3175 	/* Set reset mode to rearm the WoL logic. */
3176 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3177 	if (error)
3178 		return error;
3179 
3180 	/* Set AVB config mode. */
3181 	error = ravb_set_config_mode(ndev);
3182 	if (error)
3183 		return error;
3184 
3185 	if (priv->info->ccc_gac)
3186 		ravb_ptp_init(ndev, priv->pdev);
3187 
3188 	if (info->nc_queues)
3189 		napi_enable(&priv->napi[RAVB_NC]);
3190 	napi_enable(&priv->napi[RAVB_BE]);
3191 
3192 	/* Disable MagicPacket */
3193 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3194 
3195 	ravb_close(ndev);
3196 
3197 	return disable_irq_wake(priv->emac_irq);
3198 }
3199 
3200 static int ravb_suspend(struct device *dev)
3201 {
3202 	struct net_device *ndev = dev_get_drvdata(dev);
3203 	struct ravb_private *priv = netdev_priv(ndev);
3204 	int ret;
3205 
3206 	if (!netif_running(ndev))
3207 		goto reset_assert;
3208 
3209 	netif_device_detach(ndev);
3210 
3211 	if (priv->wol_enabled)
3212 		return ravb_wol_setup(ndev);
3213 
3214 	ret = ravb_close(ndev);
3215 	if (ret)
3216 		return ret;
3217 
3218 	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3219 	if (ret)
3220 		return ret;
3221 
3222 reset_assert:
3223 	return reset_control_assert(priv->rstc);
3224 }
3225 
3226 static int ravb_resume(struct device *dev)
3227 {
3228 	struct net_device *ndev = dev_get_drvdata(dev);
3229 	struct ravb_private *priv = netdev_priv(ndev);
3230 	int ret;
3231 
3232 	ret = reset_control_deassert(priv->rstc);
3233 	if (ret)
3234 		return ret;
3235 
3236 	if (!netif_running(ndev))
3237 		return 0;
3238 
3239 	/* If WoL is enabled restore the interface. */
3240 	if (priv->wol_enabled) {
3241 		ret = ravb_wol_restore(ndev);
3242 		if (ret)
3243 			return ret;
3244 	} else {
3245 		ret = pm_runtime_force_resume(dev);
3246 		if (ret)
3247 			return ret;
3248 	}
3249 
3250 	/* Reopening the interface will restore the device to the working state. */
3251 	ret = ravb_open(ndev);
3252 	if (ret < 0)
3253 		goto out_rpm_put;
3254 
3255 	ravb_set_rx_mode(ndev);
3256 	netif_device_attach(ndev);
3257 
3258 	return 0;
3259 
3260 out_rpm_put:
3261 	if (!priv->wol_enabled) {
3262 		pm_runtime_mark_last_busy(dev);
3263 		pm_runtime_put_autosuspend(dev);
3264 	}
3265 
3266 	return ret;
3267 }
3268 
3269 static int ravb_runtime_suspend(struct device *dev)
3270 {
3271 	struct net_device *ndev = dev_get_drvdata(dev);
3272 	struct ravb_private *priv = netdev_priv(ndev);
3273 
3274 	clk_disable(priv->refclk);
3275 
3276 	return 0;
3277 }
3278 
3279 static int ravb_runtime_resume(struct device *dev)
3280 {
3281 	struct net_device *ndev = dev_get_drvdata(dev);
3282 	struct ravb_private *priv = netdev_priv(ndev);
3283 
3284 	return clk_enable(priv->refclk);
3285 }
3286 
3287 static const struct dev_pm_ops ravb_dev_pm_ops = {
3288 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3289 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3290 };
3291 
3292 static struct platform_driver ravb_driver = {
3293 	.probe		= ravb_probe,
3294 	.remove_new	= ravb_remove,
3295 	.driver = {
3296 		.name	= "ravb",
3297 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3298 		.of_match_table = ravb_match_table,
3299 	},
3300 };
3301 
3302 module_platform_driver(ravb_driver);
3303 
3304 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3305 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3306 MODULE_LICENSE("GPL v2");
3307