xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 
33 #include "ravb.h"
34 
35 #define RAVB_DEF_MSG_ENABLE \
36 		(NETIF_MSG_LINK	  | \
37 		 NETIF_MSG_TIMER  | \
38 		 NETIF_MSG_RX_ERR | \
39 		 NETIF_MSG_TX_ERR)
40 
41 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
42 	"ch0", /* RAVB_BE */
43 	"ch1", /* RAVB_NC */
44 };
45 
46 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
47 	"ch18", /* RAVB_BE */
48 	"ch19", /* RAVB_NC */
49 };
50 
51 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
52 		 u32 set)
53 {
54 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
55 }
56 
57 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
58 {
59 	int i;
60 
61 	for (i = 0; i < 10000; i++) {
62 		if ((ravb_read(ndev, reg) & mask) == value)
63 			return 0;
64 		udelay(10);
65 	}
66 	return -ETIMEDOUT;
67 }
68 
69 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
70 {
71 	u32 csr_ops = 1U << (opmode & CCC_OPC);
72 	u32 ccc_mask = CCC_OPC;
73 	int error;
74 
75 	/* If gPTP active in config mode is supported it needs to be configured
76 	 * along with CSEL and operating mode in the same access. This is a
77 	 * hardware limitation.
78 	 */
79 	if (opmode & CCC_GAC)
80 		ccc_mask |= CCC_GAC | CCC_CSEL;
81 
82 	/* Set operating mode */
83 	ravb_modify(ndev, CCC, ccc_mask, opmode);
84 	/* Check if the operating mode is changed to the requested one */
85 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
86 	if (error) {
87 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
88 			   opmode & CCC_OPC);
89 	}
90 
91 	return error;
92 }
93 
94 static void ravb_set_rate_gbeth(struct net_device *ndev)
95 {
96 	struct ravb_private *priv = netdev_priv(ndev);
97 
98 	switch (priv->speed) {
99 	case 10:                /* 10BASE */
100 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
101 		break;
102 	case 100:               /* 100BASE */
103 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
104 		break;
105 	case 1000:              /* 1000BASE */
106 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
107 		break;
108 	}
109 }
110 
111 static void ravb_set_rate_rcar(struct net_device *ndev)
112 {
113 	struct ravb_private *priv = netdev_priv(ndev);
114 
115 	switch (priv->speed) {
116 	case 100:		/* 100BASE */
117 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
118 		break;
119 	case 1000:		/* 1000BASE */
120 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
121 		break;
122 	}
123 }
124 
125 static void ravb_set_buffer_align(struct sk_buff *skb)
126 {
127 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
128 
129 	if (reserve)
130 		skb_reserve(skb, RAVB_ALIGN - reserve);
131 }
132 
133 /* Get MAC address from the MAC address registers
134  *
135  * Ethernet AVB device doesn't have ROM for MAC address.
136  * This function gets the MAC address that was used by a bootloader.
137  */
138 static void ravb_read_mac_address(struct device_node *np,
139 				  struct net_device *ndev)
140 {
141 	int ret;
142 
143 	ret = of_get_ethdev_address(np, ndev);
144 	if (ret) {
145 		u32 mahr = ravb_read(ndev, MAHR);
146 		u32 malr = ravb_read(ndev, MALR);
147 		u8 addr[ETH_ALEN];
148 
149 		addr[0] = (mahr >> 24) & 0xFF;
150 		addr[1] = (mahr >> 16) & 0xFF;
151 		addr[2] = (mahr >>  8) & 0xFF;
152 		addr[3] = (mahr >>  0) & 0xFF;
153 		addr[4] = (malr >>  8) & 0xFF;
154 		addr[5] = (malr >>  0) & 0xFF;
155 		eth_hw_addr_set(ndev, addr);
156 	}
157 }
158 
159 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
160 {
161 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
162 						 mdiobb);
163 
164 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
165 }
166 
167 /* MDC pin control */
168 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
169 {
170 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
171 }
172 
173 /* Data I/O pin control */
174 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
175 {
176 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
177 }
178 
179 /* Set data bit */
180 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
181 {
182 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
183 }
184 
185 /* Get data bit */
186 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
187 {
188 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
189 						 mdiobb);
190 
191 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
192 }
193 
194 /* MDIO bus control struct */
195 static const struct mdiobb_ops bb_ops = {
196 	.owner = THIS_MODULE,
197 	.set_mdc = ravb_set_mdc,
198 	.set_mdio_dir = ravb_set_mdio_dir,
199 	.set_mdio_data = ravb_set_mdio_data,
200 	.get_mdio_data = ravb_get_mdio_data,
201 };
202 
203 /* Free TX skb function for AVB-IP */
204 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
205 {
206 	struct ravb_private *priv = netdev_priv(ndev);
207 	struct net_device_stats *stats = &priv->stats[q];
208 	unsigned int num_tx_desc = priv->num_tx_desc;
209 	struct ravb_tx_desc *desc;
210 	unsigned int entry;
211 	int free_num = 0;
212 	u32 size;
213 
214 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
215 		bool txed;
216 
217 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
218 					     num_tx_desc);
219 		desc = &priv->tx_ring[q][entry];
220 		txed = desc->die_dt == DT_FEMPTY;
221 		if (free_txed_only && !txed)
222 			break;
223 		/* Descriptor type must be checked before all other reads */
224 		dma_rmb();
225 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
226 		/* Free the original skb. */
227 		if (priv->tx_skb[q][entry / num_tx_desc]) {
228 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
229 					 size, DMA_TO_DEVICE);
230 			/* Last packet descriptor? */
231 			if (entry % num_tx_desc == num_tx_desc - 1) {
232 				entry /= num_tx_desc;
233 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
234 				priv->tx_skb[q][entry] = NULL;
235 				if (txed)
236 					stats->tx_packets++;
237 			}
238 			free_num++;
239 		}
240 		if (txed)
241 			stats->tx_bytes += size;
242 		desc->die_dt = DT_EEMPTY;
243 	}
244 	return free_num;
245 }
246 
247 static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
248 {
249 	struct ravb_private *priv = netdev_priv(ndev);
250 	unsigned int ring_size;
251 	unsigned int i;
252 
253 	if (!priv->gbeth_rx_ring)
254 		return;
255 
256 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
257 		struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
258 
259 		if (!dma_mapping_error(ndev->dev.parent,
260 				       le32_to_cpu(desc->dptr)))
261 			dma_unmap_single(ndev->dev.parent,
262 					 le32_to_cpu(desc->dptr),
263 					 GBETH_RX_BUFF_MAX,
264 					 DMA_FROM_DEVICE);
265 	}
266 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
267 	dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
268 			  priv->rx_desc_dma[q]);
269 	priv->gbeth_rx_ring = NULL;
270 }
271 
272 static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
273 {
274 	struct ravb_private *priv = netdev_priv(ndev);
275 	unsigned int ring_size;
276 	unsigned int i;
277 
278 	if (!priv->rx_ring[q])
279 		return;
280 
281 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
282 		struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
283 
284 		if (!dma_mapping_error(ndev->dev.parent,
285 				       le32_to_cpu(desc->dptr)))
286 			dma_unmap_single(ndev->dev.parent,
287 					 le32_to_cpu(desc->dptr),
288 					 RX_BUF_SZ,
289 					 DMA_FROM_DEVICE);
290 	}
291 	ring_size = sizeof(struct ravb_ex_rx_desc) *
292 		    (priv->num_rx_ring[q] + 1);
293 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
294 			  priv->rx_desc_dma[q]);
295 	priv->rx_ring[q] = NULL;
296 }
297 
298 /* Free skb's and DMA buffers for Ethernet AVB */
299 static void ravb_ring_free(struct net_device *ndev, int q)
300 {
301 	struct ravb_private *priv = netdev_priv(ndev);
302 	const struct ravb_hw_info *info = priv->info;
303 	unsigned int num_tx_desc = priv->num_tx_desc;
304 	unsigned int ring_size;
305 	unsigned int i;
306 
307 	info->rx_ring_free(ndev, q);
308 
309 	if (priv->tx_ring[q]) {
310 		ravb_tx_free(ndev, q, false);
311 
312 		ring_size = sizeof(struct ravb_tx_desc) *
313 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
314 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
315 				  priv->tx_desc_dma[q]);
316 		priv->tx_ring[q] = NULL;
317 	}
318 
319 	/* Free RX skb ringbuffer */
320 	if (priv->rx_skb[q]) {
321 		for (i = 0; i < priv->num_rx_ring[q]; i++)
322 			dev_kfree_skb(priv->rx_skb[q][i]);
323 	}
324 	kfree(priv->rx_skb[q]);
325 	priv->rx_skb[q] = NULL;
326 
327 	/* Free aligned TX buffers */
328 	kfree(priv->tx_align[q]);
329 	priv->tx_align[q] = NULL;
330 
331 	/* Free TX skb ringbuffer.
332 	 * SKBs are freed by ravb_tx_free() call above.
333 	 */
334 	kfree(priv->tx_skb[q]);
335 	priv->tx_skb[q] = NULL;
336 }
337 
338 static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
339 {
340 	struct ravb_private *priv = netdev_priv(ndev);
341 	struct ravb_rx_desc *rx_desc;
342 	unsigned int rx_ring_size;
343 	dma_addr_t dma_addr;
344 	unsigned int i;
345 
346 	rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
347 	memset(priv->gbeth_rx_ring, 0, rx_ring_size);
348 	/* Build RX ring buffer */
349 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
350 		/* RX descriptor */
351 		rx_desc = &priv->gbeth_rx_ring[i];
352 		rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
353 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
354 					  GBETH_RX_BUFF_MAX,
355 					  DMA_FROM_DEVICE);
356 		/* We just set the data size to 0 for a failed mapping which
357 		 * should prevent DMA from happening...
358 		 */
359 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
360 			rx_desc->ds_cc = cpu_to_le16(0);
361 		rx_desc->dptr = cpu_to_le32(dma_addr);
362 		rx_desc->die_dt = DT_FEMPTY;
363 	}
364 	rx_desc = &priv->gbeth_rx_ring[i];
365 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
366 	rx_desc->die_dt = DT_LINKFIX; /* type */
367 }
368 
369 static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
370 {
371 	struct ravb_private *priv = netdev_priv(ndev);
372 	struct ravb_ex_rx_desc *rx_desc;
373 	unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
374 	dma_addr_t dma_addr;
375 	unsigned int i;
376 
377 	memset(priv->rx_ring[q], 0, rx_ring_size);
378 	/* Build RX ring buffer */
379 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
380 		/* RX descriptor */
381 		rx_desc = &priv->rx_ring[q][i];
382 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
383 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
384 					  RX_BUF_SZ,
385 					  DMA_FROM_DEVICE);
386 		/* We just set the data size to 0 for a failed mapping which
387 		 * should prevent DMA from happening...
388 		 */
389 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
390 			rx_desc->ds_cc = cpu_to_le16(0);
391 		rx_desc->dptr = cpu_to_le32(dma_addr);
392 		rx_desc->die_dt = DT_FEMPTY;
393 	}
394 	rx_desc = &priv->rx_ring[q][i];
395 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396 	rx_desc->die_dt = DT_LINKFIX; /* type */
397 }
398 
399 /* Format skb and descriptor buffer for Ethernet AVB */
400 static void ravb_ring_format(struct net_device *ndev, int q)
401 {
402 	struct ravb_private *priv = netdev_priv(ndev);
403 	const struct ravb_hw_info *info = priv->info;
404 	unsigned int num_tx_desc = priv->num_tx_desc;
405 	struct ravb_tx_desc *tx_desc;
406 	struct ravb_desc *desc;
407 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
408 				    num_tx_desc;
409 	unsigned int i;
410 
411 	priv->cur_rx[q] = 0;
412 	priv->cur_tx[q] = 0;
413 	priv->dirty_rx[q] = 0;
414 	priv->dirty_tx[q] = 0;
415 
416 	info->rx_ring_format(ndev, q);
417 
418 	memset(priv->tx_ring[q], 0, tx_ring_size);
419 	/* Build TX ring buffer */
420 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
421 	     i++, tx_desc++) {
422 		tx_desc->die_dt = DT_EEMPTY;
423 		if (num_tx_desc > 1) {
424 			tx_desc++;
425 			tx_desc->die_dt = DT_EEMPTY;
426 		}
427 	}
428 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
429 	tx_desc->die_dt = DT_LINKFIX; /* type */
430 
431 	/* RX descriptor base address for best effort */
432 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
433 	desc->die_dt = DT_LINKFIX; /* type */
434 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
435 
436 	/* TX descriptor base address for best effort */
437 	desc = &priv->desc_bat[q];
438 	desc->die_dt = DT_LINKFIX; /* type */
439 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
440 }
441 
442 static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
443 {
444 	struct ravb_private *priv = netdev_priv(ndev);
445 	unsigned int ring_size;
446 
447 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
448 
449 	priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
450 						 &priv->rx_desc_dma[q],
451 						 GFP_KERNEL);
452 	return priv->gbeth_rx_ring;
453 }
454 
455 static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
456 {
457 	struct ravb_private *priv = netdev_priv(ndev);
458 	unsigned int ring_size;
459 
460 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
461 
462 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
463 					      &priv->rx_desc_dma[q],
464 					      GFP_KERNEL);
465 	return priv->rx_ring[q];
466 }
467 
468 /* Init skb and descriptor buffer for Ethernet AVB */
469 static int ravb_ring_init(struct net_device *ndev, int q)
470 {
471 	struct ravb_private *priv = netdev_priv(ndev);
472 	const struct ravb_hw_info *info = priv->info;
473 	unsigned int num_tx_desc = priv->num_tx_desc;
474 	unsigned int ring_size;
475 	struct sk_buff *skb;
476 	unsigned int i;
477 
478 	/* Allocate RX and TX skb rings */
479 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
480 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
481 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
482 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
483 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
484 		goto error;
485 
486 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
487 		skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL);
488 		if (!skb)
489 			goto error;
490 		ravb_set_buffer_align(skb);
491 		priv->rx_skb[q][i] = skb;
492 	}
493 
494 	if (num_tx_desc > 1) {
495 		/* Allocate rings for the aligned buffers */
496 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
497 					    DPTR_ALIGN - 1, GFP_KERNEL);
498 		if (!priv->tx_align[q])
499 			goto error;
500 	}
501 
502 	/* Allocate all RX descriptors. */
503 	if (!info->alloc_rx_desc(ndev, q))
504 		goto error;
505 
506 	priv->dirty_rx[q] = 0;
507 
508 	/* Allocate all TX descriptors. */
509 	ring_size = sizeof(struct ravb_tx_desc) *
510 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
511 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
512 					      &priv->tx_desc_dma[q],
513 					      GFP_KERNEL);
514 	if (!priv->tx_ring[q])
515 		goto error;
516 
517 	return 0;
518 
519 error:
520 	ravb_ring_free(ndev, q);
521 
522 	return -ENOMEM;
523 }
524 
525 static void ravb_emac_init_gbeth(struct net_device *ndev)
526 {
527 	struct ravb_private *priv = netdev_priv(ndev);
528 
529 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
530 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
531 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
532 	} else {
533 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
534 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
535 			    CXR31_SEL_LINK0);
536 	}
537 
538 	/* Receive frame limit set register */
539 	ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
540 
541 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
542 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
543 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
544 			 ECMR_TXF | ECMR_RXF, ECMR);
545 
546 	ravb_set_rate_gbeth(ndev);
547 
548 	/* Set MAC address */
549 	ravb_write(ndev,
550 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
551 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
552 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
553 
554 	/* E-MAC status register clear */
555 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
556 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
557 
558 	/* E-MAC interrupt enable register */
559 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
560 }
561 
562 static void ravb_emac_init_rcar(struct net_device *ndev)
563 {
564 	/* Receive frame limit set register */
565 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
566 
567 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
568 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
569 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
570 		   ECMR_TE | ECMR_RE, ECMR);
571 
572 	ravb_set_rate_rcar(ndev);
573 
574 	/* Set MAC address */
575 	ravb_write(ndev,
576 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
577 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
578 	ravb_write(ndev,
579 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
580 
581 	/* E-MAC status register clear */
582 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
583 
584 	/* E-MAC interrupt enable register */
585 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
586 }
587 
588 /* E-MAC init function */
589 static void ravb_emac_init(struct net_device *ndev)
590 {
591 	struct ravb_private *priv = netdev_priv(ndev);
592 	const struct ravb_hw_info *info = priv->info;
593 
594 	info->emac_init(ndev);
595 }
596 
597 static int ravb_dmac_init_gbeth(struct net_device *ndev)
598 {
599 	int error;
600 
601 	error = ravb_ring_init(ndev, RAVB_BE);
602 	if (error)
603 		return error;
604 
605 	/* Descriptor format */
606 	ravb_ring_format(ndev, RAVB_BE);
607 
608 	/* Set DMAC RX */
609 	ravb_write(ndev, 0x60000000, RCR);
610 
611 	/* Set Max Frame Length (RTC) */
612 	ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
613 
614 	/* Set FIFO size */
615 	ravb_write(ndev, 0x00222200, TGC);
616 
617 	ravb_write(ndev, 0, TCCR);
618 
619 	/* Frame receive */
620 	ravb_write(ndev, RIC0_FRE0, RIC0);
621 	/* Disable FIFO full warning */
622 	ravb_write(ndev, 0x0, RIC1);
623 	/* Receive FIFO full error, descriptor empty */
624 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
625 
626 	ravb_write(ndev, TIC_FTE0, TIC);
627 
628 	return 0;
629 }
630 
631 static int ravb_dmac_init_rcar(struct net_device *ndev)
632 {
633 	struct ravb_private *priv = netdev_priv(ndev);
634 	const struct ravb_hw_info *info = priv->info;
635 	int error;
636 
637 	error = ravb_ring_init(ndev, RAVB_BE);
638 	if (error)
639 		return error;
640 	error = ravb_ring_init(ndev, RAVB_NC);
641 	if (error) {
642 		ravb_ring_free(ndev, RAVB_BE);
643 		return error;
644 	}
645 
646 	/* Descriptor format */
647 	ravb_ring_format(ndev, RAVB_BE);
648 	ravb_ring_format(ndev, RAVB_NC);
649 
650 	/* Set AVB RX */
651 	ravb_write(ndev,
652 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
653 
654 	/* Set FIFO size */
655 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
656 
657 	/* Timestamp enable */
658 	ravb_write(ndev, TCCR_TFEN, TCCR);
659 
660 	/* Interrupt init: */
661 	if (info->multi_irqs) {
662 		/* Clear DIL.DPLx */
663 		ravb_write(ndev, 0, DIL);
664 		/* Set queue specific interrupt */
665 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
666 	}
667 	/* Frame receive */
668 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
669 	/* Disable FIFO full warning */
670 	ravb_write(ndev, 0, RIC1);
671 	/* Receive FIFO full error, descriptor empty */
672 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
673 	/* Frame transmitted, timestamp FIFO updated */
674 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
675 
676 	return 0;
677 }
678 
679 /* Device init function for Ethernet AVB */
680 static int ravb_dmac_init(struct net_device *ndev)
681 {
682 	struct ravb_private *priv = netdev_priv(ndev);
683 	const struct ravb_hw_info *info = priv->info;
684 	int error;
685 
686 	/* Set CONFIG mode */
687 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
688 	if (error)
689 		return error;
690 
691 	error = info->dmac_init(ndev);
692 	if (error)
693 		return error;
694 
695 	/* Setting the control will start the AVB-DMAC process. */
696 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
697 }
698 
699 static void ravb_get_tx_tstamp(struct net_device *ndev)
700 {
701 	struct ravb_private *priv = netdev_priv(ndev);
702 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
703 	struct skb_shared_hwtstamps shhwtstamps;
704 	struct sk_buff *skb;
705 	struct timespec64 ts;
706 	u16 tag, tfa_tag;
707 	int count;
708 	u32 tfa2;
709 
710 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
711 	while (count--) {
712 		tfa2 = ravb_read(ndev, TFA2);
713 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
714 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
715 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
716 			    ravb_read(ndev, TFA1);
717 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
718 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
719 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
720 					 list) {
721 			skb = ts_skb->skb;
722 			tag = ts_skb->tag;
723 			list_del(&ts_skb->list);
724 			kfree(ts_skb);
725 			if (tag == tfa_tag) {
726 				skb_tstamp_tx(skb, &shhwtstamps);
727 				dev_consume_skb_any(skb);
728 				break;
729 			} else {
730 				dev_kfree_skb_any(skb);
731 			}
732 		}
733 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
734 	}
735 }
736 
737 static void ravb_rx_csum(struct sk_buff *skb)
738 {
739 	u8 *hw_csum;
740 
741 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
742 	 * appended to packet data
743 	 */
744 	if (unlikely(skb->len < sizeof(__sum16)))
745 		return;
746 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
747 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
748 	skb->ip_summed = CHECKSUM_COMPLETE;
749 	skb_trim(skb, skb->len - sizeof(__sum16));
750 }
751 
752 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
753 					  struct ravb_rx_desc *desc)
754 {
755 	struct ravb_private *priv = netdev_priv(ndev);
756 	struct sk_buff *skb;
757 
758 	skb = priv->rx_skb[RAVB_BE][entry];
759 	priv->rx_skb[RAVB_BE][entry] = NULL;
760 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
761 			 ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
762 
763 	return skb;
764 }
765 
766 /* Packet receive function for Gigabit Ethernet */
767 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
768 {
769 	struct ravb_private *priv = netdev_priv(ndev);
770 	const struct ravb_hw_info *info = priv->info;
771 	struct net_device_stats *stats;
772 	struct ravb_rx_desc *desc;
773 	struct sk_buff *skb;
774 	dma_addr_t dma_addr;
775 	int rx_packets = 0;
776 	u8  desc_status;
777 	u16 pkt_len;
778 	u8  die_dt;
779 	int entry;
780 	int limit;
781 	int i;
782 
783 	entry = priv->cur_rx[q] % priv->num_rx_ring[q];
784 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
785 	stats = &priv->stats[q];
786 
787 	desc = &priv->gbeth_rx_ring[entry];
788 	for (i = 0; i < limit && rx_packets < *quota && desc->die_dt != DT_FEMPTY; i++) {
789 		/* Descriptor type must be checked before all other reads */
790 		dma_rmb();
791 		desc_status = desc->msc;
792 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
793 
794 		/* We use 0-byte descriptors to mark the DMA mapping errors */
795 		if (!pkt_len)
796 			continue;
797 
798 		if (desc_status & MSC_MC)
799 			stats->multicast++;
800 
801 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
802 			stats->rx_errors++;
803 			if (desc_status & MSC_CRC)
804 				stats->rx_crc_errors++;
805 			if (desc_status & MSC_RFE)
806 				stats->rx_frame_errors++;
807 			if (desc_status & (MSC_RTLF | MSC_RTSF))
808 				stats->rx_length_errors++;
809 			if (desc_status & MSC_CEEF)
810 				stats->rx_missed_errors++;
811 		} else {
812 			die_dt = desc->die_dt & 0xF0;
813 			switch (die_dt) {
814 			case DT_FSINGLE:
815 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
816 				skb_put(skb, pkt_len);
817 				skb->protocol = eth_type_trans(skb, ndev);
818 				napi_gro_receive(&priv->napi[q], skb);
819 				rx_packets++;
820 				stats->rx_bytes += pkt_len;
821 				break;
822 			case DT_FSTART:
823 				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
824 				skb_put(priv->rx_1st_skb, pkt_len);
825 				break;
826 			case DT_FMID:
827 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
828 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
829 							       priv->rx_1st_skb->len,
830 							       skb->data,
831 							       pkt_len);
832 				skb_put(priv->rx_1st_skb, pkt_len);
833 				dev_kfree_skb(skb);
834 				break;
835 			case DT_FEND:
836 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
837 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
838 							       priv->rx_1st_skb->len,
839 							       skb->data,
840 							       pkt_len);
841 				skb_put(priv->rx_1st_skb, pkt_len);
842 				dev_kfree_skb(skb);
843 				priv->rx_1st_skb->protocol =
844 					eth_type_trans(priv->rx_1st_skb, ndev);
845 				napi_gro_receive(&priv->napi[q],
846 						 priv->rx_1st_skb);
847 				rx_packets++;
848 				stats->rx_bytes += pkt_len;
849 				break;
850 			}
851 		}
852 
853 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
854 		desc = &priv->gbeth_rx_ring[entry];
855 	}
856 
857 	/* Refill the RX ring buffers. */
858 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
859 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
860 		desc = &priv->gbeth_rx_ring[entry];
861 		desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
862 
863 		if (!priv->rx_skb[q][entry]) {
864 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
865 			if (!skb)
866 				break;
867 			ravb_set_buffer_align(skb);
868 			dma_addr = dma_map_single(ndev->dev.parent,
869 						  skb->data,
870 						  GBETH_RX_BUFF_MAX,
871 						  DMA_FROM_DEVICE);
872 			skb_checksum_none_assert(skb);
873 			/* We just set the data size to 0 for a failed mapping
874 			 * which should prevent DMA  from happening...
875 			 */
876 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
877 				desc->ds_cc = cpu_to_le16(0);
878 			desc->dptr = cpu_to_le32(dma_addr);
879 			priv->rx_skb[q][entry] = skb;
880 		}
881 		/* Descriptor type must be set after all the above writes */
882 		dma_wmb();
883 		desc->die_dt = DT_FEMPTY;
884 	}
885 
886 	stats->rx_packets += rx_packets;
887 	*quota -= rx_packets;
888 	return *quota == 0;
889 }
890 
891 /* Packet receive function for Ethernet AVB */
892 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
893 {
894 	struct ravb_private *priv = netdev_priv(ndev);
895 	const struct ravb_hw_info *info = priv->info;
896 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
897 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
898 			priv->cur_rx[q];
899 	struct net_device_stats *stats = &priv->stats[q];
900 	struct ravb_ex_rx_desc *desc;
901 	struct sk_buff *skb;
902 	dma_addr_t dma_addr;
903 	struct timespec64 ts;
904 	u8  desc_status;
905 	u16 pkt_len;
906 	int limit;
907 
908 	boguscnt = min(boguscnt, *quota);
909 	limit = boguscnt;
910 	desc = &priv->rx_ring[q][entry];
911 	while (desc->die_dt != DT_FEMPTY) {
912 		/* Descriptor type must be checked before all other reads */
913 		dma_rmb();
914 		desc_status = desc->msc;
915 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
916 
917 		if (--boguscnt < 0)
918 			break;
919 
920 		/* We use 0-byte descriptors to mark the DMA mapping errors */
921 		if (!pkt_len)
922 			continue;
923 
924 		if (desc_status & MSC_MC)
925 			stats->multicast++;
926 
927 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
928 				   MSC_CEEF)) {
929 			stats->rx_errors++;
930 			if (desc_status & MSC_CRC)
931 				stats->rx_crc_errors++;
932 			if (desc_status & MSC_RFE)
933 				stats->rx_frame_errors++;
934 			if (desc_status & (MSC_RTLF | MSC_RTSF))
935 				stats->rx_length_errors++;
936 			if (desc_status & MSC_CEEF)
937 				stats->rx_missed_errors++;
938 		} else {
939 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
940 
941 			skb = priv->rx_skb[q][entry];
942 			priv->rx_skb[q][entry] = NULL;
943 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
944 					 RX_BUF_SZ,
945 					 DMA_FROM_DEVICE);
946 			get_ts &= (q == RAVB_NC) ?
947 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
948 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
949 			if (get_ts) {
950 				struct skb_shared_hwtstamps *shhwtstamps;
951 
952 				shhwtstamps = skb_hwtstamps(skb);
953 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
954 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
955 					     32) | le32_to_cpu(desc->ts_sl);
956 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
957 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
958 			}
959 
960 			skb_put(skb, pkt_len);
961 			skb->protocol = eth_type_trans(skb, ndev);
962 			if (ndev->features & NETIF_F_RXCSUM)
963 				ravb_rx_csum(skb);
964 			napi_gro_receive(&priv->napi[q], skb);
965 			stats->rx_packets++;
966 			stats->rx_bytes += pkt_len;
967 		}
968 
969 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
970 		desc = &priv->rx_ring[q][entry];
971 	}
972 
973 	/* Refill the RX ring buffers. */
974 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
975 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
976 		desc = &priv->rx_ring[q][entry];
977 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
978 
979 		if (!priv->rx_skb[q][entry]) {
980 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
981 			if (!skb)
982 				break;	/* Better luck next round. */
983 			ravb_set_buffer_align(skb);
984 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
985 						  le16_to_cpu(desc->ds_cc),
986 						  DMA_FROM_DEVICE);
987 			skb_checksum_none_assert(skb);
988 			/* We just set the data size to 0 for a failed mapping
989 			 * which should prevent DMA  from happening...
990 			 */
991 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
992 				desc->ds_cc = cpu_to_le16(0);
993 			desc->dptr = cpu_to_le32(dma_addr);
994 			priv->rx_skb[q][entry] = skb;
995 		}
996 		/* Descriptor type must be set after all the above writes */
997 		dma_wmb();
998 		desc->die_dt = DT_FEMPTY;
999 	}
1000 
1001 	*quota -= limit - (++boguscnt);
1002 
1003 	return boguscnt <= 0;
1004 }
1005 
1006 /* Packet receive function for Ethernet AVB */
1007 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1008 {
1009 	struct ravb_private *priv = netdev_priv(ndev);
1010 	const struct ravb_hw_info *info = priv->info;
1011 
1012 	return info->receive(ndev, quota, q);
1013 }
1014 
1015 static void ravb_rcv_snd_disable(struct net_device *ndev)
1016 {
1017 	/* Disable TX and RX */
1018 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1019 }
1020 
1021 static void ravb_rcv_snd_enable(struct net_device *ndev)
1022 {
1023 	/* Enable TX and RX */
1024 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1025 }
1026 
1027 /* function for waiting dma process finished */
1028 static int ravb_stop_dma(struct net_device *ndev)
1029 {
1030 	struct ravb_private *priv = netdev_priv(ndev);
1031 	const struct ravb_hw_info *info = priv->info;
1032 	int error;
1033 
1034 	/* Wait for stopping the hardware TX process */
1035 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1036 
1037 	if (error)
1038 		return error;
1039 
1040 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1041 			  0);
1042 	if (error)
1043 		return error;
1044 
1045 	/* Stop the E-MAC's RX/TX processes. */
1046 	ravb_rcv_snd_disable(ndev);
1047 
1048 	/* Wait for stopping the RX DMA process */
1049 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1050 	if (error)
1051 		return error;
1052 
1053 	/* Stop AVB-DMAC process */
1054 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1055 }
1056 
1057 /* E-MAC interrupt handler */
1058 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1059 {
1060 	struct ravb_private *priv = netdev_priv(ndev);
1061 	u32 ecsr, psr;
1062 
1063 	ecsr = ravb_read(ndev, ECSR);
1064 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1065 
1066 	if (ecsr & ECSR_MPD)
1067 		pm_wakeup_event(&priv->pdev->dev, 0);
1068 	if (ecsr & ECSR_ICD)
1069 		ndev->stats.tx_carrier_errors++;
1070 	if (ecsr & ECSR_LCHNG) {
1071 		/* Link changed */
1072 		if (priv->no_avb_link)
1073 			return;
1074 		psr = ravb_read(ndev, PSR);
1075 		if (priv->avb_link_active_low)
1076 			psr ^= PSR_LMON;
1077 		if (!(psr & PSR_LMON)) {
1078 			/* DIsable RX and TX */
1079 			ravb_rcv_snd_disable(ndev);
1080 		} else {
1081 			/* Enable RX and TX */
1082 			ravb_rcv_snd_enable(ndev);
1083 		}
1084 	}
1085 }
1086 
1087 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1088 {
1089 	struct net_device *ndev = dev_id;
1090 	struct ravb_private *priv = netdev_priv(ndev);
1091 
1092 	spin_lock(&priv->lock);
1093 	ravb_emac_interrupt_unlocked(ndev);
1094 	spin_unlock(&priv->lock);
1095 	return IRQ_HANDLED;
1096 }
1097 
1098 /* Error interrupt handler */
1099 static void ravb_error_interrupt(struct net_device *ndev)
1100 {
1101 	struct ravb_private *priv = netdev_priv(ndev);
1102 	u32 eis, ris2;
1103 
1104 	eis = ravb_read(ndev, EIS);
1105 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1106 	if (eis & EIS_QFS) {
1107 		ris2 = ravb_read(ndev, RIS2);
1108 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1109 			   RIS2);
1110 
1111 		/* Receive Descriptor Empty int */
1112 		if (ris2 & RIS2_QFF0)
1113 			priv->stats[RAVB_BE].rx_over_errors++;
1114 
1115 		/* Receive Descriptor Empty int */
1116 		if (ris2 & RIS2_QFF1)
1117 			priv->stats[RAVB_NC].rx_over_errors++;
1118 
1119 		/* Receive FIFO Overflow int */
1120 		if (ris2 & RIS2_RFFF)
1121 			priv->rx_fifo_errors++;
1122 	}
1123 }
1124 
1125 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1126 {
1127 	struct ravb_private *priv = netdev_priv(ndev);
1128 	const struct ravb_hw_info *info = priv->info;
1129 	u32 ris0 = ravb_read(ndev, RIS0);
1130 	u32 ric0 = ravb_read(ndev, RIC0);
1131 	u32 tis  = ravb_read(ndev, TIS);
1132 	u32 tic  = ravb_read(ndev, TIC);
1133 
1134 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1135 		if (napi_schedule_prep(&priv->napi[q])) {
1136 			/* Mask RX and TX interrupts */
1137 			if (!info->irq_en_dis) {
1138 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1139 				ravb_write(ndev, tic & ~BIT(q), TIC);
1140 			} else {
1141 				ravb_write(ndev, BIT(q), RID0);
1142 				ravb_write(ndev, BIT(q), TID);
1143 			}
1144 			__napi_schedule(&priv->napi[q]);
1145 		} else {
1146 			netdev_warn(ndev,
1147 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1148 				    ris0, ric0);
1149 			netdev_warn(ndev,
1150 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1151 				    tis, tic);
1152 		}
1153 		return true;
1154 	}
1155 	return false;
1156 }
1157 
1158 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1159 {
1160 	u32 tis = ravb_read(ndev, TIS);
1161 
1162 	if (tis & TIS_TFUF) {
1163 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1164 		ravb_get_tx_tstamp(ndev);
1165 		return true;
1166 	}
1167 	return false;
1168 }
1169 
1170 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1171 {
1172 	struct net_device *ndev = dev_id;
1173 	struct ravb_private *priv = netdev_priv(ndev);
1174 	const struct ravb_hw_info *info = priv->info;
1175 	irqreturn_t result = IRQ_NONE;
1176 	u32 iss;
1177 
1178 	spin_lock(&priv->lock);
1179 	/* Get interrupt status */
1180 	iss = ravb_read(ndev, ISS);
1181 
1182 	/* Received and transmitted interrupts */
1183 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1184 		int q;
1185 
1186 		/* Timestamp updated */
1187 		if (ravb_timestamp_interrupt(ndev))
1188 			result = IRQ_HANDLED;
1189 
1190 		/* Network control and best effort queue RX/TX */
1191 		if (info->nc_queues) {
1192 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1193 				if (ravb_queue_interrupt(ndev, q))
1194 					result = IRQ_HANDLED;
1195 			}
1196 		} else {
1197 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1198 				result = IRQ_HANDLED;
1199 		}
1200 	}
1201 
1202 	/* E-MAC status summary */
1203 	if (iss & ISS_MS) {
1204 		ravb_emac_interrupt_unlocked(ndev);
1205 		result = IRQ_HANDLED;
1206 	}
1207 
1208 	/* Error status summary */
1209 	if (iss & ISS_ES) {
1210 		ravb_error_interrupt(ndev);
1211 		result = IRQ_HANDLED;
1212 	}
1213 
1214 	/* gPTP interrupt status summary */
1215 	if (iss & ISS_CGIS) {
1216 		ravb_ptp_interrupt(ndev);
1217 		result = IRQ_HANDLED;
1218 	}
1219 
1220 	spin_unlock(&priv->lock);
1221 	return result;
1222 }
1223 
1224 /* Timestamp/Error/gPTP interrupt handler */
1225 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1226 {
1227 	struct net_device *ndev = dev_id;
1228 	struct ravb_private *priv = netdev_priv(ndev);
1229 	irqreturn_t result = IRQ_NONE;
1230 	u32 iss;
1231 
1232 	spin_lock(&priv->lock);
1233 	/* Get interrupt status */
1234 	iss = ravb_read(ndev, ISS);
1235 
1236 	/* Timestamp updated */
1237 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1238 		result = IRQ_HANDLED;
1239 
1240 	/* Error status summary */
1241 	if (iss & ISS_ES) {
1242 		ravb_error_interrupt(ndev);
1243 		result = IRQ_HANDLED;
1244 	}
1245 
1246 	/* gPTP interrupt status summary */
1247 	if (iss & ISS_CGIS) {
1248 		ravb_ptp_interrupt(ndev);
1249 		result = IRQ_HANDLED;
1250 	}
1251 
1252 	spin_unlock(&priv->lock);
1253 	return result;
1254 }
1255 
1256 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1257 {
1258 	struct net_device *ndev = dev_id;
1259 	struct ravb_private *priv = netdev_priv(ndev);
1260 	irqreturn_t result = IRQ_NONE;
1261 
1262 	spin_lock(&priv->lock);
1263 
1264 	/* Network control/Best effort queue RX/TX */
1265 	if (ravb_queue_interrupt(ndev, q))
1266 		result = IRQ_HANDLED;
1267 
1268 	spin_unlock(&priv->lock);
1269 	return result;
1270 }
1271 
1272 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1273 {
1274 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1275 }
1276 
1277 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1278 {
1279 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1280 }
1281 
1282 static int ravb_poll(struct napi_struct *napi, int budget)
1283 {
1284 	struct net_device *ndev = napi->dev;
1285 	struct ravb_private *priv = netdev_priv(ndev);
1286 	const struct ravb_hw_info *info = priv->info;
1287 	bool gptp = info->gptp || info->ccc_gac;
1288 	struct ravb_rx_desc *desc;
1289 	unsigned long flags;
1290 	int q = napi - priv->napi;
1291 	int mask = BIT(q);
1292 	int quota = budget;
1293 	unsigned int entry;
1294 
1295 	if (!gptp) {
1296 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
1297 		desc = &priv->gbeth_rx_ring[entry];
1298 	}
1299 	/* Processing RX Descriptor Ring */
1300 	/* Clear RX interrupt */
1301 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1302 	if (gptp || desc->die_dt != DT_FEMPTY) {
1303 		if (ravb_rx(ndev, &quota, q))
1304 			goto out;
1305 	}
1306 
1307 	/* Processing TX Descriptor Ring */
1308 	spin_lock_irqsave(&priv->lock, flags);
1309 	/* Clear TX interrupt */
1310 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1311 	ravb_tx_free(ndev, q, true);
1312 	netif_wake_subqueue(ndev, q);
1313 	spin_unlock_irqrestore(&priv->lock, flags);
1314 
1315 	napi_complete(napi);
1316 
1317 	/* Re-enable RX/TX interrupts */
1318 	spin_lock_irqsave(&priv->lock, flags);
1319 	if (!info->irq_en_dis) {
1320 		ravb_modify(ndev, RIC0, mask, mask);
1321 		ravb_modify(ndev, TIC,  mask, mask);
1322 	} else {
1323 		ravb_write(ndev, mask, RIE0);
1324 		ravb_write(ndev, mask, TIE);
1325 	}
1326 	spin_unlock_irqrestore(&priv->lock, flags);
1327 
1328 	/* Receive error message handling */
1329 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1330 	if (info->nc_queues)
1331 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1332 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1333 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1334 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1335 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1336 out:
1337 	return budget - quota;
1338 }
1339 
1340 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1341 {
1342 	struct ravb_private *priv = netdev_priv(ndev);
1343 
1344 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1345 }
1346 
1347 /* PHY state control function */
1348 static void ravb_adjust_link(struct net_device *ndev)
1349 {
1350 	struct ravb_private *priv = netdev_priv(ndev);
1351 	const struct ravb_hw_info *info = priv->info;
1352 	struct phy_device *phydev = ndev->phydev;
1353 	bool new_state = false;
1354 	unsigned long flags;
1355 
1356 	spin_lock_irqsave(&priv->lock, flags);
1357 
1358 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1359 	if (priv->no_avb_link)
1360 		ravb_rcv_snd_disable(ndev);
1361 
1362 	if (phydev->link) {
1363 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1364 			new_state = true;
1365 			priv->duplex = phydev->duplex;
1366 			ravb_set_duplex_gbeth(ndev);
1367 		}
1368 
1369 		if (phydev->speed != priv->speed) {
1370 			new_state = true;
1371 			priv->speed = phydev->speed;
1372 			info->set_rate(ndev);
1373 		}
1374 		if (!priv->link) {
1375 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1376 			new_state = true;
1377 			priv->link = phydev->link;
1378 		}
1379 	} else if (priv->link) {
1380 		new_state = true;
1381 		priv->link = 0;
1382 		priv->speed = 0;
1383 		if (info->half_duplex)
1384 			priv->duplex = -1;
1385 	}
1386 
1387 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1388 	if (priv->no_avb_link && phydev->link)
1389 		ravb_rcv_snd_enable(ndev);
1390 
1391 	spin_unlock_irqrestore(&priv->lock, flags);
1392 
1393 	if (new_state && netif_msg_link(priv))
1394 		phy_print_status(phydev);
1395 }
1396 
1397 /* PHY init function */
1398 static int ravb_phy_init(struct net_device *ndev)
1399 {
1400 	struct device_node *np = ndev->dev.parent->of_node;
1401 	struct ravb_private *priv = netdev_priv(ndev);
1402 	const struct ravb_hw_info *info = priv->info;
1403 	struct phy_device *phydev;
1404 	struct device_node *pn;
1405 	phy_interface_t iface;
1406 	int err;
1407 
1408 	priv->link = 0;
1409 	priv->speed = 0;
1410 	priv->duplex = -1;
1411 
1412 	/* Try connecting to PHY */
1413 	pn = of_parse_phandle(np, "phy-handle", 0);
1414 	if (!pn) {
1415 		/* In the case of a fixed PHY, the DT node associated
1416 		 * to the PHY is the Ethernet MAC DT node.
1417 		 */
1418 		if (of_phy_is_fixed_link(np)) {
1419 			err = of_phy_register_fixed_link(np);
1420 			if (err)
1421 				return err;
1422 		}
1423 		pn = of_node_get(np);
1424 	}
1425 
1426 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1427 				     : priv->phy_interface;
1428 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1429 	of_node_put(pn);
1430 	if (!phydev) {
1431 		netdev_err(ndev, "failed to connect PHY\n");
1432 		err = -ENOENT;
1433 		goto err_deregister_fixed_link;
1434 	}
1435 
1436 	if (!info->half_duplex) {
1437 		/* 10BASE, Pause and Asym Pause is not supported */
1438 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1439 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1440 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1441 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1442 
1443 		/* Half Duplex is not supported */
1444 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1445 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1446 	}
1447 
1448 	phy_attached_info(phydev);
1449 
1450 	return 0;
1451 
1452 err_deregister_fixed_link:
1453 	if (of_phy_is_fixed_link(np))
1454 		of_phy_deregister_fixed_link(np);
1455 
1456 	return err;
1457 }
1458 
1459 /* PHY control start function */
1460 static int ravb_phy_start(struct net_device *ndev)
1461 {
1462 	int error;
1463 
1464 	error = ravb_phy_init(ndev);
1465 	if (error)
1466 		return error;
1467 
1468 	phy_start(ndev->phydev);
1469 
1470 	return 0;
1471 }
1472 
1473 static u32 ravb_get_msglevel(struct net_device *ndev)
1474 {
1475 	struct ravb_private *priv = netdev_priv(ndev);
1476 
1477 	return priv->msg_enable;
1478 }
1479 
1480 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1481 {
1482 	struct ravb_private *priv = netdev_priv(ndev);
1483 
1484 	priv->msg_enable = value;
1485 }
1486 
1487 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1488 	"rx_queue_0_current",
1489 	"tx_queue_0_current",
1490 	"rx_queue_0_dirty",
1491 	"tx_queue_0_dirty",
1492 	"rx_queue_0_packets",
1493 	"tx_queue_0_packets",
1494 	"rx_queue_0_bytes",
1495 	"tx_queue_0_bytes",
1496 	"rx_queue_0_mcast_packets",
1497 	"rx_queue_0_errors",
1498 	"rx_queue_0_crc_errors",
1499 	"rx_queue_0_frame_errors",
1500 	"rx_queue_0_length_errors",
1501 	"rx_queue_0_csum_offload_errors",
1502 	"rx_queue_0_over_errors",
1503 };
1504 
1505 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1506 	"rx_queue_0_current",
1507 	"tx_queue_0_current",
1508 	"rx_queue_0_dirty",
1509 	"tx_queue_0_dirty",
1510 	"rx_queue_0_packets",
1511 	"tx_queue_0_packets",
1512 	"rx_queue_0_bytes",
1513 	"tx_queue_0_bytes",
1514 	"rx_queue_0_mcast_packets",
1515 	"rx_queue_0_errors",
1516 	"rx_queue_0_crc_errors",
1517 	"rx_queue_0_frame_errors",
1518 	"rx_queue_0_length_errors",
1519 	"rx_queue_0_missed_errors",
1520 	"rx_queue_0_over_errors",
1521 
1522 	"rx_queue_1_current",
1523 	"tx_queue_1_current",
1524 	"rx_queue_1_dirty",
1525 	"tx_queue_1_dirty",
1526 	"rx_queue_1_packets",
1527 	"tx_queue_1_packets",
1528 	"rx_queue_1_bytes",
1529 	"tx_queue_1_bytes",
1530 	"rx_queue_1_mcast_packets",
1531 	"rx_queue_1_errors",
1532 	"rx_queue_1_crc_errors",
1533 	"rx_queue_1_frame_errors",
1534 	"rx_queue_1_length_errors",
1535 	"rx_queue_1_missed_errors",
1536 	"rx_queue_1_over_errors",
1537 };
1538 
1539 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1540 {
1541 	struct ravb_private *priv = netdev_priv(netdev);
1542 	const struct ravb_hw_info *info = priv->info;
1543 
1544 	switch (sset) {
1545 	case ETH_SS_STATS:
1546 		return info->stats_len;
1547 	default:
1548 		return -EOPNOTSUPP;
1549 	}
1550 }
1551 
1552 static void ravb_get_ethtool_stats(struct net_device *ndev,
1553 				   struct ethtool_stats *estats, u64 *data)
1554 {
1555 	struct ravb_private *priv = netdev_priv(ndev);
1556 	const struct ravb_hw_info *info = priv->info;
1557 	int num_rx_q;
1558 	int i = 0;
1559 	int q;
1560 
1561 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1562 	/* Device-specific stats */
1563 	for (q = RAVB_BE; q < num_rx_q; q++) {
1564 		struct net_device_stats *stats = &priv->stats[q];
1565 
1566 		data[i++] = priv->cur_rx[q];
1567 		data[i++] = priv->cur_tx[q];
1568 		data[i++] = priv->dirty_rx[q];
1569 		data[i++] = priv->dirty_tx[q];
1570 		data[i++] = stats->rx_packets;
1571 		data[i++] = stats->tx_packets;
1572 		data[i++] = stats->rx_bytes;
1573 		data[i++] = stats->tx_bytes;
1574 		data[i++] = stats->multicast;
1575 		data[i++] = stats->rx_errors;
1576 		data[i++] = stats->rx_crc_errors;
1577 		data[i++] = stats->rx_frame_errors;
1578 		data[i++] = stats->rx_length_errors;
1579 		data[i++] = stats->rx_missed_errors;
1580 		data[i++] = stats->rx_over_errors;
1581 	}
1582 }
1583 
1584 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1585 {
1586 	struct ravb_private *priv = netdev_priv(ndev);
1587 	const struct ravb_hw_info *info = priv->info;
1588 
1589 	switch (stringset) {
1590 	case ETH_SS_STATS:
1591 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1592 		break;
1593 	}
1594 }
1595 
1596 static void ravb_get_ringparam(struct net_device *ndev,
1597 			       struct ethtool_ringparam *ring,
1598 			       struct kernel_ethtool_ringparam *kernel_ring,
1599 			       struct netlink_ext_ack *extack)
1600 {
1601 	struct ravb_private *priv = netdev_priv(ndev);
1602 
1603 	ring->rx_max_pending = BE_RX_RING_MAX;
1604 	ring->tx_max_pending = BE_TX_RING_MAX;
1605 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1606 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1607 }
1608 
1609 static int ravb_set_ringparam(struct net_device *ndev,
1610 			      struct ethtool_ringparam *ring,
1611 			      struct kernel_ethtool_ringparam *kernel_ring,
1612 			      struct netlink_ext_ack *extack)
1613 {
1614 	struct ravb_private *priv = netdev_priv(ndev);
1615 	const struct ravb_hw_info *info = priv->info;
1616 	int error;
1617 
1618 	if (ring->tx_pending > BE_TX_RING_MAX ||
1619 	    ring->rx_pending > BE_RX_RING_MAX ||
1620 	    ring->tx_pending < BE_TX_RING_MIN ||
1621 	    ring->rx_pending < BE_RX_RING_MIN)
1622 		return -EINVAL;
1623 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1624 		return -EINVAL;
1625 
1626 	if (netif_running(ndev)) {
1627 		netif_device_detach(ndev);
1628 		/* Stop PTP Clock driver */
1629 		if (info->gptp)
1630 			ravb_ptp_stop(ndev);
1631 		/* Wait for DMA stopping */
1632 		error = ravb_stop_dma(ndev);
1633 		if (error) {
1634 			netdev_err(ndev,
1635 				   "cannot set ringparam! Any AVB processes are still running?\n");
1636 			return error;
1637 		}
1638 		synchronize_irq(ndev->irq);
1639 
1640 		/* Free all the skb's in the RX queue and the DMA buffers. */
1641 		ravb_ring_free(ndev, RAVB_BE);
1642 		if (info->nc_queues)
1643 			ravb_ring_free(ndev, RAVB_NC);
1644 	}
1645 
1646 	/* Set new parameters */
1647 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1648 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1649 
1650 	if (netif_running(ndev)) {
1651 		error = ravb_dmac_init(ndev);
1652 		if (error) {
1653 			netdev_err(ndev,
1654 				   "%s: ravb_dmac_init() failed, error %d\n",
1655 				   __func__, error);
1656 			return error;
1657 		}
1658 
1659 		ravb_emac_init(ndev);
1660 
1661 		/* Initialise PTP Clock driver */
1662 		if (info->gptp)
1663 			ravb_ptp_init(ndev, priv->pdev);
1664 
1665 		netif_device_attach(ndev);
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static int ravb_get_ts_info(struct net_device *ndev,
1672 			    struct ethtool_ts_info *info)
1673 {
1674 	struct ravb_private *priv = netdev_priv(ndev);
1675 	const struct ravb_hw_info *hw_info = priv->info;
1676 
1677 	info->so_timestamping =
1678 		SOF_TIMESTAMPING_TX_SOFTWARE |
1679 		SOF_TIMESTAMPING_RX_SOFTWARE |
1680 		SOF_TIMESTAMPING_SOFTWARE |
1681 		SOF_TIMESTAMPING_TX_HARDWARE |
1682 		SOF_TIMESTAMPING_RX_HARDWARE |
1683 		SOF_TIMESTAMPING_RAW_HARDWARE;
1684 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1685 	info->rx_filters =
1686 		(1 << HWTSTAMP_FILTER_NONE) |
1687 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1688 		(1 << HWTSTAMP_FILTER_ALL);
1689 	if (hw_info->gptp || hw_info->ccc_gac)
1690 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1691 
1692 	return 0;
1693 }
1694 
1695 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1696 {
1697 	struct ravb_private *priv = netdev_priv(ndev);
1698 
1699 	wol->supported = WAKE_MAGIC;
1700 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1701 }
1702 
1703 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1704 {
1705 	struct ravb_private *priv = netdev_priv(ndev);
1706 	const struct ravb_hw_info *info = priv->info;
1707 
1708 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1709 		return -EOPNOTSUPP;
1710 
1711 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1712 
1713 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1714 
1715 	return 0;
1716 }
1717 
1718 static const struct ethtool_ops ravb_ethtool_ops = {
1719 	.nway_reset		= phy_ethtool_nway_reset,
1720 	.get_msglevel		= ravb_get_msglevel,
1721 	.set_msglevel		= ravb_set_msglevel,
1722 	.get_link		= ethtool_op_get_link,
1723 	.get_strings		= ravb_get_strings,
1724 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1725 	.get_sset_count		= ravb_get_sset_count,
1726 	.get_ringparam		= ravb_get_ringparam,
1727 	.set_ringparam		= ravb_set_ringparam,
1728 	.get_ts_info		= ravb_get_ts_info,
1729 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1730 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1731 	.get_wol		= ravb_get_wol,
1732 	.set_wol		= ravb_set_wol,
1733 };
1734 
1735 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1736 				struct net_device *ndev, struct device *dev,
1737 				const char *ch)
1738 {
1739 	char *name;
1740 	int error;
1741 
1742 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1743 	if (!name)
1744 		return -ENOMEM;
1745 	error = request_irq(irq, handler, 0, name, ndev);
1746 	if (error)
1747 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1748 
1749 	return error;
1750 }
1751 
1752 /* Network device open function for Ethernet AVB */
1753 static int ravb_open(struct net_device *ndev)
1754 {
1755 	struct ravb_private *priv = netdev_priv(ndev);
1756 	const struct ravb_hw_info *info = priv->info;
1757 	struct platform_device *pdev = priv->pdev;
1758 	struct device *dev = &pdev->dev;
1759 	int error;
1760 
1761 	napi_enable(&priv->napi[RAVB_BE]);
1762 	if (info->nc_queues)
1763 		napi_enable(&priv->napi[RAVB_NC]);
1764 
1765 	if (!info->multi_irqs) {
1766 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1767 				    ndev->name, ndev);
1768 		if (error) {
1769 			netdev_err(ndev, "cannot request IRQ\n");
1770 			goto out_napi_off;
1771 		}
1772 	} else {
1773 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1774 				      dev, "ch22:multi");
1775 		if (error)
1776 			goto out_napi_off;
1777 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1778 				      dev, "ch24:emac");
1779 		if (error)
1780 			goto out_free_irq;
1781 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1782 				      ndev, dev, "ch0:rx_be");
1783 		if (error)
1784 			goto out_free_irq_emac;
1785 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1786 				      ndev, dev, "ch18:tx_be");
1787 		if (error)
1788 			goto out_free_irq_be_rx;
1789 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1790 				      ndev, dev, "ch1:rx_nc");
1791 		if (error)
1792 			goto out_free_irq_be_tx;
1793 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1794 				      ndev, dev, "ch19:tx_nc");
1795 		if (error)
1796 			goto out_free_irq_nc_rx;
1797 
1798 		if (info->err_mgmt_irqs) {
1799 			error = ravb_hook_irq(priv->erra_irq, ravb_multi_interrupt,
1800 					      ndev, dev, "err_a");
1801 			if (error)
1802 				goto out_free_irq_nc_tx;
1803 			error = ravb_hook_irq(priv->mgmta_irq, ravb_multi_interrupt,
1804 					      ndev, dev, "mgmt_a");
1805 			if (error)
1806 				goto out_free_irq_erra;
1807 		}
1808 	}
1809 
1810 	/* Device init */
1811 	error = ravb_dmac_init(ndev);
1812 	if (error)
1813 		goto out_free_irq_mgmta;
1814 	ravb_emac_init(ndev);
1815 
1816 	/* Initialise PTP Clock driver */
1817 	if (info->gptp)
1818 		ravb_ptp_init(ndev, priv->pdev);
1819 
1820 	/* PHY control start */
1821 	error = ravb_phy_start(ndev);
1822 	if (error)
1823 		goto out_ptp_stop;
1824 
1825 	netif_tx_start_all_queues(ndev);
1826 
1827 	return 0;
1828 
1829 out_ptp_stop:
1830 	/* Stop PTP Clock driver */
1831 	if (info->gptp)
1832 		ravb_ptp_stop(ndev);
1833 	ravb_stop_dma(ndev);
1834 out_free_irq_mgmta:
1835 	if (!info->multi_irqs)
1836 		goto out_free_irq;
1837 	if (info->err_mgmt_irqs)
1838 		free_irq(priv->mgmta_irq, ndev);
1839 out_free_irq_erra:
1840 	if (info->err_mgmt_irqs)
1841 		free_irq(priv->erra_irq, ndev);
1842 out_free_irq_nc_tx:
1843 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1844 out_free_irq_nc_rx:
1845 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1846 out_free_irq_be_tx:
1847 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1848 out_free_irq_be_rx:
1849 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1850 out_free_irq_emac:
1851 	free_irq(priv->emac_irq, ndev);
1852 out_free_irq:
1853 	free_irq(ndev->irq, ndev);
1854 out_napi_off:
1855 	if (info->nc_queues)
1856 		napi_disable(&priv->napi[RAVB_NC]);
1857 	napi_disable(&priv->napi[RAVB_BE]);
1858 	return error;
1859 }
1860 
1861 /* Timeout function for Ethernet AVB */
1862 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1863 {
1864 	struct ravb_private *priv = netdev_priv(ndev);
1865 
1866 	netif_err(priv, tx_err, ndev,
1867 		  "transmit timed out, status %08x, resetting...\n",
1868 		  ravb_read(ndev, ISS));
1869 
1870 	/* tx_errors count up */
1871 	ndev->stats.tx_errors++;
1872 
1873 	schedule_work(&priv->work);
1874 }
1875 
1876 static void ravb_tx_timeout_work(struct work_struct *work)
1877 {
1878 	struct ravb_private *priv = container_of(work, struct ravb_private,
1879 						 work);
1880 	const struct ravb_hw_info *info = priv->info;
1881 	struct net_device *ndev = priv->ndev;
1882 	int error;
1883 
1884 	if (!rtnl_trylock()) {
1885 		usleep_range(1000, 2000);
1886 		schedule_work(&priv->work);
1887 		return;
1888 	}
1889 
1890 	netif_tx_stop_all_queues(ndev);
1891 
1892 	/* Stop PTP Clock driver */
1893 	if (info->gptp)
1894 		ravb_ptp_stop(ndev);
1895 
1896 	/* Wait for DMA stopping */
1897 	if (ravb_stop_dma(ndev)) {
1898 		/* If ravb_stop_dma() fails, the hardware is still operating
1899 		 * for TX and/or RX. So, this should not call the following
1900 		 * functions because ravb_dmac_init() is possible to fail too.
1901 		 * Also, this should not retry ravb_stop_dma() again and again
1902 		 * here because it's possible to wait forever. So, this just
1903 		 * re-enables the TX and RX and skip the following
1904 		 * re-initialization procedure.
1905 		 */
1906 		ravb_rcv_snd_enable(ndev);
1907 		goto out;
1908 	}
1909 
1910 	ravb_ring_free(ndev, RAVB_BE);
1911 	if (info->nc_queues)
1912 		ravb_ring_free(ndev, RAVB_NC);
1913 
1914 	/* Device init */
1915 	error = ravb_dmac_init(ndev);
1916 	if (error) {
1917 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1918 		 * should return here to avoid re-enabling the TX and RX in
1919 		 * ravb_emac_init().
1920 		 */
1921 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1922 			   __func__, error);
1923 		goto out_unlock;
1924 	}
1925 	ravb_emac_init(ndev);
1926 
1927 out:
1928 	/* Initialise PTP Clock driver */
1929 	if (info->gptp)
1930 		ravb_ptp_init(ndev, priv->pdev);
1931 
1932 	netif_tx_start_all_queues(ndev);
1933 
1934 out_unlock:
1935 	rtnl_unlock();
1936 }
1937 
1938 /* Packet transmit function for Ethernet AVB */
1939 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1940 {
1941 	struct ravb_private *priv = netdev_priv(ndev);
1942 	const struct ravb_hw_info *info = priv->info;
1943 	unsigned int num_tx_desc = priv->num_tx_desc;
1944 	u16 q = skb_get_queue_mapping(skb);
1945 	struct ravb_tstamp_skb *ts_skb;
1946 	struct ravb_tx_desc *desc;
1947 	unsigned long flags;
1948 	dma_addr_t dma_addr;
1949 	void *buffer;
1950 	u32 entry;
1951 	u32 len;
1952 
1953 	spin_lock_irqsave(&priv->lock, flags);
1954 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1955 	    num_tx_desc) {
1956 		netif_err(priv, tx_queued, ndev,
1957 			  "still transmitting with the full ring!\n");
1958 		netif_stop_subqueue(ndev, q);
1959 		spin_unlock_irqrestore(&priv->lock, flags);
1960 		return NETDEV_TX_BUSY;
1961 	}
1962 
1963 	if (skb_put_padto(skb, ETH_ZLEN))
1964 		goto exit;
1965 
1966 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1967 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1968 
1969 	if (num_tx_desc > 1) {
1970 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1971 			 entry / num_tx_desc * DPTR_ALIGN;
1972 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1973 
1974 		/* Zero length DMA descriptors are problematic as they seem
1975 		 * to terminate DMA transfers. Avoid them by simply using a
1976 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1977 		 * DPTR_ALIGN.
1978 		 *
1979 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1980 		 * bytes of data by the call to skb_put_padto() above this
1981 		 * is safe with respect to both the length of the first DMA
1982 		 * descriptor (len) overflowing the available data and the
1983 		 * length of the second DMA descriptor (skb->len - len)
1984 		 * being negative.
1985 		 */
1986 		if (len == 0)
1987 			len = DPTR_ALIGN;
1988 
1989 		memcpy(buffer, skb->data, len);
1990 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1991 					  DMA_TO_DEVICE);
1992 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1993 			goto drop;
1994 
1995 		desc = &priv->tx_ring[q][entry];
1996 		desc->ds_tagl = cpu_to_le16(len);
1997 		desc->dptr = cpu_to_le32(dma_addr);
1998 
1999 		buffer = skb->data + len;
2000 		len = skb->len - len;
2001 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2002 					  DMA_TO_DEVICE);
2003 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2004 			goto unmap;
2005 
2006 		desc++;
2007 	} else {
2008 		desc = &priv->tx_ring[q][entry];
2009 		len = skb->len;
2010 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2011 					  DMA_TO_DEVICE);
2012 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2013 			goto drop;
2014 	}
2015 	desc->ds_tagl = cpu_to_le16(len);
2016 	desc->dptr = cpu_to_le32(dma_addr);
2017 
2018 	/* TX timestamp required */
2019 	if (info->gptp || info->ccc_gac) {
2020 		if (q == RAVB_NC) {
2021 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2022 			if (!ts_skb) {
2023 				if (num_tx_desc > 1) {
2024 					desc--;
2025 					dma_unmap_single(ndev->dev.parent, dma_addr,
2026 							 len, DMA_TO_DEVICE);
2027 				}
2028 				goto unmap;
2029 			}
2030 			ts_skb->skb = skb_get(skb);
2031 			ts_skb->tag = priv->ts_skb_tag++;
2032 			priv->ts_skb_tag &= 0x3ff;
2033 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2034 
2035 			/* TAG and timestamp required flag */
2036 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2037 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2038 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2039 		}
2040 
2041 		skb_tx_timestamp(skb);
2042 	}
2043 	/* Descriptor type must be set after all the above writes */
2044 	dma_wmb();
2045 	if (num_tx_desc > 1) {
2046 		desc->die_dt = DT_FEND;
2047 		desc--;
2048 		desc->die_dt = DT_FSTART;
2049 	} else {
2050 		desc->die_dt = DT_FSINGLE;
2051 	}
2052 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2053 
2054 	priv->cur_tx[q] += num_tx_desc;
2055 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2056 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2057 	    !ravb_tx_free(ndev, q, true))
2058 		netif_stop_subqueue(ndev, q);
2059 
2060 exit:
2061 	spin_unlock_irqrestore(&priv->lock, flags);
2062 	return NETDEV_TX_OK;
2063 
2064 unmap:
2065 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2066 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2067 drop:
2068 	dev_kfree_skb_any(skb);
2069 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2070 	goto exit;
2071 }
2072 
2073 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2074 			     struct net_device *sb_dev)
2075 {
2076 	/* If skb needs TX timestamp, it is handled in network control queue */
2077 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2078 							       RAVB_BE;
2079 
2080 }
2081 
2082 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2083 {
2084 	struct ravb_private *priv = netdev_priv(ndev);
2085 	const struct ravb_hw_info *info = priv->info;
2086 	struct net_device_stats *nstats, *stats0, *stats1;
2087 
2088 	nstats = &ndev->stats;
2089 	stats0 = &priv->stats[RAVB_BE];
2090 
2091 	if (info->tx_counters) {
2092 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2093 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2094 	}
2095 
2096 	if (info->carrier_counters) {
2097 		nstats->collisions += ravb_read(ndev, CXR41);
2098 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2099 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2100 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2101 	}
2102 
2103 	nstats->rx_packets = stats0->rx_packets;
2104 	nstats->tx_packets = stats0->tx_packets;
2105 	nstats->rx_bytes = stats0->rx_bytes;
2106 	nstats->tx_bytes = stats0->tx_bytes;
2107 	nstats->multicast = stats0->multicast;
2108 	nstats->rx_errors = stats0->rx_errors;
2109 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2110 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2111 	nstats->rx_length_errors = stats0->rx_length_errors;
2112 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2113 	nstats->rx_over_errors = stats0->rx_over_errors;
2114 	if (info->nc_queues) {
2115 		stats1 = &priv->stats[RAVB_NC];
2116 
2117 		nstats->rx_packets += stats1->rx_packets;
2118 		nstats->tx_packets += stats1->tx_packets;
2119 		nstats->rx_bytes += stats1->rx_bytes;
2120 		nstats->tx_bytes += stats1->tx_bytes;
2121 		nstats->multicast += stats1->multicast;
2122 		nstats->rx_errors += stats1->rx_errors;
2123 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2124 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2125 		nstats->rx_length_errors += stats1->rx_length_errors;
2126 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2127 		nstats->rx_over_errors += stats1->rx_over_errors;
2128 	}
2129 
2130 	return nstats;
2131 }
2132 
2133 /* Update promiscuous bit */
2134 static void ravb_set_rx_mode(struct net_device *ndev)
2135 {
2136 	struct ravb_private *priv = netdev_priv(ndev);
2137 	unsigned long flags;
2138 
2139 	spin_lock_irqsave(&priv->lock, flags);
2140 	ravb_modify(ndev, ECMR, ECMR_PRM,
2141 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2142 	spin_unlock_irqrestore(&priv->lock, flags);
2143 }
2144 
2145 /* Device close function for Ethernet AVB */
2146 static int ravb_close(struct net_device *ndev)
2147 {
2148 	struct device_node *np = ndev->dev.parent->of_node;
2149 	struct ravb_private *priv = netdev_priv(ndev);
2150 	const struct ravb_hw_info *info = priv->info;
2151 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2152 
2153 	netif_tx_stop_all_queues(ndev);
2154 
2155 	/* Disable interrupts by clearing the interrupt masks. */
2156 	ravb_write(ndev, 0, RIC0);
2157 	ravb_write(ndev, 0, RIC2);
2158 	ravb_write(ndev, 0, TIC);
2159 
2160 	/* Stop PTP Clock driver */
2161 	if (info->gptp)
2162 		ravb_ptp_stop(ndev);
2163 
2164 	/* Set the config mode to stop the AVB-DMAC's processes */
2165 	if (ravb_stop_dma(ndev) < 0)
2166 		netdev_err(ndev,
2167 			   "device will be stopped after h/w processes are done.\n");
2168 
2169 	/* Clear the timestamp list */
2170 	if (info->gptp || info->ccc_gac) {
2171 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2172 			list_del(&ts_skb->list);
2173 			kfree_skb(ts_skb->skb);
2174 			kfree(ts_skb);
2175 		}
2176 	}
2177 
2178 	/* PHY disconnect */
2179 	if (ndev->phydev) {
2180 		phy_stop(ndev->phydev);
2181 		phy_disconnect(ndev->phydev);
2182 		if (of_phy_is_fixed_link(np))
2183 			of_phy_deregister_fixed_link(np);
2184 	}
2185 
2186 	cancel_work_sync(&priv->work);
2187 
2188 	if (info->multi_irqs) {
2189 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
2190 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
2191 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
2192 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
2193 		free_irq(priv->emac_irq, ndev);
2194 		if (info->err_mgmt_irqs) {
2195 			free_irq(priv->erra_irq, ndev);
2196 			free_irq(priv->mgmta_irq, ndev);
2197 		}
2198 	}
2199 	free_irq(ndev->irq, ndev);
2200 
2201 	if (info->nc_queues)
2202 		napi_disable(&priv->napi[RAVB_NC]);
2203 	napi_disable(&priv->napi[RAVB_BE]);
2204 
2205 	/* Free all the skb's in the RX queue and the DMA buffers. */
2206 	ravb_ring_free(ndev, RAVB_BE);
2207 	if (info->nc_queues)
2208 		ravb_ring_free(ndev, RAVB_NC);
2209 
2210 	return 0;
2211 }
2212 
2213 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2214 {
2215 	struct ravb_private *priv = netdev_priv(ndev);
2216 	struct hwtstamp_config config;
2217 
2218 	config.flags = 0;
2219 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2220 						HWTSTAMP_TX_OFF;
2221 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2222 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2223 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2224 		break;
2225 	case RAVB_RXTSTAMP_TYPE_ALL:
2226 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2227 		break;
2228 	default:
2229 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2230 	}
2231 
2232 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2233 		-EFAULT : 0;
2234 }
2235 
2236 /* Control hardware time stamping */
2237 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2238 {
2239 	struct ravb_private *priv = netdev_priv(ndev);
2240 	struct hwtstamp_config config;
2241 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2242 	u32 tstamp_tx_ctrl;
2243 
2244 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2245 		return -EFAULT;
2246 
2247 	switch (config.tx_type) {
2248 	case HWTSTAMP_TX_OFF:
2249 		tstamp_tx_ctrl = 0;
2250 		break;
2251 	case HWTSTAMP_TX_ON:
2252 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2253 		break;
2254 	default:
2255 		return -ERANGE;
2256 	}
2257 
2258 	switch (config.rx_filter) {
2259 	case HWTSTAMP_FILTER_NONE:
2260 		tstamp_rx_ctrl = 0;
2261 		break;
2262 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2263 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2264 		break;
2265 	default:
2266 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2267 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2268 	}
2269 
2270 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2271 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2272 
2273 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2274 		-EFAULT : 0;
2275 }
2276 
2277 /* ioctl to device function */
2278 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2279 {
2280 	struct phy_device *phydev = ndev->phydev;
2281 
2282 	if (!netif_running(ndev))
2283 		return -EINVAL;
2284 
2285 	if (!phydev)
2286 		return -ENODEV;
2287 
2288 	switch (cmd) {
2289 	case SIOCGHWTSTAMP:
2290 		return ravb_hwtstamp_get(ndev, req);
2291 	case SIOCSHWTSTAMP:
2292 		return ravb_hwtstamp_set(ndev, req);
2293 	}
2294 
2295 	return phy_mii_ioctl(phydev, req, cmd);
2296 }
2297 
2298 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2299 {
2300 	struct ravb_private *priv = netdev_priv(ndev);
2301 
2302 	ndev->mtu = new_mtu;
2303 
2304 	if (netif_running(ndev)) {
2305 		synchronize_irq(priv->emac_irq);
2306 		ravb_emac_init(ndev);
2307 	}
2308 
2309 	netdev_update_features(ndev);
2310 
2311 	return 0;
2312 }
2313 
2314 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2315 {
2316 	struct ravb_private *priv = netdev_priv(ndev);
2317 	unsigned long flags;
2318 
2319 	spin_lock_irqsave(&priv->lock, flags);
2320 
2321 	/* Disable TX and RX */
2322 	ravb_rcv_snd_disable(ndev);
2323 
2324 	/* Modify RX Checksum setting */
2325 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2326 
2327 	/* Enable TX and RX */
2328 	ravb_rcv_snd_enable(ndev);
2329 
2330 	spin_unlock_irqrestore(&priv->lock, flags);
2331 }
2332 
2333 static int ravb_set_features_gbeth(struct net_device *ndev,
2334 				   netdev_features_t features)
2335 {
2336 	/* Place holder */
2337 	return 0;
2338 }
2339 
2340 static int ravb_set_features_rcar(struct net_device *ndev,
2341 				  netdev_features_t features)
2342 {
2343 	netdev_features_t changed = ndev->features ^ features;
2344 
2345 	if (changed & NETIF_F_RXCSUM)
2346 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2347 
2348 	ndev->features = features;
2349 
2350 	return 0;
2351 }
2352 
2353 static int ravb_set_features(struct net_device *ndev,
2354 			     netdev_features_t features)
2355 {
2356 	struct ravb_private *priv = netdev_priv(ndev);
2357 	const struct ravb_hw_info *info = priv->info;
2358 
2359 	return info->set_feature(ndev, features);
2360 }
2361 
2362 static const struct net_device_ops ravb_netdev_ops = {
2363 	.ndo_open		= ravb_open,
2364 	.ndo_stop		= ravb_close,
2365 	.ndo_start_xmit		= ravb_start_xmit,
2366 	.ndo_select_queue	= ravb_select_queue,
2367 	.ndo_get_stats		= ravb_get_stats,
2368 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2369 	.ndo_tx_timeout		= ravb_tx_timeout,
2370 	.ndo_eth_ioctl		= ravb_do_ioctl,
2371 	.ndo_change_mtu		= ravb_change_mtu,
2372 	.ndo_validate_addr	= eth_validate_addr,
2373 	.ndo_set_mac_address	= eth_mac_addr,
2374 	.ndo_set_features	= ravb_set_features,
2375 };
2376 
2377 /* MDIO bus init function */
2378 static int ravb_mdio_init(struct ravb_private *priv)
2379 {
2380 	struct platform_device *pdev = priv->pdev;
2381 	struct device *dev = &pdev->dev;
2382 	struct phy_device *phydev;
2383 	struct device_node *pn;
2384 	int error;
2385 
2386 	/* Bitbang init */
2387 	priv->mdiobb.ops = &bb_ops;
2388 
2389 	/* MII controller setting */
2390 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2391 	if (!priv->mii_bus)
2392 		return -ENOMEM;
2393 
2394 	/* Hook up MII support for ethtool */
2395 	priv->mii_bus->name = "ravb_mii";
2396 	priv->mii_bus->parent = dev;
2397 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2398 		 pdev->name, pdev->id);
2399 
2400 	/* Register MDIO bus */
2401 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2402 	if (error)
2403 		goto out_free_bus;
2404 
2405 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2406 	phydev = of_phy_find_device(pn);
2407 	if (phydev) {
2408 		phydev->mac_managed_pm = true;
2409 		put_device(&phydev->mdio.dev);
2410 	}
2411 	of_node_put(pn);
2412 
2413 	return 0;
2414 
2415 out_free_bus:
2416 	free_mdio_bitbang(priv->mii_bus);
2417 	return error;
2418 }
2419 
2420 /* MDIO bus release function */
2421 static int ravb_mdio_release(struct ravb_private *priv)
2422 {
2423 	/* Unregister mdio bus */
2424 	mdiobus_unregister(priv->mii_bus);
2425 
2426 	/* Free bitbang info */
2427 	free_mdio_bitbang(priv->mii_bus);
2428 
2429 	return 0;
2430 }
2431 
2432 static const struct ravb_hw_info ravb_gen3_hw_info = {
2433 	.rx_ring_free = ravb_rx_ring_free_rcar,
2434 	.rx_ring_format = ravb_rx_ring_format_rcar,
2435 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2436 	.receive = ravb_rx_rcar,
2437 	.set_rate = ravb_set_rate_rcar,
2438 	.set_feature = ravb_set_features_rcar,
2439 	.dmac_init = ravb_dmac_init_rcar,
2440 	.emac_init = ravb_emac_init_rcar,
2441 	.gstrings_stats = ravb_gstrings_stats,
2442 	.gstrings_size = sizeof(ravb_gstrings_stats),
2443 	.net_hw_features = NETIF_F_RXCSUM,
2444 	.net_features = NETIF_F_RXCSUM,
2445 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2446 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2447 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2448 	.rx_max_buf_size = SZ_2K,
2449 	.internal_delay = 1,
2450 	.tx_counters = 1,
2451 	.multi_irqs = 1,
2452 	.irq_en_dis = 1,
2453 	.ccc_gac = 1,
2454 	.nc_queues = 1,
2455 	.magic_pkt = 1,
2456 };
2457 
2458 static const struct ravb_hw_info ravb_gen2_hw_info = {
2459 	.rx_ring_free = ravb_rx_ring_free_rcar,
2460 	.rx_ring_format = ravb_rx_ring_format_rcar,
2461 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2462 	.receive = ravb_rx_rcar,
2463 	.set_rate = ravb_set_rate_rcar,
2464 	.set_feature = ravb_set_features_rcar,
2465 	.dmac_init = ravb_dmac_init_rcar,
2466 	.emac_init = ravb_emac_init_rcar,
2467 	.gstrings_stats = ravb_gstrings_stats,
2468 	.gstrings_size = sizeof(ravb_gstrings_stats),
2469 	.net_hw_features = NETIF_F_RXCSUM,
2470 	.net_features = NETIF_F_RXCSUM,
2471 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2472 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2473 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2474 	.rx_max_buf_size = SZ_2K,
2475 	.aligned_tx = 1,
2476 	.gptp = 1,
2477 	.nc_queues = 1,
2478 	.magic_pkt = 1,
2479 };
2480 
2481 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2482 	.rx_ring_free = ravb_rx_ring_free_rcar,
2483 	.rx_ring_format = ravb_rx_ring_format_rcar,
2484 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2485 	.receive = ravb_rx_rcar,
2486 	.set_rate = ravb_set_rate_rcar,
2487 	.set_feature = ravb_set_features_rcar,
2488 	.dmac_init = ravb_dmac_init_rcar,
2489 	.emac_init = ravb_emac_init_rcar,
2490 	.gstrings_stats = ravb_gstrings_stats,
2491 	.gstrings_size = sizeof(ravb_gstrings_stats),
2492 	.net_hw_features = NETIF_F_RXCSUM,
2493 	.net_features = NETIF_F_RXCSUM,
2494 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2495 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2496 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2497 	.rx_max_buf_size = SZ_2K,
2498 	.multi_irqs = 1,
2499 	.err_mgmt_irqs = 1,
2500 	.gptp = 1,
2501 	.gptp_ref_clk = 1,
2502 	.nc_queues = 1,
2503 	.magic_pkt = 1,
2504 };
2505 
2506 static const struct ravb_hw_info gbeth_hw_info = {
2507 	.rx_ring_free = ravb_rx_ring_free_gbeth,
2508 	.rx_ring_format = ravb_rx_ring_format_gbeth,
2509 	.alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
2510 	.receive = ravb_rx_gbeth,
2511 	.set_rate = ravb_set_rate_gbeth,
2512 	.set_feature = ravb_set_features_gbeth,
2513 	.dmac_init = ravb_dmac_init_gbeth,
2514 	.emac_init = ravb_emac_init_gbeth,
2515 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2516 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2517 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2518 	.max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
2519 	.tccr_mask = TCCR_TSRQ0,
2520 	.rx_max_buf_size = SZ_8K,
2521 	.aligned_tx = 1,
2522 	.tx_counters = 1,
2523 	.carrier_counters = 1,
2524 	.half_duplex = 1,
2525 };
2526 
2527 static const struct of_device_id ravb_match_table[] = {
2528 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2529 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2530 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2531 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2532 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2533 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2534 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2535 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2536 	{ }
2537 };
2538 MODULE_DEVICE_TABLE(of, ravb_match_table);
2539 
2540 static int ravb_set_gti(struct net_device *ndev)
2541 {
2542 	struct ravb_private *priv = netdev_priv(ndev);
2543 	const struct ravb_hw_info *info = priv->info;
2544 	struct device *dev = ndev->dev.parent;
2545 	unsigned long rate;
2546 	uint64_t inc;
2547 
2548 	if (info->gptp_ref_clk)
2549 		rate = clk_get_rate(priv->gptp_clk);
2550 	else
2551 		rate = clk_get_rate(priv->clk);
2552 	if (!rate)
2553 		return -EINVAL;
2554 
2555 	inc = div64_ul(1000000000ULL << 20, rate);
2556 
2557 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
2558 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
2559 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
2560 		return -EINVAL;
2561 	}
2562 
2563 	ravb_write(ndev, inc, GTI);
2564 
2565 	return 0;
2566 }
2567 
2568 static int ravb_set_config_mode(struct net_device *ndev)
2569 {
2570 	struct ravb_private *priv = netdev_priv(ndev);
2571 	const struct ravb_hw_info *info = priv->info;
2572 	int error;
2573 
2574 	if (info->gptp) {
2575 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2576 		if (error)
2577 			return error;
2578 		/* Set CSEL value */
2579 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2580 	} else if (info->ccc_gac) {
2581 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
2582 	} else {
2583 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2584 	}
2585 
2586 	return error;
2587 }
2588 
2589 /* Set tx and rx clock internal delay modes */
2590 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
2591 {
2592 	struct ravb_private *priv = netdev_priv(ndev);
2593 	bool explicit_delay = false;
2594 	u32 delay;
2595 
2596 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2597 		/* Valid values are 0 and 1800, according to DT bindings */
2598 		priv->rxcidm = !!delay;
2599 		explicit_delay = true;
2600 	}
2601 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2602 		/* Valid values are 0 and 2000, according to DT bindings */
2603 		priv->txcidm = !!delay;
2604 		explicit_delay = true;
2605 	}
2606 
2607 	if (explicit_delay)
2608 		return;
2609 
2610 	/* Fall back to legacy rgmii-*id behavior */
2611 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2612 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2613 		priv->rxcidm = 1;
2614 		priv->rgmii_override = 1;
2615 	}
2616 
2617 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2618 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2619 		priv->txcidm = 1;
2620 		priv->rgmii_override = 1;
2621 	}
2622 }
2623 
2624 static void ravb_set_delay_mode(struct net_device *ndev)
2625 {
2626 	struct ravb_private *priv = netdev_priv(ndev);
2627 	u32 set = 0;
2628 
2629 	if (priv->rxcidm)
2630 		set |= APSR_RDM;
2631 	if (priv->txcidm)
2632 		set |= APSR_TDM;
2633 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2634 }
2635 
2636 static int ravb_probe(struct platform_device *pdev)
2637 {
2638 	struct device_node *np = pdev->dev.of_node;
2639 	const struct ravb_hw_info *info;
2640 	struct reset_control *rstc;
2641 	struct ravb_private *priv;
2642 	struct net_device *ndev;
2643 	int error, irq, q;
2644 	struct resource *res;
2645 	int i;
2646 
2647 	if (!np) {
2648 		dev_err(&pdev->dev,
2649 			"this driver is required to be instantiated from device tree\n");
2650 		return -EINVAL;
2651 	}
2652 
2653 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2654 	if (IS_ERR(rstc))
2655 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2656 				     "failed to get cpg reset\n");
2657 
2658 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2659 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2660 	if (!ndev)
2661 		return -ENOMEM;
2662 
2663 	info = of_device_get_match_data(&pdev->dev);
2664 
2665 	ndev->features = info->net_features;
2666 	ndev->hw_features = info->net_hw_features;
2667 
2668 	error = reset_control_deassert(rstc);
2669 	if (error)
2670 		goto out_free_netdev;
2671 
2672 	pm_runtime_enable(&pdev->dev);
2673 	error = pm_runtime_resume_and_get(&pdev->dev);
2674 	if (error < 0)
2675 		goto out_rpm_disable;
2676 
2677 	if (info->multi_irqs) {
2678 		if (info->err_mgmt_irqs)
2679 			irq = platform_get_irq_byname(pdev, "dia");
2680 		else
2681 			irq = platform_get_irq_byname(pdev, "ch22");
2682 	} else {
2683 		irq = platform_get_irq(pdev, 0);
2684 	}
2685 	if (irq < 0) {
2686 		error = irq;
2687 		goto out_release;
2688 	}
2689 	ndev->irq = irq;
2690 
2691 	SET_NETDEV_DEV(ndev, &pdev->dev);
2692 
2693 	priv = netdev_priv(ndev);
2694 	priv->info = info;
2695 	priv->rstc = rstc;
2696 	priv->ndev = ndev;
2697 	priv->pdev = pdev;
2698 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2699 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2700 	if (info->nc_queues) {
2701 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2702 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2703 	}
2704 
2705 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2706 	if (IS_ERR(priv->addr)) {
2707 		error = PTR_ERR(priv->addr);
2708 		goto out_release;
2709 	}
2710 
2711 	/* The Ether-specific entries in the device structure. */
2712 	ndev->base_addr = res->start;
2713 
2714 	spin_lock_init(&priv->lock);
2715 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2716 
2717 	error = of_get_phy_mode(np, &priv->phy_interface);
2718 	if (error && error != -ENODEV)
2719 		goto out_release;
2720 
2721 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2722 	priv->avb_link_active_low =
2723 		of_property_read_bool(np, "renesas,ether-link-active-low");
2724 
2725 	if (info->multi_irqs) {
2726 		if (info->err_mgmt_irqs)
2727 			irq = platform_get_irq_byname(pdev, "line3");
2728 		else
2729 			irq = platform_get_irq_byname(pdev, "ch24");
2730 		if (irq < 0) {
2731 			error = irq;
2732 			goto out_release;
2733 		}
2734 		priv->emac_irq = irq;
2735 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2736 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2737 			if (irq < 0) {
2738 				error = irq;
2739 				goto out_release;
2740 			}
2741 			priv->rx_irqs[i] = irq;
2742 		}
2743 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2744 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2745 			if (irq < 0) {
2746 				error = irq;
2747 				goto out_release;
2748 			}
2749 			priv->tx_irqs[i] = irq;
2750 		}
2751 
2752 		if (info->err_mgmt_irqs) {
2753 			irq = platform_get_irq_byname(pdev, "err_a");
2754 			if (irq < 0) {
2755 				error = irq;
2756 				goto out_release;
2757 			}
2758 			priv->erra_irq = irq;
2759 
2760 			irq = platform_get_irq_byname(pdev, "mgmt_a");
2761 			if (irq < 0) {
2762 				error = irq;
2763 				goto out_release;
2764 			}
2765 			priv->mgmta_irq = irq;
2766 		}
2767 	}
2768 
2769 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2770 	if (IS_ERR(priv->clk)) {
2771 		error = PTR_ERR(priv->clk);
2772 		goto out_release;
2773 	}
2774 
2775 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2776 	if (IS_ERR(priv->refclk)) {
2777 		error = PTR_ERR(priv->refclk);
2778 		goto out_release;
2779 	}
2780 	clk_prepare_enable(priv->refclk);
2781 
2782 	if (info->gptp_ref_clk) {
2783 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2784 		if (IS_ERR(priv->gptp_clk)) {
2785 			error = PTR_ERR(priv->gptp_clk);
2786 			goto out_disable_refclk;
2787 		}
2788 		clk_prepare_enable(priv->gptp_clk);
2789 	}
2790 
2791 	ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2792 	ndev->min_mtu = ETH_MIN_MTU;
2793 
2794 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2795 	 * Use two descriptor to handle such situation. First descriptor to
2796 	 * handle aligned data buffer and second descriptor to handle the
2797 	 * overflow data because of alignment.
2798 	 */
2799 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2800 
2801 	/* Set function */
2802 	ndev->netdev_ops = &ravb_netdev_ops;
2803 	ndev->ethtool_ops = &ravb_ethtool_ops;
2804 
2805 	/* Set AVB config mode */
2806 	error = ravb_set_config_mode(ndev);
2807 	if (error)
2808 		goto out_disable_gptp_clk;
2809 
2810 	if (info->gptp || info->ccc_gac) {
2811 		/* Set GTI value */
2812 		error = ravb_set_gti(ndev);
2813 		if (error)
2814 			goto out_disable_gptp_clk;
2815 
2816 		/* Request GTI loading */
2817 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2818 	}
2819 
2820 	if (info->internal_delay) {
2821 		ravb_parse_delay_mode(np, ndev);
2822 		ravb_set_delay_mode(ndev);
2823 	}
2824 
2825 	/* Allocate descriptor base address table */
2826 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2827 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2828 					    &priv->desc_bat_dma, GFP_KERNEL);
2829 	if (!priv->desc_bat) {
2830 		dev_err(&pdev->dev,
2831 			"Cannot allocate desc base address table (size %d bytes)\n",
2832 			priv->desc_bat_size);
2833 		error = -ENOMEM;
2834 		goto out_disable_gptp_clk;
2835 	}
2836 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2837 		priv->desc_bat[q].die_dt = DT_EOS;
2838 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2839 
2840 	/* Initialise HW timestamp list */
2841 	INIT_LIST_HEAD(&priv->ts_skb_list);
2842 
2843 	/* Initialise PTP Clock driver */
2844 	if (info->ccc_gac)
2845 		ravb_ptp_init(ndev, pdev);
2846 
2847 	/* Debug message level */
2848 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2849 
2850 	/* Read and set MAC address */
2851 	ravb_read_mac_address(np, ndev);
2852 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2853 		dev_warn(&pdev->dev,
2854 			 "no valid MAC address supplied, using a random one\n");
2855 		eth_hw_addr_random(ndev);
2856 	}
2857 
2858 	/* MDIO bus init */
2859 	error = ravb_mdio_init(priv);
2860 	if (error) {
2861 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2862 		goto out_dma_free;
2863 	}
2864 
2865 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2866 	if (info->nc_queues)
2867 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2868 
2869 	/* Network device register */
2870 	error = register_netdev(ndev);
2871 	if (error)
2872 		goto out_napi_del;
2873 
2874 	device_set_wakeup_capable(&pdev->dev, 1);
2875 
2876 	/* Print device information */
2877 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2878 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2879 
2880 	platform_set_drvdata(pdev, ndev);
2881 
2882 	return 0;
2883 
2884 out_napi_del:
2885 	if (info->nc_queues)
2886 		netif_napi_del(&priv->napi[RAVB_NC]);
2887 
2888 	netif_napi_del(&priv->napi[RAVB_BE]);
2889 	ravb_mdio_release(priv);
2890 out_dma_free:
2891 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2892 			  priv->desc_bat_dma);
2893 
2894 	/* Stop PTP Clock driver */
2895 	if (info->ccc_gac)
2896 		ravb_ptp_stop(ndev);
2897 out_disable_gptp_clk:
2898 	clk_disable_unprepare(priv->gptp_clk);
2899 out_disable_refclk:
2900 	clk_disable_unprepare(priv->refclk);
2901 out_release:
2902 	pm_runtime_put(&pdev->dev);
2903 out_rpm_disable:
2904 	pm_runtime_disable(&pdev->dev);
2905 	reset_control_assert(rstc);
2906 out_free_netdev:
2907 	free_netdev(ndev);
2908 	return error;
2909 }
2910 
2911 static void ravb_remove(struct platform_device *pdev)
2912 {
2913 	struct net_device *ndev = platform_get_drvdata(pdev);
2914 	struct ravb_private *priv = netdev_priv(ndev);
2915 	const struct ravb_hw_info *info = priv->info;
2916 
2917 	unregister_netdev(ndev);
2918 	if (info->nc_queues)
2919 		netif_napi_del(&priv->napi[RAVB_NC]);
2920 	netif_napi_del(&priv->napi[RAVB_BE]);
2921 
2922 	ravb_mdio_release(priv);
2923 
2924 	/* Stop PTP Clock driver */
2925 	if (info->ccc_gac)
2926 		ravb_ptp_stop(ndev);
2927 
2928 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2929 			  priv->desc_bat_dma);
2930 
2931 	ravb_set_opmode(ndev, CCC_OPC_RESET);
2932 
2933 	clk_disable_unprepare(priv->gptp_clk);
2934 	clk_disable_unprepare(priv->refclk);
2935 
2936 	pm_runtime_put_sync(&pdev->dev);
2937 	pm_runtime_disable(&pdev->dev);
2938 	reset_control_assert(priv->rstc);
2939 	free_netdev(ndev);
2940 	platform_set_drvdata(pdev, NULL);
2941 }
2942 
2943 static int ravb_wol_setup(struct net_device *ndev)
2944 {
2945 	struct ravb_private *priv = netdev_priv(ndev);
2946 	const struct ravb_hw_info *info = priv->info;
2947 
2948 	/* Disable interrupts by clearing the interrupt masks. */
2949 	ravb_write(ndev, 0, RIC0);
2950 	ravb_write(ndev, 0, RIC2);
2951 	ravb_write(ndev, 0, TIC);
2952 
2953 	/* Only allow ECI interrupts */
2954 	synchronize_irq(priv->emac_irq);
2955 	if (info->nc_queues)
2956 		napi_disable(&priv->napi[RAVB_NC]);
2957 	napi_disable(&priv->napi[RAVB_BE]);
2958 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2959 
2960 	/* Enable MagicPacket */
2961 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2962 
2963 	return enable_irq_wake(priv->emac_irq);
2964 }
2965 
2966 static int ravb_wol_restore(struct net_device *ndev)
2967 {
2968 	struct ravb_private *priv = netdev_priv(ndev);
2969 	const struct ravb_hw_info *info = priv->info;
2970 
2971 	if (info->nc_queues)
2972 		napi_enable(&priv->napi[RAVB_NC]);
2973 	napi_enable(&priv->napi[RAVB_BE]);
2974 
2975 	/* Disable MagicPacket */
2976 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2977 
2978 	ravb_close(ndev);
2979 
2980 	return disable_irq_wake(priv->emac_irq);
2981 }
2982 
2983 static int __maybe_unused ravb_suspend(struct device *dev)
2984 {
2985 	struct net_device *ndev = dev_get_drvdata(dev);
2986 	struct ravb_private *priv = netdev_priv(ndev);
2987 	int ret;
2988 
2989 	if (!netif_running(ndev))
2990 		return 0;
2991 
2992 	netif_device_detach(ndev);
2993 
2994 	if (priv->wol_enabled)
2995 		ret = ravb_wol_setup(ndev);
2996 	else
2997 		ret = ravb_close(ndev);
2998 
2999 	if (priv->info->ccc_gac)
3000 		ravb_ptp_stop(ndev);
3001 
3002 	return ret;
3003 }
3004 
3005 static int __maybe_unused ravb_resume(struct device *dev)
3006 {
3007 	struct net_device *ndev = dev_get_drvdata(dev);
3008 	struct ravb_private *priv = netdev_priv(ndev);
3009 	const struct ravb_hw_info *info = priv->info;
3010 	int ret = 0;
3011 
3012 	/* If WoL is enabled set reset mode to rearm the WoL logic */
3013 	if (priv->wol_enabled) {
3014 		ret = ravb_set_opmode(ndev, CCC_OPC_RESET);
3015 		if (ret)
3016 			return ret;
3017 	}
3018 
3019 	/* All register have been reset to default values.
3020 	 * Restore all registers which where setup at probe time and
3021 	 * reopen device if it was running before system suspended.
3022 	 */
3023 
3024 	/* Set AVB config mode */
3025 	ret = ravb_set_config_mode(ndev);
3026 	if (ret)
3027 		return ret;
3028 
3029 	if (info->gptp || info->ccc_gac) {
3030 		/* Set GTI value */
3031 		ret = ravb_set_gti(ndev);
3032 		if (ret)
3033 			return ret;
3034 
3035 		/* Request GTI loading */
3036 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
3037 	}
3038 
3039 	if (info->internal_delay)
3040 		ravb_set_delay_mode(ndev);
3041 
3042 	/* Restore descriptor base address table */
3043 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
3044 
3045 	if (priv->info->ccc_gac)
3046 		ravb_ptp_init(ndev, priv->pdev);
3047 
3048 	if (netif_running(ndev)) {
3049 		if (priv->wol_enabled) {
3050 			ret = ravb_wol_restore(ndev);
3051 			if (ret)
3052 				return ret;
3053 		}
3054 		ret = ravb_open(ndev);
3055 		if (ret < 0)
3056 			return ret;
3057 		ravb_set_rx_mode(ndev);
3058 		netif_device_attach(ndev);
3059 	}
3060 
3061 	return ret;
3062 }
3063 
3064 static int __maybe_unused ravb_runtime_nop(struct device *dev)
3065 {
3066 	/* Runtime PM callback shared between ->runtime_suspend()
3067 	 * and ->runtime_resume(). Simply returns success.
3068 	 *
3069 	 * This driver re-initializes all registers after
3070 	 * pm_runtime_get_sync() anyway so there is no need
3071 	 * to save and restore registers here.
3072 	 */
3073 	return 0;
3074 }
3075 
3076 static const struct dev_pm_ops ravb_dev_pm_ops = {
3077 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3078 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
3079 };
3080 
3081 static struct platform_driver ravb_driver = {
3082 	.probe		= ravb_probe,
3083 	.remove_new	= ravb_remove,
3084 	.driver = {
3085 		.name	= "ravb",
3086 		.pm	= &ravb_dev_pm_ops,
3087 		.of_match_table = ravb_match_table,
3088 	},
3089 };
3090 
3091 module_platform_driver(ravb_driver);
3092 
3093 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3094 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3095 MODULE_LICENSE("GPL v2");
3096