xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 
34 #include "ravb.h"
35 
36 #define RAVB_DEF_MSG_ENABLE \
37 		(NETIF_MSG_LINK	  | \
38 		 NETIF_MSG_TIMER  | \
39 		 NETIF_MSG_RX_ERR | \
40 		 NETIF_MSG_TX_ERR)
41 
42 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
43 		 u32 set)
44 {
45 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
46 }
47 
48 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
49 {
50 	int i;
51 
52 	for (i = 0; i < 10000; i++) {
53 		if ((ravb_read(ndev, reg) & mask) == value)
54 			return 0;
55 		udelay(10);
56 	}
57 	return -ETIMEDOUT;
58 }
59 
60 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
61 {
62 	u32 csr_ops = 1U << (opmode & CCC_OPC);
63 	u32 ccc_mask = CCC_OPC;
64 	int error;
65 
66 	/* If gPTP active in config mode is supported it needs to be configured
67 	 * along with CSEL and operating mode in the same access. This is a
68 	 * hardware limitation.
69 	 */
70 	if (opmode & CCC_GAC)
71 		ccc_mask |= CCC_GAC | CCC_CSEL;
72 
73 	/* Set operating mode */
74 	ravb_modify(ndev, CCC, ccc_mask, opmode);
75 	/* Check if the operating mode is changed to the requested one */
76 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
77 	if (error) {
78 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
79 			   opmode & CCC_OPC);
80 	}
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate_gbeth(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 10:		/* 10BASE */
91 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
92 		break;
93 	case 100:		/* 100BASE */
94 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
95 		break;
96 	case 1000:		/* 1000BASE */
97 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
98 		break;
99 	}
100 }
101 
102 static void ravb_set_rate_rcar(struct net_device *ndev)
103 {
104 	struct ravb_private *priv = netdev_priv(ndev);
105 
106 	switch (priv->speed) {
107 	case 100:		/* 100BASE */
108 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
109 		break;
110 	case 1000:		/* 1000BASE */
111 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
112 		break;
113 	}
114 }
115 
116 static struct sk_buff *
117 ravb_alloc_skb(struct net_device *ndev, const struct ravb_hw_info *info,
118 	       gfp_t gfp_mask)
119 {
120 	struct sk_buff *skb;
121 	u32 reserve;
122 
123 	skb = __netdev_alloc_skb(ndev, info->rx_max_frame_size + RAVB_ALIGN - 1,
124 				 gfp_mask);
125 	if (!skb)
126 		return NULL;
127 
128 	reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
129 	if (reserve)
130 		skb_reserve(skb, RAVB_ALIGN - reserve);
131 
132 	return skb;
133 }
134 
135 /* Get MAC address from the MAC address registers
136  *
137  * Ethernet AVB device doesn't have ROM for MAC address.
138  * This function gets the MAC address that was used by a bootloader.
139  */
140 static void ravb_read_mac_address(struct device_node *np,
141 				  struct net_device *ndev)
142 {
143 	int ret;
144 
145 	ret = of_get_ethdev_address(np, ndev);
146 	if (ret) {
147 		u32 mahr = ravb_read(ndev, MAHR);
148 		u32 malr = ravb_read(ndev, MALR);
149 		u8 addr[ETH_ALEN];
150 
151 		addr[0] = (mahr >> 24) & 0xFF;
152 		addr[1] = (mahr >> 16) & 0xFF;
153 		addr[2] = (mahr >>  8) & 0xFF;
154 		addr[3] = (mahr >>  0) & 0xFF;
155 		addr[4] = (malr >>  8) & 0xFF;
156 		addr[5] = (malr >>  0) & 0xFF;
157 		eth_hw_addr_set(ndev, addr);
158 	}
159 }
160 
161 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
162 {
163 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
164 						 mdiobb);
165 
166 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
167 }
168 
169 /* MDC pin control */
170 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
171 {
172 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
173 }
174 
175 /* Data I/O pin control */
176 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
177 {
178 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
179 }
180 
181 /* Set data bit */
182 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
183 {
184 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
185 }
186 
187 /* Get data bit */
188 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
189 {
190 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
191 						 mdiobb);
192 
193 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
194 }
195 
196 /* MDIO bus control struct */
197 static const struct mdiobb_ops bb_ops = {
198 	.owner = THIS_MODULE,
199 	.set_mdc = ravb_set_mdc,
200 	.set_mdio_dir = ravb_set_mdio_dir,
201 	.set_mdio_data = ravb_set_mdio_data,
202 	.get_mdio_data = ravb_get_mdio_data,
203 };
204 
205 static struct ravb_rx_desc *
206 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
207 		 unsigned int i)
208 {
209 	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
210 }
211 
212 /* Free TX skb function for AVB-IP */
213 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
214 {
215 	struct ravb_private *priv = netdev_priv(ndev);
216 	struct net_device_stats *stats = &priv->stats[q];
217 	unsigned int num_tx_desc = priv->num_tx_desc;
218 	struct ravb_tx_desc *desc;
219 	unsigned int entry;
220 	int free_num = 0;
221 	u32 size;
222 
223 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
224 		bool txed;
225 
226 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
227 					     num_tx_desc);
228 		desc = &priv->tx_ring[q][entry];
229 		txed = desc->die_dt == DT_FEMPTY;
230 		if (free_txed_only && !txed)
231 			break;
232 		/* Descriptor type must be checked before all other reads */
233 		dma_rmb();
234 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
235 		/* Free the original skb. */
236 		if (priv->tx_skb[q][entry / num_tx_desc]) {
237 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
238 					 size, DMA_TO_DEVICE);
239 			/* Last packet descriptor? */
240 			if (entry % num_tx_desc == num_tx_desc - 1) {
241 				entry /= num_tx_desc;
242 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
243 				priv->tx_skb[q][entry] = NULL;
244 				if (txed)
245 					stats->tx_packets++;
246 			}
247 			free_num++;
248 		}
249 		if (txed)
250 			stats->tx_bytes += size;
251 		desc->die_dt = DT_EEMPTY;
252 	}
253 	return free_num;
254 }
255 
256 static void ravb_rx_ring_free(struct net_device *ndev, int q)
257 {
258 	struct ravb_private *priv = netdev_priv(ndev);
259 	unsigned int ring_size;
260 	unsigned int i;
261 
262 	if (!priv->rx_ring[q].raw)
263 		return;
264 
265 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
266 		struct ravb_rx_desc *desc = ravb_rx_get_desc(priv, q, i);
267 
268 		if (!dma_mapping_error(ndev->dev.parent,
269 				       le32_to_cpu(desc->dptr)))
270 			dma_unmap_single(ndev->dev.parent,
271 					 le32_to_cpu(desc->dptr),
272 					 priv->info->rx_max_frame_size,
273 					 DMA_FROM_DEVICE);
274 	}
275 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
276 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
277 			  priv->rx_desc_dma[q]);
278 	priv->rx_ring[q].raw = NULL;
279 }
280 
281 /* Free skb's and DMA buffers for Ethernet AVB */
282 static void ravb_ring_free(struct net_device *ndev, int q)
283 {
284 	struct ravb_private *priv = netdev_priv(ndev);
285 	unsigned int num_tx_desc = priv->num_tx_desc;
286 	unsigned int ring_size;
287 	unsigned int i;
288 
289 	ravb_rx_ring_free(ndev, q);
290 
291 	if (priv->tx_ring[q]) {
292 		ravb_tx_free(ndev, q, false);
293 
294 		ring_size = sizeof(struct ravb_tx_desc) *
295 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
296 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
297 				  priv->tx_desc_dma[q]);
298 		priv->tx_ring[q] = NULL;
299 	}
300 
301 	/* Free RX skb ringbuffer */
302 	if (priv->rx_skb[q]) {
303 		for (i = 0; i < priv->num_rx_ring[q]; i++)
304 			dev_kfree_skb(priv->rx_skb[q][i]);
305 	}
306 	kfree(priv->rx_skb[q]);
307 	priv->rx_skb[q] = NULL;
308 
309 	/* Free aligned TX buffers */
310 	kfree(priv->tx_align[q]);
311 	priv->tx_align[q] = NULL;
312 
313 	/* Free TX skb ringbuffer.
314 	 * SKBs are freed by ravb_tx_free() call above.
315 	 */
316 	kfree(priv->tx_skb[q]);
317 	priv->tx_skb[q] = NULL;
318 }
319 
320 static void ravb_rx_ring_format(struct net_device *ndev, int q)
321 {
322 	struct ravb_private *priv = netdev_priv(ndev);
323 	struct ravb_rx_desc *rx_desc;
324 	unsigned int rx_ring_size;
325 	dma_addr_t dma_addr;
326 	unsigned int i;
327 
328 	rx_ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
329 	memset(priv->rx_ring[q].raw, 0, rx_ring_size);
330 	/* Build RX ring buffer */
331 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
332 		/* RX descriptor */
333 		rx_desc = ravb_rx_get_desc(priv, q, i);
334 		rx_desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
335 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
336 					  priv->info->rx_max_frame_size,
337 					  DMA_FROM_DEVICE);
338 		/* We just set the data size to 0 for a failed mapping which
339 		 * should prevent DMA from happening...
340 		 */
341 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
342 			rx_desc->ds_cc = cpu_to_le16(0);
343 		rx_desc->dptr = cpu_to_le32(dma_addr);
344 		rx_desc->die_dt = DT_FEMPTY;
345 	}
346 	rx_desc = ravb_rx_get_desc(priv, q, i);
347 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
348 	rx_desc->die_dt = DT_LINKFIX; /* type */
349 }
350 
351 /* Format skb and descriptor buffer for Ethernet AVB */
352 static void ravb_ring_format(struct net_device *ndev, int q)
353 {
354 	struct ravb_private *priv = netdev_priv(ndev);
355 	unsigned int num_tx_desc = priv->num_tx_desc;
356 	struct ravb_tx_desc *tx_desc;
357 	struct ravb_desc *desc;
358 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
359 				    num_tx_desc;
360 	unsigned int i;
361 
362 	priv->cur_rx[q] = 0;
363 	priv->cur_tx[q] = 0;
364 	priv->dirty_rx[q] = 0;
365 	priv->dirty_tx[q] = 0;
366 
367 	ravb_rx_ring_format(ndev, q);
368 
369 	memset(priv->tx_ring[q], 0, tx_ring_size);
370 	/* Build TX ring buffer */
371 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
372 	     i++, tx_desc++) {
373 		tx_desc->die_dt = DT_EEMPTY;
374 		if (num_tx_desc > 1) {
375 			tx_desc++;
376 			tx_desc->die_dt = DT_EEMPTY;
377 		}
378 	}
379 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
380 	tx_desc->die_dt = DT_LINKFIX; /* type */
381 
382 	/* RX descriptor base address for best effort */
383 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
384 	desc->die_dt = DT_LINKFIX; /* type */
385 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
386 
387 	/* TX descriptor base address for best effort */
388 	desc = &priv->desc_bat[q];
389 	desc->die_dt = DT_LINKFIX; /* type */
390 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
391 }
392 
393 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
394 {
395 	struct ravb_private *priv = netdev_priv(ndev);
396 	unsigned int ring_size;
397 
398 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
399 
400 	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
401 						  &priv->rx_desc_dma[q],
402 						  GFP_KERNEL);
403 
404 	return priv->rx_ring[q].raw;
405 }
406 
407 /* Init skb and descriptor buffer for Ethernet AVB */
408 static int ravb_ring_init(struct net_device *ndev, int q)
409 {
410 	struct ravb_private *priv = netdev_priv(ndev);
411 	const struct ravb_hw_info *info = priv->info;
412 	unsigned int num_tx_desc = priv->num_tx_desc;
413 	unsigned int ring_size;
414 	struct sk_buff *skb;
415 	unsigned int i;
416 
417 	/* Allocate RX and TX skb rings */
418 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
419 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
420 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
421 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
422 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
423 		goto error;
424 
425 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
426 		skb = ravb_alloc_skb(ndev, info, GFP_KERNEL);
427 		if (!skb)
428 			goto error;
429 		priv->rx_skb[q][i] = skb;
430 	}
431 
432 	if (num_tx_desc > 1) {
433 		/* Allocate rings for the aligned buffers */
434 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
435 					    DPTR_ALIGN - 1, GFP_KERNEL);
436 		if (!priv->tx_align[q])
437 			goto error;
438 	}
439 
440 	/* Allocate all RX descriptors. */
441 	if (!ravb_alloc_rx_desc(ndev, q))
442 		goto error;
443 
444 	priv->dirty_rx[q] = 0;
445 
446 	/* Allocate all TX descriptors. */
447 	ring_size = sizeof(struct ravb_tx_desc) *
448 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
449 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
450 					      &priv->tx_desc_dma[q],
451 					      GFP_KERNEL);
452 	if (!priv->tx_ring[q])
453 		goto error;
454 
455 	return 0;
456 
457 error:
458 	ravb_ring_free(ndev, q);
459 
460 	return -ENOMEM;
461 }
462 
463 static void ravb_csum_init_gbeth(struct net_device *ndev)
464 {
465 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
466 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
467 
468 	if (!(tx_enable || rx_enable))
469 		goto done;
470 
471 	ravb_write(ndev, 0, CSR0);
472 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
473 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
474 
475 		if (tx_enable)
476 			ndev->features &= ~NETIF_F_HW_CSUM;
477 
478 		if (rx_enable)
479 			ndev->features &= ~NETIF_F_RXCSUM;
480 	} else {
481 		if (tx_enable)
482 			ravb_write(ndev, CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, CSR1);
483 
484 		if (rx_enable)
485 			ravb_write(ndev, CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
486 				   CSR2);
487 	}
488 
489 done:
490 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
491 }
492 
493 static void ravb_emac_init_gbeth(struct net_device *ndev)
494 {
495 	struct ravb_private *priv = netdev_priv(ndev);
496 
497 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
498 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
499 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
500 	} else {
501 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
502 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
503 			    CXR31_SEL_LINK0);
504 	}
505 
506 	/* Receive frame limit set register */
507 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
508 
509 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
510 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
511 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
512 			 ECMR_TXF | ECMR_RXF, ECMR);
513 
514 	ravb_set_rate_gbeth(ndev);
515 
516 	/* Set MAC address */
517 	ravb_write(ndev,
518 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
519 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
520 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
521 
522 	/* E-MAC status register clear */
523 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
524 
525 	ravb_csum_init_gbeth(ndev);
526 
527 	/* E-MAC interrupt enable register */
528 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
529 }
530 
531 static void ravb_emac_init_rcar(struct net_device *ndev)
532 {
533 	/* Receive frame limit set register */
534 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
535 
536 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
537 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
538 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
539 		   ECMR_TE | ECMR_RE, ECMR);
540 
541 	ravb_set_rate_rcar(ndev);
542 
543 	/* Set MAC address */
544 	ravb_write(ndev,
545 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
546 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
547 	ravb_write(ndev,
548 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
549 
550 	/* E-MAC status register clear */
551 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
552 
553 	/* E-MAC interrupt enable register */
554 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
555 }
556 
557 /* E-MAC init function */
558 static void ravb_emac_init(struct net_device *ndev)
559 {
560 	struct ravb_private *priv = netdev_priv(ndev);
561 	const struct ravb_hw_info *info = priv->info;
562 
563 	info->emac_init(ndev);
564 }
565 
566 static int ravb_dmac_init_gbeth(struct net_device *ndev)
567 {
568 	struct ravb_private *priv = netdev_priv(ndev);
569 	int error;
570 
571 	error = ravb_ring_init(ndev, RAVB_BE);
572 	if (error)
573 		return error;
574 
575 	/* Descriptor format */
576 	ravb_ring_format(ndev, RAVB_BE);
577 
578 	/* Set DMAC RX */
579 	ravb_write(ndev, 0x60000000, RCR);
580 
581 	/* Set Max Frame Length (RTC) */
582 	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
583 
584 	/* Set FIFO size */
585 	ravb_write(ndev, 0x00222200, TGC);
586 
587 	ravb_write(ndev, 0, TCCR);
588 
589 	/* Frame receive */
590 	ravb_write(ndev, RIC0_FRE0, RIC0);
591 	/* Disable FIFO full warning */
592 	ravb_write(ndev, 0x0, RIC1);
593 	/* Receive FIFO full error, descriptor empty */
594 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
595 
596 	ravb_write(ndev, TIC_FTE0, TIC);
597 
598 	return 0;
599 }
600 
601 static int ravb_dmac_init_rcar(struct net_device *ndev)
602 {
603 	struct ravb_private *priv = netdev_priv(ndev);
604 	const struct ravb_hw_info *info = priv->info;
605 	int error;
606 
607 	error = ravb_ring_init(ndev, RAVB_BE);
608 	if (error)
609 		return error;
610 	error = ravb_ring_init(ndev, RAVB_NC);
611 	if (error) {
612 		ravb_ring_free(ndev, RAVB_BE);
613 		return error;
614 	}
615 
616 	/* Descriptor format */
617 	ravb_ring_format(ndev, RAVB_BE);
618 	ravb_ring_format(ndev, RAVB_NC);
619 
620 	/* Set AVB RX */
621 	ravb_write(ndev,
622 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
623 
624 	/* Set FIFO size */
625 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
626 
627 	/* Timestamp enable */
628 	ravb_write(ndev, TCCR_TFEN, TCCR);
629 
630 	/* Interrupt init: */
631 	if (info->multi_irqs) {
632 		/* Clear DIL.DPLx */
633 		ravb_write(ndev, 0, DIL);
634 		/* Set queue specific interrupt */
635 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
636 	}
637 	/* Frame receive */
638 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
639 	/* Disable FIFO full warning */
640 	ravb_write(ndev, 0, RIC1);
641 	/* Receive FIFO full error, descriptor empty */
642 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
643 	/* Frame transmitted, timestamp FIFO updated */
644 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
645 
646 	return 0;
647 }
648 
649 /* Device init function for Ethernet AVB */
650 static int ravb_dmac_init(struct net_device *ndev)
651 {
652 	struct ravb_private *priv = netdev_priv(ndev);
653 	const struct ravb_hw_info *info = priv->info;
654 	int error;
655 
656 	/* Set CONFIG mode */
657 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
658 	if (error)
659 		return error;
660 
661 	error = info->dmac_init(ndev);
662 	if (error)
663 		return error;
664 
665 	/* Setting the control will start the AVB-DMAC process. */
666 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
667 }
668 
669 static void ravb_get_tx_tstamp(struct net_device *ndev)
670 {
671 	struct ravb_private *priv = netdev_priv(ndev);
672 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
673 	struct skb_shared_hwtstamps shhwtstamps;
674 	struct sk_buff *skb;
675 	struct timespec64 ts;
676 	u16 tag, tfa_tag;
677 	int count;
678 	u32 tfa2;
679 
680 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
681 	while (count--) {
682 		tfa2 = ravb_read(ndev, TFA2);
683 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
684 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
685 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
686 			    ravb_read(ndev, TFA1);
687 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
688 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
689 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
690 					 list) {
691 			skb = ts_skb->skb;
692 			tag = ts_skb->tag;
693 			list_del(&ts_skb->list);
694 			kfree(ts_skb);
695 			if (tag == tfa_tag) {
696 				skb_tstamp_tx(skb, &shhwtstamps);
697 				dev_consume_skb_any(skb);
698 				break;
699 			} else {
700 				dev_kfree_skb_any(skb);
701 			}
702 		}
703 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
704 	}
705 }
706 
707 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
708 {
709 	__wsum csum_ip_hdr, csum_proto;
710 	u8 *hw_csum;
711 
712 	/* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
713 	 * bytes appended to packet data. First 2 bytes is ip header checksum
714 	 * and last 2 bytes is protocol checksum.
715 	 */
716 	if (unlikely(skb->len < sizeof(__sum16) * 2))
717 		return;
718 
719 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
720 	csum_proto = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
721 
722 	hw_csum -= sizeof(__sum16);
723 	csum_ip_hdr = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
724 	skb_trim(skb, skb->len - 2 * sizeof(__sum16));
725 
726 	/* TODO: IPV6 Rx checksum */
727 	if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
728 		skb->ip_summed = CHECKSUM_UNNECESSARY;
729 }
730 
731 static void ravb_rx_csum(struct sk_buff *skb)
732 {
733 	u8 *hw_csum;
734 
735 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
736 	 * appended to packet data
737 	 */
738 	if (unlikely(skb->len < sizeof(__sum16)))
739 		return;
740 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
741 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
742 	skb->ip_summed = CHECKSUM_COMPLETE;
743 	skb_trim(skb, skb->len - sizeof(__sum16));
744 }
745 
746 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
747 					  struct ravb_rx_desc *desc)
748 {
749 	struct ravb_private *priv = netdev_priv(ndev);
750 	struct sk_buff *skb;
751 
752 	skb = priv->rx_skb[RAVB_BE][entry];
753 	priv->rx_skb[RAVB_BE][entry] = NULL;
754 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
755 			 ALIGN(priv->info->rx_max_frame_size, 16),
756 			 DMA_FROM_DEVICE);
757 
758 	return skb;
759 }
760 
761 /* Packet receive function for Gigabit Ethernet */
762 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
763 {
764 	struct ravb_private *priv = netdev_priv(ndev);
765 	const struct ravb_hw_info *info = priv->info;
766 	struct net_device_stats *stats;
767 	struct ravb_rx_desc *desc;
768 	struct sk_buff *skb;
769 	dma_addr_t dma_addr;
770 	int rx_packets = 0;
771 	u8  desc_status;
772 	u16 pkt_len;
773 	u8  die_dt;
774 	int entry;
775 	int limit;
776 	int i;
777 
778 	entry = priv->cur_rx[q] % priv->num_rx_ring[q];
779 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
780 	stats = &priv->stats[q];
781 
782 	desc = &priv->rx_ring[q].desc[entry];
783 	for (i = 0; i < limit && rx_packets < *quota && desc->die_dt != DT_FEMPTY; i++) {
784 		/* Descriptor type must be checked before all other reads */
785 		dma_rmb();
786 		desc_status = desc->msc;
787 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
788 
789 		/* We use 0-byte descriptors to mark the DMA mapping errors */
790 		if (!pkt_len)
791 			continue;
792 
793 		if (desc_status & MSC_MC)
794 			stats->multicast++;
795 
796 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
797 			stats->rx_errors++;
798 			if (desc_status & MSC_CRC)
799 				stats->rx_crc_errors++;
800 			if (desc_status & MSC_RFE)
801 				stats->rx_frame_errors++;
802 			if (desc_status & (MSC_RTLF | MSC_RTSF))
803 				stats->rx_length_errors++;
804 			if (desc_status & MSC_CEEF)
805 				stats->rx_missed_errors++;
806 		} else {
807 			die_dt = desc->die_dt & 0xF0;
808 			switch (die_dt) {
809 			case DT_FSINGLE:
810 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
811 				skb_put(skb, pkt_len);
812 				skb->protocol = eth_type_trans(skb, ndev);
813 				if (ndev->features & NETIF_F_RXCSUM)
814 					ravb_rx_csum_gbeth(skb);
815 				napi_gro_receive(&priv->napi[q], skb);
816 				rx_packets++;
817 				stats->rx_bytes += pkt_len;
818 				break;
819 			case DT_FSTART:
820 				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
821 				skb_put(priv->rx_1st_skb, pkt_len);
822 				break;
823 			case DT_FMID:
824 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
825 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
826 							       priv->rx_1st_skb->len,
827 							       skb->data,
828 							       pkt_len);
829 				skb_put(priv->rx_1st_skb, pkt_len);
830 				dev_kfree_skb(skb);
831 				break;
832 			case DT_FEND:
833 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
834 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
835 							       priv->rx_1st_skb->len,
836 							       skb->data,
837 							       pkt_len);
838 				skb_put(priv->rx_1st_skb, pkt_len);
839 				dev_kfree_skb(skb);
840 				priv->rx_1st_skb->protocol =
841 					eth_type_trans(priv->rx_1st_skb, ndev);
842 				if (ndev->features & NETIF_F_RXCSUM)
843 					ravb_rx_csum_gbeth(skb);
844 				napi_gro_receive(&priv->napi[q],
845 						 priv->rx_1st_skb);
846 				rx_packets++;
847 				stats->rx_bytes += pkt_len;
848 				break;
849 			}
850 		}
851 
852 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
853 		desc = &priv->rx_ring[q].desc[entry];
854 	}
855 
856 	/* Refill the RX ring buffers. */
857 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
858 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
859 		desc = &priv->rx_ring[q].desc[entry];
860 		desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
861 
862 		if (!priv->rx_skb[q][entry]) {
863 			skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
864 			if (!skb)
865 				break;
866 			dma_addr = dma_map_single(ndev->dev.parent,
867 						  skb->data,
868 						  priv->info->rx_max_frame_size,
869 						  DMA_FROM_DEVICE);
870 			skb_checksum_none_assert(skb);
871 			/* We just set the data size to 0 for a failed mapping
872 			 * which should prevent DMA  from happening...
873 			 */
874 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
875 				desc->ds_cc = cpu_to_le16(0);
876 			desc->dptr = cpu_to_le32(dma_addr);
877 			priv->rx_skb[q][entry] = skb;
878 		}
879 		/* Descriptor type must be set after all the above writes */
880 		dma_wmb();
881 		desc->die_dt = DT_FEMPTY;
882 	}
883 
884 	stats->rx_packets += rx_packets;
885 	*quota -= rx_packets;
886 	return *quota == 0;
887 }
888 
889 /* Packet receive function for Ethernet AVB */
890 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
891 {
892 	struct ravb_private *priv = netdev_priv(ndev);
893 	const struct ravb_hw_info *info = priv->info;
894 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
895 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
896 			priv->cur_rx[q];
897 	struct net_device_stats *stats = &priv->stats[q];
898 	struct ravb_ex_rx_desc *desc;
899 	struct sk_buff *skb;
900 	dma_addr_t dma_addr;
901 	struct timespec64 ts;
902 	u8  desc_status;
903 	u16 pkt_len;
904 	int limit;
905 
906 	boguscnt = min(boguscnt, *quota);
907 	limit = boguscnt;
908 	desc = &priv->rx_ring[q].ex_desc[entry];
909 	while (desc->die_dt != DT_FEMPTY) {
910 		/* Descriptor type must be checked before all other reads */
911 		dma_rmb();
912 		desc_status = desc->msc;
913 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
914 
915 		if (--boguscnt < 0)
916 			break;
917 
918 		/* We use 0-byte descriptors to mark the DMA mapping errors */
919 		if (!pkt_len)
920 			continue;
921 
922 		if (desc_status & MSC_MC)
923 			stats->multicast++;
924 
925 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
926 				   MSC_CEEF)) {
927 			stats->rx_errors++;
928 			if (desc_status & MSC_CRC)
929 				stats->rx_crc_errors++;
930 			if (desc_status & MSC_RFE)
931 				stats->rx_frame_errors++;
932 			if (desc_status & (MSC_RTLF | MSC_RTSF))
933 				stats->rx_length_errors++;
934 			if (desc_status & MSC_CEEF)
935 				stats->rx_missed_errors++;
936 		} else {
937 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
938 
939 			skb = priv->rx_skb[q][entry];
940 			priv->rx_skb[q][entry] = NULL;
941 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
942 					 priv->info->rx_max_frame_size,
943 					 DMA_FROM_DEVICE);
944 			get_ts &= (q == RAVB_NC) ?
945 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
946 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
947 			if (get_ts) {
948 				struct skb_shared_hwtstamps *shhwtstamps;
949 
950 				shhwtstamps = skb_hwtstamps(skb);
951 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
952 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
953 					     32) | le32_to_cpu(desc->ts_sl);
954 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
955 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
956 			}
957 
958 			skb_put(skb, pkt_len);
959 			skb->protocol = eth_type_trans(skb, ndev);
960 			if (ndev->features & NETIF_F_RXCSUM)
961 				ravb_rx_csum(skb);
962 			napi_gro_receive(&priv->napi[q], skb);
963 			stats->rx_packets++;
964 			stats->rx_bytes += pkt_len;
965 		}
966 
967 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
968 		desc = &priv->rx_ring[q].ex_desc[entry];
969 	}
970 
971 	/* Refill the RX ring buffers. */
972 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
973 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
974 		desc = &priv->rx_ring[q].ex_desc[entry];
975 		desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
976 
977 		if (!priv->rx_skb[q][entry]) {
978 			skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
979 			if (!skb)
980 				break;	/* Better luck next round. */
981 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
982 						  priv->info->rx_max_frame_size,
983 						  DMA_FROM_DEVICE);
984 			skb_checksum_none_assert(skb);
985 			/* We just set the data size to 0 for a failed mapping
986 			 * which should prevent DMA  from happening...
987 			 */
988 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
989 				desc->ds_cc = cpu_to_le16(0);
990 			desc->dptr = cpu_to_le32(dma_addr);
991 			priv->rx_skb[q][entry] = skb;
992 		}
993 		/* Descriptor type must be set after all the above writes */
994 		dma_wmb();
995 		desc->die_dt = DT_FEMPTY;
996 	}
997 
998 	*quota -= limit - (++boguscnt);
999 
1000 	return boguscnt <= 0;
1001 }
1002 
1003 /* Packet receive function for Ethernet AVB */
1004 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1005 {
1006 	struct ravb_private *priv = netdev_priv(ndev);
1007 	const struct ravb_hw_info *info = priv->info;
1008 
1009 	return info->receive(ndev, quota, q);
1010 }
1011 
1012 static void ravb_rcv_snd_disable(struct net_device *ndev)
1013 {
1014 	/* Disable TX and RX */
1015 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1016 }
1017 
1018 static void ravb_rcv_snd_enable(struct net_device *ndev)
1019 {
1020 	/* Enable TX and RX */
1021 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1022 }
1023 
1024 /* function for waiting dma process finished */
1025 static int ravb_stop_dma(struct net_device *ndev)
1026 {
1027 	struct ravb_private *priv = netdev_priv(ndev);
1028 	const struct ravb_hw_info *info = priv->info;
1029 	int error;
1030 
1031 	/* Wait for stopping the hardware TX process */
1032 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1033 
1034 	if (error)
1035 		return error;
1036 
1037 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1038 			  0);
1039 	if (error)
1040 		return error;
1041 
1042 	/* Stop the E-MAC's RX/TX processes. */
1043 	ravb_rcv_snd_disable(ndev);
1044 
1045 	/* Wait for stopping the RX DMA process */
1046 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1047 	if (error)
1048 		return error;
1049 
1050 	/* Stop AVB-DMAC process */
1051 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1052 }
1053 
1054 /* E-MAC interrupt handler */
1055 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1056 {
1057 	struct ravb_private *priv = netdev_priv(ndev);
1058 	u32 ecsr, psr;
1059 
1060 	ecsr = ravb_read(ndev, ECSR);
1061 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1062 
1063 	if (ecsr & ECSR_MPD)
1064 		pm_wakeup_event(&priv->pdev->dev, 0);
1065 	if (ecsr & ECSR_ICD)
1066 		ndev->stats.tx_carrier_errors++;
1067 	if (ecsr & ECSR_LCHNG) {
1068 		/* Link changed */
1069 		if (priv->no_avb_link)
1070 			return;
1071 		psr = ravb_read(ndev, PSR);
1072 		if (priv->avb_link_active_low)
1073 			psr ^= PSR_LMON;
1074 		if (!(psr & PSR_LMON)) {
1075 			/* DIsable RX and TX */
1076 			ravb_rcv_snd_disable(ndev);
1077 		} else {
1078 			/* Enable RX and TX */
1079 			ravb_rcv_snd_enable(ndev);
1080 		}
1081 	}
1082 }
1083 
1084 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1085 {
1086 	struct net_device *ndev = dev_id;
1087 	struct ravb_private *priv = netdev_priv(ndev);
1088 	struct device *dev = &priv->pdev->dev;
1089 	irqreturn_t result = IRQ_HANDLED;
1090 
1091 	pm_runtime_get_noresume(dev);
1092 
1093 	if (unlikely(!pm_runtime_active(dev))) {
1094 		result = IRQ_NONE;
1095 		goto out_rpm_put;
1096 	}
1097 
1098 	spin_lock(&priv->lock);
1099 	ravb_emac_interrupt_unlocked(ndev);
1100 	spin_unlock(&priv->lock);
1101 
1102 out_rpm_put:
1103 	pm_runtime_put_noidle(dev);
1104 	return result;
1105 }
1106 
1107 /* Error interrupt handler */
1108 static void ravb_error_interrupt(struct net_device *ndev)
1109 {
1110 	struct ravb_private *priv = netdev_priv(ndev);
1111 	u32 eis, ris2;
1112 
1113 	eis = ravb_read(ndev, EIS);
1114 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1115 	if (eis & EIS_QFS) {
1116 		ris2 = ravb_read(ndev, RIS2);
1117 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1118 			   RIS2);
1119 
1120 		/* Receive Descriptor Empty int */
1121 		if (ris2 & RIS2_QFF0)
1122 			priv->stats[RAVB_BE].rx_over_errors++;
1123 
1124 		/* Receive Descriptor Empty int */
1125 		if (ris2 & RIS2_QFF1)
1126 			priv->stats[RAVB_NC].rx_over_errors++;
1127 
1128 		/* Receive FIFO Overflow int */
1129 		if (ris2 & RIS2_RFFF)
1130 			priv->rx_fifo_errors++;
1131 	}
1132 }
1133 
1134 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1135 {
1136 	struct ravb_private *priv = netdev_priv(ndev);
1137 	const struct ravb_hw_info *info = priv->info;
1138 	u32 ris0 = ravb_read(ndev, RIS0);
1139 	u32 ric0 = ravb_read(ndev, RIC0);
1140 	u32 tis  = ravb_read(ndev, TIS);
1141 	u32 tic  = ravb_read(ndev, TIC);
1142 
1143 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1144 		if (napi_schedule_prep(&priv->napi[q])) {
1145 			/* Mask RX and TX interrupts */
1146 			if (!info->irq_en_dis) {
1147 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1148 				ravb_write(ndev, tic & ~BIT(q), TIC);
1149 			} else {
1150 				ravb_write(ndev, BIT(q), RID0);
1151 				ravb_write(ndev, BIT(q), TID);
1152 			}
1153 			__napi_schedule(&priv->napi[q]);
1154 		} else {
1155 			netdev_warn(ndev,
1156 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1157 				    ris0, ric0);
1158 			netdev_warn(ndev,
1159 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1160 				    tis, tic);
1161 		}
1162 		return true;
1163 	}
1164 	return false;
1165 }
1166 
1167 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1168 {
1169 	u32 tis = ravb_read(ndev, TIS);
1170 
1171 	if (tis & TIS_TFUF) {
1172 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1173 		ravb_get_tx_tstamp(ndev);
1174 		return true;
1175 	}
1176 	return false;
1177 }
1178 
1179 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1180 {
1181 	struct net_device *ndev = dev_id;
1182 	struct ravb_private *priv = netdev_priv(ndev);
1183 	const struct ravb_hw_info *info = priv->info;
1184 	struct device *dev = &priv->pdev->dev;
1185 	irqreturn_t result = IRQ_NONE;
1186 	u32 iss;
1187 
1188 	pm_runtime_get_noresume(dev);
1189 
1190 	if (unlikely(!pm_runtime_active(dev)))
1191 		goto out_rpm_put;
1192 
1193 	spin_lock(&priv->lock);
1194 	/* Get interrupt status */
1195 	iss = ravb_read(ndev, ISS);
1196 
1197 	/* Received and transmitted interrupts */
1198 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1199 		int q;
1200 
1201 		/* Timestamp updated */
1202 		if (ravb_timestamp_interrupt(ndev))
1203 			result = IRQ_HANDLED;
1204 
1205 		/* Network control and best effort queue RX/TX */
1206 		if (info->nc_queues) {
1207 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1208 				if (ravb_queue_interrupt(ndev, q))
1209 					result = IRQ_HANDLED;
1210 			}
1211 		} else {
1212 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1213 				result = IRQ_HANDLED;
1214 		}
1215 	}
1216 
1217 	/* E-MAC status summary */
1218 	if (iss & ISS_MS) {
1219 		ravb_emac_interrupt_unlocked(ndev);
1220 		result = IRQ_HANDLED;
1221 	}
1222 
1223 	/* Error status summary */
1224 	if (iss & ISS_ES) {
1225 		ravb_error_interrupt(ndev);
1226 		result = IRQ_HANDLED;
1227 	}
1228 
1229 	/* gPTP interrupt status summary */
1230 	if (iss & ISS_CGIS) {
1231 		ravb_ptp_interrupt(ndev);
1232 		result = IRQ_HANDLED;
1233 	}
1234 
1235 	spin_unlock(&priv->lock);
1236 
1237 out_rpm_put:
1238 	pm_runtime_put_noidle(dev);
1239 	return result;
1240 }
1241 
1242 /* Timestamp/Error/gPTP interrupt handler */
1243 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1244 {
1245 	struct net_device *ndev = dev_id;
1246 	struct ravb_private *priv = netdev_priv(ndev);
1247 	struct device *dev = &priv->pdev->dev;
1248 	irqreturn_t result = IRQ_NONE;
1249 	u32 iss;
1250 
1251 	pm_runtime_get_noresume(dev);
1252 
1253 	if (unlikely(!pm_runtime_active(dev)))
1254 		goto out_rpm_put;
1255 
1256 	spin_lock(&priv->lock);
1257 	/* Get interrupt status */
1258 	iss = ravb_read(ndev, ISS);
1259 
1260 	/* Timestamp updated */
1261 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1262 		result = IRQ_HANDLED;
1263 
1264 	/* Error status summary */
1265 	if (iss & ISS_ES) {
1266 		ravb_error_interrupt(ndev);
1267 		result = IRQ_HANDLED;
1268 	}
1269 
1270 	/* gPTP interrupt status summary */
1271 	if (iss & ISS_CGIS) {
1272 		ravb_ptp_interrupt(ndev);
1273 		result = IRQ_HANDLED;
1274 	}
1275 
1276 	spin_unlock(&priv->lock);
1277 
1278 out_rpm_put:
1279 	pm_runtime_put_noidle(dev);
1280 	return result;
1281 }
1282 
1283 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1284 {
1285 	struct net_device *ndev = dev_id;
1286 	struct ravb_private *priv = netdev_priv(ndev);
1287 	struct device *dev = &priv->pdev->dev;
1288 	irqreturn_t result = IRQ_NONE;
1289 
1290 	pm_runtime_get_noresume(dev);
1291 
1292 	if (unlikely(!pm_runtime_active(dev)))
1293 		goto out_rpm_put;
1294 
1295 	spin_lock(&priv->lock);
1296 
1297 	/* Network control/Best effort queue RX/TX */
1298 	if (ravb_queue_interrupt(ndev, q))
1299 		result = IRQ_HANDLED;
1300 
1301 	spin_unlock(&priv->lock);
1302 
1303 out_rpm_put:
1304 	pm_runtime_put_noidle(dev);
1305 	return result;
1306 }
1307 
1308 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1309 {
1310 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1311 }
1312 
1313 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1314 {
1315 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1316 }
1317 
1318 static int ravb_poll(struct napi_struct *napi, int budget)
1319 {
1320 	struct net_device *ndev = napi->dev;
1321 	struct ravb_private *priv = netdev_priv(ndev);
1322 	const struct ravb_hw_info *info = priv->info;
1323 	unsigned long flags;
1324 	int q = napi - priv->napi;
1325 	int mask = BIT(q);
1326 	int quota = budget;
1327 
1328 	/* Processing RX Descriptor Ring */
1329 	/* Clear RX interrupt */
1330 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1331 	if (ravb_rx(ndev, &quota, q))
1332 		goto out;
1333 
1334 	/* Processing TX Descriptor Ring */
1335 	spin_lock_irqsave(&priv->lock, flags);
1336 	/* Clear TX interrupt */
1337 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1338 	ravb_tx_free(ndev, q, true);
1339 	netif_wake_subqueue(ndev, q);
1340 	spin_unlock_irqrestore(&priv->lock, flags);
1341 
1342 	napi_complete(napi);
1343 
1344 	/* Re-enable RX/TX interrupts */
1345 	spin_lock_irqsave(&priv->lock, flags);
1346 	if (!info->irq_en_dis) {
1347 		ravb_modify(ndev, RIC0, mask, mask);
1348 		ravb_modify(ndev, TIC,  mask, mask);
1349 	} else {
1350 		ravb_write(ndev, mask, RIE0);
1351 		ravb_write(ndev, mask, TIE);
1352 	}
1353 	spin_unlock_irqrestore(&priv->lock, flags);
1354 
1355 	/* Receive error message handling */
1356 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1357 	if (info->nc_queues)
1358 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1359 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1360 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1361 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1362 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1363 out:
1364 	return budget - quota;
1365 }
1366 
1367 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1368 {
1369 	struct ravb_private *priv = netdev_priv(ndev);
1370 
1371 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1372 }
1373 
1374 /* PHY state control function */
1375 static void ravb_adjust_link(struct net_device *ndev)
1376 {
1377 	struct ravb_private *priv = netdev_priv(ndev);
1378 	const struct ravb_hw_info *info = priv->info;
1379 	struct phy_device *phydev = ndev->phydev;
1380 	bool new_state = false;
1381 	unsigned long flags;
1382 
1383 	spin_lock_irqsave(&priv->lock, flags);
1384 
1385 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1386 	if (priv->no_avb_link)
1387 		ravb_rcv_snd_disable(ndev);
1388 
1389 	if (phydev->link) {
1390 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1391 			new_state = true;
1392 			priv->duplex = phydev->duplex;
1393 			ravb_set_duplex_gbeth(ndev);
1394 		}
1395 
1396 		if (phydev->speed != priv->speed) {
1397 			new_state = true;
1398 			priv->speed = phydev->speed;
1399 			info->set_rate(ndev);
1400 		}
1401 		if (!priv->link) {
1402 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1403 			new_state = true;
1404 			priv->link = phydev->link;
1405 		}
1406 	} else if (priv->link) {
1407 		new_state = true;
1408 		priv->link = 0;
1409 		priv->speed = 0;
1410 		if (info->half_duplex)
1411 			priv->duplex = -1;
1412 	}
1413 
1414 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1415 	if (priv->no_avb_link && phydev->link)
1416 		ravb_rcv_snd_enable(ndev);
1417 
1418 	spin_unlock_irqrestore(&priv->lock, flags);
1419 
1420 	if (new_state && netif_msg_link(priv))
1421 		phy_print_status(phydev);
1422 }
1423 
1424 /* PHY init function */
1425 static int ravb_phy_init(struct net_device *ndev)
1426 {
1427 	struct device_node *np = ndev->dev.parent->of_node;
1428 	struct ravb_private *priv = netdev_priv(ndev);
1429 	const struct ravb_hw_info *info = priv->info;
1430 	struct phy_device *phydev;
1431 	struct device_node *pn;
1432 	phy_interface_t iface;
1433 	int err;
1434 
1435 	priv->link = 0;
1436 	priv->speed = 0;
1437 	priv->duplex = -1;
1438 
1439 	/* Try connecting to PHY */
1440 	pn = of_parse_phandle(np, "phy-handle", 0);
1441 	if (!pn) {
1442 		/* In the case of a fixed PHY, the DT node associated
1443 		 * to the PHY is the Ethernet MAC DT node.
1444 		 */
1445 		if (of_phy_is_fixed_link(np)) {
1446 			err = of_phy_register_fixed_link(np);
1447 			if (err)
1448 				return err;
1449 		}
1450 		pn = of_node_get(np);
1451 	}
1452 
1453 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1454 				     : priv->phy_interface;
1455 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1456 	of_node_put(pn);
1457 	if (!phydev) {
1458 		netdev_err(ndev, "failed to connect PHY\n");
1459 		err = -ENOENT;
1460 		goto err_deregister_fixed_link;
1461 	}
1462 
1463 	if (!info->half_duplex) {
1464 		/* 10BASE, Pause and Asym Pause is not supported */
1465 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1466 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1467 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1468 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1469 
1470 		/* Half Duplex is not supported */
1471 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1472 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1473 	}
1474 
1475 	phy_attached_info(phydev);
1476 
1477 	return 0;
1478 
1479 err_deregister_fixed_link:
1480 	if (of_phy_is_fixed_link(np))
1481 		of_phy_deregister_fixed_link(np);
1482 
1483 	return err;
1484 }
1485 
1486 /* PHY control start function */
1487 static int ravb_phy_start(struct net_device *ndev)
1488 {
1489 	int error;
1490 
1491 	error = ravb_phy_init(ndev);
1492 	if (error)
1493 		return error;
1494 
1495 	phy_start(ndev->phydev);
1496 
1497 	return 0;
1498 }
1499 
1500 static u32 ravb_get_msglevel(struct net_device *ndev)
1501 {
1502 	struct ravb_private *priv = netdev_priv(ndev);
1503 
1504 	return priv->msg_enable;
1505 }
1506 
1507 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1508 {
1509 	struct ravb_private *priv = netdev_priv(ndev);
1510 
1511 	priv->msg_enable = value;
1512 }
1513 
1514 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1515 	"rx_queue_0_current",
1516 	"tx_queue_0_current",
1517 	"rx_queue_0_dirty",
1518 	"tx_queue_0_dirty",
1519 	"rx_queue_0_packets",
1520 	"tx_queue_0_packets",
1521 	"rx_queue_0_bytes",
1522 	"tx_queue_0_bytes",
1523 	"rx_queue_0_mcast_packets",
1524 	"rx_queue_0_errors",
1525 	"rx_queue_0_crc_errors",
1526 	"rx_queue_0_frame_errors",
1527 	"rx_queue_0_length_errors",
1528 	"rx_queue_0_csum_offload_errors",
1529 	"rx_queue_0_over_errors",
1530 };
1531 
1532 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1533 	"rx_queue_0_current",
1534 	"tx_queue_0_current",
1535 	"rx_queue_0_dirty",
1536 	"tx_queue_0_dirty",
1537 	"rx_queue_0_packets",
1538 	"tx_queue_0_packets",
1539 	"rx_queue_0_bytes",
1540 	"tx_queue_0_bytes",
1541 	"rx_queue_0_mcast_packets",
1542 	"rx_queue_0_errors",
1543 	"rx_queue_0_crc_errors",
1544 	"rx_queue_0_frame_errors",
1545 	"rx_queue_0_length_errors",
1546 	"rx_queue_0_missed_errors",
1547 	"rx_queue_0_over_errors",
1548 
1549 	"rx_queue_1_current",
1550 	"tx_queue_1_current",
1551 	"rx_queue_1_dirty",
1552 	"tx_queue_1_dirty",
1553 	"rx_queue_1_packets",
1554 	"tx_queue_1_packets",
1555 	"rx_queue_1_bytes",
1556 	"tx_queue_1_bytes",
1557 	"rx_queue_1_mcast_packets",
1558 	"rx_queue_1_errors",
1559 	"rx_queue_1_crc_errors",
1560 	"rx_queue_1_frame_errors",
1561 	"rx_queue_1_length_errors",
1562 	"rx_queue_1_missed_errors",
1563 	"rx_queue_1_over_errors",
1564 };
1565 
1566 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1567 {
1568 	struct ravb_private *priv = netdev_priv(netdev);
1569 	const struct ravb_hw_info *info = priv->info;
1570 
1571 	switch (sset) {
1572 	case ETH_SS_STATS:
1573 		return info->stats_len;
1574 	default:
1575 		return -EOPNOTSUPP;
1576 	}
1577 }
1578 
1579 static void ravb_get_ethtool_stats(struct net_device *ndev,
1580 				   struct ethtool_stats *estats, u64 *data)
1581 {
1582 	struct ravb_private *priv = netdev_priv(ndev);
1583 	const struct ravb_hw_info *info = priv->info;
1584 	int num_rx_q;
1585 	int i = 0;
1586 	int q;
1587 
1588 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1589 	/* Device-specific stats */
1590 	for (q = RAVB_BE; q < num_rx_q; q++) {
1591 		struct net_device_stats *stats = &priv->stats[q];
1592 
1593 		data[i++] = priv->cur_rx[q];
1594 		data[i++] = priv->cur_tx[q];
1595 		data[i++] = priv->dirty_rx[q];
1596 		data[i++] = priv->dirty_tx[q];
1597 		data[i++] = stats->rx_packets;
1598 		data[i++] = stats->tx_packets;
1599 		data[i++] = stats->rx_bytes;
1600 		data[i++] = stats->tx_bytes;
1601 		data[i++] = stats->multicast;
1602 		data[i++] = stats->rx_errors;
1603 		data[i++] = stats->rx_crc_errors;
1604 		data[i++] = stats->rx_frame_errors;
1605 		data[i++] = stats->rx_length_errors;
1606 		data[i++] = stats->rx_missed_errors;
1607 		data[i++] = stats->rx_over_errors;
1608 	}
1609 }
1610 
1611 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1612 {
1613 	struct ravb_private *priv = netdev_priv(ndev);
1614 	const struct ravb_hw_info *info = priv->info;
1615 
1616 	switch (stringset) {
1617 	case ETH_SS_STATS:
1618 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1619 		break;
1620 	}
1621 }
1622 
1623 static void ravb_get_ringparam(struct net_device *ndev,
1624 			       struct ethtool_ringparam *ring,
1625 			       struct kernel_ethtool_ringparam *kernel_ring,
1626 			       struct netlink_ext_ack *extack)
1627 {
1628 	struct ravb_private *priv = netdev_priv(ndev);
1629 
1630 	ring->rx_max_pending = BE_RX_RING_MAX;
1631 	ring->tx_max_pending = BE_TX_RING_MAX;
1632 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1633 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1634 }
1635 
1636 static int ravb_set_ringparam(struct net_device *ndev,
1637 			      struct ethtool_ringparam *ring,
1638 			      struct kernel_ethtool_ringparam *kernel_ring,
1639 			      struct netlink_ext_ack *extack)
1640 {
1641 	struct ravb_private *priv = netdev_priv(ndev);
1642 	const struct ravb_hw_info *info = priv->info;
1643 	int error;
1644 
1645 	if (ring->tx_pending > BE_TX_RING_MAX ||
1646 	    ring->rx_pending > BE_RX_RING_MAX ||
1647 	    ring->tx_pending < BE_TX_RING_MIN ||
1648 	    ring->rx_pending < BE_RX_RING_MIN)
1649 		return -EINVAL;
1650 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1651 		return -EINVAL;
1652 
1653 	if (netif_running(ndev)) {
1654 		netif_device_detach(ndev);
1655 		/* Stop PTP Clock driver */
1656 		if (info->gptp)
1657 			ravb_ptp_stop(ndev);
1658 		/* Wait for DMA stopping */
1659 		error = ravb_stop_dma(ndev);
1660 		if (error) {
1661 			netdev_err(ndev,
1662 				   "cannot set ringparam! Any AVB processes are still running?\n");
1663 			return error;
1664 		}
1665 		synchronize_irq(ndev->irq);
1666 
1667 		/* Free all the skb's in the RX queue and the DMA buffers. */
1668 		ravb_ring_free(ndev, RAVB_BE);
1669 		if (info->nc_queues)
1670 			ravb_ring_free(ndev, RAVB_NC);
1671 	}
1672 
1673 	/* Set new parameters */
1674 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1675 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1676 
1677 	if (netif_running(ndev)) {
1678 		error = ravb_dmac_init(ndev);
1679 		if (error) {
1680 			netdev_err(ndev,
1681 				   "%s: ravb_dmac_init() failed, error %d\n",
1682 				   __func__, error);
1683 			return error;
1684 		}
1685 
1686 		ravb_emac_init(ndev);
1687 
1688 		/* Initialise PTP Clock driver */
1689 		if (info->gptp)
1690 			ravb_ptp_init(ndev, priv->pdev);
1691 
1692 		netif_device_attach(ndev);
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 static int ravb_get_ts_info(struct net_device *ndev,
1699 			    struct ethtool_ts_info *info)
1700 {
1701 	struct ravb_private *priv = netdev_priv(ndev);
1702 	const struct ravb_hw_info *hw_info = priv->info;
1703 
1704 	info->so_timestamping =
1705 		SOF_TIMESTAMPING_TX_SOFTWARE |
1706 		SOF_TIMESTAMPING_RX_SOFTWARE |
1707 		SOF_TIMESTAMPING_SOFTWARE |
1708 		SOF_TIMESTAMPING_TX_HARDWARE |
1709 		SOF_TIMESTAMPING_RX_HARDWARE |
1710 		SOF_TIMESTAMPING_RAW_HARDWARE;
1711 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1712 	info->rx_filters =
1713 		(1 << HWTSTAMP_FILTER_NONE) |
1714 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1715 		(1 << HWTSTAMP_FILTER_ALL);
1716 	if (hw_info->gptp || hw_info->ccc_gac)
1717 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1718 
1719 	return 0;
1720 }
1721 
1722 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1723 {
1724 	struct ravb_private *priv = netdev_priv(ndev);
1725 
1726 	wol->supported = WAKE_MAGIC;
1727 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1728 }
1729 
1730 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1731 {
1732 	struct ravb_private *priv = netdev_priv(ndev);
1733 	const struct ravb_hw_info *info = priv->info;
1734 
1735 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1736 		return -EOPNOTSUPP;
1737 
1738 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1739 
1740 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1741 
1742 	return 0;
1743 }
1744 
1745 static const struct ethtool_ops ravb_ethtool_ops = {
1746 	.nway_reset		= phy_ethtool_nway_reset,
1747 	.get_msglevel		= ravb_get_msglevel,
1748 	.set_msglevel		= ravb_set_msglevel,
1749 	.get_link		= ethtool_op_get_link,
1750 	.get_strings		= ravb_get_strings,
1751 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1752 	.get_sset_count		= ravb_get_sset_count,
1753 	.get_ringparam		= ravb_get_ringparam,
1754 	.set_ringparam		= ravb_set_ringparam,
1755 	.get_ts_info		= ravb_get_ts_info,
1756 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1757 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1758 	.get_wol		= ravb_get_wol,
1759 	.set_wol		= ravb_set_wol,
1760 };
1761 
1762 static int ravb_set_config_mode(struct net_device *ndev)
1763 {
1764 	struct ravb_private *priv = netdev_priv(ndev);
1765 	const struct ravb_hw_info *info = priv->info;
1766 	int error;
1767 
1768 	if (info->gptp) {
1769 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1770 		if (error)
1771 			return error;
1772 		/* Set CSEL value */
1773 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1774 	} else if (info->ccc_gac) {
1775 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1776 	} else {
1777 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1778 	}
1779 
1780 	return error;
1781 }
1782 
1783 static void ravb_set_gti(struct net_device *ndev)
1784 {
1785 	struct ravb_private *priv = netdev_priv(ndev);
1786 	const struct ravb_hw_info *info = priv->info;
1787 
1788 	if (!(info->gptp || info->ccc_gac))
1789 		return;
1790 
1791 	ravb_write(ndev, priv->gti_tiv, GTI);
1792 
1793 	/* Request GTI loading */
1794 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1795 }
1796 
1797 static int ravb_compute_gti(struct net_device *ndev)
1798 {
1799 	struct ravb_private *priv = netdev_priv(ndev);
1800 	const struct ravb_hw_info *info = priv->info;
1801 	struct device *dev = ndev->dev.parent;
1802 	unsigned long rate;
1803 	u64 inc;
1804 
1805 	if (!(info->gptp || info->ccc_gac))
1806 		return 0;
1807 
1808 	if (info->gptp_ref_clk)
1809 		rate = clk_get_rate(priv->gptp_clk);
1810 	else
1811 		rate = clk_get_rate(priv->clk);
1812 	if (!rate)
1813 		return -EINVAL;
1814 
1815 	inc = div64_ul(1000000000ULL << 20, rate);
1816 
1817 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1818 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1819 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1820 		return -EINVAL;
1821 	}
1822 	priv->gti_tiv = inc;
1823 
1824 	return 0;
1825 }
1826 
1827 /* Set tx and rx clock internal delay modes */
1828 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1829 {
1830 	struct ravb_private *priv = netdev_priv(ndev);
1831 	bool explicit_delay = false;
1832 	u32 delay;
1833 
1834 	if (!priv->info->internal_delay)
1835 		return;
1836 
1837 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1838 		/* Valid values are 0 and 1800, according to DT bindings */
1839 		priv->rxcidm = !!delay;
1840 		explicit_delay = true;
1841 	}
1842 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1843 		/* Valid values are 0 and 2000, according to DT bindings */
1844 		priv->txcidm = !!delay;
1845 		explicit_delay = true;
1846 	}
1847 
1848 	if (explicit_delay)
1849 		return;
1850 
1851 	/* Fall back to legacy rgmii-*id behavior */
1852 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1853 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1854 		priv->rxcidm = 1;
1855 		priv->rgmii_override = 1;
1856 	}
1857 
1858 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1859 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1860 		priv->txcidm = 1;
1861 		priv->rgmii_override = 1;
1862 	}
1863 }
1864 
1865 static void ravb_set_delay_mode(struct net_device *ndev)
1866 {
1867 	struct ravb_private *priv = netdev_priv(ndev);
1868 	u32 set = 0;
1869 
1870 	if (!priv->info->internal_delay)
1871 		return;
1872 
1873 	if (priv->rxcidm)
1874 		set |= APSR_RDM;
1875 	if (priv->txcidm)
1876 		set |= APSR_TDM;
1877 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1878 }
1879 
1880 /* Network device open function for Ethernet AVB */
1881 static int ravb_open(struct net_device *ndev)
1882 {
1883 	struct ravb_private *priv = netdev_priv(ndev);
1884 	const struct ravb_hw_info *info = priv->info;
1885 	struct device *dev = &priv->pdev->dev;
1886 	int error;
1887 
1888 	napi_enable(&priv->napi[RAVB_BE]);
1889 	if (info->nc_queues)
1890 		napi_enable(&priv->napi[RAVB_NC]);
1891 
1892 	error = pm_runtime_resume_and_get(dev);
1893 	if (error < 0)
1894 		goto out_napi_off;
1895 
1896 	/* Set AVB config mode */
1897 	error = ravb_set_config_mode(ndev);
1898 	if (error)
1899 		goto out_rpm_put;
1900 
1901 	ravb_set_delay_mode(ndev);
1902 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1903 
1904 	/* Device init */
1905 	error = ravb_dmac_init(ndev);
1906 	if (error)
1907 		goto out_set_reset;
1908 
1909 	ravb_emac_init(ndev);
1910 
1911 	ravb_set_gti(ndev);
1912 
1913 	/* Initialise PTP Clock driver */
1914 	if (info->gptp || info->ccc_gac)
1915 		ravb_ptp_init(ndev, priv->pdev);
1916 
1917 	/* PHY control start */
1918 	error = ravb_phy_start(ndev);
1919 	if (error)
1920 		goto out_ptp_stop;
1921 
1922 	netif_tx_start_all_queues(ndev);
1923 
1924 	return 0;
1925 
1926 out_ptp_stop:
1927 	/* Stop PTP Clock driver */
1928 	if (info->gptp || info->ccc_gac)
1929 		ravb_ptp_stop(ndev);
1930 	ravb_stop_dma(ndev);
1931 out_set_reset:
1932 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1933 out_rpm_put:
1934 	pm_runtime_mark_last_busy(dev);
1935 	pm_runtime_put_autosuspend(dev);
1936 out_napi_off:
1937 	if (info->nc_queues)
1938 		napi_disable(&priv->napi[RAVB_NC]);
1939 	napi_disable(&priv->napi[RAVB_BE]);
1940 	return error;
1941 }
1942 
1943 /* Timeout function for Ethernet AVB */
1944 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1945 {
1946 	struct ravb_private *priv = netdev_priv(ndev);
1947 
1948 	netif_err(priv, tx_err, ndev,
1949 		  "transmit timed out, status %08x, resetting...\n",
1950 		  ravb_read(ndev, ISS));
1951 
1952 	/* tx_errors count up */
1953 	ndev->stats.tx_errors++;
1954 
1955 	schedule_work(&priv->work);
1956 }
1957 
1958 static void ravb_tx_timeout_work(struct work_struct *work)
1959 {
1960 	struct ravb_private *priv = container_of(work, struct ravb_private,
1961 						 work);
1962 	const struct ravb_hw_info *info = priv->info;
1963 	struct net_device *ndev = priv->ndev;
1964 	int error;
1965 
1966 	if (!rtnl_trylock()) {
1967 		usleep_range(1000, 2000);
1968 		schedule_work(&priv->work);
1969 		return;
1970 	}
1971 
1972 	netif_tx_stop_all_queues(ndev);
1973 
1974 	/* Stop PTP Clock driver */
1975 	if (info->gptp)
1976 		ravb_ptp_stop(ndev);
1977 
1978 	/* Wait for DMA stopping */
1979 	if (ravb_stop_dma(ndev)) {
1980 		/* If ravb_stop_dma() fails, the hardware is still operating
1981 		 * for TX and/or RX. So, this should not call the following
1982 		 * functions because ravb_dmac_init() is possible to fail too.
1983 		 * Also, this should not retry ravb_stop_dma() again and again
1984 		 * here because it's possible to wait forever. So, this just
1985 		 * re-enables the TX and RX and skip the following
1986 		 * re-initialization procedure.
1987 		 */
1988 		ravb_rcv_snd_enable(ndev);
1989 		goto out;
1990 	}
1991 
1992 	ravb_ring_free(ndev, RAVB_BE);
1993 	if (info->nc_queues)
1994 		ravb_ring_free(ndev, RAVB_NC);
1995 
1996 	/* Device init */
1997 	error = ravb_dmac_init(ndev);
1998 	if (error) {
1999 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2000 		 * should return here to avoid re-enabling the TX and RX in
2001 		 * ravb_emac_init().
2002 		 */
2003 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2004 			   __func__, error);
2005 		goto out_unlock;
2006 	}
2007 	ravb_emac_init(ndev);
2008 
2009 out:
2010 	/* Initialise PTP Clock driver */
2011 	if (info->gptp)
2012 		ravb_ptp_init(ndev, priv->pdev);
2013 
2014 	netif_tx_start_all_queues(ndev);
2015 
2016 out_unlock:
2017 	rtnl_unlock();
2018 }
2019 
2020 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2021 {
2022 	struct iphdr *ip = ip_hdr(skb);
2023 
2024 	/* TODO: Need to add support for VLAN tag 802.1Q */
2025 	if (skb_vlan_tag_present(skb))
2026 		return false;
2027 
2028 	/* TODO: Need to add hardware checksum for IPv6 */
2029 	if (skb->protocol != htons(ETH_P_IP))
2030 		return false;
2031 
2032 	switch (ip->protocol) {
2033 	case IPPROTO_TCP:
2034 		break;
2035 	case IPPROTO_UDP:
2036 		/* If the checksum value in the UDP header field is 0, TOE does
2037 		 * not calculate checksum for UDP part of this frame as it is
2038 		 * optional function as per standards.
2039 		 */
2040 		if (udp_hdr(skb)->check == 0)
2041 			return false;
2042 		break;
2043 	default:
2044 		return false;
2045 	}
2046 
2047 	return true;
2048 }
2049 
2050 /* Packet transmit function for Ethernet AVB */
2051 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2052 {
2053 	struct ravb_private *priv = netdev_priv(ndev);
2054 	const struct ravb_hw_info *info = priv->info;
2055 	unsigned int num_tx_desc = priv->num_tx_desc;
2056 	u16 q = skb_get_queue_mapping(skb);
2057 	struct ravb_tstamp_skb *ts_skb;
2058 	struct ravb_tx_desc *desc;
2059 	unsigned long flags;
2060 	dma_addr_t dma_addr;
2061 	void *buffer;
2062 	u32 entry;
2063 	u32 len;
2064 
2065 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2066 		skb_checksum_help(skb);
2067 
2068 	spin_lock_irqsave(&priv->lock, flags);
2069 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2070 	    num_tx_desc) {
2071 		netif_err(priv, tx_queued, ndev,
2072 			  "still transmitting with the full ring!\n");
2073 		netif_stop_subqueue(ndev, q);
2074 		spin_unlock_irqrestore(&priv->lock, flags);
2075 		return NETDEV_TX_BUSY;
2076 	}
2077 
2078 	if (skb_put_padto(skb, ETH_ZLEN))
2079 		goto exit;
2080 
2081 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2082 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2083 
2084 	if (num_tx_desc > 1) {
2085 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2086 			 entry / num_tx_desc * DPTR_ALIGN;
2087 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2088 
2089 		/* Zero length DMA descriptors are problematic as they seem
2090 		 * to terminate DMA transfers. Avoid them by simply using a
2091 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2092 		 * DPTR_ALIGN.
2093 		 *
2094 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2095 		 * bytes of data by the call to skb_put_padto() above this
2096 		 * is safe with respect to both the length of the first DMA
2097 		 * descriptor (len) overflowing the available data and the
2098 		 * length of the second DMA descriptor (skb->len - len)
2099 		 * being negative.
2100 		 */
2101 		if (len == 0)
2102 			len = DPTR_ALIGN;
2103 
2104 		memcpy(buffer, skb->data, len);
2105 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2106 					  DMA_TO_DEVICE);
2107 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2108 			goto drop;
2109 
2110 		desc = &priv->tx_ring[q][entry];
2111 		desc->ds_tagl = cpu_to_le16(len);
2112 		desc->dptr = cpu_to_le32(dma_addr);
2113 
2114 		buffer = skb->data + len;
2115 		len = skb->len - len;
2116 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2117 					  DMA_TO_DEVICE);
2118 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2119 			goto unmap;
2120 
2121 		desc++;
2122 	} else {
2123 		desc = &priv->tx_ring[q][entry];
2124 		len = skb->len;
2125 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2126 					  DMA_TO_DEVICE);
2127 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2128 			goto drop;
2129 	}
2130 	desc->ds_tagl = cpu_to_le16(len);
2131 	desc->dptr = cpu_to_le32(dma_addr);
2132 
2133 	/* TX timestamp required */
2134 	if (info->gptp || info->ccc_gac) {
2135 		if (q == RAVB_NC) {
2136 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2137 			if (!ts_skb) {
2138 				if (num_tx_desc > 1) {
2139 					desc--;
2140 					dma_unmap_single(ndev->dev.parent, dma_addr,
2141 							 len, DMA_TO_DEVICE);
2142 				}
2143 				goto unmap;
2144 			}
2145 			ts_skb->skb = skb_get(skb);
2146 			ts_skb->tag = priv->ts_skb_tag++;
2147 			priv->ts_skb_tag &= 0x3ff;
2148 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2149 
2150 			/* TAG and timestamp required flag */
2151 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2152 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2153 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2154 		}
2155 
2156 		skb_tx_timestamp(skb);
2157 	}
2158 	/* Descriptor type must be set after all the above writes */
2159 	dma_wmb();
2160 	if (num_tx_desc > 1) {
2161 		desc->die_dt = DT_FEND;
2162 		desc--;
2163 		desc->die_dt = DT_FSTART;
2164 	} else {
2165 		desc->die_dt = DT_FSINGLE;
2166 	}
2167 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2168 
2169 	priv->cur_tx[q] += num_tx_desc;
2170 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2171 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2172 	    !ravb_tx_free(ndev, q, true))
2173 		netif_stop_subqueue(ndev, q);
2174 
2175 exit:
2176 	spin_unlock_irqrestore(&priv->lock, flags);
2177 	return NETDEV_TX_OK;
2178 
2179 unmap:
2180 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2181 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2182 drop:
2183 	dev_kfree_skb_any(skb);
2184 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2185 	goto exit;
2186 }
2187 
2188 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2189 			     struct net_device *sb_dev)
2190 {
2191 	/* If skb needs TX timestamp, it is handled in network control queue */
2192 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2193 							       RAVB_BE;
2194 
2195 }
2196 
2197 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2198 {
2199 	struct ravb_private *priv = netdev_priv(ndev);
2200 	const struct ravb_hw_info *info = priv->info;
2201 	struct net_device_stats *nstats, *stats0, *stats1;
2202 	struct device *dev = &priv->pdev->dev;
2203 
2204 	nstats = &ndev->stats;
2205 
2206 	pm_runtime_get_noresume(dev);
2207 
2208 	if (!pm_runtime_active(dev))
2209 		goto out_rpm_put;
2210 
2211 	stats0 = &priv->stats[RAVB_BE];
2212 
2213 	if (info->tx_counters) {
2214 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2215 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2216 	}
2217 
2218 	if (info->carrier_counters) {
2219 		nstats->collisions += ravb_read(ndev, CXR41);
2220 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2221 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2222 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2223 	}
2224 
2225 	nstats->rx_packets = stats0->rx_packets;
2226 	nstats->tx_packets = stats0->tx_packets;
2227 	nstats->rx_bytes = stats0->rx_bytes;
2228 	nstats->tx_bytes = stats0->tx_bytes;
2229 	nstats->multicast = stats0->multicast;
2230 	nstats->rx_errors = stats0->rx_errors;
2231 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2232 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2233 	nstats->rx_length_errors = stats0->rx_length_errors;
2234 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2235 	nstats->rx_over_errors = stats0->rx_over_errors;
2236 	if (info->nc_queues) {
2237 		stats1 = &priv->stats[RAVB_NC];
2238 
2239 		nstats->rx_packets += stats1->rx_packets;
2240 		nstats->tx_packets += stats1->tx_packets;
2241 		nstats->rx_bytes += stats1->rx_bytes;
2242 		nstats->tx_bytes += stats1->tx_bytes;
2243 		nstats->multicast += stats1->multicast;
2244 		nstats->rx_errors += stats1->rx_errors;
2245 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2246 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2247 		nstats->rx_length_errors += stats1->rx_length_errors;
2248 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2249 		nstats->rx_over_errors += stats1->rx_over_errors;
2250 	}
2251 
2252 out_rpm_put:
2253 	pm_runtime_put_noidle(dev);
2254 	return nstats;
2255 }
2256 
2257 /* Update promiscuous bit */
2258 static void ravb_set_rx_mode(struct net_device *ndev)
2259 {
2260 	struct ravb_private *priv = netdev_priv(ndev);
2261 	unsigned long flags;
2262 
2263 	spin_lock_irqsave(&priv->lock, flags);
2264 	ravb_modify(ndev, ECMR, ECMR_PRM,
2265 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2266 	spin_unlock_irqrestore(&priv->lock, flags);
2267 }
2268 
2269 /* Device close function for Ethernet AVB */
2270 static int ravb_close(struct net_device *ndev)
2271 {
2272 	struct device_node *np = ndev->dev.parent->of_node;
2273 	struct ravb_private *priv = netdev_priv(ndev);
2274 	const struct ravb_hw_info *info = priv->info;
2275 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2276 	struct device *dev = &priv->pdev->dev;
2277 	int error;
2278 
2279 	netif_tx_stop_all_queues(ndev);
2280 
2281 	/* Disable interrupts by clearing the interrupt masks. */
2282 	ravb_write(ndev, 0, RIC0);
2283 	ravb_write(ndev, 0, RIC2);
2284 	ravb_write(ndev, 0, TIC);
2285 
2286 	/* PHY disconnect */
2287 	if (ndev->phydev) {
2288 		phy_stop(ndev->phydev);
2289 		phy_disconnect(ndev->phydev);
2290 		if (of_phy_is_fixed_link(np))
2291 			of_phy_deregister_fixed_link(np);
2292 	}
2293 
2294 	/* Stop PTP Clock driver */
2295 	if (info->gptp || info->ccc_gac)
2296 		ravb_ptp_stop(ndev);
2297 
2298 	/* Set the config mode to stop the AVB-DMAC's processes */
2299 	if (ravb_stop_dma(ndev) < 0)
2300 		netdev_err(ndev,
2301 			   "device will be stopped after h/w processes are done.\n");
2302 
2303 	/* Clear the timestamp list */
2304 	if (info->gptp || info->ccc_gac) {
2305 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2306 			list_del(&ts_skb->list);
2307 			kfree_skb(ts_skb->skb);
2308 			kfree(ts_skb);
2309 		}
2310 	}
2311 
2312 	cancel_work_sync(&priv->work);
2313 
2314 	if (info->nc_queues)
2315 		napi_disable(&priv->napi[RAVB_NC]);
2316 	napi_disable(&priv->napi[RAVB_BE]);
2317 
2318 	/* Free all the skb's in the RX queue and the DMA buffers. */
2319 	ravb_ring_free(ndev, RAVB_BE);
2320 	if (info->nc_queues)
2321 		ravb_ring_free(ndev, RAVB_NC);
2322 
2323 	/* Update statistics. */
2324 	ravb_get_stats(ndev);
2325 
2326 	/* Set reset mode. */
2327 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2328 	if (error)
2329 		return error;
2330 
2331 	pm_runtime_mark_last_busy(dev);
2332 	pm_runtime_put_autosuspend(dev);
2333 
2334 	return 0;
2335 }
2336 
2337 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2338 {
2339 	struct ravb_private *priv = netdev_priv(ndev);
2340 	struct hwtstamp_config config;
2341 
2342 	config.flags = 0;
2343 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2344 						HWTSTAMP_TX_OFF;
2345 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2346 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2347 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2348 		break;
2349 	case RAVB_RXTSTAMP_TYPE_ALL:
2350 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2351 		break;
2352 	default:
2353 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2354 	}
2355 
2356 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2357 		-EFAULT : 0;
2358 }
2359 
2360 /* Control hardware time stamping */
2361 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2362 {
2363 	struct ravb_private *priv = netdev_priv(ndev);
2364 	struct hwtstamp_config config;
2365 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2366 	u32 tstamp_tx_ctrl;
2367 
2368 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2369 		return -EFAULT;
2370 
2371 	switch (config.tx_type) {
2372 	case HWTSTAMP_TX_OFF:
2373 		tstamp_tx_ctrl = 0;
2374 		break;
2375 	case HWTSTAMP_TX_ON:
2376 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2377 		break;
2378 	default:
2379 		return -ERANGE;
2380 	}
2381 
2382 	switch (config.rx_filter) {
2383 	case HWTSTAMP_FILTER_NONE:
2384 		tstamp_rx_ctrl = 0;
2385 		break;
2386 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2387 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2388 		break;
2389 	default:
2390 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2391 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2392 	}
2393 
2394 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2395 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2396 
2397 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2398 		-EFAULT : 0;
2399 }
2400 
2401 /* ioctl to device function */
2402 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2403 {
2404 	struct phy_device *phydev = ndev->phydev;
2405 
2406 	if (!netif_running(ndev))
2407 		return -EINVAL;
2408 
2409 	if (!phydev)
2410 		return -ENODEV;
2411 
2412 	switch (cmd) {
2413 	case SIOCGHWTSTAMP:
2414 		return ravb_hwtstamp_get(ndev, req);
2415 	case SIOCSHWTSTAMP:
2416 		return ravb_hwtstamp_set(ndev, req);
2417 	}
2418 
2419 	return phy_mii_ioctl(phydev, req, cmd);
2420 }
2421 
2422 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2423 {
2424 	struct ravb_private *priv = netdev_priv(ndev);
2425 
2426 	ndev->mtu = new_mtu;
2427 
2428 	if (netif_running(ndev)) {
2429 		synchronize_irq(priv->emac_irq);
2430 		ravb_emac_init(ndev);
2431 	}
2432 
2433 	netdev_update_features(ndev);
2434 
2435 	return 0;
2436 }
2437 
2438 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2439 {
2440 	struct ravb_private *priv = netdev_priv(ndev);
2441 	unsigned long flags;
2442 
2443 	spin_lock_irqsave(&priv->lock, flags);
2444 
2445 	/* Disable TX and RX */
2446 	ravb_rcv_snd_disable(ndev);
2447 
2448 	/* Modify RX Checksum setting */
2449 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2450 
2451 	/* Enable TX and RX */
2452 	ravb_rcv_snd_enable(ndev);
2453 
2454 	spin_unlock_irqrestore(&priv->lock, flags);
2455 }
2456 
2457 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2458 				     u32 val, u32 mask)
2459 {
2460 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2461 	int ret;
2462 
2463 	ravb_write(ndev, csr0 & ~mask, CSR0);
2464 	ret = ravb_wait(ndev, CSR0, mask, 0);
2465 	if (!ret)
2466 		ravb_write(ndev, val, reg);
2467 
2468 	ravb_write(ndev, csr0, CSR0);
2469 
2470 	return ret;
2471 }
2472 
2473 static int ravb_set_features_gbeth(struct net_device *ndev,
2474 				   netdev_features_t features)
2475 {
2476 	netdev_features_t changed = ndev->features ^ features;
2477 	struct ravb_private *priv = netdev_priv(ndev);
2478 	unsigned long flags;
2479 	int ret = 0;
2480 	u32 val;
2481 
2482 	spin_lock_irqsave(&priv->lock, flags);
2483 	if (changed & NETIF_F_RXCSUM) {
2484 		if (features & NETIF_F_RXCSUM)
2485 			val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2486 		else
2487 			val = 0;
2488 
2489 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2490 		if (ret)
2491 			goto done;
2492 	}
2493 
2494 	if (changed & NETIF_F_HW_CSUM) {
2495 		if (features & NETIF_F_HW_CSUM)
2496 			val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2497 		else
2498 			val = 0;
2499 
2500 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2501 		if (ret)
2502 			goto done;
2503 	}
2504 
2505 done:
2506 	spin_unlock_irqrestore(&priv->lock, flags);
2507 
2508 	return ret;
2509 }
2510 
2511 static int ravb_set_features_rcar(struct net_device *ndev,
2512 				  netdev_features_t features)
2513 {
2514 	netdev_features_t changed = ndev->features ^ features;
2515 
2516 	if (changed & NETIF_F_RXCSUM)
2517 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2518 
2519 	return 0;
2520 }
2521 
2522 static int ravb_set_features(struct net_device *ndev,
2523 			     netdev_features_t features)
2524 {
2525 	struct ravb_private *priv = netdev_priv(ndev);
2526 	const struct ravb_hw_info *info = priv->info;
2527 	struct device *dev = &priv->pdev->dev;
2528 	int ret;
2529 
2530 	pm_runtime_get_noresume(dev);
2531 
2532 	if (pm_runtime_active(dev))
2533 		ret = info->set_feature(ndev, features);
2534 	else
2535 		ret = 0;
2536 
2537 	pm_runtime_put_noidle(dev);
2538 
2539 	if (ret)
2540 		return ret;
2541 
2542 	ndev->features = features;
2543 
2544 	return 0;
2545 }
2546 
2547 static const struct net_device_ops ravb_netdev_ops = {
2548 	.ndo_open		= ravb_open,
2549 	.ndo_stop		= ravb_close,
2550 	.ndo_start_xmit		= ravb_start_xmit,
2551 	.ndo_select_queue	= ravb_select_queue,
2552 	.ndo_get_stats		= ravb_get_stats,
2553 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2554 	.ndo_tx_timeout		= ravb_tx_timeout,
2555 	.ndo_eth_ioctl		= ravb_do_ioctl,
2556 	.ndo_change_mtu		= ravb_change_mtu,
2557 	.ndo_validate_addr	= eth_validate_addr,
2558 	.ndo_set_mac_address	= eth_mac_addr,
2559 	.ndo_set_features	= ravb_set_features,
2560 };
2561 
2562 /* MDIO bus init function */
2563 static int ravb_mdio_init(struct ravb_private *priv)
2564 {
2565 	struct platform_device *pdev = priv->pdev;
2566 	struct device *dev = &pdev->dev;
2567 	struct phy_device *phydev;
2568 	struct device_node *pn;
2569 	int error;
2570 
2571 	/* Bitbang init */
2572 	priv->mdiobb.ops = &bb_ops;
2573 
2574 	/* MII controller setting */
2575 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2576 	if (!priv->mii_bus)
2577 		return -ENOMEM;
2578 
2579 	/* Hook up MII support for ethtool */
2580 	priv->mii_bus->name = "ravb_mii";
2581 	priv->mii_bus->parent = dev;
2582 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2583 		 pdev->name, pdev->id);
2584 
2585 	/* Register MDIO bus */
2586 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2587 	if (error)
2588 		goto out_free_bus;
2589 
2590 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2591 	phydev = of_phy_find_device(pn);
2592 	if (phydev) {
2593 		phydev->mac_managed_pm = true;
2594 		put_device(&phydev->mdio.dev);
2595 	}
2596 	of_node_put(pn);
2597 
2598 	return 0;
2599 
2600 out_free_bus:
2601 	free_mdio_bitbang(priv->mii_bus);
2602 	return error;
2603 }
2604 
2605 /* MDIO bus release function */
2606 static int ravb_mdio_release(struct ravb_private *priv)
2607 {
2608 	/* Unregister mdio bus */
2609 	mdiobus_unregister(priv->mii_bus);
2610 
2611 	/* Free bitbang info */
2612 	free_mdio_bitbang(priv->mii_bus);
2613 
2614 	return 0;
2615 }
2616 
2617 static const struct ravb_hw_info ravb_gen3_hw_info = {
2618 	.receive = ravb_rx_rcar,
2619 	.set_rate = ravb_set_rate_rcar,
2620 	.set_feature = ravb_set_features_rcar,
2621 	.dmac_init = ravb_dmac_init_rcar,
2622 	.emac_init = ravb_emac_init_rcar,
2623 	.gstrings_stats = ravb_gstrings_stats,
2624 	.gstrings_size = sizeof(ravb_gstrings_stats),
2625 	.net_hw_features = NETIF_F_RXCSUM,
2626 	.net_features = NETIF_F_RXCSUM,
2627 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2628 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2629 	.rx_max_frame_size = SZ_2K,
2630 	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2631 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2632 	.internal_delay = 1,
2633 	.tx_counters = 1,
2634 	.multi_irqs = 1,
2635 	.irq_en_dis = 1,
2636 	.ccc_gac = 1,
2637 	.nc_queues = 1,
2638 	.magic_pkt = 1,
2639 };
2640 
2641 static const struct ravb_hw_info ravb_gen2_hw_info = {
2642 	.receive = ravb_rx_rcar,
2643 	.set_rate = ravb_set_rate_rcar,
2644 	.set_feature = ravb_set_features_rcar,
2645 	.dmac_init = ravb_dmac_init_rcar,
2646 	.emac_init = ravb_emac_init_rcar,
2647 	.gstrings_stats = ravb_gstrings_stats,
2648 	.gstrings_size = sizeof(ravb_gstrings_stats),
2649 	.net_hw_features = NETIF_F_RXCSUM,
2650 	.net_features = NETIF_F_RXCSUM,
2651 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2652 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2653 	.rx_max_frame_size = SZ_2K,
2654 	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2655 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2656 	.aligned_tx = 1,
2657 	.gptp = 1,
2658 	.nc_queues = 1,
2659 	.magic_pkt = 1,
2660 };
2661 
2662 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2663 	.receive = ravb_rx_rcar,
2664 	.set_rate = ravb_set_rate_rcar,
2665 	.set_feature = ravb_set_features_rcar,
2666 	.dmac_init = ravb_dmac_init_rcar,
2667 	.emac_init = ravb_emac_init_rcar,
2668 	.gstrings_stats = ravb_gstrings_stats,
2669 	.gstrings_size = sizeof(ravb_gstrings_stats),
2670 	.net_hw_features = NETIF_F_RXCSUM,
2671 	.net_features = NETIF_F_RXCSUM,
2672 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2673 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2674 	.rx_max_frame_size = SZ_2K,
2675 	.rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2676 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2677 	.multi_irqs = 1,
2678 	.err_mgmt_irqs = 1,
2679 	.gptp = 1,
2680 	.gptp_ref_clk = 1,
2681 	.nc_queues = 1,
2682 	.magic_pkt = 1,
2683 };
2684 
2685 static const struct ravb_hw_info gbeth_hw_info = {
2686 	.receive = ravb_rx_gbeth,
2687 	.set_rate = ravb_set_rate_gbeth,
2688 	.set_feature = ravb_set_features_gbeth,
2689 	.dmac_init = ravb_dmac_init_gbeth,
2690 	.emac_init = ravb_emac_init_gbeth,
2691 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2692 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2693 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2694 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2695 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2696 	.tccr_mask = TCCR_TSRQ0,
2697 	.rx_max_frame_size = SZ_8K,
2698 	.rx_max_desc_use = 4080,
2699 	.rx_desc_size = sizeof(struct ravb_rx_desc),
2700 	.aligned_tx = 1,
2701 	.tx_counters = 1,
2702 	.carrier_counters = 1,
2703 	.half_duplex = 1,
2704 };
2705 
2706 static const struct of_device_id ravb_match_table[] = {
2707 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2708 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2709 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2710 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2711 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2712 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2713 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2714 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2715 	{ }
2716 };
2717 MODULE_DEVICE_TABLE(of, ravb_match_table);
2718 
2719 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2720 			  const char *ch, int *irq, irq_handler_t handler)
2721 {
2722 	struct platform_device *pdev = priv->pdev;
2723 	struct net_device *ndev = priv->ndev;
2724 	struct device *dev = &pdev->dev;
2725 	const char *dev_name;
2726 	unsigned long flags;
2727 	int error, irq_num;
2728 
2729 	if (irq_name) {
2730 		dev_name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
2731 		if (!dev_name)
2732 			return -ENOMEM;
2733 
2734 		irq_num = platform_get_irq_byname(pdev, irq_name);
2735 		flags = 0;
2736 	} else {
2737 		dev_name = ndev->name;
2738 		irq_num = platform_get_irq(pdev, 0);
2739 		flags = IRQF_SHARED;
2740 	}
2741 	if (irq_num < 0)
2742 		return irq_num;
2743 
2744 	if (irq)
2745 		*irq = irq_num;
2746 
2747 	error = devm_request_irq(dev, irq_num, handler, flags, dev_name, ndev);
2748 	if (error)
2749 		netdev_err(ndev, "cannot request IRQ %s\n", dev_name);
2750 
2751 	return error;
2752 }
2753 
2754 static int ravb_setup_irqs(struct ravb_private *priv)
2755 {
2756 	const struct ravb_hw_info *info = priv->info;
2757 	struct net_device *ndev = priv->ndev;
2758 	const char *irq_name, *emac_irq_name;
2759 	int error;
2760 
2761 	if (!info->multi_irqs)
2762 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2763 
2764 	if (info->err_mgmt_irqs) {
2765 		irq_name = "dia";
2766 		emac_irq_name = "line3";
2767 	} else {
2768 		irq_name = "ch22";
2769 		emac_irq_name = "ch24";
2770 	}
2771 
2772 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2773 	if (error)
2774 		return error;
2775 
2776 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2777 			       ravb_emac_interrupt);
2778 	if (error)
2779 		return error;
2780 
2781 	if (info->err_mgmt_irqs) {
2782 		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2783 		if (error)
2784 			return error;
2785 
2786 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2787 		if (error)
2788 			return error;
2789 	}
2790 
2791 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2792 	if (error)
2793 		return error;
2794 
2795 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2796 	if (error)
2797 		return error;
2798 
2799 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2800 	if (error)
2801 		return error;
2802 
2803 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2804 }
2805 
2806 static int ravb_probe(struct platform_device *pdev)
2807 {
2808 	struct device_node *np = pdev->dev.of_node;
2809 	const struct ravb_hw_info *info;
2810 	struct reset_control *rstc;
2811 	struct ravb_private *priv;
2812 	struct net_device *ndev;
2813 	struct resource *res;
2814 	int error, q;
2815 
2816 	if (!np) {
2817 		dev_err(&pdev->dev,
2818 			"this driver is required to be instantiated from device tree\n");
2819 		return -EINVAL;
2820 	}
2821 
2822 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2823 	if (IS_ERR(rstc))
2824 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2825 				     "failed to get cpg reset\n");
2826 
2827 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2828 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2829 	if (!ndev)
2830 		return -ENOMEM;
2831 
2832 	info = of_device_get_match_data(&pdev->dev);
2833 
2834 	ndev->features = info->net_features;
2835 	ndev->hw_features = info->net_hw_features;
2836 
2837 	error = reset_control_deassert(rstc);
2838 	if (error)
2839 		goto out_free_netdev;
2840 
2841 	SET_NETDEV_DEV(ndev, &pdev->dev);
2842 
2843 	priv = netdev_priv(ndev);
2844 	priv->info = info;
2845 	priv->rstc = rstc;
2846 	priv->ndev = ndev;
2847 	priv->pdev = pdev;
2848 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2849 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2850 	if (info->nc_queues) {
2851 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2852 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2853 	}
2854 
2855 	error = ravb_setup_irqs(priv);
2856 	if (error)
2857 		goto out_reset_assert;
2858 
2859 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2860 	if (IS_ERR(priv->clk)) {
2861 		error = PTR_ERR(priv->clk);
2862 		goto out_reset_assert;
2863 	}
2864 
2865 	if (info->gptp_ref_clk) {
2866 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2867 		if (IS_ERR(priv->gptp_clk)) {
2868 			error = PTR_ERR(priv->gptp_clk);
2869 			goto out_reset_assert;
2870 		}
2871 	}
2872 
2873 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2874 	if (IS_ERR(priv->refclk)) {
2875 		error = PTR_ERR(priv->refclk);
2876 		goto out_reset_assert;
2877 	}
2878 	clk_prepare(priv->refclk);
2879 
2880 	platform_set_drvdata(pdev, ndev);
2881 	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2882 	pm_runtime_use_autosuspend(&pdev->dev);
2883 	pm_runtime_enable(&pdev->dev);
2884 	error = pm_runtime_resume_and_get(&pdev->dev);
2885 	if (error < 0)
2886 		goto out_rpm_disable;
2887 
2888 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2889 	if (IS_ERR(priv->addr)) {
2890 		error = PTR_ERR(priv->addr);
2891 		goto out_rpm_put;
2892 	}
2893 
2894 	/* The Ether-specific entries in the device structure. */
2895 	ndev->base_addr = res->start;
2896 
2897 	spin_lock_init(&priv->lock);
2898 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2899 
2900 	error = of_get_phy_mode(np, &priv->phy_interface);
2901 	if (error && error != -ENODEV)
2902 		goto out_rpm_put;
2903 
2904 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2905 	priv->avb_link_active_low =
2906 		of_property_read_bool(np, "renesas,ether-link-active-low");
2907 
2908 	ndev->max_mtu = info->rx_max_frame_size -
2909 		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2910 	ndev->min_mtu = ETH_MIN_MTU;
2911 
2912 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2913 	 * Use two descriptor to handle such situation. First descriptor to
2914 	 * handle aligned data buffer and second descriptor to handle the
2915 	 * overflow data because of alignment.
2916 	 */
2917 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2918 
2919 	/* Set function */
2920 	ndev->netdev_ops = &ravb_netdev_ops;
2921 	ndev->ethtool_ops = &ravb_ethtool_ops;
2922 
2923 	error = ravb_compute_gti(ndev);
2924 	if (error)
2925 		goto out_rpm_put;
2926 
2927 	ravb_parse_delay_mode(np, ndev);
2928 
2929 	/* Allocate descriptor base address table */
2930 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2931 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2932 					    &priv->desc_bat_dma, GFP_KERNEL);
2933 	if (!priv->desc_bat) {
2934 		dev_err(&pdev->dev,
2935 			"Cannot allocate desc base address table (size %d bytes)\n",
2936 			priv->desc_bat_size);
2937 		error = -ENOMEM;
2938 		goto out_rpm_put;
2939 	}
2940 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2941 		priv->desc_bat[q].die_dt = DT_EOS;
2942 
2943 	/* Initialise HW timestamp list */
2944 	INIT_LIST_HEAD(&priv->ts_skb_list);
2945 
2946 	/* Debug message level */
2947 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2948 
2949 	/* Set config mode as this is needed for PHY initialization. */
2950 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
2951 	if (error)
2952 		goto out_rpm_put;
2953 
2954 	/* Read and set MAC address */
2955 	ravb_read_mac_address(np, ndev);
2956 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2957 		dev_warn(&pdev->dev,
2958 			 "no valid MAC address supplied, using a random one\n");
2959 		eth_hw_addr_random(ndev);
2960 	}
2961 
2962 	/* MDIO bus init */
2963 	error = ravb_mdio_init(priv);
2964 	if (error) {
2965 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2966 		goto out_reset_mode;
2967 	}
2968 
2969 	/* Undo previous switch to config opmode. */
2970 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2971 	if (error)
2972 		goto out_mdio_release;
2973 
2974 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2975 	if (info->nc_queues)
2976 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2977 
2978 	/* Network device register */
2979 	error = register_netdev(ndev);
2980 	if (error)
2981 		goto out_napi_del;
2982 
2983 	device_set_wakeup_capable(&pdev->dev, 1);
2984 
2985 	/* Print device information */
2986 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2987 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2988 
2989 	pm_runtime_mark_last_busy(&pdev->dev);
2990 	pm_runtime_put_autosuspend(&pdev->dev);
2991 
2992 	return 0;
2993 
2994 out_napi_del:
2995 	if (info->nc_queues)
2996 		netif_napi_del(&priv->napi[RAVB_NC]);
2997 
2998 	netif_napi_del(&priv->napi[RAVB_BE]);
2999 out_mdio_release:
3000 	ravb_mdio_release(priv);
3001 out_reset_mode:
3002 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3003 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3004 			  priv->desc_bat_dma);
3005 out_rpm_put:
3006 	pm_runtime_put(&pdev->dev);
3007 out_rpm_disable:
3008 	pm_runtime_disable(&pdev->dev);
3009 	pm_runtime_dont_use_autosuspend(&pdev->dev);
3010 	clk_unprepare(priv->refclk);
3011 out_reset_assert:
3012 	reset_control_assert(rstc);
3013 out_free_netdev:
3014 	free_netdev(ndev);
3015 	return error;
3016 }
3017 
3018 static void ravb_remove(struct platform_device *pdev)
3019 {
3020 	struct net_device *ndev = platform_get_drvdata(pdev);
3021 	struct ravb_private *priv = netdev_priv(ndev);
3022 	const struct ravb_hw_info *info = priv->info;
3023 	struct device *dev = &priv->pdev->dev;
3024 	int error;
3025 
3026 	error = pm_runtime_resume_and_get(dev);
3027 	if (error < 0)
3028 		return;
3029 
3030 	unregister_netdev(ndev);
3031 	if (info->nc_queues)
3032 		netif_napi_del(&priv->napi[RAVB_NC]);
3033 	netif_napi_del(&priv->napi[RAVB_BE]);
3034 
3035 	ravb_mdio_release(priv);
3036 
3037 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3038 			  priv->desc_bat_dma);
3039 
3040 	pm_runtime_put_sync_suspend(&pdev->dev);
3041 	pm_runtime_disable(&pdev->dev);
3042 	pm_runtime_dont_use_autosuspend(dev);
3043 	clk_unprepare(priv->refclk);
3044 	reset_control_assert(priv->rstc);
3045 	free_netdev(ndev);
3046 	platform_set_drvdata(pdev, NULL);
3047 }
3048 
3049 static int ravb_wol_setup(struct net_device *ndev)
3050 {
3051 	struct ravb_private *priv = netdev_priv(ndev);
3052 	const struct ravb_hw_info *info = priv->info;
3053 
3054 	/* Disable interrupts by clearing the interrupt masks. */
3055 	ravb_write(ndev, 0, RIC0);
3056 	ravb_write(ndev, 0, RIC2);
3057 	ravb_write(ndev, 0, TIC);
3058 
3059 	/* Only allow ECI interrupts */
3060 	synchronize_irq(priv->emac_irq);
3061 	if (info->nc_queues)
3062 		napi_disable(&priv->napi[RAVB_NC]);
3063 	napi_disable(&priv->napi[RAVB_BE]);
3064 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3065 
3066 	/* Enable MagicPacket */
3067 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3068 
3069 	if (priv->info->ccc_gac)
3070 		ravb_ptp_stop(ndev);
3071 
3072 	return enable_irq_wake(priv->emac_irq);
3073 }
3074 
3075 static int ravb_wol_restore(struct net_device *ndev)
3076 {
3077 	struct ravb_private *priv = netdev_priv(ndev);
3078 	const struct ravb_hw_info *info = priv->info;
3079 	int error;
3080 
3081 	/* Set reset mode to rearm the WoL logic. */
3082 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3083 	if (error)
3084 		return error;
3085 
3086 	/* Set AVB config mode. */
3087 	error = ravb_set_config_mode(ndev);
3088 	if (error)
3089 		return error;
3090 
3091 	if (priv->info->ccc_gac)
3092 		ravb_ptp_init(ndev, priv->pdev);
3093 
3094 	if (info->nc_queues)
3095 		napi_enable(&priv->napi[RAVB_NC]);
3096 	napi_enable(&priv->napi[RAVB_BE]);
3097 
3098 	/* Disable MagicPacket */
3099 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3100 
3101 	ravb_close(ndev);
3102 
3103 	return disable_irq_wake(priv->emac_irq);
3104 }
3105 
3106 static int ravb_suspend(struct device *dev)
3107 {
3108 	struct net_device *ndev = dev_get_drvdata(dev);
3109 	struct ravb_private *priv = netdev_priv(ndev);
3110 	int ret;
3111 
3112 	if (!netif_running(ndev))
3113 		goto reset_assert;
3114 
3115 	netif_device_detach(ndev);
3116 
3117 	if (priv->wol_enabled)
3118 		return ravb_wol_setup(ndev);
3119 
3120 	ret = ravb_close(ndev);
3121 	if (ret)
3122 		return ret;
3123 
3124 	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3125 	if (ret)
3126 		return ret;
3127 
3128 reset_assert:
3129 	return reset_control_assert(priv->rstc);
3130 }
3131 
3132 static int ravb_resume(struct device *dev)
3133 {
3134 	struct net_device *ndev = dev_get_drvdata(dev);
3135 	struct ravb_private *priv = netdev_priv(ndev);
3136 	int ret;
3137 
3138 	ret = reset_control_deassert(priv->rstc);
3139 	if (ret)
3140 		return ret;
3141 
3142 	if (!netif_running(ndev))
3143 		return 0;
3144 
3145 	/* If WoL is enabled restore the interface. */
3146 	if (priv->wol_enabled) {
3147 		ret = ravb_wol_restore(ndev);
3148 		if (ret)
3149 			return ret;
3150 	} else {
3151 		ret = pm_runtime_force_resume(dev);
3152 		if (ret)
3153 			return ret;
3154 	}
3155 
3156 	/* Reopening the interface will restore the device to the working state. */
3157 	ret = ravb_open(ndev);
3158 	if (ret < 0)
3159 		goto out_rpm_put;
3160 
3161 	ravb_set_rx_mode(ndev);
3162 	netif_device_attach(ndev);
3163 
3164 	return 0;
3165 
3166 out_rpm_put:
3167 	if (!priv->wol_enabled) {
3168 		pm_runtime_mark_last_busy(dev);
3169 		pm_runtime_put_autosuspend(dev);
3170 	}
3171 
3172 	return ret;
3173 }
3174 
3175 static int ravb_runtime_suspend(struct device *dev)
3176 {
3177 	struct net_device *ndev = dev_get_drvdata(dev);
3178 	struct ravb_private *priv = netdev_priv(ndev);
3179 
3180 	clk_disable(priv->refclk);
3181 
3182 	return 0;
3183 }
3184 
3185 static int ravb_runtime_resume(struct device *dev)
3186 {
3187 	struct net_device *ndev = dev_get_drvdata(dev);
3188 	struct ravb_private *priv = netdev_priv(ndev);
3189 
3190 	return clk_enable(priv->refclk);
3191 }
3192 
3193 static const struct dev_pm_ops ravb_dev_pm_ops = {
3194 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3195 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3196 };
3197 
3198 static struct platform_driver ravb_driver = {
3199 	.probe		= ravb_probe,
3200 	.remove_new	= ravb_remove,
3201 	.driver = {
3202 		.name	= "ravb",
3203 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3204 		.of_match_table = ravb_match_table,
3205 	},
3206 };
3207 
3208 module_platform_driver(ravb_driver);
3209 
3210 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3211 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3212 MODULE_LICENSE("GPL v2");
3213